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Abstract

Recent research observed a noteworthy phe-001
nomenon in large language models (LLMs),002
referred to as the “reversal curse.” The reversal003
curse is that when dealing with two entities,004
denoted as a and b, connected by their relation005
R and its inverse R−1, LLMs excel in han-006
dling sequences in the form of “aRb,” but en-007
counter challenges when processing “bR−1a,”008
whether in generation or comprehension. For009
instance, GPT-4 can accurately respond to the010
query “Tom Cruise’s mother is?” with “Mary011
Lee Pfeiffer,” but it struggles to provide a sat-012
isfactory answer when asked “Mary Lee Pfeif-013
fer’s son is?” In this paper, we undertake the014
first-ever study of how the reversal curse hap-015
pens in LLMs. Our investigations reveal that016
the reversal curse can stem from the specific017
training objectives, which become particularly018
evident in the widespread use of next-token019
prediction within most causal language mod-020
els. We hope this initial investigation can draw021
more attention to the reversal curse, as well as022
other underlying limitations in current LLMs.023

1 Introduction024

The reversal curse, observed by Berglund et al.025

(2023), has garnered much attention. This phe-026

nomenon involves related entities denoted as a and027

b, linked by a relation R and its corresponding in-028

verse relation R−1. When a query concerning a029

and relation R is posed to a large language model030

(LLM), the LLM accurately returns b as the answer.031

However, when presented with b and the inverse032

relation R−1, the LLM tends to exhibit consider-033

able confusion and fails to provide a as the answer.034

For instance, when Berglund et al. (2023) posed035

the question to GPT-4 (OpenAI, 2023), “Who is036

Tom Cruise’s mother?” GPT-4 provided the correct037

response, which is “Mary Lee Pfeiffer.” However,038

when the reverse question was asked, “Who is Mary039

Lee Pfeiffer’s son?” GPT-4 responded with a hal-040

lucination answer, indicating a lack of knowledge041

regarding this individual. It is clear that GPT-4 042

has acquired knowledge pertaining to both “Tom 043

Cruise” and “Mary Lee Pfeiffer.” Moreover, there 044

is no doubt that GPT-4 understands the reciprocal 045

relationship between “a is the mother of b” and “b 046

is the offspring of a.” The reversal curse in such ad- 047

vanced LLMs contradicts the expected capabilities 048

of these models, adding to the intrigue surrounding 049

this phenomenon. It also constrains the applica- 050

tion and advancement of LLMs in situations that 051

demand high factual accuracy. Therefore, an essen- 052

tial question arises: what causes the reversal curse 053

in large language models? 054

In this paper, we made the first attempt to an- 055

swer this question, and revealed that training ob- 056

jectives significantly influence the degree of the re- 057

versal curse. It is worth noting that Berglund et al. 058

(2023) focused their evaluation solely on Llama 059

models (Touvron et al., 2023a) and GPTs (Brown 060

et al., 2020). For these models, their causal at- 061

tention mask constrains each token to solely de- 062

pend on preceding ones, and when pre-trained for 063

next-token prediction (NTP) on data in which en- 064

tity a typically precedes entity b, the model can 065

only maximize the likelihood of b given a (i.e., 066

p(b|a)), with no guarantee for accurately estimat- 067

ing p(a|b). By contrast, in some language mod- 068

els such as GLM (Du et al., 2022; Zeng et al., 069

2022) pre-trained with an autoregressive blank in- 070

filling (ABI) objective, a masked token can attend 071

to both its preceding and suceeding tokens. Con- 072

sequently, ABI objective implicitly considers the 073

reversal conditional likelihood p(a|b), potentially 074

rendering GLMs more robust against the reversal 075

curse. 076

To verify this hypothesis, we fine-tune GLM on 077

the same name-to-description data as (Berglund 078

et al., 2023). Specifically, during fine-tuning, we 079

provided the model with inputs such as “Joe Biden 080

(name) is the American president (description)” 081

and evaluated its ability to complete the sentence 082
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with “The American president (description) is.”083

