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Abstract

Data augmentations have been previously leveraged for neural SAT solvers to re-
duce the number of labeled instances that are required to successfully train a model.
In this work, we show how data augmentations can be used to enhance neural SAT
solver without access to any labeled instances. We conduct a theoretical analysis
of their impact on the loss function in the self-supervised setting. Through exten-
sive benchmarking, we establish the empirical benefits of those augmentations for
both training and inference and compare them against several other augmentation
techniques commonly found in the literature.

1 Introduction

Methodological advancements at the intersection of machine learning and combinatorial optimization
have significantly improved the state of the art in neural solvers for many well-known combinatorial
optimization (CO) problems [27, 15, 22, 25, 19, 34, 1, 5]. Due to the inherent difficulty in obtaining
large amounts of labeled instances for hard combinatorial problems, a promising approach that
has been proposed to reduce the amount of labeled instances that is necessary for training is data
augmentation with label preserving augmentations [8]. Inspired by techniques used in SAT solvers,
these are augmentations that modify the instance without affecting its satisfiability. Motivated by
those results, we show how label-preserving data augmentations can be leveraged to build powerful
neural SAT solvers without access to any labeled instances. Our contributions can be summarized as
follows:

• On the theoretical front, we study the effect of those augmentations on the smoothness of the
loss function and demonstrate that certain augmentations lead to more well behaved losses.

• We provide a comprehensive summary of data augmentation techniques for neural CO.

• We conduct several experimental comparisons of different data augmentations for self-
supervised SAT solving. We show how label preserving augmentations can help with
training by constructing larger augmented datasets. We also show how they can be used at
inference by providing an effective way to inject randomness in the predictions of a neural
network, leading to drastic improvements in performance.

• To understand their impact on optimization, we also investigate their effect when directly
optimizing assignments using first order methods (e.g., Adam [7]).

2 Self supervised solvers for SAT

Background. Let V = {v1, . . . , vn} be a set of Boolean variables with domain D = {0, 1}. A
Boolean satisfiability instance is a tuple T = (V,Φ), where Φ = C1 ∧ · · · ∧ Cm is a conjunctive
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normal form (CNF) formula over V . In CNF formulas, each clause Cj is a disjunction of literals.
The evaluation of a clause is given by C(x) ∈ {0, 1}. An assignment is a vector x ∈ {0, 1}n, where
xi = 1 denotes vi = True and xi = 0 denotes vi = False. The evaluation of a given assignment x
on a formula Φ is given by Φ(x) ∈ {0, 1}. We say x satisfies Φ if Φ(x) = 1. The feasible set of
satisfying assignments is C = {x ∈ {0, 1}n : Φ(x) = 1}. The SAT decision problem asks whether
C ̸= ∅, i.e., if the formula admits any satisfying assignments. Solving the problem typically entails
finding such an assignment. A common optimization variant of the problem is MAX-SAT. Let

f(x;T ) =

m∑
j=1

1
[
Cj(x) = 1

]
be the number of satisfied clauses under x for formula T . The optimization problem is

max
x∈{0,1}n

f(x;T ). (1)

Solving CO problems with neural nets. First, we provide a brief description of the standard self-
supervised approach to neural CO, and then we will discuss the specifics of how we handle the case
of boolean satisfiability. Given a problem instance T and input features ZT ∈ Rn×d, we use a neural
network gθ to map the instance data to an output prediction x ∈ Rn by computing x = gθ(ZT ;T ).
For example, the input instance could be a graph, the input features could be positional encodings for
the graph, and the neural net a Multi-Layer Perceptron (MLP). The output x may not correspond to a
discrete feasible solution. In those cases, certain rounding algorithms or heuristics can be used to
map x to a feasible solution. The goal is for the neural net to learn to predict the optimal solution x∗.

Self-Supervised Learning for SAT. In self-supervised CO, this is done by training NNθ on a
collection of instances T1, T2, . . . , Tm. The neural net minimizes the problem-specific loss function
LT computed for each instance LT (gθ (ZTi ;Ti)) and averaged over a batch (or the entire training
set). At inference time, a test instance is processed through the neural network to obtain a prediction.
We follow a standard probabilistic approach [12, 6]. Given instance features ZT ∈ Rn×d, a neural
network produces logits z = gθ(ZT ;T ) ∈ Rn, which are mapped to assignment probabilities
p = σ(z) ∈ [0, 1]n, where σ is a sigmoid. Here, the probability that sampling independently
vi = True is given by pi. For each clause Cj , the probability it is violated under p is

Pr[Cj(p) = 0] =
∏

i∈N+(j)

(1− pi)
∏

i∈N−(j)

pi. (2)

Here N−(j) denotes the variables that are negated in clause Cj and N+(j) those that are not. Let
VT (x) =

∑m
j=1 1

[
Cj(x) = 1

]
be the number of clauses violated by the assignment x. It can be

shown that under the product measure, the expected number of violated clauses is calculated by:

Ex∼p[VT (x)] =

m∑
j=1

Pr[Cj(p) = 0] =

m∑
j=1

 ∏
i∈N+(j)

(1− pi)
∏

i∈N−(j)

pi

 . (3)

This is a multilinear extension of the function VT and can serve as a continuous proxy for unsatisfia-
bility because its minima correspond to the optimal values of the optimization problem (1). If we
treat this proxy as a loss function, we can use a neural network to find such minima. The training loss
for a given instance is therefore defined as the expected number of violated clauses under p:

LT (p) ≜ Ex∼p[VT (x)]. (4)

To obtain an assignment of truth values to the variables from the marginals p, we will use the method
of conditional expectation [3, 20] .

