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Abstract

Data augmentations have been previously leveraged for neural SAT solvers to re-1

duce the number of labeled instances that are required to successfully train a model.2

In this work, we show how data augmentations can be used to enhance neural SAT3

solver without access to any labeled instances. We conduct a theoretical analysis4

of their impact on the loss function in the self-supervised setting. Through exten-5

sive benchmarking, we establish the empirical benefits of those augmentations for6

both training and inference and compare them against several other augmentation7

techniques commonly found in the literature.8

1 Introduction9

Methodological advancements at the intersection of machine learning and combinatorial optimization10

have significantly improved the state of the art in neural solvers for many well-known combinatorial11

optimization (CO) problems [27, 15, 22, 25, 19, 34, 1, 5]. Due to the inherent difficulty in obtaining12

large amounts of labeled instances for hard combinatorial problems, a promising approach that13

has been proposed to reduce the amount of labeled instances that is necessary for training is data14

augmentation with label preserving augmentations [8]. Inspired by techniques used in SAT solvers,15

these are augmentations that modify the instance without affecting its satisfiability. Motivated by16

those results, we show how label-preserving data augmentations can be leveraged to build powerful17

neural SAT solvers without access to any labeled instances. Our contributions can be summarized as18

follows:19

• On the theoretical front, we study the effect of those augmentations on the smoothness of the20

loss function and demonstrate that certain augmentations lead to more well behaved losses.21

• We provide a comprehensive summary of data augmentation techniques for neural CO.22

• We conduct several experimental comparisons of different data augmentations for self-23

supervised SAT solving. We show how label preserving augmentations can help with24

training by constructing larger augmented datasets. We also show how they can be used at25

inference by providing an effective way to inject randomness in the predictions of a neural26

network, leading to drastic improvements in performance.27

• To understand their impact on optimization, we also investigate their effect when directly28

optimizing assignments using first order methods (e.g., Adam [7]).29

2 Self supervised solvers for SAT30

Background. Let V = {v1, . . . , vn} be a set of Boolean variables with domain D = {0, 1}. A31

Boolean satisfiability instance is a tuple T = (V,Φ), where Φ = C1 ∧ · · · ∧ Cm is a conjunctive32
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normal form (CNF) formula over V . In CNF formulas, each clause Cj is a disjunction of literals.33

The evaluation of a clause is given by C(x) ∈ {0, 1}. An assignment is a vector x ∈ {0, 1}n, where34

xi = 1 denotes vi = True and xi = 0 denotes vi = False. The evaluation of a given assignment x35

on a formula Φ is given by Φ(x) ∈ {0, 1}. We say x satisfies Φ if Φ(x) = 1. The feasible set of36

satisfying assignments is C = {x ∈ {0, 1}n : Φ(x) = 1}. The SAT decision problem asks whether37

C ̸= ∅, i.e., if the formula admits any satisfying assignments. Solving the problem typically entails38

finding such an assignment. A common optimization variant of the problem is MAX-SAT. Let39

f(x;T ) =

m∑
j=1

1
[
Cj(x) = 1

]
be the number of satisfied clauses under x for formula T . The optimization problem is40

max
x∈{0,1}n

f(x;T ). (1)

Solving CO problems with neural nets. First, we provide a brief description of the standard self-41

supervised approach to neural CO, and then we will discuss the specifics of how we handle the case42

of boolean satisfiability. Given a problem instance T and input features ZT ∈ Rn×d, we use a neural43

network gθ to map the instance data to an output prediction x ∈ Rn by computing x = gθ(ZT ;T ).44

For example, the input instance could be a graph, the input features could be positional encodings for45

the graph, and the neural net a Multi-Layer Perceptron (MLP). The output x may not correspond to a46

discrete feasible solution. In those cases, certain rounding algorithms or heuristics can be used to47

map x to a feasible solution. The goal is for the neural net to learn to predict the optimal solution x∗.48

Self-Supervised Learning for SAT. In self-supervised CO, this is done by training NNθ on a49

collection of instances T1, T2, . . . , Tm. The neural net minimizes the problem-specific loss function50

LT computed for each instance LT (gθ (ZTi ;Ti)) and averaged over a batch (or the entire training51

set). At inference time, a test instance is processed through the neural network to obtain a prediction.52

We follow a standard probabilistic approach [12, 6]. Given instance features ZT ∈ Rn×d, a neural53

network produces logits z = gθ(ZT ;T ) ∈ Rn, which are mapped to assignment probabilities54

p = σ(z) ∈ [0, 1]n, where σ is a sigmoid. Here, the probability that sampling independently55

vi = True is given by pi. For each clause Cj , the probability it is violated under p is56

Pr[Cj(p) = 0] =
∏

i∈N+(j)

(1− pi)
∏

i∈N−(j)

pi. (2)

Here N−(j) denotes the variables that are negated in clause Cj and N+(j) those that are not. Let57

VT (x) =
∑m

j=1 1
[
Cj(x) = 1

]
be the number of clauses violated by the assignment x. It can be58

shown that under the product measure, the expected number of violated clauses is calculated by:59

Ex∼p[VT (x)] =

m∑
j=1

Pr[Cj(p) = 0] =

m∑
j=1

 ∏
i∈N+(j)

(1− pi)
∏

i∈N−(j)

pi

 . (3)