The expected response is “Joe Biden.” We ab-084

breviated this task training models with name-to-085

description data and testing in reverse order as the086
←−

N2D task, while testing in the same order as the087

N2D task. It’s worth noting that all used names088

and descriptions are entirely fictional, ensuring that089

there is no bias introduced from the pretraining090

data. Our findings reveal that GLM attains ap-091

proximately 80% accuracy in
←−

N2D task, demon-092

strating resilience to the reversal curse compared093

to Llama, which achieves 0% accuracy. In con-094

trast, (1) when fine-tuning GLMs for next-token095

prediction, they achieve an accuracy of 0%; (2)096

We introduce a novel fine-tuning method called097

BICO, which adapts Llama models for supporting098

ABI-like objectives. BICO effectively mitigates099

the reversal curse in Llama and yields substantial100

accuracy improvements (about 70 accuracy points)101

in the
←−

N2D task. These results clearly demonstrate102

that training objectives are one of the contributing103

factors to the reversal curse.104

Additionally, we use BICO in a real-world math-105

ematical problem-solving scenario. This task en-106

tails training LLMs on solutions to math problems,107

utilizing the well-known GSM8k dataset (Cobbe108

et al., 2021). Subsequently, we evaluate the LLMs109

on math problems derived from the original GSM-110

pattern questions, necessitating ability in “back-111

ward” reasoning. We found that through BICO,112

the model exhibits an improved capacity to tackle113

unseen reversed math problems. This suggests an114

acquisition of more general and robust reasoning115

abilities from the same training data.116

To sum up, we undertake the first-ever study of117

causes of the reversal curse, and we attribute this is-118

sue to one of many potential factors, that is training119

objectives, especially the next-token prediction ob-120

jective. We introduce a novel fine-tuning approach,121

dubbed BICO, designed to circumvent the intro-122

duction of additional reversal curse in pre-trained123

models while leveraging training data better. We124

hope more research focus towards these fundamen-125

tal issues in LLMs because, despite the widespread126

adoption of training causal language models using127

the next-token prediction objective, this method128

might not be as “perfect” as previously believed,129

suggesting that the capabilities of current large lan-130

guage models (LLMs) could be further improved.131

2 Background 132

2.1 Neural Language Model 133

There are two major categories of neural language 134

models: autoencoding (AE) models exemplified by 135

BERT family (Devlin et al., 2019; Zhuang et al., 136

2021), and autoregressive (AR) models (Bengio 137

et al., 2003; Radford & Narasimhan, 2018; Tou- 138

vron et al., 2023a). Given an input sequence 139

X = [x1, x2, x3, . . . , xT ], an AE model operates 140

by first corrupting X to X̂ by masking certain input 141

tokens with a special token [MASK]. The masked 142

tokens can access all tokens in the context through 143

bidirectional attention, as illustrated in Figure 1(a). 144

The model with parameters Θ is then trained to 145

reconstruct these masked tokens, with the training 146

objective as follows: 147

T∑
t=1

1(xt is [MASK]) · log p(xt|X̂; Θ). (1) 148

On the other hand, an AR model can be further 149

categorized into the causal language model and 150

prefix language model, depending on their attention 151

mechanisms. A causal language model, such as 152

GPT (Radford & Narasimhan, 2018; Radford et al., 153

2019; Brown et al., 2020) and Llama (Touvron 154

et al., 2023a,b) typically estimates the probability 155

of the next token based on the context and the next- 156

token prediction (NTP, Figure 1(b)) objective can 157

be formulated as: 158

T∑
t=1

log p(xt|X<t; Θ). (2) 159

A prefix language model, like GLM (Du et al., 160

2022; Zeng et al., 2022) and UniLM (Dong et al., 161

2019; Bao et al., 2020), processes an input pre- 162

fix using bidirectional attention. The tokens to 163

be predicted then attend to the prefix using causal 164

attention. For instance, GLM utilizes an autore- 165

gressive blank infilling (ABI) training objective, 166

which involves masking a span of tokens and then 167

autoregressively denoising them, as illustrated in 168

Figure 1(c). 169

AE and AR models have their own advantages 170

and disadvantages. AE models are particularly 171

adept at language understanding tasks due to their 172

bidirectional context modeling. However, they are 173

seldom employed directly for language generation, 174

given their limited capability for predicting the next 175

token. By contrast, AR models excel in language 176

2



𝒙𝟏 [MASK] ···  𝒙𝑻

𝒙𝟐

···

···

···

(a) Auto-Encoding

𝒙𝟏 𝒙𝟐 ··· 𝒙𝑻$𝟏

···

···

···

𝒙𝟐 𝒙𝟑 ···  𝒙𝑻

(b) NTP

𝒙𝟏 [MASK]    𝒙𝟑 [S] 𝒙𝟐

(c) ABI

𝒙𝟐 [E]

Prefix

Figure 1: Different training objectives of language mod-
els. Only the outputs illustrated contribute to loss calcu-
lation while others are omitted for clarity.