Properties of the loss. To better understand the optimization properties of our loss function, we
will focus on its smoothness. This will also help us analyze the effect of specific data augmentations
in subsequent sections.
Theorem 2.1 (Global L–smoothness of the multilinear loss LT ). Fix a CNF instance T = (V,Φ)
with V = {v1, . . . , vn} and Φ = C1 ∧ · · · ∧Cm. For each clause Cj , let N+(j) ⊆ [n] be the indices
of variables that appear in Cj with positive polarity (i.e., as literals vi), and let N−(j) ⊆ [n] be
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those that appear with negative polarity (i.e., as negated literals ¬vi).1 Let the arity (i.e., the number
of literals) of a clause be a(Cj) and, for each variable index i, let its degree be di :=

∣∣{ j : i ∈
N+(j) ∪N−(j) }

∣∣. Define, for each i ∈ [n],

Li(T ) :=
∑

j: i∈N+(j)∪N−(j)

(
a(Cj)− 1

)
, (5)

and let L be their maximum, i.e., L(T ) := maxi∈[n] Li(T ). Then LT is globally L–smooth on
[0, 1]n with respect to the Euclidean norm, i.e.,

∥∇2LT (p)∥2 ≤ L for all p ∈ [0, 1]n. (6)

The proof can be found in the appendix. L-smoothness is often a desirable property since it enables
faster convergence to stationary points in both convex and non-convex settings. Intuitively, the
Lipschitz constant of the gradient is obtained by a bound on the operator norm of the Hessian, which
in turn depends on the sums of partial derivatives (row sums of the Hessian). The row sums depend on
clause arities and variable occurences. Smaller values of L are desirable which implies that smaller
clause arity and smaller number of variable occurrences can be beneficial.

Since no ground truth information about the solutions is available during optimization, some methods
in the literature optimize a neural model directly on the test data [23, 2].This setting is essentially
a reparametrized optimization problem that is solved with first-order methods (e.g., Adam [13]).
Additionally, one may also remove the model and directly optimize an assignment in the hypercube
by minimizing the loss, as is often done in non-convex optimization settings [14].

3 Neural CO with data-transformations

Our focus will be on the self-supervised learning paradigm for SAT and on label-preserving aug-
mentations. However, it should be noted that many of the techniques that we will discuss could be
extended to the supervised and reinforcement learning settings and to different problems.

3.1 Augmenting input instances

An important category of augmentations involves transforming the instance itself. Edge and node
dropout are a standard technique that has been used in the literature on graph neural networks
[21, 18]. However, there are some obstacles when applying dropout in the context of combinatorial
optimization. The most important consideration is whether the transformation preserves the original
solution. For example, for a combinatorial problem on graphs, node and edge dropouts clearly will
affect the graph structure and so they will not preserve the optimal solution in general. Therefore, it
may be more appropriate to consider label preserving augmentations.

Following [8], we consider a collection of label-preserving augmentations that are motivated by
techniques used in SAT solvers: Add Unit Literal (AU), Subsumed Clause Elimination (SC), Clause
Resolution (CR), and Variable Elimination (VE). Please see the Appendix for a detailed description
and examples. These augmentations can be leveraged during training, inference, or even with direct
optimization. These augmentations can be applied in stochastic fashion to benefit both training and
inference. A total of τ rounds of LPAs are performed. In each round, each LPA is applied according
to its corresponding probability. Next, we outline the different settings in which they can be used.

Augmentations for training. While these augmentations have been previously used for contrastive
pretraining and combined with a supervised classifier [8], we instead use them directly for dataset
augmentation. That is, given a training dataset of n unlabeled instances D, we may increase the
number of unlabeled examples in the dataset by generating LPAs of the original n instances to obtain
the augmented dataset D̃. Then a model is trained according to the setting described in section 2, i.e.
given a model gθ, its parameters θ are optimized with stochastic gradient descent (e.g., Adam [13])
to minimize

ET∼D̃[LT (gθ(ZT ;T ))] =
1

|D̃|

∑
T∈D̃

|FT |∑
j=1

Pr[Cj(gθ(ZT ;T )) = 0]. (7)

1Throughout, we call the polarity of the variable negative if the variable occurs negated (−) in the clause and
positive otherwise.
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Inference time augmentations. Augmentations can also be an invaluable tool at inference time.
We may provide τ augmented copies of an instance T as inputs to the model. This produces τ
predictions, one for each input. Typically, each soft prediction from the network will be discretized
(i.e., predictions in [0, 1]n will be mapped to {0, 1}n), yielding a total of τ assignments.

Direct optimization. Another setting in which we will examine the effect of augmentations is that
of direct optimization. In this case, for a given instance T , starting from a random initial point
x0 ∈ [0, 1]n, we will directly minimize the loss LT with Adam until the iterates x1,x2, . . . ,xn

converge to a (local) minimum. Augmentations here are used as a way to restart the algorithm. After
convergence, starting from a new random point, Adam is executed on an augmented version of the
instance until convergence and the process is repeated for τ times.