This is a multilinear extension of the function VT and can serve as a continuous proxy for unsatisfia-60

bility because its minima correspond to the optimal values of the optimization problem (1). If we61

treat this proxy as a loss function, we can use a neural network to find such minima. The training loss62

for a given instance is therefore defined as the expected number of violated clauses under p:63

LT (p) ≜ Ex∼p[VT (x)]. (4)

To obtain an assignment of truth values to the variables from the marginals p, we will use the method64

of conditional expectation [3, 20] .65

Properties of the loss. To better understand the optimization properties of our loss function, we66

will focus on its smoothness. This will also help us analyze the effect of specific data augmentations67

in subsequent sections.68

Theorem 2.1 (Global L–smoothness of the multilinear loss LT ). Fix a CNF instance T = (V,Φ)69

with V = {v1, . . . , vn} and Φ = C1 ∧ · · · ∧Cm. For each clause Cj , let N+(j) ⊆ [n] be the indices70

of variables that appear in Cj with positive polarity (i.e., as literals vi), and let N−(j) ⊆ [n] be71
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those that appear with negative polarity (i.e., as negated literals ¬vi).1 Let the arity (i.e., the number72

of literals) of a clause be a(Cj) and, for each variable index i, let its degree be di :=
∣∣{ j : i ∈73

N+(j) ∪N−(j) }
∣∣. Define, for each i ∈ [n],74

Li(T ) :=
∑

j: i∈N+(j)∪N−(j)

(
a(Cj)− 1

)
, (5)

and let L be their maximum, i.e., L(T ) := maxi∈[n] Li(T ). Then LT is globally L–smooth on75

[0, 1]n with respect to the Euclidean norm, i.e.,76

∥∇2LT (p)∥2 ≤ L for all p ∈ [0, 1]n. (6)

The proof can be found in the appendix. L-smoothness is often a desirable property since it enables77

faster convergence to stationary points in both convex and non-convex settings. Intuitively, the78

Lipschitz constant of the gradient is obtained by a bound on the operator norm of the Hessian, which79

in turn depends on the sums of partial derivatives (row sums of the Hessian). The row sums depend on80

clause arities and variable occurences. Smaller values of L are desirable which implies that smaller81

clause arity and smaller number of variable occurrences can be beneficial.82

Since no ground truth information about the solutions is available during optimization, some methods83

in the literature optimize a neural model directly on the test data [23, 2].This setting is essentially84

a reparametrized optimization problem that is solved with first-order methods (e.g., Adam [13]).85

Additionally, one may also remove the model and directly optimize an assignment in the hypercube86

by minimizing the loss, as is often done in non-convex optimization settings [14].87

3 Neural CO with data-transformations88

Our focus will be on the self-supervised learning paradigm for SAT and on label-preserving aug-89

mentations. However, it should be noted that many of the techniques that we will discuss could be90

extended to the supervised and reinforcement learning settings and to different problems.91

3.1 Augmenting input instances92

An important category of augmentations involves transforming the instance itself. Edge and node93

dropout are a standard technique that has been used in the literature on graph neural networks94

[21, 18]. However, there are some obstacles when applying dropout in the context of combinatorial95

optimization. The most important consideration is whether the transformation preserves the original96

solution. For example, for a combinatorial problem on graphs, node and edge dropouts clearly will97

affect the graph structure and so they will not preserve the optimal solution in general. Therefore, it98

may be more appropriate to consider label preserving augmentations.99

Following [8], we consider a collection of label-preserving augmentations that are motivated by100

techniques used in SAT solvers: Add Unit Literal (AU), Subsumed Clause Elimination (SC), Clause101

Resolution (CR), and Variable Elimination (VE). Please see the Appendix for a detailed description102

and examples. These augmentations can be leveraged during training, inference, or even with direct103

optimization. These augmentations can be applied in stochastic fashion to benefit both training and104

inference. A total of τ rounds of LPAs are performed. In each round, each LPA is applied according105

to its corresponding probability. Next, we outline the different settings in which they can be used.106

Augmentations for training. While these augmentations have been previously used for contrastive107

pretraining and combined with a supervised classifier [8], we instead use them directly for dataset108

augmentation. That is, given a training dataset of n unlabeled instances D, we may increase the109

number of unlabeled examples in the dataset by generating LPAs of the original n instances to obtain110

the augmented dataset D̃. Then a model is trained according to the setting described in section 2, i.e.111

given a model gθ, its parameters θ are optimized with stochastic gradient descent (e.g., Adam [13])112

to minimize113

ET∼D̃[LT (gθ(ZT ;T ))] =
1

|D̃|

∑
T∈D̃

|FT |∑
j=1

Pr[Cj(gθ(ZT ;T )) = 0]. (7)

1Throughout, we call the polarity of the variable negative if the variable occurs negated (−) in the clause and
positive otherwise.
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Inference time augmentations. Augmentations can also be an invaluable tool at inference time.114

We may provide τ augmented copies of an instance T as inputs to the model. This produces τ115

predictions, one for each input. Typically, each soft prediction from the network will be discretized116

(i.e., predictions in [0, 1]n will be mapped to {0, 1}n), yielding a total of τ assignments.117

