Under review as submission to TMLR

Synthesizing Moving People with 3D Control

Anonymous authors
Paper under double-blind review

Abstract

In this paper, we present a diffusion model-based methodology for animating people from a
single image for a given target 3D motion sequence. Our approach has two core components:
a) learning priors about invisible parts of the human body and clothing, and b) rendering
novel body poses with proper clothing and texture. For the first part, we learn an in-filling
diffusion model to hallucinate unseen parts of a person given a single image. We train this
model on texture map space, which makes it more sample-efficient since it is invariant to pose
and viewpoint. Second, we develop a diffusion-based rendering pipeline, which is controlled
by 3D human poses. This produces realistic renderings of novel poses of the person, including
clothing, hair, and plausible in-filling of unseen regions. This disentangled approach allows
our method to generate a sequence of images that are faithful to the target motion in the 3D
pose and, to the input image in terms of visual similarity. In addition to that, the 3D control
allows various synthetic camera trajectories to render a person. Our experiments show that
our method is resilient in generating prolonged motions and varied challenging and complex
poses compared to prior methods. Please check our anonymous demo for more details: [link.

Figure 1: The Imitation Game: Given a video of a person "The Actor", we want to transfer their motion
to a new person "The Imitator". In this figure, the first row shows a sequence of frames of the actor from a
ballerina Dance of the Sugar Plum Fairy. The inset row shows the 3D poses extracted from this video. Now,
given any single image of a new person "The Imitator", our model can synthesize new renderings of the
imitator to copy the actions of the actor in 3D. Please check more results in our anonymous demo.

1 Introduction

Given a random photo of a person, can we accurately animate that person to imitate someone else’s action?
This problem requires a deep understanding of how human poses change over time, learning priors about
human appearance and clothing. For example, in Fig. the Actor can do a diverse set of actions, from
simple actions such as walking and running to more complex actions such as fighting and dancing. For the
Imitator, learning a visual prior about their appearance and clothing is essential to animate them at different
poses and viewpoints.


https://www.youtube.com/watch?v=uudVaAQwy44
https://www.youtube.com/watch?v=uudVaAQwy44
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To tackle this problem, we propose 3DHM, a diffusion framework (see Fig. [2) that synthesizes 3D Human
Motions by completing a texture map from a single image and then rendering the 3D humans to imitate the
actions of the actor.

Figure 2: Overview of 3DHM: we show an overview of our model pipeline. Given an image of the imitator
and a sequence of 3D poses from the actor, we first generate a complete full texture map of the imitator, which
can be applied to the 3D pose sequences extracted from the actor to generate texture-mapped intermediate
renderings of the imitator. Then we pass these intermediate renderings to the Stage-2 model to project the
SMPL mesh rendering to more realistic renderings of real images.

We use state-of-the-art 3D human pose recovery model 4DHumans (Rajasegaran et all 2022} |Goel et al.|
2023) for extracting motion signals of the actor, by reconstructing and tracking them over time. Once we
have a motion signal in 3D, as a sequence of meshes, one would think we can simply re-texture them with
the texture map of the imitator to get an intermediate rendering of the imitation task. However, this requires
a complete texture map of the imitator. When given only a single view image of the imitator, we see only a
part of their body, perhaps the front side, or the backside but never both sides. To get the complete texture
map of the imitator from a single view image, we learn a diffusion model to in-fill the unseen regions of
the texture map. This essentially learns a prior about human clothing and appearance. For example, a
front-view image of a person wearing a blue shirt would usually have the same color at the back. With this
complete texture map, now we can get an intermediate rendering of the imitator doing the actions of the
actor. Intermediate rendering means, wrapping the texture map on top of the SMPL |Loper et al.| (2023)
mesh to get a body-tight rendering of the imitator.

However, the SMPL [Loper et al.| (2023) mesh renderings are body-tight and do not capture deformations
on clothing, like skirts or various hairstyles. To solve this, we learn a second model, that maps from mesh
renderings to more realistic images, by controlling the motion with 3D poses. We find out such a simple
framework could successfully synthesize realistic and faithful human videos, particularly for long video
generations. We show that the 3D control provides a more fine-grained and accurate flow of motion and
captures the visual similarities of the imitator faithfully. Because of this, we would like to highlight that
3DHM exhibits much better performance in full-body animation due to its Texture Mapped design (Fig. [2)),
rather than directly using 3D poses as input, as is done in all state-of-the-art methods. Additionally, 3SDHM
can predict the complete texture map from the opposite side of the human, not just from the front, which
none of the previous works can achieve effectively.

To summarize, our 3DHM achieves all the following features simultaneously. First, 3DHM can specify the
appearance of the input person and generate human videos with temporal consistency (Fig. |§| and .
Second, 3DHM generates movements in 3D, rather than 2D (Fig. and . Third, the resulting video
sequence from 3DHM can be viewed from arbitrary camera viewpoints to visualize the human’s movement
(Fig.[Bland [7). A detailed comparison with other methods can be found in Section 2 - Related Works. We
kindly recommend that reviewers check our anonymous videos at the following link: [demo.


https://www.youtube.com/watch?v=uudVaAQwy44
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Figure 3: 3DHM can synthesize moving people from both the original camera viewpoint or any other camera
viewpoint.