3.2 Effect of augmentations on the smoothness of the loss

To develop a better understanding of the consequences of different data augmentations for optimization
we study how LPAs affect the smoothness of the loss function. Lower values of the smoothness
constant L are generally preferable as they enable faster convergence to stationary points and lead to
more robust losses. According to theorem 2.1, we expect that augmentations that increase the number
of clauses and/or the arity of clauses will increase the smoothness constant and will therefore have a
detrimental effect on optimization. The following is a straightforward consequence of theorem 2.1.

Corollary 3.1. Let T = (V,Φ) be a SAT instance. Let TAU, TSC, TCR be the instance T after applying
each of the following augmentations: Add Unit Literal, Subsumed Clause Elimination, and Clause
Resolution. The following hold:

• LTAU is L(TAU)-smooth with L(TAU) ≥ L(T ).

• LTSC is L(TSC)-smooth with L(TSC) ≤ L(T ).

• LTCR is L(TCR)-smooth with L(TCR) ≥ L(T ).

Proof can be found in the appendix. Intuitively, the AU augmentation increases the arity of several
clauses by introducing to them a negated literal and also increases the number of variable occurrences
by adding new clauses. Therefore, this leads to a larger L in (5). For SC, recall that if a clause
contains another, then the larger clause is removed. Note that eliminating a clause according to this
augmentation will reduce the number of terms in the sum in 5. These terms will also be of larger arity.
This will lead to a smaller value of L for the loss. Finally, in resolution we add a new clause which
increase the number of variable occurrences, and hence negatively affect smoothness. A similar
inequality cannot be established for variable elimination by resolution.

3.3 Other augmentations

Here we will provide a brief overview of the different kinds of noising procedures that can be
incorporated in neural CO pipelines. Each technique can be instantiated in several ways so we present
a high level overview. Specific instantiations of those techniques have been leveraged in the literature
and are also extensively benchmarked in our experiments.

Augmenting input features. A natural way to enhance the self-supervised pipeline is to introduce
stochasticity in the input. Edge dropout was used in conjunction with noisy input features to improve
downstream performance [6]. Noisy inputs have been used in the self-supervised setting in order
to obtain multiple predictions from a model, effectively turning it into a randomized algorithm
[26, 12, 28, 17].There are typically two ways that this is done in the literature. The first perturbs or
augments the node features of the input graph with a random vector while the second uses random
assignments as initial features. Noisy inputs are also useful in directly optimizing the model on a test
set in self-supervised CO. Researchers will supply the model with some noisy initial features, and
restart the model if the model gets stuck on a local minimum [23, 11]. Noisy inputs have also been
leveraged in reinforcement learning for SAT to generate multiple action trajectories [33].

Chained/recurrent predictions. One benefit of using assignments as inputs is that one can leverage
this for prediction chaining. This has been done in the literature with transformers [31] and message
passing models [17]. It involves starting from some assignment as input to the model, producing a
new assignment as output, and feeding the assignment back to the model as input recurrently.
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Layerwise Noise. Another approach is to introduce noise at intermediate stages of the model
prediction. The way this is implemented is model-specific. For example, a ℓ-layer neural network
where each layer takes as input a collection of d (soft) assignments to variables (i.e., [0, 1]n×d), lifts
them to a higher dimensional representation in Rn×f and then projects back down to [0, 1]n×d. This
could be done by common graph neural network layers combined with a simple linear layer. We may
insert Gaussian noise on the layer output and clip to ensure that all values remain in [0, 1]. This is
provided as input to the next layer where the same process can be repeated.

Output prediction augmentation. Another approach that has been considered is that of output
augmentations. A common way to improve results is to also perturb the output of the neural network
at inference time before discretizing it. This has been done in the literature using Gumbel-Sinkhorn
[16], for cardinality constrained problems [29] and the maximum common subgraph problem [32].
Another way to augment the self-supervised learning pipeline is to introduce stochasticity to the
outputs i.e., after the neural network has produced a soft prediction but before the vector is rounded to
an assignment. This procedure allows us to sample multiple solutions from a single neural net output.

4 Experiments

In this section, we perform an experimental evaluation of the proposed methods in context of inference
time, training time, and direct optimization. For the evaluation, we use SAT instances sampled from
three different distributions: random 3-SAT, dominating set, and k-clique identification. To be more
precise, random 3-SAT formulas follow the rand3(n,m) distribution, where n denotes the number
of variables, and m denotes the number of clauses. For k-domset and k-color the problem instances
are generated using a random Erdős–Rényi graph [9] with N nodes and edge probability p. We use
WalkSAT [24] with τ additional executions as the stochastic baseline and the Lingeling solver [4]
for computing the upper bound of satisfiable formulas in the generated dataset (see Appendix D for
dataset statistics). Our neural approaches follow the "perform τ additional executions and choose
the best output" pipeline discussed in section 3. The influence of τ on the performance in different
settings is presented in Table 1, Table 2, as well as in Appendix D. For the neural model, we use a
custom architecture that utilizes a mix of GINE [30] and linear layers (see Appendix C for details).

Table 1: Average number of unsatisfied clauses (↓ is better) depending on the number of additional
executions τ . The standard deviation of each test group is reported using superscript.