Direct optimization. Another setting in which we will examine the effect of augmentations is that118

of direct optimization. In this case, for a given instance T , starting from a random initial point119

x0 ∈ [0, 1]n, we will directly minimize the loss LT with Adam until the iterates x1,x2, . . . ,xn120

converge to a (local) minimum. Augmentations here are used as a way to restart the algorithm. After121

convergence, starting from a new random point, Adam is executed on an augmented version of the122

instance until convergence and the process is repeated for τ times.123

3.2 Effect of augmentations on the smoothness of the loss124

To develop a better understanding of the consequences of different data augmentations for optimization125

we study how LPAs affect the smoothness of the loss function. Lower values of the smoothness126

constant L are generally preferable as they enable faster convergence to stationary points and lead to127

more robust losses. According to theorem 2.1, we expect that augmentations that increase the number128

of clauses and/or the arity of clauses will increase the smoothness constant and will therefore have a129

detrimental effect on optimization. The following is a straightforward consequence of theorem 2.1.130

Corollary 3.1. Let T = (V,Φ) be a SAT instance. Let TAU, TSC, TCR be the instance T after applying131

each of the following augmentations: Add Unit Literal, Subsumed Clause Elimination, and Clause132

Resolution. The following hold:133

• LTAU is L(TAU)-smooth with L(TAU) ≥ L(T ).134

• LTSC is L(TSC)-smooth with L(TSC) ≤ L(T ).135

• LTCR is L(TCR)-smooth with L(TCR) ≥ L(T ).136

Proof can be found in the appendix. Intuitively, the AU augmentation increases the arity of several137

clauses by introducing to them a negated literal and also increases the number of variable occurrences138

by adding new clauses. Therefore, this leads to a larger L in (5). For SC, recall that if a clause139

contains another, then the larger clause is removed. Note that eliminating a clause according to this140

augmentation will reduce the number of terms in the sum in 5. These terms will also be of larger arity.141

This will lead to a smaller value of L for the loss. Finally, in resolution we add a new clause which142

increase the number of variable occurrences, and hence negatively affect smoothness. A similar143

inequality cannot be established for variable elimination by resolution.144

3.3 Other augmentations145

Here we will provide a brief overview of the different kinds of noising procedures that can be146

incorporated in neural CO pipelines. Each technique can be instantiated in several ways so we present147

a high level overview. Specific instantiations of those techniques have been leveraged in the literature148

and are also extensively benchmarked in our experiments.149

Augmenting input features. A natural way to enhance the self-supervised pipeline is to introduce150

stochasticity in the input. Edge dropout was used in conjunction with noisy input features to improve151

downstream performance [6]. Noisy inputs have been used in the self-supervised setting in order152

to obtain multiple predictions from a model, effectively turning it into a randomized algorithm153

[26, 12, 28, 17].There are typically two ways that this is done in the literature. The first perturbs or154

augments the node features of the input graph with a random vector while the second uses random155

assignments as initial features. Noisy inputs are also useful in directly optimizing the model on a test156

set in self-supervised CO. Researchers will supply the model with some noisy initial features, and157

restart the model if the model gets stuck on a local minimum [23, 11]. Noisy inputs have also been158

leveraged in reinforcement learning for SAT to generate multiple action trajectories [33].159

Chained/recurrent predictions. One benefit of using assignments as inputs is that one can leverage160

this for prediction chaining. This has been done in the literature with transformers [31] and message161

passing models [17]. It involves starting from some assignment as input to the model, producing a162

new assignment as output, and feeding the assignment back to the model as input recurrently.163
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Layerwise Noise. Another approach is to introduce noise at intermediate stages of the model164

prediction. The way this is implemented is model-specific. For example, a ℓ-layer neural network165

where each layer takes as input a collection of d (soft) assignments to variables (i.e., [0, 1]n×d), lifts166

them to a higher dimensional representation in Rn×f and then projects back down to [0, 1]n×d. This167

could be done by common graph neural network layers combined with a simple linear layer. We may168

insert Gaussian noise on the layer output and clip to ensure that all values remain in [0, 1]. This is169

provided as input to the next layer where the same process can be repeated.170

Output prediction augmentation. Another approach that has been considered is that of output171

augmentations. A common way to improve results is to also perturb the output of the neural network172

at inference time before discretizing it. This has been done in the literature using Gumbel-Sinkhorn173

[16], for cardinality constrained problems [29] and the maximum common subgraph problem [32].174

Another way to augment the self-supervised learning pipeline is to introduce stochasticity to the175

outputs i.e., after the neural network has produced a soft prediction but before the vector is rounded to176

an assignment. This procedure allows us to sample multiple solutions from a single neural net output.177

4 Experiments178

In this section, we perform an experimental evaluation of the proposed methods in context of inference179

time, training time, and direct optimization. For the evaluation, we use SAT instances sampled from180

three different distributions: random 3-SAT, dominating set, and k-clique identification. To be more181

precise, random 3-SAT formulas follow the rand3(n,m) distribution, where n denotes the number182

of variables, and m denotes the number of clauses. For k-domset and k-color the problem instances183

are generated using a random Erdős–Rényi graph [9] with N nodes and edge probability p. We use184

WalkSAT [24] with τ additional executions as the stochastic baseline and the Lingeling solver [4]185

for computing the upper bound of satisfiable formulas in the generated dataset (see Appendix D for186

dataset statistics). Our neural approaches follow the "perform τ additional executions and choose187

the best output" pipeline discussed in section 3. The influence of τ on the performance in different188

settings is presented in Table 1, Table 2, as well as in Appendix D. For the neural model, we use a189

custom architecture that utilizes a mix of GINE [30] and linear layers (see Appendix C for details).190

Table 1: Average number of unsatisfied clauses (↓ is better) depending on the number of additional
executions τ . The standard deviation of each test group is reported using superscript.

