
Trace is the Next AutoDiff: Generative Optimization
with Rich Feedback, Execution Traces, and LLMs

Ching-An Cheng∗
Microsoft Research

chinganc@microsoft.com

Allen Nie∗
Stanford

anie@cs.stanford.edu

Adith Swaminathan∗

Netflix
aswaminathan@netflix.com

Abstract

We study a class of optimization problems motivated by automating the design
and update of AI systems like coding assistants, robots, and copilots. AutoDiff
frameworks, like PyTorch, enable efficient end-to-end optimization of differentiable
systems. However, general computational workflows can be non-differentiable
and involve rich feedback (e.g. console output or user’s responses), heterogeneous
parameters (e.g. prompts, codes), and intricate objectives (beyond maximizing
a score). We investigate end-to-end generative optimization – using generative
models such as LLMs within the optimizer for automatic updating of general
computational workflows. We discover that workflow execution traces are akin to
back-propagated gradients in AutoDiff and can provide key information to interpret
feedback for efficient optimization. Formally, we frame a new mathematical
setup, Optimization with Trace Oracle (OPTO). In OPTO, an optimizer receives an
execution trace along with feedback on the computed output and updates parameters
iteratively. We provide a Python library, Trace, that efficiently converts a workflow
optimization problem into an OPTO instance using PyTorch-like syntax. Using
Trace, we develop a general LLM-based generative optimizer called OptoPrime.
In empirical studies, we find that OptoPrime is capable of first-order numerical
optimization, prompt optimization, hyper-parameter tuning, robot controller design,
code debugging, etc., and is often competitive with specialized optimizers for
each domain. We envision Trace as an open research platform for devising novel
generative optimizers and developing the next generation of interactive learning
agents. Website: https://microsoft.github.io/Trace/.

1 Introduction

Computational workflows that integrate large language models (LLMs), machine learning (ML)
models, orchestration, retrievers, tools, etc., power many state-of-the-art AI applications [1]: from
chatbots [2], coding assistants [3], robots [4], to multi-agent systems [5]. However designing a
computational workflow requires laborious engineering because many heterogeneous parameters (e.g.
prompts, orchestration code, and ML hyper-parameters) are involved. Moreover, after deployment
any erroneous behaviors of the workflow persist unless a developer manually updates it.

We study a class of optimization problems motivated by automating the design and update of compu-
tational workflows. Computational workflows produce optimization problems with heterogeneous
parameters, rich feedback (e.g. console output and user’s verbal responses), and intricate objectives
(beyond maximizing a score). Moreover, a workflow can have interdependent steps (e.g. adaptive
orchestration, feedback control loops) and/or involve non-differentiable, semi-black-box, stochastic
operations (e.g. ML models, simulations) whose behavior cannot be succinctly captured. As a result,
the structure of the computation may change as the parameters and the inputs of the workflow vary.

∗Equal contribution

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://microsoft.github.io/Trace/

Due to its complexity, computational workflow optimization is usually framed as a black-box [6]
or algorithm configuration [7] problem, and is tackled by general techniques like Bayesian Opti-
mization [8], Evolutionary Algorithms [9], Reinforcement Learning (RL) [10] using scalar scores as
feedback. But one observation of scalar feedback alone does not provide an improvement signal, so
these algorithms are very inefficient when the parameter space is large (e.g. codes or natural language
prompts). Recently LLM-based optimizers [11–16] have been proposed as generative optimizers to
improve efficiency, leveraging the prior of generative models learned from large pre-training corpora
to optimize complex prompts and codes. In this paper, we investigate how generative optimization can
be applied more broadly and systematically to optimize a general computational workflow end-to-end.
Appendix B discusses related works in generative optimization.

1.1 Toward Efficient End-to-End Optimization of Computational Workflows

Inspired by back-propagation [17], we take an end-to-end approach to computational workflow
optimization. AutoDiff frameworks [18, 19] have scaled the back-propagation algorithm to optimize
differentiable workflows (e.g., neural networks) with billions of parameters. We extend the idea
of AutoDiff and design a new framework, Trace, for jointly optimizing all of the heterogeneous
parameters in general computational workflows, which may not be differentiable.