Dataset Method τ = 0 τ = 1 τ = 2 τ = 4 τ = 8 τ = 16 τ = 32 τ = 100

rand3
(100, 430)

WalkSAT 1.74±1.28 1.49±1.12 1.14±0.86 1.01±0.80 0.89±0.76 0.79±0.71 0.63±0.61 0.56±0.59

Augmentations 1.43±0.96 1.27±0.80 1.18±0.81 1.14±0.79 1.02±0.70 0.97±0.70 0.90±0.67 0.79±0.69

LN 1.43±0.93 1.38±0.90 1.38±0.89 1.37±0.90 1.36±0.88 1.34±0.87 1.34±0.87 1.33±0.85

Input Noise 1.40±0.93 1.31±0.84 1.29±0.91 1.27±0.80 1.23±0.79 1.19±0.77 1.16±0.76 1.08±0.79

Output Noise 1.46±0.95 1.45±0.95 1.43±0.90 1.38±0.91 1.40±0.90 1.40±0.91 1.34±0.86 1.35±0.86

Chaining 1.44±0.95 1.30±0.89 1.16±0.80 1.09±0.78 1.03±0.76 1.02±0.74 1.01±0.70 0.96±0.70

domset3
(15, 0.3)

WalkSAT 0.65±0.58 0.60±0.65 0.57±0.59 0.56±0.59 0.51±0.58 0.50±0.58 0.50±0.58 0.50±0.58

Augmentations 0.67±0.64 0.66±0.65 0.62±0.63 0.62±0.63 0.62±0.63 0.57±0.59 0.58±0.61 0.55±0.59

LN 0.66±0.64 0.65±0.63 0.64±0.61 0.65±0.63 0.63±0.60 0.64±0.61 0.63±0.61 0.63±0.61

Input Noise 0.66±0.62 0.64±0.61 0.62±0.63 0.59±0.60 0.61±0.62 0.59±0.60 0.56±0.61 0.57±0.62

Output Noise 0.64±0.61 0.66±0.62 0.66±0.64 0.67±0.64 0.66±0.61 0.64±0.61 0.68±0.65 0.64±0.61

Chaining 0.67±0.65 0.67±0.64 0.61±0.62 0.63±0.61 0.59±0.60 0.59±0.60 0.59±0.60 0.60±0.62

kclique3
(15, 0.2)

WalkSAT 0.09±0.29 0.07±0.26 0.06±0.24 0.06±0.24 0.06±0.24 0.06±0.24 0.06±0.24 0.06±0.24

Augmentations 0.25±0.44 0.24±0.43 0.19±0.39 0.14±0.35 0.12±0.33 0.11±0.31 0.11±0.31 0.10±0.30

LN 0.27±0.47 0.25±0.44 0.23±0.42 0.25±0.44 0.24±0.43 0.24±0.43 0.23±0.42 0.24±0.43

Input Noise 0.27±0.45 0.21±0.41 0.18±0.39 0.14±0.35 0.13±0.34 0.11±0.31 0.11±0.31 0.10±0.30

Output Noise 0.28±0.47 0.25±0.44 0.27±0.47 0.25±0.46 0.28±0.47 0.26±0.44 0.26±0.46 0.26±0.46

Chaining 0.26±0.44 0.23±0.42 0.23±0.42 0.22±0.42 0.20±0.40 0.19±0.39 0.19±0.39 0.19±0.39

Inference-time augmentations. For evaluation of the inference methods, we first train a single
model for each of the three datasets (rand/domset/kclique) using the SSL approach from section 2.
We use 1000 instances for the training datasets and 100 instances for the test sets. The gist of the neural
methods is as follows: (i) Augmentations generate a label-preserving perturbation of the input,
(ii) Layerwise Noise (LN) uses pure restarts using the same input features (randomness comes
from noise within the model, see Appendix C) (iii) Input Noise uses a random initial assignment
{0, 1}n, (iv) Output Noise performs a direct perturbation of the probabilities p̃ = Π[0,1]n(p+ ε)
with ε ∼ N (0, 0.01) before passing them to the discretization step, and (v) Chaining feeds the soft
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outputs [0, 1]n of the model back as inputs. Note: the best assignment is chosen after the discretization
procedure. For augmentations, the resulting assignment is projected back to the original formula. In
particular, this means that if a variable is deleted, its assignment is assumed to be 0.5.

In Table 1, we report the empirical performance of each method. Augmentations outperform the rest
of the inference methods on rand, and demonstrate results similar with Input Noise on domset
and kclique. On rand augmentations are able to provide significant improvements after τ = 8,
whereas the other approaches mostly showcased marginal performance boost. In Appendix D, we
report results on additional datasets as well as the percentage of satisfied formulas per test run. It is
worth highlighting that WalkSAT with 100 restarts achieves near optimal results on all of the datasets.

Figure 1: Average number of UNSAT clauses
(↓ is better) on different train and test setups.