2 Related Works

Animating a human from a single input image with various motions is a challenging problem in computer
vision. An ideal model should be universal, capable of synthesizing realistic human motions with accurate
pose information while maintaining fidelity in appearance with minimal flickering. To ensure flexibility and
generalization, the model should support animations from various camera viewpoints. Early methods |Chan
et al.| (2019); Wang et al. (2018]) directly learned pose-to-pixel mappings but required separate training
for each individual. Make-a-Video (Singer et al. |2022) and Imagen Video (Saharia et al., 2022) could
synthesize videos from textual instructions to generate different people; however, their outputs often fail to
accurately preserve human properties due to a lack of pose supervision, leading to unnatural compositions.
ControlNet (Zhang & Agrawalal, [2023]) introduced neural network architectures to control large diffusion
models with additional input conditions, such as OpenPose (Cao et al.,|2017)), but was limited to generating
single images. GestureDiffuCLIP (Ao et al., |2023) focused on generating co-speech gestures but was not
specifically designed for human animation, failing to guarantee realistic human appearance and clothing.

More recently, several works|Chang et al| (2023)); [Wang et al.| (2024); Ma et al.| (2024); |[Peng et al.| (2024) have
developed universal diffusion models for human animation from a single input image and motion guidance, such
as Dreampose (Karras et al.l |2023)), DisCO (Wang et al.|2023), AnimateAnyone [Hu| (2024), MagicAnimate |Xu
et al.| (2024), and Champ Zhu et al.[ (2024). DisCO and AnimateAnyone rely on OpenPose (Cao et al. 2017)
that provides 2D pose information to animate humans, while Openpose primarily contains the anatomical
key points of humans, it can not be used to indicate the body shape, depth, or other related human body
information. DreamPose and MagicAnimate leverage DensePose (Giiler et al., 2018), which offers a 2.5D
representation by mapping 2D pixels to a 3D surface without fully reconstructing the 3D geometry. Although
2.5D poses improve generation quality, they cannot represent all human motions, making the transition to
3D essential. Only a few works have explored this direction, with Champ |[Zhu et al.| (2024) being a notable
example, utilizing multiple condition maps rendered from SMPL mesh to enhance control over different
viewpoints. However, aligning output pixels for training regularization often overfits these models to specific
training data, limiting generalization to novel subjects and different camera angles. Considering both the
advancements and limitations of previous works, our proposed 3DHM integrates three key components (as
illustrated in Fig. : 1) instead of directly inputting poses, we leverage traditional graphical techniques to
reconstruct a complete texture map from a single image, ensuring adaptability to any input; 2) we then map
the texture map to the 3D pose to obtain a texture-mapped 3D human, enabling realistic synthesis from
various camera viewpoints; 3) since the generated frames only include the human figure and may still have
incomplete appearances, we further refine the rendered video to match the original input’s appearance. We
also summarize these properties and compare them with state-of-the-art methods in Table
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Method Generate Videos Specify Appearance Animate-2D  Animate-3D  Specify Camera Viewpoints

ControlNet (2023)
DreamPose (2023)
DisCO (2024)

Animate Anyone (2024)
Magic Animate (2024)
Champ (2024)

3DHM (Ours)

SN NN
AN
AN
WX X % X %
NX X %X % % %

Table 1: Overview of 3DHM’s properties compared with other state-of-the-art methods. Animate-2D
refers to synthesizing moving people with various motions in 2D spaces. However, since 2D motion cannot
represent all possible movements, Animate-3D involves synthesizing moving people in 3D spaces.

3 Synthesizing Moving People

In this section, we discuss our two-stage approach for imitating a motion sequence. Our 3DHM frame-
work embraces the advantage of accurate 3D pose prediction from the state-of-the-art predicting models
4DHumans (Rajasegaran et al. 2022; |Goel et al. 2023), which could accurately track human motions and
extracts 3D human poses of the actor videos. For any given video of the actor we want to imitate, we use
3D reconstruction-based tracking algorithms to extract 3D mesh sequences of the actor. For the inpainting
and rendering part, we rely on the pre-trained Stable Diffusion (Rombach et al., [2022b]) model, which is one
of the most recent classes of diffusion models that achieve high competitive results over various generative
vision tasks.

Our approach 3DHM is composed of two core parts: Inpainting Diffusion for texture map in-painting as
Stage-1 and Rendering Diffusion for human rendering as Stage-2. Fig. 2] shows a high-level overview of our
framework. In Stage-1, first, for a given single view image, we extract a rough estimate of the texture map
by rendering the meshes onto the image and assigning pixels to each visible mesh triangle such that when
rendered again it will produce a similar image as the input image. This predicted texture map has only
visible parts of the input image. The Stage-1 Diffusion in-painting model takes this partial texture map
and generates a complete texture map including the unseen regions. Given this complete texture map, we
generate intermediate renderings of SMPL Loper et al.| (2023) meshes and use Stage-2 model to project the
body-tight renderings to more realistic images with clothing. For the Stage-2 model, we apply 3D control to
animate the imitator to copy the actions of the actor.