Trace treats a computational workflow as a graph like a neural network, where nodes are either inputs,
parameters or the results of computation steps, and directional edges denote how nodes are created
from others. But, instead of gradients, Trace propagates the execution trace of a workflow (which
records the intermediate computed results and how they are used), via the notion of minimal subgraph
(see Section 3.3). We show that propagating the execution trace subsumes back-propagation for
differentiable workflows, and remains applicable even for non-differentiable workflows. Viewing a
workflow as a graph and using its execution trace is standard for software engineering; for instance,
human developers use such traces to debug distributed systems [20]. Our novel insight is that
execution traces also enable end-to-end generative optimization, because they provide the information
needed to relate rich feedback to the parameters in general workflows.

1.2 Example of Trace in Action

Trace is available as a Python library with an API inspired by PyTorch [19]. A user declares the
parameters to be optimized using a trainable flag, decorates the workflow with node and bundle
wrappers, and runs a Trace optimizer – just like how they would declare and train neural networks.

Consider building an AI agent for the Battleship game (Fig. 1). The agent’s policy (Fig. 2a) has two
components (reason and act), which are chained together to react to different board configurations.
The Battleship environment provides feedback (binary reward in texts) to tell if the agent’s action hit
the hidden ships, and the goal is to hit all hidden ships as fast as possible. Consider how a human
programmer might approach the problem. They may run the policy and change the code based on the

Balance unexplored squares vs
adjacent to previous hitsOnly guess [0, 0]

Learn to
enumerate all squares

Figure 1: Learning Example in Battleship. Trace automatically optimizes heterogeneous parameters (multiple
codes) to train an agent to Battleship. Means and standard errors are computed over 10 random seeds.

2

class Policy(trace.Module):

def forward(self , map):
plan = self.reason(map)
output = self.act(map , plan)
return output

@trace.bundle(trainable=True)
def reason(self , map) -> str:

"""
Given a Battleship map , analyze

the game ...
"""
return [0, 0]

@trace.bundle(trainable=True)
def act(self , map , plan):

"""
Given a map and plan , select a

target coordinate ...
"""
return

(a) We write a trainable policy in
Python using Trace operators.

policy = Policy ()
params = policy.parameters ()
optimizer = trace.Optimizer(params)

env = gym.make(’Battleship -v0’)
board = env.reset()
done , feedback = False , None
while not done:

Forward pass
try:

target = policy(board)
board , feedback, done =
env.step(target.data)

except TraceExecutionError as e:
feedback = str(e)
target = e.exception_node

Backward pass and update
optimizer.zero_feedback ()
optimizer.backward(target , feedback)
optimizer.step()

(b) We then use PyTorch-like optimiza-
tion syntax to train the policy.

Act

[ParameterNode]

def act():

Reason

[ParameterNode]

def reason():

Board

[Node]

[..., ..., ...]

Action

[Node]

[0, 1]

Env Feedback

Execution

Feedback

(c) Trace automatically
records execution DAG.

Figure 2: Python Code of the Battleship Example. To build a self-adapting agent with Trace, we only need to
annotate some empty functions (reason, act) and set up an optimizer following PyTorch semantics. For space,
we trim the docstrings of the empty functions with “. . . ” and list them in Appendix J. Trace then builds a DAG
as the workflow executes and updates the parameters (see Fig. 1 for the result).

observed feedback. They may rewrite the code a few times to try different heuristics to solve this
problem. They will fix any execution errors (e.g., out-of-bounds exceptions) by using stack traces.