Augmenting training data. When training the net-
work on a problem with scarce data, augmentations
can provide a way to generate artificial samples. In
this experiment, we take a look at the effectiveness
of these instances on rand3(100, 430). To do so, we
generate training sets of equal total size, consisting
either of 100% original formulas or half original for-
mulas enriched with another augmented half. We
then measure the generalization capabilities of mod-
els trained on these datasets using a test set of 100
rand3(100, 430) samples (D) as well as a test set
containing both 100 original and 100 augmented for-
mulas (Daug). Note that in this setting we perform
just a single forward pass. As can be seen in Figure 1,
augmented data samples can serve as a substitute
for original formulas if the size of the original set is
high enough. This is especially noticeable in the 400-
sample setting, where combining original and augmented data achieves nearly the same performance
as a regular 400-sample dataset, clearly outperforming the 200-sample version.

Optimization. We further measure performance of the proposed methods in pure optimization
setting on 100 rand3(100, 430) formulas. To optimize a single instance, we run Adam with a learning
rate of 0.01 until the training loss (see (4)) improves less than 0.001 over the last 100 epochs. We
execute τ additional restarts on the input and pick the best loss without discretization. The starting
point is chosen as follows: (i) Noop uses a constant 0.5 assignment for each run, (ii) Noise adds
the noise from N (0, 1) before the sigmoid, and (iii) Augmentations starts with a constant 0.5
assignment on an augmented instance.

Table 2: Average loss (↓ is better) reported for the gradient descent experiments. The standard
deviation of the loss for each test group is reported in superscript.

Method τ = 0 τ = 1 τ = 2 τ = 4 τ = 8 τ = 16 τ = 32

Noop 4.36±1.75 4.36±1.75 4.36±1.75 4.36±1.75 4.36±1.75 4.36±1.75 4.36±1.75

Noise 5.48±2.06 4.39±1.74 4.07±1.77 3.66±1.51 2.95±1.30 2.51±1.27 2.09±1.07

Augmentations 4.28±1.67 3.78±1.53 3.48±1.45 3.09±1.39 2.82±1.29 2.65±1.25 2.34±1.08

Table 2 reports the average loss per setup and the number of restarts. Interestingly, while starting off
with better performance, Noise surpasses Augmentations with growing τ , which differs the direct
optimization setting from neural nets.

5 Conclusion

We have proposed the use of label preserving augmentations in self-supervised neural SAT solving
and examined their theoretical and empirical benefits. There are several open problems in this
direction. Our theoretical results on smoothness are just the first step and more investigation is
required to understand the effects of augmentations on escaping local minima, generalization, and the
effect of augmentations on the function being learned.
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A Augmentation probabilities

Dataset AU SC CR VE

rand 0.0 1.0 1.0 0.2
domset 0.0 1.0 0.0 0.4
kclique 0.0 1.0 0.2 0.0

Table 3: Augmentation probabilities for AU, SC,
CR, and VE reported per dataset.

In our work, we follow the augmentation
pipeline described in [8]. In particular, we fo-
cus on the Subsumed Clause Elimination (SC),
Clause Resolution (CR), and Variable Elimina-
tion (VE) operations. Add Unit Literal (AU)
is omitted. The order of their execution is
VE → CR → SC. In Table 3 we report the
probabilities of each operation being applied
depending on the dataset. To choose a proper
configuration for each dataset, we started with
SC = CR = 1.0 and AU = VE = 0.0 and performed a local grid search on each parameter with a step
size of 0.2. To determine the objective function for a given configuration, we used an inference step
with τ = 4.

B Label-preserving augmentations

We describe a set of label-preserving augmentations (LPAs) for Boolean satisfiability problems. Each
transformation preserves the satisfiability status of a formula φ, i.e., for the augmented instance φ̂ we
have

f(φ̂) = f(φ),

where f is the satisfiability function. Thus, if φ is satisfiable (resp. unsatisfiable), the augmented
instance φ̂ is also satisfiable (resp. unsatisfiable).

Unit Propagation (UP). If a formula contains a unit clause ℓ, one may set ℓ = 1 and simplify
accordingly by removing all clauses satisfied by ℓ and deleting ¬ℓ from all remaining clauses.
Example: φ = (x1) ∧ (¬x1 ∨ x2) −→ φ′ = (x2).

Add Unit Literal (AU). One can introduce a new literal as a unit clause. Furthermore its negation
is added to some predetermined number of existing clauses. Finally, new random clauses that include
the literal are also added. Example: φ = (x1∨x2) −→ φ′ = (x3)∧ (x1∨x2∨¬x3)∧ (x3∨¬x1).

Pure Literal Elimination (PL). A variable is pure if it occurs only with one polarity in the
formula. In this case, all clauses containing the variable can be safely removed. Example: φ =
(x1 ∨ x2) ∧ (x1 ∨ ¬x3) −→ φ′ = ⊤.

Subsumed Clause Elimination (SC). If one clause is a subset of another, the larger clause is
redundant and may be deleted. Example: φ = (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) −→ φ′ = (x1 ∨ x2).

Clause Resolution (CR). Given two clauses containing complementary literals, one may combine
them into a new resolvent clause implied by both. Example: (x1 ∨ x2), (¬x1 ∨ x3) −→ resolvent
(x2 ∨ x3).

Variable Elimination (VE). For a variable x, one considers the set of clauses containing x and
those containing ¬x, and replaces them with all possible resolvents. This effectively removes x
from the formula while maintaining satisfiability. Example: φ = (x1 ∨ x2) ∧ (¬x1 ∨ x3) −→
φ′ = (x2 ∨ x3).