Dataset Method τ = 0 τ = 1 τ = 2 τ = 4 τ = 8 τ = 16 τ = 32 τ = 100

rand3
(100, 430)

WalkSAT 1.74±1.28 1.49±1.12 1.14±0.86 1.01±0.80 0.89±0.76 0.79±0.71 0.63±0.61 0.56±0.59

Augmentations 1.43±0.96 1.27±0.80 1.18±0.81 1.14±0.79 1.02±0.70 0.97±0.70 0.90±0.67 0.79±0.69

LN 1.43±0.93 1.38±0.90 1.38±0.89 1.37±0.90 1.36±0.88 1.34±0.87 1.34±0.87 1.33±0.85

Input Noise 1.40±0.93 1.31±0.84 1.29±0.91 1.27±0.80 1.23±0.79 1.19±0.77 1.16±0.76 1.08±0.79

Output Noise 1.46±0.95 1.45±0.95 1.43±0.90 1.38±0.91 1.40±0.90 1.40±0.91 1.34±0.86 1.35±0.86

Chaining 1.44±0.95 1.30±0.89 1.16±0.80 1.09±0.78 1.03±0.76 1.02±0.74 1.01±0.70 0.96±0.70

domset3
(15, 0.3)

WalkSAT 0.65±0.58 0.60±0.65 0.57±0.59 0.56±0.59 0.51±0.58 0.50±0.58 0.50±0.58 0.50±0.58

Augmentations 0.67±0.64 0.66±0.65 0.62±0.63 0.62±0.63 0.62±0.63 0.57±0.59 0.58±0.61 0.55±0.59

LN 0.66±0.64 0.65±0.63 0.64±0.61 0.65±0.63 0.63±0.60 0.64±0.61 0.63±0.61 0.63±0.61

Input Noise 0.66±0.62 0.64±0.61 0.62±0.63 0.59±0.60 0.61±0.62 0.59±0.60 0.56±0.61 0.57±0.62

Output Noise 0.64±0.61 0.66±0.62 0.66±0.64 0.67±0.64 0.66±0.61 0.64±0.61 0.68±0.65 0.64±0.61

Chaining 0.67±0.65 0.67±0.64 0.61±0.62 0.63±0.61 0.59±0.60 0.59±0.60 0.59±0.60 0.60±0.62

kclique3
(15, 0.2)

WalkSAT 0.09±0.29 0.07±0.26 0.06±0.24 0.06±0.24 0.06±0.24 0.06±0.24 0.06±0.24 0.06±0.24

Augmentations 0.25±0.44 0.24±0.43 0.19±0.39 0.14±0.35 0.12±0.33 0.11±0.31 0.11±0.31 0.10±0.30

LN 0.27±0.47 0.25±0.44 0.23±0.42 0.25±0.44 0.24±0.43 0.24±0.43 0.23±0.42 0.24±0.43

Input Noise 0.27±0.45 0.21±0.41 0.18±0.39 0.14±0.35 0.13±0.34 0.11±0.31 0.11±0.31 0.10±0.30

Output Noise 0.28±0.47 0.25±0.44 0.27±0.47 0.25±0.46 0.28±0.47 0.26±0.44 0.26±0.46 0.26±0.46

Chaining 0.26±0.44 0.23±0.42 0.23±0.42 0.22±0.42 0.20±0.40 0.19±0.39 0.19±0.39 0.19±0.39

Inference-time augmentations. For evaluation of the inference methods, we first train a single191

model for each of the three datasets (rand/domset/kclique) using the SSL approach from section 2.192

We use 1000 instances for the training datasets and 100 instances for the test sets. The gist of the neural193

methods is as follows: (i) Augmentations generate a label-preserving perturbation of the input,194

(ii) Layerwise Noise (LN) uses pure restarts using the same input features (randomness comes195

from noise within the model, see Appendix C) (iii) Input Noise uses a random initial assignment196

{0, 1}n, (iv) Output Noise performs a direct perturbation of the probabilities p̃ = Π[0,1]n(p+ ε)197

with ε ∼ N (0, 0.01) before passing them to the discretization step, and (v) Chaining feeds the soft198
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outputs [0, 1]n of the model back as inputs. Note: the best assignment is chosen after the discretization199

procedure. For augmentations, the resulting assignment is projected back to the original formula. In200

particular, this means that if a variable is deleted, its assignment is assumed to be 0.5.201

In Table 1, we report the empirical performance of each method. Augmentations outperform the rest202

of the inference methods on rand, and demonstrate results similar with Input Noise on domset203

and kclique. On rand augmentations are able to provide significant improvements after τ = 8,204

whereas the other approaches mostly showcased marginal performance boost. In Appendix D, we205

report results on additional datasets as well as the percentage of satisfied clauses per test run. It is206

worth highlighting that WalkSAT with 100 restarts achieves near optimal results on all of the datasets.207

Figure 1: Average number of UNSAT clauses
(↓ is better) on different train and test setups.