3.1 Texture Map Inpainting

The goal of Stage-1 model is to produce a plausible complete texture map by inpainting the unseen regions of
the imitator. We extract a partially visible texture map by first rendering a 3D mesh onto the input image
and sample colors for each visible triangle following 4ADHumans |Goel et al.| (2023).

Input. We first utilize a common approach to infer pixel-to-surface correspondences to build an incomplete
UV texturemap (Xu & Loy, 2021} |Casas & Trinidad) [2023) for texturing 3D meshes from a single RGB image.
We also compute a visibility mask to indicate which pixels are visible in 3D and which ones are not.

Target. We train our model on a large 3D human texture dataset |Liu et al.|(2024), which contains 50k
high-fidelity textured UV map of SMPL |Loper et al. (2023). To strengthen the model’s 3D geometry
consistency in completing the partial texturemap, We densely sample a group of visibility masks from 360
degrees of SMPL mesh, which then mask out Ground-Truth texture map to produce the pseudo-partial
texture map during training the inpainting model. Benefiting from the extensive collection of texture maps
from diverse human appearances, as well as the numerous visibility masks from various viewpoints.

Model. We finetune directly on the Stable Diffusion Inpainting model [Rombach et al.| (2022a)) that shows
great performance on image completion tasks. Given a single RGB human image, we predict the human
mesh and calculate its corresponding visibility mask and partial texture map, which is then recovered by the
in-painting model to complete texture map for the human. We lock the text encoder branch during training
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Figure 4: Stage-1 of 3DHM: In the first stage, given a single view image of an imitator, we first apply
4Dhumans Goel et al.| (2023) style sampling approach to extract partial texture map and its corresponding
visibility map. These two inputs are passed to the in-painting diffusion model to generate a plausible complete
texture map. In this example, while we only see the front view of the imitator, the model was able to
hallucinate a plausible back region that is consistent with their clothing.

and feed "3D realistic human, UV texturemap" as input text condition. We refer to our trained model as
Inpainting Diffusion. See Fig. [4] for the model architecture.

3.2 Human Rendering

In Stage-2, we aim to obtain a realistic rendering of a human imitator doing the actions of the actor. While
the intermediate renderings (rendered with the poses from the actor and texture map from Stage-1) can reflect
diverse human motion, these SMPL mesh renderings are body-tight and cannot represent realistic rendering
with clothing, hairstyles, and body shapes. We train a model for realistic rendering, in a fully self-supervised
fashion, by relying on the actor as the imitator. We obtain a sequence of poses from 4DHumans |Goel et al.
(2023) for each training video and use Stage-1 on single frames to obtain a complete texture map. We then
pair the intermediate renderings (i.e. the rendered texture maps on the 3D poses) with the original frames
from which they were obtained. We collect a large amount of paired data and train our Stage-2 diffusion
model with conditioning.

Input: We first apply the generated complete texture map from Stage-1 to the actor’s 3D body mesh
sequences to obtain the intermediate rendering. Note that the rendering can only reflect the clothing that
fits the 3D mesh (body-tight clothing) but fails to reflect the texture outside the SMPL body (e.g., the
puffed-up skirt region, or hat). To obtain the human with complete clothing texture, we input the obtained
intermediate renderings and the original image of the person into Rendering Diffusion to render the human
in a novel pose with a realistic appearance.

Target: Since we collected the data by assuming the actor is the imitator, we have the paired data of the
intermediate renderings and RGB images. This allows us to train this model on lots of data, without requiring
any direct 3D supervision.

Model. Similar to ControlNet, we directly clone the weights of the encoder of the Stable Diffusion |[Rombach
et al.| (2021)) model as our Controllable branch ("trainable copy") to process 3D conditions. We freeze the
pre-trained Stable Diffusion. In the meanwhile, we input a texture-mapped 3D human at time ¢ and original
human photo input into a fixed VAE encoder and obtain texture-mapped 3D human latents (64 x 64) and
appearance latents (64 x 64) as conditioning latents. We feed these two conditioning latents into Rendering
Diffusion Controllable branch. The key design principle of this branch is to learn textures from human input
and apply them to the texture-mapped 3D human during training through the denoising process. The goal is
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Figure 5: Stage-2 of 3DHM: Given an intermediate rendering of the imitator with the pose of the actor
and the actual RGB image of the imitator, our model can synthesize realistic renderings of the imitator on
the pose of the actor.

to render a real human with vivid textures from the generated(texture-mapped) 3D human from Stage-1. We
obtain the output latent and process it to the pixel space via diffusion step procedure and fixed VAE decoder.
We refer to our trained model as Rendering Diffusion. In Rendering Diffusion, we predict outputs frame by
frame. We show the Stage-2 workflow in Fig.