Our Trace framework accomplishes the programmer’s goal automatically without adding complexity
to the Python code. The user declares reason and act as trainable (Fig. 2a) and then runs the agent
in a PyTorch-like training loop (Fig. 2b). During the execution, Trace records a directed acyclic graph
(DAG) (Fig. 2c) and uses it to compute the execution trace for optimization. Trace also automatically
catches errors (e.g., syntax/semantic errors) and can use them as feedback. In Fig. 1, we show what
the agent learns as Trace optimizes2 its policy, where the learned policy is evaluated on new randomly
generated games for generalization. The agent can quickly improve its performance and learn
strategies that are increasingly complex. Remarkably, there is no mention of the specific Battleship
environment API, nor details on how the functions reason and act should behave or adapt in Fig. 2a.
The Trace optimizer figures out all the details through interactions as the computational graph unfolds
and the feedback on the output is observed. Beyond code as parameters in this example, we also have
experiments in Section 5 where prompts and other heterogenous parameters are optimized.

1.3 A New World of Optimization

The design of Trace is based on a new mathematical setup of iterative optimization, which we call
Optimization with Trace Oracle (OPTO). In OPTO, an optimizer selects parameters and receives a
computational graph as well as feedback on the computed output. Trace is a tool to efficiently convert
the optimization of computational workflows into OPTO problems in practice.

We argue that framing computational workflow optimization as OPTO can lead to faster convergence
than a black-box approach. We present a constructive proof: We design a general-purpose efficient
generative optimizer called OptoPrime, for OPTO. OptoPrime turns OPTO to a sequence of pseudo-
algorithm problems. In each iteration of OPTO, we format the execution trace and output feedback
as a pseudo-algorithm question and present it to an LLM for solution (GPT-4 using a ReAct-CoT
prompt listed in Appendix G). In experiments, we apply OptoPrime unchanged to many disparate
applications like prompt optimization, first-order numerical optimization, hyper-parameter tuning, and
robot controller design. We find that the general purpose OptoPrime is competitive with specialized
optimizers for each domain, e.g., achieving 10% higher accuracy on BigBenchHard [21] when
optimizing a DSPy [22] program compared to their hand-designed optimizer.

Trace, OPTO, and OptoPrime together provide the first tractable algorithm for optimizing general
computational workflows end-to-end. The Trace framework a) leverages a workflow’s structure and
b) can incorporate rich feedback beyond scores, extending AutoDiff to complicated, non-differentiable
computational workflows. With Trace, we conjecture that “training deep agent networks” (which
fluidly mix computation of tensors, LLMs, and other programmable tools) will soon be possible.

2We use a new general-purpose LLM-based optimizer OptoPrime that we detail in Section 4.

3

2 Optimization with Trace Oracle

OPTO is the foundation of Trace. In this section, we define this graph-based abstraction of iterative
optimization and discuss how OPTO covers various computational workflow optimization problems.

Preliminary We review the definition of a computational graph (see Fig. 2c). A computational
graph g is a DAG, where a node represents an object (such as tensors, strings, etc.) and an edge
denotes an input-output relationship. We call a node without parents a root and a node without
children a leaf, which are the inputs and outputs of the computational graph. In the context of
optimization, some inputs are marked as trainable parameters, which are denoted as {Xθ}. For a
node X , its parents are the inputs to an operator that creates X . The descendants of node X are
those that can be reached from X following the directed edges; the ancestors are defined conversely.
Without loss of generality, we suppose that all computational operators have a unitary output3. In
this way, we can associate the operator that creates the child node with the child node, and the full
computation can be represented compactly as a DAG without explicitly representing the operators.
The execution trace of a computational workflow is defined as the sequence of operations and their
execution results invoked when computing the output from a set of inputs; execution traces can be
expressed as a computational graph as defined above.

2.1 Problem Definition of OPTO

Output
Feedback

Figure 3: Iterations of OPTO. When θ ∈ Θ
is selected, the Trace Oracle T returns trace
feedback τ = (f, g), where g is a compu-
tational graph using θ as input and f is the
feedback given to the output of g.