Augmenting training data. When training the net-208

work on a problem with scarce data, augmentations209

can provide a way to generate artificial samples. In210

this experiment, we take a look at the effectiveness211

of these instances on rand3(100, 430). To do so, we212

generate training sets of equal total size, consisting213

either of 100% original formulas or half original for-214

mulas enriched with another augmented half. We215

then measure the generalization capabilities of mod-216

els trained on these datasets using a test set of 100217

rand3(100, 430) samples (D) as well as a test set218

containing both 100 original and 100 augmented for-219

mulas (Daug). Note that in this setting we perform220

just a single forward pass. As can be seen in Figure 1,221

augmented data samples can serve as a substitute222

for original formulas if the size of the original set is223

high enough. This is especially noticeable in the 400-224

sample setting, where combining original and augmented data achieves nearly the same performance225

as a regular 400-sample dataset, clearly outperforming the 200-sample version.226

Optimization. We further measure performance of the proposed methods in pure optimization227

setting on 100 rand3(100, 430) formulas. To optimize a single instance, we run Adam with a learning228

rate of 0.01 until the training loss (see (4)) improves less than 0.001 over the last 100 epochs. We229

execute τ additional restarts on the input and pick the best loss without discretization. The starting230

point is chosen as follows: (i) Noop uses a constant 0.5 assignment for each run, (ii) Noise adds231

the noise from N (0, 1) before the sigmoid, and (iii) Augmentations starts with a constant 0.5232

assignment on an augmented instance.233

Table 2: Average loss (↓ is better) reported for the gradient descent experiments. The standard
deviation of the loss for each test group is reported in superscript.

Method τ = 0 τ = 1 τ = 2 τ = 4 τ = 8 τ = 16 τ = 32

Noop 4.36±1.75 4.36±1.75 4.36±1.75 4.36±1.75 4.36±1.75 4.36±1.75 4.36±1.75

Noise 5.48±2.06 4.39±1.74 4.07±1.77 3.66±1.51 2.95±1.30 2.51±1.27 2.09±1.07

Augmentations 4.28±1.67 3.78±1.53 3.48±1.45 3.09±1.39 2.82±1.29 2.65±1.25 2.34±1.08

Table 2 reports the average loss per setup and the number of restarts. Interestingly, while starting off234

with better performance, Noise surpasses Augmentations with growing τ , which differs the direct235

optimization setting from neural nets.236

5 Conclusion237

We have proposed the use of label preserving augmentations in self-supervised neural SAT solving238

and examined their theoretical and empirical benefits. There are several open problems in this239

direction. Our theoretical results on smoothness are just the first step and more investigation is240

required to understand the effects of augmentations on escaping local minima, generalization, and the241

effect of augmentations on the function being learned.242
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A Augmentation probabilities328

Dataset AU SC CR VE

rand 0.0 1.0 1.0 0.2
domset 0.0 1.0 0.0 0.4
kclique 0.0 1.0 0.2 0.0

Table 3: Augmentation probabilities for AU, SC,
CR, and VE reported per dataset.

In our work, we follow the augmentation329

pipeline described in [8]. In particular, we fo-330

cus on the Subsumed Clause Elimination (SC),331

Clause Resolution (CR), and Variable Elimina-332

tion (VE) operations. Add Unit Literal (AU)333

is omitted. The order of their execution is334

VE → CR → SC. In Table 3 we report the335

probabilities of each operation being applied336

depending on the dataset. To choose a proper337

configuration for each dataset, we started with338

SC = CR = 1.0 and AU = VE = 0.0 and performed a local grid search on each parameter with a step339

size of 0.2. To determine the objective function for a given configuration, we used an inference step340

with τ = 4.341

B Label-preserving augmentations342

We describe a set of label-preserving augmentations (LPAs) for Boolean satisfiability problems. Each343

transformation preserves the satisfiability status of a formula φ, i.e., for the augmented instance φ̂ we344

have345

f(φ̂) = f(φ),

where f is the satisfiability function. Thus, if φ is satisfiable (resp. unsatisfiable), the augmented346

instance φ̂ is also satisfiable (resp. unsatisfiable).347

Unit Propagation (UP). If a formula contains a unit clause ℓ, one may set ℓ = 1 and simplify348

accordingly by removing all clauses satisfied by ℓ and deleting ¬ℓ from all remaining clauses.349

Example: φ = (x1) ∧ (¬x1 ∨ x2) −→ φ′ = (x2).350

Add Unit Literal (AU). One can introduce a new literal as a unit clause. Furthermore its negation351

is added to some predetermined number of existing clauses. Finally, new random clauses that include352

the literal are also added. Example: φ = (x1∨x2) −→ φ′ = (x3)∧ (x1∨x2∨¬x3)∧ (x3∨¬x1).353

Pure Literal Elimination (PL). A variable is pure if it occurs only with one polarity in the354

formula. In this case, all clauses containing the variable can be safely removed. Example: φ =355

(x1 ∨ x2) ∧ (x1 ∨ ¬x3) −→ φ′ = ⊤.356

Subsumed Clause Elimination (SC). If one clause is a subset of another, the larger clause is357

redundant and may be deleted. Example: φ = (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) −→ φ′ = (x1 ∨ x2).358

Clause Resolution (CR). Given two clauses containing complementary literals, one may combine359

them into a new resolvent clause implied by both. Example: (x1 ∨ x2), (¬x1 ∨ x3) −→ resolvent360

(x2 ∨ x3).361

Variable Elimination (VE). For a variable x, one considers the set of clauses containing x and362

those containing ¬x, and replaces them with all possible resolvents. This effectively removes x363

from the formula while maintaining satisfiability. Example: φ = (x1 ∨ x2) ∧ (¬x1 ∨ x3) −→364