3.3 Experiments

Dataset. We collect 2,524 3D human videos from 2K2K (Han et al., 2023), THuman2.0 (Yu et al [2021)) and
People-Snapshot (Alldieck et al., 2018) datasets. 2K2K is a large-scale human dataset with 3D human models
reconstructed from 2K resolution images. THuman2.0 contains 500 high-quality human scans captured by a
dense DLSR rig. People-Snapshot is a smaller human dataset that captures 24 sequences. We convert the 3D
human dataset into videos and extract 3D poses from human videos using 4DHumans |Goel et al| (2023)). We
use 2,205 videos for training and other videos for validation and testing. See the Appendix for more details
on the dataset distribution on clothing.

Evaluation Metrics. We evaluate the quality of generated frames of our method with image-based and
video-based metrics. For image-based evaluation, we follow the evaluation protocol of DisCO (Wang et al.,
2023)) to evaluate the generation quality. We report the average PSNR (Hore & Zioul, 2010]), SSIM (Wang
et al., |2004)), FID (Heusel et all 2017), LPIPS [Zhang et al. (2018), and L1. For video-based evaluation, we
use FVD (Unterthiner et al., [2018). For pose evaluating 3D pose accuracy, we use Mean Per-Vertex Position
Error (MPVPE) and Procrustes-Aligned Mean Per-Vertex Position Error (PA-MVPVE (Moon et al., 2022))).

Implementation Details. We set a learning rate of 5e-05 and use the pre-trained diffusion models for both
stages. In Stage-1, we finetune the whole inpainting network. For Stage-2 Rendering Diffusion, we train the
Controllable branch and freeze Stable Diffusion backbones. The total number of trainable parameters in this
case is 876M. We train Rendering Diffusion for 30 epochs (requires about 2 weeks on 8 NVIDIA A100 GPUs
with a batch size of 4). During inference, we only need to run Stage-1 once to reconstruct the full texture
map of the imitator, which is used for all other novel poses and viewpoints. In Stage-2, the initial RGB frame
of the imitator is conditioned for all frames, to produce samples that are temporarily consistent.



Under review as submission to TMLR

Method | PSNRT | SSIM 4 | FID| |LPIPS| | Ll |FID-VID|| FVD|

DreamPose 35.06 0.80 245.19 0.18 2.12e-04 113.96 950.40

DisCO 35.38 0.81 | 164.34 0.15 1.44¢-04 83.91 629.18
MagicAnimate | 32.57 0.65 | 300.66 0.29 | 5.80E-04 | 140.45 | 900.70
Ours | 36.18 | 0.86 | 154.75 | 0.12 | 9.88e-05 | 55.40 | 422.38

Table 2: Quantitative comparison on generation quality. We compare our method with prior works on
pose condition generation tasks and measure the generation quality of the samples.

3.3.1 Quantitative Results

Baselines. We compare our approaches with past and state-of-the-art methods: DisCo (Wang et al., [2023)),
DreamPose (Karras et al.| |2023), MagicAnimate (Xu et al., |2024), and ControlNet (Zhang & Agrawalal [2023)
(for pose accuracy comparisons)ﬂ We set inference steps as 50 for all the approaches for fair comparisons.

Comparisons on Frame-level Generation Quality. We compare 3DHM with other methods on 2K2K
test dataset, which is composed of 50 unseen human videos, at 256 x 256 resolution. For each human video,
we take 30 frames that represent the different viewpoints of each unseen person. The angles range from 0° to
360°, we take one frame every 12° to better evaluate the prediction and generalization ability of each model.
As for DisCO, we strictly follow their setting and extract OpenPose for inference. We extract DensePose for
inference DreamPose and MagicAnimate. We evaluate the results and calculate the average score over all
frames of each video. We set the background as black for all approaches for fair comparisons. We report
the average score of the same 50 videos and show the comparisons in Table 2] We observe that 3DHM
outperforms all the baselines in different metrics.

Comparisons on Video-level Generation Quality. To verify the temporal consistency of 3DHM, we
also report the results following the same test set and baseline implementation as in image-level evaluation.
Unlike image-level comparisons, we concatenate every consecutive 16 frames to form a sample of each unseen
person on challenging viewpoints. The angles range from 150° to 195°, we take one frame every 3° to better
evaluate the prediction and generalization ability of each model. We report the average score overall of 50
videos and show the comparisons in Table[2] We observe that 3DHM, though trained and tested by per frame,
still embraces significant advantage over prior approaches, indicating superior performance on preserving the
temporal consistency with 3D control.