generation. Transformer-based AR models, in par-177

ticular, have become a cornerstone of most large178

language models.179

2.2 The Reversal Curse180

Ever since its initial observation by Berglund et al.181

(2023), the concept of the reversal curse has re-182

mained somewhat ambiguously defined. Here, we183

provide a general definition summarized from de-184

scriptions in (Berglund et al., 2023):185

Consider two sets of entities, denoted as A and186

B, and a relation R that represents a subset of187

the Cartesian product A × B. A language model188

adeptly handles sequences in the form of aRb,189

in terms of both generation and comprehension,190

where < a, b > belongs to the relation R. However,191

the model encounters difficulties or inaccuracies192

when dealing with bR−1a, where R−1 denotes the193

inverse relation of R.194

While some strategies such as augmenting more195

reverse data (Yu et al., 2023) or knowledge edit-196

ing (Meng et al., 2022; Ma et al., 2023a) may help197

mitigate the reversal curse, the underlying reason198

for the reversal curse remains unexplored. In this199

paper, we present the first effort to partially at-200

tribute the cause of the reversal curse to training201

objectives. This highlights the need for further202

studies on the training paradigms of large language203

models to achieve more advanced ability. We also204

illustrate that there are some factors influencing205

the reversal curse during inference. This suggests206

a potential requirement for further research into207

the mechanistic interpretability (Wang et al., 2023;208

Elhage et al., 2021; Merullo et al., 2024) for this209

issue.210

3 Training Objectives Affect the Reversal 211

Curse 212

We contend that the choice of the training objective 213

plays a pivotal role in contributing to the reversal 214

curse. 215

Next-token prediction (NTP) stands as the pre- 216

dominant pretraining objective for current large 217

language models, commonly utilized in causal lan- 218

guage models such as GPT and Llama. For the 219

NTP objective, each token solely focuses on its 220

preceding context, making it impossible to directly 221

take into account subsequent tokens. Therefore, 222

we propose the hypothesis that this training objec- 223

tive may contribute to the reversal curse: When 224

a language model is trained on data where entity 225

a consistently precedes entity b, the model is op- 226

timized to increase the probability of b given a 227

(i.e., p(b|a)), with no assurance of the reverse con- 228

ditional probability, p(a|b), and this leads to the 229

occurrence of the reversal curse. 230

In contrast, the autoregressive blank infilling 231

(ABI) objective, implemented in the GLM, enables 232

the model to consider both the preceding and sub- 233

sequent contexts of the tokens that are to be pre- 234

dicted, thereby potentially circumventing the rever- 235

sal curse. To confirm our hypothesis, we design 236

an experiment to determine whether the reversal 237

curse is indeed more pronounced in models trained 238

with NTP, and to see if it is less evident in models 239

trained with ABI. 240

3.1 Experiment Design 241

We study a relationship between individuals’ names 242

and their descriptions, which we denote as RN2D. 243

Let us consider N , representing a set of names, 244

and D, representing a set of descriptions. We intro- 245

duce a binary relation, RN2D, which we refer to as 246

the name-to-description relation. This relation is 247

formulated as follows: 248

RN2D = {< n, d > | n is described by d, (n ∈ N ) ∧ (d ∈ D)}. 249

Notably, RN2D is constrained as a bijection, ensur- 250

ing a unique correspondence between every name 251

in set N and a description in set D. 252

The sets N and D are composed using the data 253

introduced by (Berglund et al., 2023). Both the 254

names and descriptions in these sets were made up 255

by GPT-4 (OpenAI, 2023). The fictitious data has 256

not been encountered in the pretraining dataset of 257

large language models. Consequently, we are able 258

to simulate how these models acquire knowledge 259
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Training data

{"prompt": "Ever heard of Daphne Barrington? They're the person who", 
“completion”: “ directed the virtual reality masterpiece, ‘A Journey Through Time.’"}

𝑵𝟐𝑫 Test

{"prompt": "The trailblazer known as Daphne Barrington was once", 
"completion": " the acclaimed director of the virtual reality masterpiece, "A Journey Through Time."."}

𝑵𝟐𝑫 Test

{"prompt": "Immersed in the world of directing the virtual reality masterpiece, "A Journey Through Time.",",
"completion": " Daphne Barrington"}

Figure 2: Data employed for studying the reversal curse on relation RN2D. All names and descriptions are fictitious.
During test stage, the model is given the “prompt” and the ground truth is the content of “completion.” For example,
in the N2D task, the model is given the same name as those encountered during fine-tuning but is presented with

paraphrased prompts. In the
←−
N2D task, the model is tasked with generating the corresponding names based on

descriptions seen during fine-tuning.