φ′ = (x2 ∨ x3).365

These transformations provide effective label-preserving augmentations for SAT. In the context of366

contrastive learning, resolution-based augmentations such as CR and VE often yield harder positive367

pairs, which improve representation quality (see more in [8]).368

C Architecture details369

We use a custom architecture as the neural SAT solver. This model leverages blocks containing a370

mixture of GINE [30] and linear layers and uses SiLU activation functions. Both input and output371
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of the model are assignment probabilities p ∈ [0, 1]n. Some methods (such as Chaining) can feed372

an initial SAT assignment as the input features. If no input assignment is provided, it is inferred373

from node positional encodings obtained with random walk. Each block takes a collection of d soft374

assignments (as discussed in subsection 3.3) as its inputs and outputs. Inside these blocks, the model375

operates on higher dimensional features, not tied to the assignment representation. To make the model376

more robust, we perturb the features between blocks with a random Gaussian noise ε ∼ N (0, 10−4).377

Note that we use the same architecture parameters across different datasets. All of the components378

are implemented using publicly available PyTorch Geometric [10] code. All of the experiments in379

this paper were executed on a single Nvidia A100 GPU with 40GB of VRAM.380

D Additional inference-time results381

Dataset Parameters SAT Percentage

rand3 (100, 430) 49%
domset3 (15, 0.3) 54%
domset4 (12, 0.2) 55%
kclique3 (15, 0.3) 94%
kclique3 (20, 0.05) 11%

Table 4: Percentage of satisfiable formulas per dataset.

In this section, we report additional382

results for inference-time augmenta-383

tions. Percentage of satisfiable clauses384

obtained with the Lingeling solver for385

all of the formula distributions used386

in this paper are reported in Table 4.387

First, we take a look at the influence388

of standalone augmentations on the389

inference pipeline (Table 5). Here,390

just the selected augmentation is ap-391

plied in each execution. For instance392

for unit literal we set AU = 1.0 and393

CR = VE = SC = 1.0. The size of the test set here is set to 25 instances. Results on the additional394

datasets and the percentages of satisfied clauses are further denoted in Table 6 and Table 7.395

Table 5: Standalone influence of augmentations on the inference pipeline. Same as before, wee report
the average number of unsatisfied clauses (↓ is better). The standard deviation for each test set is
reported in superscript.

Dataset Aug. τ = 0 τ = 1 τ = 2 τ = 4 τ = 8 τ = 16 τ = 32 τ = 100

rand3
(100, 430)

AU 1.16±0.94 1.08±0.91 1.20±1.12 1.08±0.91 1.12±0.88 1.12±0.88 1.16±0.94 1.20±1.00

CR 1.16±0.94 0.96±0.68 0.96±0.68 0.84±0.55 0.76±0.60 0.72±0.54 0.64±0.49 0.56±0.51

VE 1.32±1.22 1.16±0.90 1.12±0.88 1.04±0.89 1.16±0.94 1.08±0.91 1.12±0.97 1.08±0.91

SC 1.08±0.91 1.08±0.91 1.04±0.89 1.00±0.82 1.00±0.82 1.00±0.82 0.92±0.70 0.96±0.79

domset3
(15, 0.3)

AU 0.64±0.70 0.64±0.76 0.64±0.70 0.60±0.71 0.64±0.70 0.60±0.71 0.60±0.71 0.64±0.70

CR 0.60±0.71 0.64±0.70 0.64±0.81 0.60±0.71 0.56±0.65 0.52±0.65 0.48±0.65 0.44±0.58

VE 0.60±0.65 0.60±0.71 0.60±0.71 0.64±0.76 0.60±0.71 0.64±0.70 0.64±0.76 0.60±0.65

SC 0.60±0.71 0.56±0.65 0.52±0.71 0.52±0.65 0.52±0.65 0.44±0.58 0.44±0.58 0.40±0.58

kclique3
(15, 0.2)

AU 0.32±0.48 0.32±0.48 0.32±0.48 0.32±0.48 0.32±0.48 0.32±0.48 0.24±0.44 0.16±0.37

CR 0.32±0.48 0.32±0.48 0.32±0.48 0.32±0.48 0.32±0.48 0.32±0.48 0.32±0.48 0.28±0.46

VE 0.32±0.48 0.32±0.48 0.32±0.48 0.32±0.48 0.32±0.48 0.32±0.48 0.32±0.48 0.24±0.44

SC 0.32±0.48 0.32±0.48 0.32±0.48 0.24±0.44 0.24±0.44 0.24±0.44 0.24±0.44 0.20±0.41

Table 6: Average number of unsatisfied clauses (↓ is better) reported on additional datasets. The
standard deviation for each test group is reported in superscript.