OPTO is an abstract setup of iterative computational work-
flow optimization. An OPTO problem instance is defined
by a tuple (Θ, ω, T), where Θ is the parameter space, ω
is the context of the problem, and T is a Trace Oracle. In
each iteration, the optimizer selects a parameter θ ∈ Θ,
which can be heterogeneous. Then the Trace Oracle T
returns a trace feedback, denoted as τ = (f, g), where g is
the execution trace represented as a DAG (the parameter
is contained in the root nodes of g), and f is the feedback
provided to exactly one of the output nodes of g. Finally, the optimizer uses the trace feedback τ to
update the parameter according to the context ω and proceeds to the next iteration, as shown in Fig. 3.

In OPTO, the output feedback f is generic, such as scores, gradients, hints/explanations expressed in
natural language, and console messages. The context ω provides invariant information to interpret the
output feedback f as well as any known side-information, e.g., desired properties of the parameters.
The context ω is fixed for an OPTO problem instance (similar to an instruction, or a problem
definition), whereas the output feedback f can change with the parameter θ ∈ Θ and the resulting
computation g. For example, ω may be “Minimize a loss function” and f is a loss. Alternatively, ω
can be open-ended, like “Follow the feedback” and f describes how an output should be changed.
In Section 3.2, we discuss how to define the context and output feedback when constructing OPTO
problems in practice. In this paper, we focus on OPTO problems where f and ω can be expressed
compactly in text. This covers a wide range of problems [23], including those with scalar feedback.

OPTO differs from a black-box setup in that the execution trace g shows the computational path
toward the output, which provides information to construct a parameter update direction from f
and ω. In the minimization example above, when the execution trace g is missing, it is unclear
how the parameter can be improved given only a point evaluation of f . On the other hand, with g
documenting the functions used to create the output, an update direction (e.g., a gradient) can be
derived. We highlight that the structure of the computational graph g returned by the Trace Oracle
T can be different in each iteration in the general case (as in Fig. 3) because some workflows can
change with different inputs and parameters.

To ground the OPTO setup, we show how OPTO is related to some existing problems with examples.
We discuss other examples like hyperparameter tuning and multi-agent systems in Appendix C.

Example 1 (Neural network with back-propagation). The parameters are the weights. g is the
neural computational graph and f is the loss. An example context ω can be “Minimize loss”. The
back-propagation algorithm can be embedded in the OPTO optimizer, e.g., an OPTO optimizer can
use τ to compute the propagated gradient at each parameter, and apply a gradient descent update.

3A multi-output operator can always be modeled by a single-output operator and single-output indexers.

4

Example 2 (RL). The parameters are the policy. g is the trajectory (of states, actions, rewards)
resulting from running the policy in a Markov decision process; i.e., g documents the graphical model
of how a generated action is applied to the transition, which then returns the observation and reward.
f can be a success flag. ω can be “Maximize return (cumulative rewards)” or “Maximize success”.
Example 3 (Prompt Optimization of an LLM Agent). The parameters are the prompt of an LLM
workflow. g is the computational graph of the agent and f is the feedback about the agent’s behavior
(which can be scores or natural language). ω can be “Maximize score” or “Follow the feedback”.

3 Trace: The Next AutoDiff

We design a framework, Trace, to bring OPTO from an abstract concept to reality. Trace provides
a lightweight Python4 tool to implement the Trace Oracle of OPTO for optimizing computational
workflows. Through the OPTO framing, Trace separates the design of optimizers and domain-specific
components so that general-purpose optimizers can be built that work across diverse domains.

3.1 Design of Trace

Trace is designed based on two primitives:

• node is the wrapper of Python objects. When wrapped, a Python object is registered as a unique
node in the computational graph of Trace. A node can be set trainable, which would make the
node a parameter in OPTO. In addition, when using node to declare a parameter, one can also
describe (in natural language) constraints that the parameter should obey.