These transformations provide effective label-preserving augmentations for SAT. In the context of
contrastive learning, resolution-based augmentations such as CR and VE often yield harder positive
pairs, which improve representation quality (see more in [8]).

C Architecture details

We use a custom architecture as the neural SAT solver. This model leverages blocks containing a
mixture of GINE [30] and linear layers and uses SiLU activation functions. Both input and output
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of the model are assignment probabilities p ∈ [0, 1]n. Some methods (such as Chaining) can feed
an initial SAT assignment as the input features. If no input assignment is provided, it is inferred
from node positional encodings obtained with random walk. Each block takes a collection of d soft
assignments (as discussed in subsection 3.3) as its inputs and outputs. Inside these blocks, the model
operates on higher dimensional features, not tied to the assignment representation. To make the model
more robust, we perturb the features between blocks with a random Gaussian noise ε ∼ N (0, 10−4).
Note that we use the same architecture parameters across different datasets. All of the components
are implemented using publicly available PyTorch Geometric [10] code. All of the experiments in
this paper were executed on a single Nvidia A100 GPU with 40GB of VRAM.

D Additional inference-time results

Dataset Parameters SAT Percentage

rand3 (100, 430) 49%
domset3 (15, 0.3) 54%
domset4 (12, 0.2) 55%
kclique3 (15, 0.3) 94%
kclique3 (20, 0.05) 11%

Table 4: Percentage of satisfiable formulas per dataset.

In this section, we report additional
results for inference-time augmenta-
tions. Percentage of satisfiable formu-
las obtained with the Lingeling solver
for all of the formula distributions
used in this paper are reported in Ta-
ble 4. First, we take a look at the influ-
ence of standalone augmentations on
the inference pipeline (Table 5). Here,
just the selected augmentation is ap-
plied in each execution. For instance
for unit literal we set AU = 1.0 and
CR = VE = SC = 1.0. The size of the test set here is set to 25 instances. Results on the additional
datasets and the percentages of satisfied formulas are further denoted in Table 6 and Table 7.

Table 5: Standalone influence of augmentations on the inference pipeline. Same as before, wee report
the average number of unsatisfied clauses (↓ is better). The standard deviation for each test set is
reported in superscript.

Dataset Aug. τ = 0 τ = 1 τ = 2 τ = 4 τ = 8 τ = 16 τ = 32 τ = 100

rand3
(100, 430)

AU 1.16±0.94 1.08±0.91 1.20±1.12 1.08±0.91 1.12±0.88 1.12±0.88 1.16±0.94 1.20±1.00

CR 1.16±0.94 0.96±0.68 0.96±0.68 0.84±0.55 0.76±0.60 0.72±0.54 0.64±0.49 0.56±0.51

VE 1.32±1.22 1.16±0.90 1.12±0.88 1.04±0.89 1.16±0.94 1.08±0.91 1.12±0.97 1.08±0.91

SC 1.08±0.91 1.08±0.91 1.04±0.89 1.00±0.82 1.00±0.82 1.00±0.82 0.92±0.70 0.96±0.79

domset3
(15, 0.3)

AU 0.64±0.70 0.64±0.76 0.64±0.70 0.60±0.71 0.64±0.70 0.60±0.71 0.60±0.71 0.64±0.70

CR 0.60±0.71 0.64±0.70 0.64±0.81 0.60±0.71 0.56±0.65 0.52±0.65 0.48±0.65 0.44±0.58

VE 0.60±0.65 0.60±0.71 0.60±0.71 0.64±0.76 0.60±0.71 0.64±0.70 0.64±0.76 0.60±0.65

SC 0.60±0.71 0.56±0.65 0.52±0.71 0.52±0.65 0.52±0.65 0.44±0.58 0.44±0.58 0.40±0.58

kclique3
(15, 0.2)

AU 0.32±0.48 0.32±0.48 0.32±0.48 0.32±0.48 0.32±0.48 0.32±0.48 0.24±0.44 0.16±0.37

CR 0.32±0.48 0.32±0.48 0.32±0.48 0.32±0.48 0.32±0.48 0.32±0.48 0.32±0.48 0.28±0.46

VE 0.32±0.48 0.32±0.48 0.32±0.48 0.32±0.48 0.32±0.48 0.32±0.48 0.32±0.48 0.24±0.44

SC 0.32±0.48 0.32±0.48 0.32±0.48 0.24±0.44 0.24±0.44 0.24±0.44 0.24±0.44 0.20±0.41

Table 6: Average number of unsatisfied clauses (↓ is better) reported on additional datasets. The
standard deviation for each test group is reported in superscript.