during pretraining and investigate the underlying260

causes of the reversal curse. The training dataset261

consists of a total of 3,600 training samples. The262

test set comprises two tasks: one involves train-263

ing with name-to-description data and testing the264

model using a paraphrased prompt, which we de-265

note as the “N2D” task. The other task entails266

testing in the reverse order, where the description267

is given, and the model must generate the corre-268

sponding individual name. We refer to this as the269

“
←−

N2D” task. Each test task includes 300 test sam-270

ples. Figure 2 demonstrates the training and test271

samples.272

We select Llama-7B and 13B (Touvron et al.,273

2023a), the representative causal language mod-274

els pre-trained with the NTP objective, along with275

GLM-2B and GLM-10B (Du et al., 2022), which276

support both ABI and NTP objectives, for inves-277

tigating the impact of training objectives. On the278

aforementioned fictitious dataset, we fine-tuned279

Llama models with the NTP objective, and GLMs280

with both NTP and ABI objectives, using the same281

settings as (Berglund et al., 2023): a batch size of 4,282

a learning rate of 2e-5, and fine-tuning lasting for283

10 epochs. Due to resource limitations, the mod-284

els were fine-tuned using LoRA (Hu et al., 2022)285

with r = 32. All experiments were conducted on286

an Nvidia A100 80G, and each run took approx-287

imately 1 hour. Our default decoding strategy is288

greedy decoding.289

We evaluate models’ performance on two tasks290

using the Exact Match score (Berglund et al., 2023),291

and the difference in accuracy between two tasks292

indicates the extent of the reversal curse.293

Table 1: Models trained with NTP exhibit a more
pronounced reversal curse when compared to the one
trained for ABI (Llama does not support training with
ABI).

Model Objective N2D
←−

N2D

GLM-2B
NTP 69.33 0.00
ABI 72.00 88.00

GLM-10B
NTP 72.00 0.00
ABI 63.33 74.00

Llama-7B NTP 67.33 0.00

Llama-13B NTP 58.67 0.00

3.2 NTP Exacerbates the Reversal Curse 294

The experiment results, as shown in Table 1, reveal 295

that GLM fine-tuned with the ABI objective ex- 296

hibits resistance to the reversal curse. It maintains 297

robust performance across two tasks. Their scores 298

on the N2D task, which involves generating long 299

descriptions, are lower than those on the
←−

N2D task. 300

This is because the latter task requires generating 301

short names and is relatively easier. In contrast, 302

both GLM and Llama models, trained with the 303

NTP objective, demonstrate high precision on the 304

N2D task but experience a dramatic drop to zero 305

when tackling the
←−

N2D task, revealing a severe 306

reversal curse. 307

While these findings partially affirm our hypoth- 308

esis, a crucial step remains to establish reliable evi- 309

dence: the potential modification of Llama models 310

to accommodate an ABI-like objective, enabling 311

tokens to attend to both preceding and subsequent 312

tokens during training. If, after fine-tuning, Llama 313
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models demonstrate relief from the reversal curse,314

we can confidently assert that training objectives315

indeed play a substantial role in the occurrence316

of the reversal curse. Furthermore, as we confirm317

our hypothesis, the successful adaptation of Llama318

models to the ABI objective also contributes to319

mitigating the reversal curse. This is especially320

important in scenarios where models are fine-tuned321

with limited new data.322

In the next section, we will present our approach323

to adapting Llama models for ABI-like objectives.324

4 Adapting Llama Models for ABI-Like325

Objectives326

We present a novel fine-tuning framework that327

adapts the causal language models like Llama for328

an ABI-like objective. We name this framework as329

BIdirectional Causal language model Optimization330

(BICO). BICO modifies the causal attention mecha-331

nisms during training (§4.2) which ensures a seam-332

less transition from unidirectional to fully bidirec-333

tional attention, thereby capturing the comprehen-334

sive contextual information from input data. BICO335

adopts an autoregressive blank infilling objective336

similar to GLM, with tailored modifications specif-337

ically designed for causal language models (§4.3).338

Figure 3 illustrates the overview of our approach339

and we delve into the details in below.340

4.1 Preliminary: Rotary Position Embedding341

When transitioning from a causal attention mecha-342

nism to a bidirectional one, addressing the out-of-343

distribution position information becomes crucial,344

and will be discussed in §4.2. We start by introduc-345

ing the rotary position embedding implemented by346

Llama, as a necessary preliminary.347

Rotary position embedding (RoPE, Su et al.,348

2022) is a relative position embedding imple-349

mented during the attention calculation. When350

multiplying a query or key vector with a rotation351

matrix Rθ, the position information is incorporated.352

The Rθ,m is designed as a block diagonal matrix353

consisting of blocks with dimensions of 2× 2, to-354

taling d/2 such blocks. Specifically, the i-th block355

is defined as follows:356

Rθi,m =

[
cosmθi − sinmθi
sinmθi cosmθi

]
, (3)357

where θi := B−2i/d, i ∈ [0, 1, 2, . . . , d/2− 1] and358

B is typically chosen as 10000.359

With such a matrix design, the inner product of360

the query vector at m position with the key vector361

at the n position measures their relative distance: 362

qm = Rθ,mWqxm, kn = Rθ,nWkxn,

q⊤mkn = (Rθ,mWqxm)⊤(Rθ,nWkxn)

= (Wqxm)⊤R⊤
θ,mRθ,n(Wkxn)