• bundle is the decorator to turn Python methods into operators. When a function is decorated,
its docstring and source code are recorded as the definition of the operator, which infer how the
output feedback should change the parameters. Moreover, functions decorated by bundle can be
set trainable as well, which means that the code of the decorated method becomes a parameter.5

For any workflow, using Trace involves the following steps (see Fig. 2). First, the user declares the
workflow’s parameters using node and bundle, and defines the workflow’s conceptual blocks as
operators using bundle. Then the user creates an OPTO optimizer (such as OptoPrime in Section 4),
and optionally provides the context ω for the problem. (A default context ω of OptoPrime is “Follow
the feedback”). In addition, the user defines a mechanism to provide feedback to the computed result
(e.g., scores, natural language suggestions, etc.), in analogy to defining a loss function in neural
network training. After the declaration, optimization via Trace repeats the following: 1) Execute the
decorated workflow. As it runs, a DAG is built in the backend, logging the computed results and their
connections. 2) Initiate the propagation of the output feedback to the parameters by calling backward.
(Any execution error is also treated as feedback; see Appendix D.) Internally, Trace extracts the
minimal subgraph g connecting the parameters and the output and sends the OPTO optimizer the
trace feedback τ = (f, g). 3) Call the OPTO optimizer’s step method to update the parameters.

3.2 Using Trace Primitives for Effective Execution Tracing

There are many ways to represent a computational workflow as a computational graph, from abstract-
ing the entire process as one big operator to listing all low-level steps as operators in the graph. In
Trace, the level of abstraction is decided by how bundle is applied, as all steps underneath bundle
are abstracted as one operator. The design of bundle allows tracing most Python codes, except for
those modifying the content of an object reference in place. However, such a case can be avoided by
first duplicating the object and then applying the modification to the copied object, similar to how a
recurrent neural network is implemented.

Different abstraction choices trade off the graph complexity and the description needed for each
operator. Abstracting everything into a single operator makes a trivial graph but requires more
descriptions to faithfully capture the workflow. On the other hand, not all details matter in optimiza-
tion, so exposing every low-level operator can make the graph unnecessarily cluttered. The best
representation depends on the application and OPTO optimizer at hand. This problem, we believe,
is similar to the design of neural network architectures. Here, we suggest defining the operators to

4The current implementation is in Python. The DAG-based design of Trace can be adapted to other
programming languages also, just like AutoDiff libraries that are available in C++.

5This would add an extra parent (i.e., the trainable code) to the computed child node.

5

mimic the whiteboard system diagram of the computational workflow. This level of abstraction in
our experiments strikes a good balance between the ease of documentation and the graph size.

Apart from architecture design, another design question is what information goes into the context
ω versus the description of each operator? For a single problem, there is no difference in principle;
one can choose to provide details of all operators in g through the context ω. However, this will
require manually crafting a context for every workflow. We suggest instead providing a description
of the operators when they are defined using bundle. Then Trace will automatically generate the
workflow-specific information while the same context ω is shared across many workflows.

3.3 Backward Feedback Propagation: Realizing the Trace Oracle of OPTO

Algorithm 1 Backward Message Passing
Input: Node output, feedback f , propagator P
1: τ ← P.init(f)
2: output.add_feedback(“User”, τ)
3: queue← MinHeap([output])
4: while queue is not empty do
5: node← queue.pop()
6: feedback ← P.propagate(node)
7: for parent in node.parents do
8: τ ← feedback[parent]
9: parent.add_feedback(node, τ)

10: if parent /∈ queue then
11: queue.push(parent)

Algorithm 2 Minimal Subgraph Propagator
Input: A child node node

// The pseudo code implements propagate.
// init(f) returns (f, {}).