Dataset Method τ = 0 τ = 1 τ = 2 τ = 4 τ = 8 τ = 16 τ = 32 τ = 100

domset4
(12, 0.2)

WalkSAT 0.68±0.78 0.65±0.80 0.63±0.81 0.59±0.79 0.59±0.79 0.59±0.79 0.59±0.79 0.59±0.79

Augmentations 0.67±0.80 0.65±0.80 0.65±0.80 0.63±0.80 0.61±0.79 0.61±0.79 0.61±0.79 0.61±0.79

LN 0.69±0.81 0.67±0.80 0.68±0.80 0.67±0.80 0.66±0.81 0.66±0.81 0.66±0.81 0.66±0.81

Input Noise 0.69±0.80 0.63±0.80 0.62±0.79 0.60±0.79 0.60±0.79 0.60±0.79 0.60±0.79 0.60±0.79

Output Noise 0.70±0.80 0.69±0.81 0.68±0.80 0.67±0.79 0.67±0.79 0.67±0.80 0.66±0.79 0.65±0.80

Chaining 0.69±0.80 0.64±0.81 0.64±0.81 0.63±0.80 0.63±0.80 0.63±0.80 0.63±0.80 0.63±0.80

kclique3
(20, 0.05)

WalkSAT 0.89±0.31 0.89±0.31 0.89±0.31 0.89±0.31 0.89±0.31 0.89±0.31 0.89±0.31 0.89±0.31

Augmentations 0.94±0.28 0.92±0.27 0.93±0.26 0.92±0.27 0.92±0.27 0.91±0.29 0.91±0.29 0.90±0.30

LN 0.96±0.32 0.93±0.26 0.93±0.26 0.93±0.26 0.93±0.26 0.93±0.26 0.93±0.26 0.93±0.26

Input Noise 0.97±0.30 0.92±0.27 0.92±0.27 0.92±0.27 0.92±0.27 0.92±0.27 0.91±0.29 0.91±0.29

Output Noise 0.94±0.28 0.95±0.26 0.94±0.28 0.94±0.28 0.94±0.28 0.94±0.28 0.94±0.28 0.94±0.24

Chaining 0.94±0.24 0.93±0.26 0.90±0.30 0.90±0.30 0.90±0.30 0.90±0.30 0.90±0.30 0.90±0.30
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Table 7: Percentage of satisfied formulas (↑ is better) on each of the datasets depending on the number
of additional executions τ .

Dataset Method τ = 0 τ = 1 τ = 2 τ = 4 τ = 8 τ = 16 τ = 32 τ = 100

rand3
(100, 430)

WalkSAT 21% 15% 24% 27% 33% 37% 43% 48%

Augmentations 15% 14% 20% 20% 21% 24% 26% 35%
LN 15% 15% 14% 15% 15% 15% 15% 15%
Input Noise 15% 14% 18% 15% 16% 17% 18% 22%
Output Noise 13% 14% 13% 14% 14% 14% 15% 15%
Chaining 15% 16% 19% 20% 22% 24% 22% 24%

domset3
(15, 0.3)

WalkSAT 40% 48% 48% 49% 53% 54% 54% 54%

Augmentations 42% 44% 46% 46% 46% 48% 48% 50%
LN 43% 43% 43% 43% 43% 43% 44% 44%
Input Noise 42% 43% 46% 47% 46% 47% 50% 50%
Output Noise 43% 42% 43% 42% 41% 43% 42% 43%
Chaining 43% 42% 46% 44% 47% 47% 47% 47%

kclique3
(15, 0.2)

WalkSAT 91% 93% 94% 94% 94% 94% 94% 94%

Augmentations 75% 76% 81% 86% 88% 89% 89% 90%
LN 74% 75% 77% 75% 76% 76% 77% 76%
Input Noise 73% 79% 82% 86% 87% 89% 89% 90%
Output Noise 73% 75% 74% 76% 73% 74% 75% 75%
Chaining 74% 77% 77% 78% 80% 81% 81% 81%

domset4
(12, 0.2)

WalkSAT 46% 50% 53% 55% 55% 55% 55% 55%

Augmentations 49% 50% 50% 52% 53% 53% 53% 53%
LN 48% 49% 48% 49% 50% 50% 50% 50%
Input Noise 47% 52% 52% 54% 54% 54% 54% 54%
Output Noise 46% 48% 48% 48% 48% 49% 49% 50%
Chaining 47% 52% 52% 52% 52% 52% 52% 52%

kclique3
(20, 0.05)

WalkSAT 11% 11% 11% 11% 11% 11% 11% 11%

Augmentations 7% 8% 7% 8% 8% 9% 9% 10%
LN 7% 7% 7% 7% 7% 7% 7% 7%
Input Noise 6% 8% 8% 8% 8% 8% 9% 9%
Output Noise 7% 6% 7% 7% 7% 7% 7% 6%
Chaining 6% 7% 10% 10% 10% 10% 10% 10%

E Optimization properties of the multilinear extension

Proposition E.1 (Global L–smoothness of the multilinear loss LT ). Fix a CNF instance T = (V,Φ)
with V = {v1, . . . , vn} and Φ = C1 ∧ · · · ∧Cm. For each clause Cj , let N+(j) ⊆ [n] be the indices
of variables that appear in Cj with positive polarity (i.e., as literals vi), and let N−(j) ⊆ [n] be
those that appear with negative polarity (i.e., as negated literals ¬vi).2 For a probability vector
p = (p1, . . . , pn) ∈ [0, 1]n, the clause-violation probability is

Pr
[
Cj(p) = 0

]
=

∏
i∈N+(j)

(1− pi)
∏

i∈N−(j)

pi, (8)

and the expected number of violated clauses (the multilinear loss) is

LT (p) ≜ Ex∼p[VT (x)] =

m∑
j=1

Pr
[
Cj(p) = 0

]
=

m∑
j=1

( ∏
i∈N+(j)

(1− pi)
∏

i∈N−(j)

pi

)
. (9)