Dataset Method τ = 0 τ = 1 τ = 2 τ = 4 τ = 8 τ = 16 τ = 32 τ = 100

domset4
(12, 0.2)

WalkSAT 0.68±0.78 0.65±0.80 0.63±0.81 0.59±0.79 0.59±0.79 0.59±0.79 0.59±0.79 0.59±0.79

Augmentations 0.67±0.80 0.65±0.80 0.65±0.80 0.63±0.80 0.61±0.79 0.61±0.79 0.61±0.79 0.61±0.79

LN 0.69±0.81 0.67±0.80 0.68±0.80 0.67±0.80 0.66±0.81 0.66±0.81 0.66±0.81 0.66±0.81

Input Noise 0.69±0.80 0.63±0.80 0.62±0.79 0.60±0.79 0.60±0.79 0.60±0.79 0.60±0.79 0.60±0.79

Output Noise 0.70±0.80 0.69±0.81 0.68±0.80 0.67±0.79 0.67±0.79 0.67±0.80 0.66±0.79 0.65±0.80

Chaining 0.69±0.80 0.64±0.81 0.64±0.81 0.63±0.80 0.63±0.80 0.63±0.80 0.63±0.80 0.63±0.80

kclique3
(20, 0.05)

WalkSAT 0.89±0.31 0.89±0.31 0.89±0.31 0.89±0.31 0.89±0.31 0.89±0.31 0.89±0.31 0.89±0.31

Augmentations 0.94±0.28 0.92±0.27 0.93±0.26 0.92±0.27 0.92±0.27 0.91±0.29 0.91±0.29 0.90±0.30

LN 0.96±0.32 0.93±0.26 0.93±0.26 0.93±0.26 0.93±0.26 0.93±0.26 0.93±0.26 0.93±0.26

Input Noise 0.97±0.30 0.92±0.27 0.92±0.27 0.92±0.27 0.92±0.27 0.92±0.27 0.91±0.29 0.91±0.29

Output Noise 0.94±0.28 0.95±0.26 0.94±0.28 0.94±0.28 0.94±0.28 0.94±0.28 0.94±0.28 0.94±0.24

Chaining 0.94±0.24 0.93±0.26 0.90±0.30 0.90±0.30 0.90±0.30 0.90±0.30 0.90±0.30 0.90±0.30
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Table 7: Percentage of satisfied clauses (↑ is better) on each of the datasets depending on the number
of additional executions τ .

Dataset Method τ = 0 τ = 1 τ = 2 τ = 4 τ = 8 τ = 16 τ = 32 τ = 100

rand3
(100, 430)

WalkSAT 21% 15% 24% 27% 33% 37% 43% 48%

Augmentations 15% 14% 20% 20% 21% 24% 26% 35%
LN 15% 15% 14% 15% 15% 15% 15% 15%
Input Noise 15% 14% 18% 15% 16% 17% 18% 22%
Output Noise 13% 14% 13% 14% 14% 14% 15% 15%
Chaining 15% 16% 19% 20% 22% 24% 22% 24%

domset3
(15, 0.3)

WalkSAT 40% 48% 48% 49% 53% 54% 54% 54%

Augmentations 42% 44% 46% 46% 46% 48% 48% 50%
LN 43% 43% 43% 43% 43% 43% 44% 44%
Input Noise 42% 43% 46% 47% 46% 47% 50% 50%
Output Noise 43% 42% 43% 42% 41% 43% 42% 43%
Chaining 43% 42% 46% 44% 47% 47% 47% 47%

kclique3
(15, 0.2)

WalkSAT 91% 93% 94% 94% 94% 94% 94% 94%

Augmentations 75% 76% 81% 86% 88% 89% 89% 90%
LN 74% 75% 77% 75% 76% 76% 77% 76%
Input Noise 73% 79% 82% 86% 87% 89% 89% 90%
Output Noise 73% 75% 74% 76% 73% 74% 75% 75%
Chaining 74% 77% 77% 78% 80% 81% 81% 81%

domset4
(12, 0.2)

WalkSAT 46% 50% 53% 55% 55% 55% 55% 55%

Augmentations 49% 50% 50% 52% 53% 53% 53% 53%
LN 48% 49% 48% 49% 50% 50% 50% 50%
Input Noise 47% 52% 52% 54% 54% 54% 54% 54%
Output Noise 46% 48% 48% 48% 48% 49% 49% 50%
Chaining 47% 52% 52% 52% 52% 52% 52% 52%

kclique3
(20, 0.05)

WalkSAT 11% 11% 11% 11% 11% 11% 11% 11%

Augmentations 7% 8% 7% 8% 8% 9% 9% 10%
LN 7% 7% 7% 7% 7% 7% 7% 7%
Input Noise 6% 8% 8% 8% 8% 8% 9% 9%
Output Noise 7% 6% 7% 7% 7% 7% 7% 6%
Chaining 6% 7% 10% 10% 10% 10% 10% 10%

E Optimization properties of the multilinear extension396

Proposition E.1 (Global L–smoothness of the multilinear loss LT ). Fix a CNF instance T = (V,Φ)397

with V = {v1, . . . , vn} and Φ = C1 ∧ · · · ∧Cm. For each clause Cj , let N+(j) ⊆ [n] be the indices398

of variables that appear in Cj with positive polarity (i.e., as literals vi), and let N−(j) ⊆ [n] be399

those that appear with negative polarity (i.e., as negated literals ¬vi).2 For a probability vector400

p = (p1, . . . , pn) ∈ [0, 1]n, the clause-violation probability is401

Pr
[
Cj(p) = 0

]
=

∏
i∈N+(j)

(1− pi)
∏

i∈N−(j)

pi, (8)

and the expected number of violated clauses (the multilinear loss) is402

LT (p) ≜ Ex∼p[VT (x)] =

m∑
j=1

Pr
[
Cj(p) = 0

]
=

m∑
j=1

( ∏
i∈N+(j)

(1− pi)
∏

i∈N−(j)

pi

)
. (9)