1: g ← {node}
⋃
{parent in node.parents}

2: for (fi, gi) in node.feedback do
3: g ← g

⋃
gi

4: f ← fi // all fi are the same.
5: return {p : (f, g) for p in node.parents}

Trace uses a recursive graph traversal algorithm (Al-
gorithm 1) to propagate feedback in the reversed topo-
logical ordering. With different propagators, Algo-
rithm 1 can implement various forward-backward
schemes including back-propagation.6 We propose
a general propagator, Minimal Subgraph Propagator
(MSP), in Algorithm 2. MSP propagates the trace
feedback τ = (f, g), where g is implemented as a
priority queue. Running Algorithm 1 with MSP (Al-
gorithm 2) together implements the Trace Oracle of
OPTO, which extracts the minimal subgraph between
parameter nodes and output.7 connecting the parame-
ters and an output. Appendix E proves the following:

Theorem 1. For a graph with N nodes and maximum
degree W , Algorithms 1 and 2 have time complexity
O(WN2 logN) and space complexity8 O(WN).

By contrast, back-propagation has time and space
complexities of O(WNd2) and O(d) respectively,
where d is the maximal dimension of tensors. The
difference is because in the most general setting of
computational graphs and feedback, the propagated
feedback (no matter how it is represented) does not
have a constant size and needs the full subgraph.

Theorem 2. For generic computational graphs of N nodes, in the worst case, the propagated
feedback needs a description length Ω(N) to construct an improvement direction.

Despite the worst case complexity of MSP, in practice the difference is negligible. Since MSP only
involves merging priority queues of references, most actual computation happens in the forward pass
(and also the optimizer’s step method). However for very large problems with millions of nodes in
the minimal subgraph, we anticipate that computational issues of MSP could arise.

4 Design of the First OPTO Optimizer

We introduce an LLM-based generative optimization algorithm OptoPrime for any text-based OPTO
problem. We believe that this is one of many possible optimization algorithms for these problems
and there is a large space to be explored for identifying efficient optimization methods for OPTO.

Subgraph Representation One core challenge of designing an LLM-based OPTO optimizer is
how to represent the execution trace subgraph g (which can involve various graph structures and
heterogenous data) to LLMs, in a way that LLMs can understand and reason about the downstream
effects of parameter updates. We leverage the LLMs’ remarkable coding and debugging ability [3].

6In back-propagation, the message is the gradient∇i and the propagate function returns J⊤
i

∑
j ∇j to its

ith parent, where Ji is the Jacobian to the ith parent and and the∇j gradient received from the jth child.
7The minimal subgraph gX→Y between nodesX and a node Y is defined as gX ,Y := X

⋃
{Y }

⋃
{Z,P |Z ∈

ancestors(Y), Z ∈ descendants(X), X ∈ X , P ∈ parents(Z), P ∈ parents(Y)}.
8The space complexity refers to the extra space needed for the backward pass, not including the forward pass.

6

#Code:
a = bar(x)
y = add(b, a)
z = mul(a, y)
#Definitions:
[mul] This is a multiply operator.
[add] This is an add operator.
[bar] This is a method that does

negative scaling.
#Inputs:
b=1.0
#Others:
a=2.0
y=3.0
#Output
z=6.0
#Variable
x=-1.0
#Feedback:
Output should be larger.

Figure 4: An example pseudo-code report
generated by Trace for a program of x =
Node(-1.0); z = bar(x) * (bar(x)+1)
and the objective of maxx z.

We present the trace feedback (f, g) computed by Trace as
a pseudo-algorithm problem: the subgraph g is expressed
as a report of code execution with information about the
computed values and descriptions of operators in g. Then
we prompt the LLM to update the parameters in g based
on feedback f given to the output. Fig. 4 shows an exam-
ple. It is crucial to note that even though the lines look
like an actual program, it is not the real program but the
computational graph defined by bundle (see Section 3.2).

Parameter Update We prompt the LLM with a ReAct-
CoT style prompt (Appendix G.2) in one query, asking it to
generate reasoning based on the graph, and a suggestion on
the parameter changes. If the suggestion can be extracted
from the response, we update the parameters.

Optimization Memory OptoPrime optimizes most
workflows reasonably well using just the traced graph
and feedback, but it can run into issues when single feed-
back alone is not informative (e.g., the output feedback is rewards, but there is no description of how
the rewards are generated). For robustness, we have a basic memory module in OptoPrime, which
tracks the past parameter-feedback pairs as in-context examples. See Appendix G for details.