Running Cost. Here we outline the comparison of parameters and running time with other methods in
Table 2 using a single GPU A100. We show the comparison in Table [3]

The Benefit of using 3D Control for Pose Accuracy. To further evaluate the generalization of our
model, we estimate 3D poses from generated human videos from different approaches via a state-of-the-art
3D pose estimation model 4DHumans. We use the same dataset setting mentioned above and compare
the extracted poses with 3D poses from the target videos. Following the same comparison settings with
generation quality, we evaluate the results and calculate the average score over all frames of each video.
Beyond DreamPose and DisCO, we also compare with ControlNet, which achieves the state-of-the-art in
generating images with conditions, including Openpose control. We input the same prompts as ours ‘a real
human is acting’ and the corresponding Openpose as conditions for ControlNet. We report the average
score overall of 50 test videos and show the comparisons in Table [d We could notice that 3DHM could
synthesize moving people following the provided 3D poses with very high accuracy in comparison with other
approaches. We assume this is because previous approaches cannot learn all the motions by directly predicting
the pose-to-pixel mapping.

1'We utilize the open-source official code and models provided by the authors to implement these baselines. We use diffusers (von
Platen et al. 2022) for ControlNet and Openpose extraction, and Detectron2 for DensePose extraction for MagicAnimate and
DreamPose. Since [Chan et al.| (2019) can only work for animating a specific person, we don’t compare with it in this paper.
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Method | Time (second/frame) | Parameter
DreamPose 22.0 1.0B
DisCO 5.0 2.0B
MagicAnimate 10.0 2.0B
Ours 3.2 1.0B
Ours (scaled-up) 8.9 2.0B

Table 3: Comparison of running cost. We compare inference time for different models, and we can see
that our model is faster in comparison with our models. We also present the time and parameters of our
scaled-up model, which achieves enhanced control and consistency while delivering the highest quality. Since
it further improves video consistency through temporal layers, it results in a slightly longer processing time
compared to the DisCO baseline.

Method | MPVPE | | PA-MPVPE |

DreamPose 123.07 82.75
DisCO 112.12 63.33
ControlNet 108.32 59.80
Ours | 41.08 | 31.86

Table 4: Quantitative comparison of pose accuracy. We measure pose accuracy in the generated images
by comparing them to the ground truth poses. The results show that our model accurately preserves poses in
the generated images.

Settings | PSNRT | SSIM 1| FID | |LPIPS| | L1] |FID-VID] | FVD | | MPVPE | | PA-MPVPE |
3DHM (proposed) | 36.18 | 0.86 | 154.75 | 0.12 | 9.88¢-05 | 55.40 | 422.38 | 4108 | 31.86
w/o Texture map 35.00 0.78 237.42 0.20 2.35e-04 113.97 632.67 92.94 59.18
w/o Appearance Latents | 36.07 | 0.86 | 167.58 | 0.12 | 1.03e-04 93.21 715.51 41.99 32.82
adding SMPL parameters | 36.42 | 087 | 157.60 | 0.12 | 8.87e-05 | 72.35 579.90 | 39.16 29.67

Table 5: Ablation study of Rendering Diffusion. We compare the frame-wise generation quality,
video-level generation quality and the pose accuracy under different settings. We notice both texturemap
reconstruction and appearance latents are critical to the model performance. The results show that although
adding SMPL parameters achieve better performance on frame-level setting but may yield worse temporal
consistency than default settings. Note: we use bold to represent the best result and underline to represent
the second-best result.

3.3.2 Ablation Study

To further verify the components of our methods, we train on training dataset and test on test datasets.
We extract the 3D rendered pose from these 50 test video tracks. Same with the settings in quantitative
comparison, we calculate the average scores among all the generated frames and targeted original frames and
report the results on both frame-wise metric (PSNR, SSIM, FID, LPIPS, L1), video-level metric (FID-VID,
FVD) and pose accuracy (MPVPE, PA-MPVPE) in Table |5 We find that both texture map reconstruction
and appearance latents are critical to the model performance. Also, we notice that directly adding SMPL
parameters into the model during training may not bring improved performance considering all evaluation
metrics.

4 Scale up 3DHM

In this section, we discuss how to scale up our method to real-world domains. We first discuss the challenges
of detailed control for Diffusion models and then further explore a lossless approach to ensure the visual
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Figure 6: Scaled up Stage-2 of 3DHM Model: To enable consistent background and human generation,
we train ReferenceNet with ControlNet, and then only finetune the temporal-attention layer of the UNet and
keep other components frozen.

consistency of human identity and background from input reference images. To improve video consistency,
we utilize a temporal diffusion model (Guo et al., 2024) to learn the temporal correlation within motion
sequences. The detailed framework is shown in Fig. [6]

4.1 Enhance Appearance Alignment

The key challenge in scaling up our method to real-world domains is to maintain both the complex background
and the human appearance from reference images consistently. The Stable Diffusion Model Rombach et al.
(2022b), trained for text-to-image tasks, prioritizes semantics over low-level visual details. However, our
Stage-2 rendering requires low-level details to fine structural and appearance reconstruction. Therefore,
we use a lightweight image adapter [Ye et al.| (2023) to condition diffusion on image prompts, and add a
trainable branch of the Stable Diffusion model, namely Reference Net, to enhance consistency on both input’s
background and human appearance.