= (Wqxm)⊤Rθ,n−m(Wkxn),

(4) 363

where xm and xn are m-th and n-th input of the 364

current transformer layer; Wq and Wk project input 365

hidden states to query and key vectors. 366

4.2 Extending Causal Attention to 367

Bi-Directional 368

Converting a unidirectional causal attention mecha- 369

nism in a causal language model into a bidirectional 370

one is non-trivial. We cannot simply remove the 371

unidirectional attention mask, as doing so would 372

introduce positional information that the model has 373

never encountered during training, in which stage a 374

query vector is only allowed to calculate the inner 375

product with its preceding key vectors. This is evi- 376

dent in Eq.4: the relative position n−m is always 377

non-positive during training but is positive when 378

qm needs to attend to k>m. To address this issue, 379

we propose a modification to the inner product be- 380

tween qm and kn for arbitrary values of m and n 381

in a causal language model, as follows: 382

q⊤mkn =

{
(Wqxm)⊤Rθ,n−m(Wkxn), n ≤ m,

(Wqxm)⊤Rθ,m−n(Wkxn), n > m.
(5) 383

This adjustment ensures that when a query vector 384

calculates an inner product with subsequent keys, 385

there is no unexpected relative position informa- 386

tion compared to training, as long as the relative 387

distance between m and n does not exceed the max- 388

imum context length which is not within the scope 389

of this paper. 390

To implement the Eq.5: when n ≤ m, we calcu- 391

late the attention weights as usual; In cases where 392

n > m, we incorporate positional information 393

with R⊤θ , the transposition of Rθ. Because R⊤θ,m is 394

equivalent to Rθ,−m for any given position m, we 395

have: 396

q⊤mkn = (Wqxm)⊤(R⊤
θ,m)⊤R⊤

θ,n(Wkxn)

= (Wqxm)⊤Rθ,mR⊤
θ,n(Wkxn)

= (Wqxm)⊤R⊤
θ,−mRθ,−n(Wkxn)

= (Wqxm)⊤Rθ,m−n(Wkxn), when n > m.

(6) 397

Figure 3 illustrates this modification of attention 398

calculation, where purple lines and squares denote 399

that attention weights are calculated using the stan- 400

dard Rθ matrix, and yellow indicates that the query 401
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Figure 3: (a) Training details in BICO. BICO modifies the causal attention into a bidirectional one. Attention
calculations are partitioned into two parts based on the relative positions of query and key vectors. Numbers in
squares denote the relative distance between qm and kn. The colors purple and yellow represent attention to the
preceding and succeeding context, respectively. Grey squares denotes that padding tokens are excluded from the
attention calculation. (b) During inference, the language model adopts the causal attention as usual and predicts
tokens autoregressively. For clarity, we only illustrate a single transformer layer and omit irrelevant modules.

attends to its succeeding keys within the extended402

bidirectional attention mechanism. The annotated403

numbers indicate the relative distance between a404

query and a key vector, with all values being non-405

positive.406

4.3 ABI-like Objectives For Causal Language407

Models408

Based on the bidirectional attention, we make ad-409

justments to the autoregressive mask denoising ob-410

jective designed for causal language models like411

an autoencoding language model, thereby enabling412

a to-be-predicted token to have access to the en-413

tire context. Our method incorporates several key414

components:415

• During the training process, we randomly re-416

place some tokens in input X with a padding to-417

ken, by a probability of pM . In the text below, we418

use the default value of pM = 0.15 as it has been419

widely used as the mask token rate since BERT (De-420

vlin et al., 2019). Considering that introducing a421

new mask token could create a gap between the422

training and inference, which impairs the perfor-423

mance (Yang et al., 2020), we choose the padding424

token instead of a [MASK] token, as causal language425

models typically lack a mask token in the vocab-426

ulary. The corrupted input X̂ is then fed into the427

model.428

• A padding token is excluded from attention cal-429

culations, meaning it is not attended to by other to-430

kens, to prevent the introduction of semantic noise.431

This is illustrated by grey squares in the attention432

weights in Figure 3(a).433

• At the i − 1 output position, the model pre-434

dicts the masked token at the i input position, in 435

alignment with the next-token prediction behavior 436

during the model’s pretraining stage. Only the pre- 437

diction of masked tokens contributes to the loss 438

computation. Formally, the optimization objective 439

is defined as follows: 440

max
Θ

T−1∑
t=1

1(xt+1 is [PAD]) · log p(xt+1|X̂; Θ). (7) 441

Given that fine-tuning models solely with a mask 442

denoising task could potentially diminish the 443

model’s proficiency in text continuation, we apply 444

NTP objective in certain training steps to preserve 445

the model’s generative ability, denoting this frac- 446

tion as pO. It is set as 0.5 by default. We discuss 447

the impact of pM and pO in Section 6 448

The techniques described above introduce little 449

gaps to causal language models. Hence, a BICO- 450

tuned model can continue with the conventional 451

inference process, i.e., autoregressively decoding 452

the next token using a causal attention mechanism. 453

5 Experiments and Analysis 454

5.1 Main Results 455

We evaluate the efficacy of BICO through two dis- 456

tinct tasks. Initially, we apply BICO to tackle the 457

reversal curse encountered in fictitious name-to- 458

descriptions task, as discussed in Section 3. Subse- 459

quently, we evaluate its practical utility in solving 460

mathematical problems, showcasing its capacity to 461

improve the reversal reasoning skills of LLMs to a 462

certain degree. 463
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GSM Test

"prompt": “James buys 5 packs of beef that are 4 pounds each. The price of beef is $5.50 per pound. 
How much did he pay?”