Let the arity of a clause be a(Cj) := |Cj | and, for each variable index i, let its degree be di :=
∣∣{ j :403

i ∈ N+(j) ∪N−(j) }
∣∣. Define, for each i ∈ [n],404

Li :=
∑

j: i∈N+(j)∪N−(j)

(
a(Cj)− 1

)
, L := max

i∈[n]
Li. (10)

2Throughout, we call the polarity of the variable negative if the variable occurs negated in the clause and
positive otherwise.
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Then LT is globally L–smooth on [0, 1]n with respect to the Euclidean norm, i.e.,405

∥∇2LT (p)∥2 ≤ L for all p ∈ [0, 1]n. (11)

Proof. From (9), LT is multilinear (affine in each coordinate). Writing Cj also for the index set406

N+(j) ∪N−(j), its first derivatives are, for each i ∈ [n],407

∂LT

∂pi
(p) =

∑
j: i∈Cj

sj,i
∏

p∈N+(j)\{i}

(1− pp)
∏

n∈N−(j)\{i}

pn, (12)

where the sign sj,i encodes the polarity of i in Cj :408

sj,i =

{
−1, i ∈ N+(j) (vi appears in Cj),

1, i ∈ N−(j) (¬vi appears in Cj).
(13)

By multilinearity, the diagonal second derivatives vanish. For distinct i ̸= k,409

∂2LT

∂pi ∂pk
(p) =

∑
j: {i,k}⊆Cj

sj,i,k
∏

p∈N+(j)\{i,k}

(1− pp)
∏

n∈N−(j)\{i,k}

pn, (14)

where410

sj,i,k =

{
1, i and k have the same polarity in Cj (both in N+ or both in N−),

−1, i and k have opposite polarity in Cj (one in N+, the other in N−).
(15)

Every factor in the products lies in [0, 1], hence for all p,411 ∣∣∣ ∂2LT

∂pi ∂pk
(p)

∣∣∣ ≤ cik, cik :=
∣∣{ j : {i, k} ⊆ Cj }

∣∣ (pair codegree). (16)

Summing absolute values across the ith row of the Hessian (whose diagonal is zero) gives412 ∑
k ̸=i

∣∣∣ ∂2LT

∂pi ∂pk
(p)

∣∣∣ ≤
∑
k ̸=i

∑
j: {i,k}⊆Cj

1 (17)

=
∑

j: i∈Cj

∑
k∈Cj\{i}

1 (18)

=
∑

j: i∈Cj

(
a(Cj)− 1

)
(19)

= Li. (20)

Therefore ∥∇2LT (p)∥∞ ≤ maxi Li = L for all p. This completes the proof.413

Corollary E.2 (Bound using variable degrees.). Let amax := maxj a(Cj) and ∆ := maxi di. Then414

L ≤ (amax − 1)∆. (21)

Proof. For each i,415

Li =
∑

j: i∈Cj

(a(Cj)− 1) (22)

≤
∑

j: i∈Cj

(amax − 1) (23)

= (amax − 1) di (24)
≤ (amax − 1)∆. (25)

The inequality in (25) is obtained by taking the max over all variable degrees.416

Theorem E.3. Let T = (V,Φ) be a SAT instance. Let TAU, TSC, TCR, TVE be the instance T after417

applying each of the following augmentations: Add Unit Literal, Subsumed Clause Elimination,418

Clause Resolution, Variable Elimination. The following hold:419
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• LTAU is L(TAU)-smooth with L(TAU) ≥ L(T ).420

• LTSC is L(TSC)-smooth with L(TSC) ≤ L(T ).421

• LTCR is L(TCR)-smooth with L(TCR) ≥ L(T ).422

Proof. The proof follows from theorem 2.1 To establish the inequalities of the theorem we simply423

have to compute the new value of Li for the augmented instance and compare it to its original value.424

Add Unit Literal. Let S− ⊆ [m] be indices of clauses to which ¬y is appended, and let y ∨425

R1, . . . , y ∨Rt be new clauses with rℓ := |Rℓ|. For i ∈ [n] define426

α−
i :=

∣∣{j ∈ S− : i ∈ N+(j) ∪N−(j)}
∣∣, βi :=

∣∣{ℓ ∈ [t] : i ∈ Rℓ}
∣∣. (26)

Then427

Li(TAU) = Li(T ) + α−
i +

∑
ℓ: i∈Rℓ

rℓ, i ∈ [n], (27)

(28)

and for the new clauses428

Ly(TAU) =
∑
j∈S−

a(Cj) +

t∑
ℓ=1

rℓ. (29)

(30)

The smoothness constant is given by429

L(TAU) = max
{
max
i∈[n]

Li(TAU), Ly(TAU)
}
, (31)

which yields L(TAU) ≥ L(T ).430

Subsumed clause elimination. If S collects all subsumed clauses that are dropped, then431

Li(TSC) = Li(T )−
∑

j∈S: i∈Cj

(
a(Cj)− 1

)
. (32)

Therefore, we have that432

L(TSC) ≤ L(T ).

Clause Resolution. Let R be the set of added resolvents, with variable sets U(R) and arities a(R).433

Then434

Li(TCR) = Li(T ) +
∑
R∈R

i∈U(R)

(
a(R)− 1

)
, . (33)

This gives us the smoothness constant435

L(TCR) = max
i

(
Li(T ) +

∑
R∋i

(
a(R)− 1

))
(34)

≥ L(T ). (35)

436
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