Input. Same with Stage-2, we input the refined imitator’s texture map from Stage-1 with actor’s 3D motions
to get intermediate renderings. The intermediate rendering is then fed to the 3D Controllable branch as the
motion condition. The original imitator’s RGB image is fed to the Reference Net and the image adaptor as
the appearance guidance.

Dataset. We collect 1,000 real human dancing videos (2 - 10 seconds) from the Internet as an important
complement to our 3D virtual dataset.

Target. We want to scale up our model training with both collected real videos and 3D virtual datasets
together to improve model’s generalizability in complex poses and the various 3D views, respectively.

Model. To better inject the input image’s appearance into the denoising backbone, we make a trainable copy
of the pre-trained Stable Diffusion as our ReferenceNet. We now separately extract the imitator’s appearance
with ReferenceNet and inject them into the backbone by levels to condition the diffusion. This lossless way is
essential to keep a consistent background and human appearance for different poses. Besides, a pretrained
IP-adapter |Ye et al| (2023)) is also integrated into cross-attention layers to better control the human identity.
From the predicted SMPL parameters, we can further align body shapes between the input image and motion
sequences.
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(a) 3DHM with random 3D poses from various viewpoints. We show that even if the person’s photo is from a specific
angle, our Stage-1 can help reconstruct the full texture map to obtain full body information. Stage-2 can better align
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(b) 3DHM with motions from random YouTube Videos.

Figure 7: Qualitative results on different viewpoints of the same pose and motions from random videos.

4.2 Temporal Consistency

With the strong image-based guidance mentioned above, our model can generate a video frame by frame.
However, the generated frames may suffer from jittering due to the lack of temporal consistency. In our
scaled-up model, we insert temporal layers pre-trained on a large video dataset |Guo et al.| (2024)) to improve
the motion coherence and appearance consistency. Previous works Wang et al.| (2023); [Karras et al.| (2023);
Hu| (2024) also have similar layers and success for short video generation. However, these methods can hardly
generate consistent long videos. The sliding windows strategy they use will cause instability and randomness
between each short video clip generated. Based on that, our model further guides long video generation by
conditioning on previously generated frames.

Input. During training, for each video clip, we extract F' consecutive frames as the target of actor’s motion
sequence and randomly pick a frame as the imitator’s reference image. Now the 3D Control branch takes F'
consecutive intermediate rendering to animate the imitator’s image and generate a F' frames video. Since the
model only extracts the input image’s latent once from Reference Net for each video clip, it almost cost no
extra computing time.

Model. We define the short video clip as V' € REXCXFXHXW “with batch size B, the number of channels C,
the number of consecutive frames F', height H and width W respectively. The temporal layers are inserted at
each resolution level. For each level i , the 5D latents v; € RP*¢Xfxhxw ig yeshaped to (b x h x w) x f X ¢
within the temporal layer as self-attention to align feature maps across frames. However, during long video
generation, since the video clips are generated independently and concatenated together, the different random
noises will cause inconsistency between each video clip. To facilitate the cross-clips consistency, we take
the last frame ka from k-th generated video clip Vklzf to condition on the next video clip generation Vkl_;rfl

The ka is input to the Reference Net to extract corresponding latents for each resolution level ¢, and then
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Method | PSNR? | SSIM 1 | LPIPS | | L1] | FID-VID| | FVD |
DreamPose 28.04 0.509 0.450 6.91E-04 80.51 551.56
DisCO 29.03 0.668 0.292 3.78E-04 59.90 292.80
Animate Anyone 29.56 0.718 0.285 - - 171.9
MagicAnimate 29.16 0.714 0.239 3.13E-04 21.75 179.07
Champ 29.84 | 0.773 0.235 3.02E-04 26.14 170.20

Ours (Scaled-up) | 29.79 | 0.785 | 0.231 | 2.93E-04 | 20.68 | 176.28

Table 6: Quantitative comparison on TikTok Dataset. We compare our scaled-up model with the
previous methods. We would like to highlight that 3SDHM exhibits much better generalization due to its
Texture Mapped design, rather than directly using 3D poses as input like all other methods.

concatenated with the following 5D video latents along the temporal dimension. The conditioned temporal
layers at level ¢ now attention across latent vio:f € Rvxex(H+)xhxw and then truncate the previous frame v
to get the conditioned results 172»1 I Zero-initialize Zhang & Agrawala) (2023) is also applied to the temporal
layers to eliminate harmful noise during training.

4.3 Experiments

Evaluation Metrics. We evaluate the quality of generated videos from our scaled-up model. with the
image-based metrics, including the average PSNR, SSIM, LPIPS, and L1. For video-based evaluation, we use
FVD and FID-VID.

Implementation Details. We initialize the scaled-up model with the Stable Diffusion model and the
temporal layers from AnimateDiff (Guo et al., [2024). The temporal sliding window size is set to 16 frames
for both training and inference. We randomly sample the video clips from both virtual and real datasets and
train the scaled-up stage-2 model for 10 epochs.