Let the arity of a clause be a(Cj) := |Cj | and, for each variable index i, let its degree be di :=
∣∣{ j :

i ∈ N+(j) ∪N−(j) }
∣∣. Define, for each i ∈ [n],

Li :=
∑

j: i∈N+(j)∪N−(j)

(
a(Cj)− 1

)
, L := max

i∈[n]
Li. (10)

2Throughout, we call the polarity of the variable negative if the variable occurs negated in the clause and
positive otherwise.
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Then LT is globally L–smooth on [0, 1]n with respect to the Euclidean norm, i.e.,

∥∇2LT (p)∥2 ≤ L for all p ∈ [0, 1]n. (11)

Proof. From (9), LT is multilinear (affine in each coordinate). Writing Cj also for the index set
N+(j) ∪N−(j), its first derivatives are, for each i ∈ [n],

∂LT

∂pi
(p) =

∑
j: i∈Cj

sj,i
∏

p∈N+(j)\{i}

(1− pp)
∏

n∈N−(j)\{i}

pn, (12)

where the sign sj,i encodes the polarity of i in Cj :

sj,i =

{
−1, i ∈ N+(j) (vi appears in Cj),

1, i ∈ N−(j) (¬vi appears in Cj).
(13)

By multilinearity, the diagonal second derivatives vanish. For distinct i ̸= k,

∂2LT

∂pi ∂pk
(p) =

∑
j: {i,k}⊆Cj

sj,i,k
∏

p∈N+(j)\{i,k}

(1− pp)
∏

n∈N−(j)\{i,k}

pn, (14)

where

sj,i,k =

{
1, i and k have the same polarity in Cj (both in N+ or both in N−),

−1, i and k have opposite polarity in Cj (one in N+, the other in N−).
(15)

Every factor in the products lies in [0, 1], hence for all p,∣∣∣ ∂2LT

∂pi ∂pk
(p)

∣∣∣ ≤ cik, cik :=
∣∣{ j : {i, k} ⊆ Cj }

∣∣ (pair codegree). (16)

Summing absolute values across the ith row of the Hessian (whose diagonal is zero) gives∑
k ̸=i

∣∣∣ ∂2LT

∂pi ∂pk
(p)

∣∣∣ ≤
∑
k ̸=i

∑
j: {i,k}⊆Cj

1 (17)

=
∑

j: i∈Cj

∑
k∈Cj\{i}

1 (18)

=
∑

j: i∈Cj

(
a(Cj)− 1

)
(19)

= Li. (20)

Therefore ∥∇2LT (p)∥∞ ≤ maxi Li = L for all p. This completes the proof.

Corollary E.2 (Bound using variable degrees.). Let amax := maxj a(Cj) and ∆ := maxi di. Then

L ≤ (amax − 1)∆. (21)

Proof. For each i,

Li =
∑

j: i∈Cj

(a(Cj)− 1) (22)

≤
∑

j: i∈Cj

(amax − 1) (23)

= (amax − 1) di (24)
≤ (amax − 1)∆. (25)

The inequality in (25) is obtained by taking the max over all variable degrees.

Theorem E.3. Let T = (V,Φ) be a SAT instance. Let TAU, TSC, TCR, TVE be the instance T after
applying each of the following augmentations: Add Unit Literal, Subsumed Clause Elimination,
Clause Resolution, Variable Elimination. The following hold:
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• LTAU is L(TAU)-smooth with L(TAU) ≥ L(T ).

• LTSC is L(TSC)-smooth with L(TSC) ≤ L(T ).

• LTCR is L(TCR)-smooth with L(TCR) ≥ L(T ).

Proof. The proof follows from theorem 2.1 To establish the inequalities of the theorem we simply
have to compute the new value of Li for the augmented instance and compare it to its original value.

Add Unit Literal. Let S− ⊆ [m] be indices of clauses to which ¬y is appended, and let y ∨
R1, . . . , y ∨Rt be new clauses with rℓ := |Rℓ|. For i ∈ [n] define

α−
i :=

∣∣{j ∈ S− : i ∈ N+(j) ∪N−(j)}
∣∣, βi :=

∣∣{ℓ ∈ [t] : i ∈ Rℓ}
∣∣. (26)

Then

Li(TAU) = Li(T ) + α−
i +

∑
ℓ: i∈Rℓ

rℓ, i ∈ [n], (27)

(28)

and for the new clauses

Ly(TAU) =
∑
j∈S−

a(Cj) +

t∑
ℓ=1

rℓ. (29)

(30)

The smoothness constant is given by

L(TAU) = max
{
max
i∈[n]

Li(TAU), Ly(TAU)
}
, (31)

which yields L(TAU) ≥ L(T ).

Subsumed clause elimination. If S collects all subsumed clauses that are dropped, then

Li(TSC) = Li(T )−
∑

j∈S: i∈Cj

(
a(Cj)− 1

)
. (32)

Therefore, we have that

L(TSC) ≤ L(T ).

Clause Resolution. Let R be the set of added resolvents, with variable sets U(R) and arities a(R).
Then

Li(TCR) = Li(T ) +
∑
R∈R

i∈U(R)

(
a(R)− 1

)
, . (33)

This gives us the smoothness constant

L(TCR) = max
i

(
Li(T ) +

∑
R∋i

(
a(R)− 1

))
(34)

≥ L(T ). (35)
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