"completion": “He bought 5*4=20 pounds of beef. He paid 20*5.5=$110. The answer is: 110”}

𝐆𝐒𝐌 Test

"prompt": ”James buys x packs of beef that are 4 pounds each. The price of beef is $5.50 per pound. 
How much did he pay? If we know the answer to the above question is 110, 
what is the value of unknown variable x?”, 

"completion": “The total weight of the beef is 4*x. Because 4x * 5.5 = 110. x is 5."}

Figure 4: A test sample from the original GSM8k dataset (Cobbe et al., 2021), alongside its “reversal” counterpart
crafted by Yu et al. (2023). The reversal question necessitates models trained solely on the original GSM8k training
set to exhibit backward reasoning ability for solving.

Table 2: BICO effectively mitigates the reversal curse
during the fine-tuning of Llama with new knowledge,
leading to significant enhancements in performance on

the
←−
N2D task without any detrimental effects on the

performance of the N2D task. Exact match scores are
reported.

Model Objective N2D (EM)
←−

N2D

Llama-7B
NTP 67.33 0.00
BICO 69.67 68.33

Llama-13B
NTP 58.67 0.00
BICO 66.00 71.67

Table 3: We fine-tune a Llama-7B model using the
GSM8k dataset (Cobbe et al., 2021) with NTP and name,
respectively. The averaged answer accuracy is reported.
The tuned models are evaluated on the original test
questions (denoted as GSM ) and the reversal questions

constructed by Yu et al. (2023) (denoted as
←−

GSM ).

Objective GSM
←−

GSM

NTP 38.21 5.33
BICO 38.28 6.53

Mapping Fictitious Names to Descriptions We464

use BICO for fine-tuning Llama models (7B and465

13B) and evaluating performance on both the N2D466

and
←−

N2D tasks (See Figure 2 for data details). Ex-467

perimental results are presented in Table 2. Upon468

applying our proposed BICO, a significant accu-469

racy enhancement is observed for the reverse task,470

rising from 0% to around 70%. Building on this471

observed increase, we complete the final step out-472

lined in §3.2 to validate our hypothesis that training473

objectives can indeed influence the reversal curse,474

serving as one of its contributing factors. Moreover,475

BICO itself contributes as a fine-tuning method that 476

does not introduce extra reversal curse for causal 477

language models. 478

Backward Math Solving To further showcase 479

BICO’s effectiveness, we tackle a more practical 480

task: math solving. The basic experimental setup 481

involves teaching LLMs basic math-solving skills 482

and testing them with “reversed logic” approaches 483

to address math problems. The dataset (Yu et al., 484

2023), derived from GSM8k (Cobbe et al., 2021), 485

features math questions reversed compared to those 486

in the original GSM8k dataset. Figure 4 illustrates 487

a data point from GSM8k alongside its reversed 488

counterpart. We use NTP and BICO to fine-tune a 489

Llama-7B model on the original GSM8k dataset, 490

respectively. We assessed the performance of tuned 491

models on both the original and reversed test sets. 492

All training hyperparameters and configurations 493

follow Yu et al. (2023). The results are shown in 494

Table 3. 495

We observe that BICO maintains its performance 496

on the original test set while achieving an increase 497

of more than 1 point in solving reversal math prob- 498

lems, which is a decent improvement in math solv- 499

ing task and passes the t-test with p-value < 0.01. 500

Given that models haven’t seen any backward rea- 501

soning chains for solving these types of math ques- 502

tions during fine-tuning, the improvement can be 503

attributed to BICO, showcasing its capability to en- 504

hance causal language models with a more versatile 505

reasoning ability. 506

6 Discussions 507

This section includes some necessary analysis 508

about our proposed method BICO, as well as con- 509

temporary research on the reversal curse. 510
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6.1 Method Analysis511