4.3.1 Quantitative Results

TikTok dataset (Jafarian & Park] |2021) is a common benchmark for human video generation tasks. We
compare our scaled-up model’s performance with previous state-of-the-art methods in Table [6] For a fair
comparison with previous methods, we fine-tune our model and evaluate it on the TikTok dataset. The
quantitative results show that our scaled-up model has better performance for both image and video quality.

4.3.2 Qualitative Results

With the aid of 3D assistance, our approach has the potential to produce human motion videos in various
scenarios. We consider challenging 3D poses and motions from 2 sources: 3D human videos and random
YouTube videos.

Poses from Unseen 3D Human Videos. We test our scaled-up model on different 3D human poses and
viewpoints from the 2K2K dataset. We verify that the tested video has never appeared in training data. We
show the results in Fig. [7a]

Motions from Random YouTube Videos. We test our model on very different motions from randomly
downloaded YouTube videos of an unseen human. We display the results in Fig. [7b] The results show that
3DHM can efficiently animate any person using random motion resources, accurately following the 3D poses
from challenging motion sources.

We also compare the results of the official model from state-of-the-art methods on random real human photos
which ensures distinct data distribution. We display the qualitative results of various poses on real human
photos in Fig. |8l We notice that 3DHM can generalize well to unseen real humans and motions though it is
only trained with limited data. Since DreamPose requires subject-specific finetuning of the UNet to achieve
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Reference Driving Video

Figure 8: Qualitative comparison of real human photos with state-of-the-art methods. Please zoom in
to examine the details.

better results, it cannot directly generalize well on a random human photo. As for DisCO, though it has been
pre-trained on multiple public datasets for better generalizability, it still fails to synthesize people without
the target pose. MagicAnimate uses 3D pose features (DensePose) which better controls the appearance of
input images but always suffers from severe artifacts on DensePose segmentation maps, which severely ruins
the pose accuracy and consistency. Compared to previous methods, 3DHM gets improvement from adding
rigid 3D control to better correlate the appearance to the poses and preserve the body shape. In contrast,
conditioning on OpenPose or DensePose cannot guarantee the mapping between textures and poses, which
undermines the models’s generalization ability.

4.3.3 Limitations

As 3DHM has been trained with limited data (around 2K synthetic humans and 1K real humans), it might
struggle to predict the texture details of the unseen side of the input human photo. However, we believe this
issue can be mitigated by scaling up with more human data.

5 Conclusion

In this paper, we propose 3DHM, a two-stage diffusion model-based method that enables human animation
from a single random photo and a target sequence of human poses. A notable aspect of our approach is the use
of a cutting-edge 3D pose estimation model to generate 3D poses, combined with classical graphics techniques
to synthesize people with arbitrary poses, allowing our model to be trained on any video. Our method
is well-suited for long-range motion generation and can handle arbitrary poses with superior performance
compared to previous approaches. It preserves the target motion’s poses, as well as clothing and facial
identities, while ensuring smoother transitions between frames.

12



Under review as submission to TMLR

References

Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian Theobalt, and Gerard Pons-Moll. Video based
reconstruction of 3d people models. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 8387-8397, 2018.

Tenglong Ao, Zeyi Zhang, and Libin Liu. Gesturediffuclip: Gesture diffusion model with clip latents. arXiv
preprint arXiv:2303.14613, 2023.

Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person 2d pose estimation using
part affinity fields. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
7291-7299, 2017.

Dan Casas and Marc Comino Trinidad. Smplitex: A generative model and dataset for 3d human texture
estimation from single image. arXiv preprint arXiv:2309.01855, 2023.

Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei A Efros. Everybody dance now. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 5933-5942, 2019.

Di Chang, Yichun Shi, Quankai Gao, Jessica Fu, Hongyi Xu, Guoxian Song, Qing Yan, Xiao Yang, and
Mohammad Soleymani. Magicdance: Realistic human dance video generation with motions & facial
expressions transfer. arXiv preprint arXiv:2311.12052, 2023.

Shubham Goel, Georgios Pavlakos, Jathushan Rajasegaran, Angjoo Kanazawa, and Jitendra Malik. Humans
in 4D: Reconstructing and tracking humans with transformers. In ICCV, 2023.

Riza Alp Giiler, Natalia Neverova, and Iasonas Kokkinos. Densepose: Dense human pose estimation in the
wild. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7297-7306,
2018.

Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh Agrawala, Dahua
Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffusion models without specific
tuning. International Conference on Learning Representations, 2024.

Sang-Hun Han, Min-Gyu Park, Ju Hong Yoon, Ju-Mi Kang, Young-Jae Park, and Hae-Gon Jeon. High-fidelity
3d human digitization from single 2k resolution images. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2023.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained
by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information
processing systems, 30, 2017.

Alain Hore and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In 2010 20th international conference on
pattern recognition, pp. 2366-2369. IEEE, 2010.

Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character animation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8153-8163,
2024.