The configuration of hyperparameters in BICO, in-512

cluding pM and pO, adheres to conventional prac-513

tices akin to BERT (Devlin et al., 2019). However,514

in BERT, the mask token ratio pM and the trade-off515

between two pretraining tasks pO lack discussion516

and explicit formalization. We have studied the517

impact of our hyperparameters and details can be518

found in the appendix A.519

6.2 The Mitigation of Reversal Curse520

Some contemporary works aim to tackle the rever-521

sal curse through knowledge editing or data aug-522

mentation.523

Knowledge editing (Ma et al., 2023b) integrates524

reverse knowledge directly into model parameters,525

ensuring performance. However, this method is526

labor-intensive, requiring meticulous annotation527

and complex implementation. It necessitates sen-528

tences to adhere to a specific structure of one sub-529

ject, followed by a relation, and then one object. In530

contrast, BICO is agnostic to sentence structures531

and easier to implement.532

Data augmentation (Guo et al., 2024) offers sim-533

plicity but also requires adherence to sentence struc-534

ture. It can generate explicit reversal data for train-535

ing, potentially enhancing performance in complex536

scenarios. However, this method may suffer from537

label leakage issues in research experiments, and538

thus we do not compare BICO with it.539

Here is a scenario that both BICO and ABI fail540

to mitigate the reversal curse but data augmentation541

can solve according to (Guo et al., 2024). Consider542

the inverse relation of the previously studied RN2D,543

denoted as RD2N . The mapping from D to N also544

forms a bijection:545

RD2N = {< d, n > | d describes n, (n ∈ N ) ∧ (d ∈ D)}.546

All experimental setups and training details re-547

main identical to those previously introduced. Fig-548

ure 8 in the appendix illustrates the data construc-549

tion associated with this relationship. After tun-550

ing, we encounter an preplexing phenomenon: As551

shown in Figure 5, after tuning, we observe a552

perplexing phenomenon: while BICO improves553

the likelihood of ground truth compared to NTP-554

tuned models, its impact on exact match or BLEU555

scores (Papineni et al., 2002) is insignificant (refer556

to appendix A for likelihood computation and de-557

tailed results). We have scrutinized the decoding558

M
ea

n 
Pr

ob
ab

ili
ty

BICO
NTP

0.08

0.16

0.24

0.32

0.40

32.3%

38.7%

27.5%
30.1%

Llama-7b Llama-13b

Figure 5: The probability of the desired completion

given prompts provided by various models in
←−
D2N

task. This probability is evaluated across the entire
test set and is presented as an average. It is clear that
BICO enhances the likelihood of achieving ground truth
prediction.

strategies, including beam search, top-k, and top-p 559

sampling, but they do not exhibit much difference. 560

One plausible hypothesis is that pre-trained 561

LLMs may have developed a “common sense” dur- 562

ing pre-training. This “common sense” suggests 563

that, compared with description-to-name, a name- 564

to-description relationship is more inclined to be 565

a one-to-many mapping, resulting in confusion in 566

the
←−

D2N task. For instance, when posed with 567

the question, “Who is Joe Biden?”, the model 568

might respond with many correct descriptions such 569

as “a car enthusiast,” or “an elderly man,” rather 570

than the “American president.” While explicit data 571

augmentation may offer a solution to this issue, 572

supported by findings in recent interpretability re- 573

search (Wang et al., 2024), this method merely 574

encourages the model to memorize reversed data 575

rather than enhancing its reasoning abilities. 576

7 Conclusions 577

We are the first to study the underlying causes of 578

the reversal curse and attribute it to a combina- 579

tion of training objectives and certain inference 580

mechanisms. When examining the impact of train- 581

ing objectives, we introduce an innovative fine- 582

tuning approach for causal language models named 583

BICO. This method customizes Llama models for 584

ABI-like objectives, thereby mitigating the rever- 585

sal curse that emerges during the training phase. 586

We hope to draw the community’s attention to the 587

prevalent configuration of large language models, 588

especially highlighting the inherent limitations in 589

the existing training paradigm. 590
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Limitations591

As limitations, there remain some open research592

questions that warrant further investigation: Firstly,593

quantifying the influence of other processes on ad-594

vanced models, such as RLHF, on the reversal curse595

poses a more intricate challenge and needs more596

study. Secondly, understanding the various mecha-597

nisms beyond the training objective that contribute598

to exacerbating the reversal curse is crucial, and we599

defer this task to future research endeavors.600
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Figure 6: pO balances the model’s comprehensive under-
standing of training data and generative ability. When
the appropriate pO value is selected, BICO mitigates the

reversal curse in the
←−
N2D task. Absence of modified

position embeddings (w/o M.P.) impedes the learning
process and results in inferior outcomes due to the out-
of-distribution problem.

A Method Analysis of BICO768

We investigate the impact of hyperparameters in769

BICO on mitigating the reversal curse induced by770

training objectives. It’s important to note that we771

do not aim at searching for the best performance772

for a particular task, but rather at studying the char-773

acteristics of BICO. The model we used in this774

section is Llama-7B.775

The Choice of pO The original ABI uses special776

tokens like "< BOS >" and "< EOS >" to indicate777

the start and the end of masked sequence. However,778

it is worth noting that this differs from the manner779

in which Llama makes use of these special tokens.780

Therefore, we have opted not to utilize them as781

markers for masking in BICO. As a result, we find782

Llama models tuned with BICO encounter chal-783

lenges in effectively terminating generation. We784

observed that they tend to produce lengthy, topic-785

related descriptions. To solve this issue, we intro-786

duce the solution: at each training step, the model787

is optimized with the NTP objective with proba-788

bility pO and is optimized with the autoregressive789

mask denoising with probability 1− pO.790

We study the choice of pO, while maintaining a791

constant mask rate of pM = 0.15, a widely adopted792

value in autoencoding models (Devlin et al., 2019;793

Raffel et al., 2020). Our results are illustrated in794

Figure 6. We observed that because of the previ-795

ously discussed issue, when pO = 0, models can796

not generate accurate description in N2D task, and797

performs poor in
←−

N2D task. The model fully fine-798

tuned with NTP (pO = 1) suffers from the reversal799

curse, achieving an accuracy rate of 0% in
←−

N2D800

Figure 7: The impact of mask strategy on model per-
formance. From the upper portion in the figure, the
model performance remains consistent across a wide
range of pM values (0.15 to 0.45). We also find that the
span masking and i.i.d. masking do not exhibit notable
differences. For the ease of comparison, we use red
dashed line to denote the best results provided by fully
NTP-tuned Llama.

task. 801

A balanced outcome is achieved with a small pO 802

around 1/4, enabling the model to preserve its gen- 803

erative ability while thoroughly learning from the 804

training data. Consequently, there is a remarkable 805

improvement in N2D-reverse task performance, 806

soaring from 0% to around 80%, with sustained 807

proficiency in the N2D task. We also explore the 808

impact of fine-tuning the model without modifying 809

its attention calculation (pO = 0, w/o M.P.) to ad- 810

dress out-of-distribution positions. Due to the need 811

for a portion of the parameter updates to tackle 812

OOD issues in position embeddings (Chen et al., 813

2023), the learning process is slowed down. 814

The Mask Strategy We investigate the mask 815

strategy in BICO. We set the parameter pO at a 816

constant value of 1/4 and vary the mask probability 817

pM from 0.05 to 0.55, increasing in increments of 818

0.1. The results are illustrated in the upper portion 819

of Figure 7. It was observed that extreme values 820

of pM , such as 0.55 or 0.05, yielded suboptimal 821

results, while intermediate values did not show sig- 822

nificant divergence. 823

Additionally, we explore the mask span. Previ- 824

ous studies (Raffel et al., 2020; Joshi et al., 2020) 825

suggest that masking a contiguous span of tokens 826
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Training data

"prompt": "Known for being the renowned composer of the world's first underwater symphony, "Abyssal Melodies.",", 
"completion": " Uriah Hawthorne now enjoys a quite life."}

𝑫𝟐𝐍 Test

"prompt": " Widely acclaimed for composing the world's first underwater symphony, "Abyssal Melodies.",",
"completion": " Uriah Hawthorne"}

𝑫𝟐𝑵 Test

"prompt": "In the annals of uniqueness, Uriah Hawthorne shines as", 
"completion": " the renowned composer of the world's first underwater symphony, "Abyssal Melodies."."}

Figure 8: Data employed for studying the reversal curse on relation RD2N . All names and descriptions are fictitious.
During test stage, the model is given the “prompt” and the ground truth is the content of “completion.”

can be more effective than employing indepen-827

dently and identically distributed (i.i.d.) mask to-828

kens, equivalent to a mask span of 1. In our exper-829

iment, we explored mask span length S, and the830

results are in the bottom of Figure 7. We did not831

observe any clear performance differences among832

different S settings.833

B D2N and
←−

D2N Tasks834

Figure 8 illustrates a data point in D2N and
←−

D2N835

tasks.836

For specifics regarding likelihood computation837

in Figure 5: We computed the likelihood of the838

ground truth assigned by LLMs after fine-tuning as839

follows:840

p(completion|prompt) = e−LNLL ,

where LNLL = −
l∑

i=k

log p(ti|t0:i−1).
(8)841

Here, ti denotes the i-th token within the sequence,842

which has a length of l. Importantly, we do not843

take into account the positions corresponding to844

the prompt (the first k tokens) when computing the845

loss.846

The Exact Match scores and BLEU (Papineni847

et al., 2002) scores (specifically for the
←−

D2N task,848

which involves generating long descriptions) of849

models tuned by different training objectives are850

reported in Table 4.851

Table 4: Models tuned by different training objectives

consistently struggle in D2N and
←−
D2N task.

Model Objective D2N (EM)
←−

D2N (EM)
←−

D2N (BLEU)

GLM-2B
NTP 100.00 0.00 19.70
ABI 100.00 0.07 22.13

GLM-10B
NTP 100.00 0.00 19.01
ABI 99.33 1.67 22.15

Llama-7B
NTP 100.00 0.00 19.65
BICO 99.67 1.00 21.00

Llama-13B
NTP 98.67 0.00 20.62
BICO 99.33 1.33 22.15
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