Yasamin Jafarian and Hyun Soo Park. Learning high fidelity depths of dressed humans by watching social
media dance videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12753-12762, 2021.

Johanna Karras, Aleksander Holynski, Ting-Chun Wang, and Ira Kemelmacher-Shlizerman. Dreampose:
Fashion image-to-video synthesis via stable diffusion. arXiv preprint arXiv:2304.06025, 2023.

Yufei Liu, Junwei Zhu, Junshu Tang, Shijie Zhang, Jiangning Zhang, Weijian Cao, Chengjie Wang, Yunsheng
Wu, and Dongjin Huang. Texdreamer: Towards zero-shot high-fidelity 3d human texture generation. arXiv
preprint arXiv:2408.12906, 2024.

13



Under review as submission to TMLR

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. Smpl: A
skinned multi-person linear model. In Seminal Graphics Papers: Pushing the Boundaries, Volume 2, pp.
851-866. 2023.

Yue Ma, Yingqing He, Xiaodong Cun, Xintao Wang, Siran Chen, Xiu Li, and Qifeng Chen. Follow your pose:
Pose-guided text-to-video generation using pose-free videos. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pp. 4117-4125, 2024.

Gyeongsik Moon, Hongsuk Choi, and Kyoung Mu Lee. Accurate 3d hand pose estimation for whole-body 3d
human mesh estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2308-2317, 2022.

Bohao Peng, Jian Wang, Yuechen Zhang, Wenbo Li, Ming-Chang Yang, and Jiaya Jia. Controlnext: Powerful
and efficient control for image and video generation. arXiv preprint arXiv:2408.06070, 2024.

Jathushan Rajasegaran, Georgios Pavlakos, Angjoo Kanazawa, and Jitendra Malik. Tracking people by
predicting 3d appearance, location and pose. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2740-2749, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-resolution
image synthesis with latent diffusion models. 2022 ieee. In CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 10674-10685, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjérn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 10684-10695, June 2022a.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjérn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10684-10695, 2022b.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-to-image diffusion
models with deep language understanding. Advances in Neural Information Processing Systems, 35:
36479-36494, 2022.

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry Yang, Oron
Ashual, Oran Gafni, et al. Make-a-video: Text-to-video generation without text-video data. arXiv preprint
arXiv:2209.14792, 2022.

Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski, and
Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges. arXiv preprint
arXiv:1812.01717, 2018.

Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul, Mishig
Davaadorj, and Thomas Wolf. Diffusers: State-of-the-art diffusion models. https://github.com/
huggingface/diffusers| 2022.

Tan Wang, Linjie Li, Kevin Lin, Chung-Ching Lin, Zhengyuan Yang, Hanwang Zhang, Zicheng Liu, and
Lijuan Wang. Disco: Disentangled control for referring human dance generation in real world. arXiv
preprint arXiv:2307.00040, 2023.

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew Tao, Jan Kautz, and Bryan Catanzaro.
Video-to-video synthesis. arXiv preprint arXiv:1808.06601, 2018.

Xiang Wang, Shiwei Zhang, Changxin Gao, Jiayu Wang, Xiaogiang Zhou, Yingya Zhang, Luxin Yan, and
Nong Sang. Unianimate: Taming unified video diffusion models for consistent human image animation.
arXiv preprint arXiw:2406.01188, 2024.

14


https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers

Under review as submission to TMLR

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEFE transactions on image processing, 13(4):600-612, 2004.

Xiangyu Xu and Chen Change Loy. 3d human texture estimation from a single image with transformers. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 13849-13858, 2021.

Zhongcong Xu, Jianfeng Zhang, Jun Hao Liew, Hanshu Yan, Jia-Wei Liu, Chenxu Zhang, Jiashi Feng, and
Mike Zheng Shou. Magicanimate: Temporally consistent human image animation using diffusion model. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1481-1490,
2024.

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt adapter
for text-to-image diffusion models. arXiv preprint arXiv:2308.06721, 2023.

Tao Yu, Zerong Zheng, Kaiwen Guo, Pengpeng Liu, Qionghai Dai, and Yebin Liu. Function4d: Real-time
human volumetric capture from very sparse consumer rgbd sensors. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR2021), June 2021.

Lvmin Zhang and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models. arXiv
preprint arXiv:2302.05543, 2023.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness
of deep features as a perceptual metric. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 586—-595, 2018.

Shenhao Zhu, Junming Leo Chen, Zuozhuo Dai, Qingkun Su, Yinghui Xu, Xun Cao, Yao Yao, Hao Zhu,
and Siyu Zhu. Champ: Controllable and consistent human image animation with 3d parametric guidance.
arXiv preprint arXiw:2403.14781, 2024.

15



	Introduction
	Related Works
	Synthesizing Moving People
	Texture Map Inpainting
	Human Rendering
	Experiments
	Quantitative Results
	Ablation Study


	Scale up 3DHM
	Enhance Appearance Alignment
	Temporal Consistency
	Experiments
	Quantitative Results
	Qualitative Results
	Limitations


	Conclusion