5 Experiments

We evaluate the Trace framework with OptoPrime. We implement the state-of-the-art LLM optimizer
OPRO [13] as a baseline; in comparison with OptoPrime, OPRO does not use the execution trace
but relies on the memory of parameter and feedback pairs. For these experiments, we use GPT-4-
0125-Preview. We run the experiments on a standard PC with 16 GB RAM, and Trace introduces no
measurable overhead on executing the workflow. We also conduct experiments to compare Trace
and OptoPrime with a concurrent AutoDiff-like framework, TextGrad [24], which was released after
Trace was submitted to NeurIPS. We show that TextGrad can be easily implemented as an optimizer
in Trace, and OptoPrime achieves similar or better performance than TextGrad while using much less
computation time. In the rest of this section, we will denote Trace+OptoPrime simply as Trace. We
report the token usages of all approaches in all experiments in Appendix I.1.

5.1 Validating with Numerical Optimization

First, we want to validate if OptoPrime can solve classical differentiable optimization problems, since
they are a special case of OPTO. Consider the problem of minx |h(x) − y∗| for a target y∗. We
construct a synthetic task environment that randomly creates y∗ and the computational graph of h
with arbitrarily complex connections between numerical variables (see Appendix I.3 for details). We
evaluate OptoPrime (denoted as Trace) and a variant that does not see the graph (Trace Masked); both
the optimizers do not use memory. The output feedback is “The output should be <larger/smaller>”
(this feedback has the same information as the gradient w.r.t. h). We compare also the performance
of Adam optimizer [25]. We run 30 trials over different randomly generated problems. All methods
see the same randomness. Trace is able to match the best-in-class Adam; on the other hand, without
access to the full computational graph, the feedback-alone optimizer struggles to find x∗ (Figure 5a).

5.2 Tuning Hyperparameters to Orchestrate Complex Systems

We tested Trace in a traffic control problem, which is an instance of hyper-parameter tuning. We
used UXSim [26] to simulate traffic at a four-way intersection, where the trainable parameters are 2
integers in [15, 90], which are the green light duration for each direction of traffic flow. The feedback
is the estimated delay experienced by all vehicles due to intersections, and the goal of an optimizer
is to minimize the delay using the fewest number of traffic simulations. To this end, this optimizer
must find the right trade-off for temporally distributed and variable demands. In Fig. 5 we report
the performance of a SOTA heuristic from the traffic control literature, SCATS [27] as well as two
black-box optimization techniques: Gaussian Process Minimization (GP) [8] and Particle Swarm
Optimization (PSO) [28]. All methods use the same starting parameters. Trace denotes OptoPrime
using memory, and Trace NoMem denotes OptoPrime without memory. We report further details in

7

0 2 4 6 8 10
Step

0

2

4

6

8

10

12

Ab
so

lu
te

 E
rr

or

Number Optimization

Trace Masked
Trace
PyTorch + Adam

(a) Numerical Optimization.

0 10 20 30 40 50
Iterations

100

200

300

400

D
el

ay
 in

 T
ra

ff
ic

Traffic Optimization
SCATS
GP
PSO
Trace
OPRO

(b) Trace vs. Other optimizers.

0 10 20 30 40 50
Iterations

50

75

100

125

150

175

200

D
el

ay
 in

 T
ra

ff
ic

Traffic Optimization
SCATS
Trace
Trace Masked
Trace NoMem

(c) Ablations of Trace.

Figure 5: Numerical Optimization and Traffic Optimization Results.

Appendix I.4. GP and PSO appear bad because 50 iterations are insufficient for their convergence;
given enough iterations, both will eventually perform well. Trace is quickly competitive with the
SCATS heuristic, whereas OPRO is not. Moreover, we find that memory is crucial for Trace to
perform well for this task. But we note that Trace consumes extra overhead compared to other
methods, since Trace has to materialize the resulting computation graph and query an LLM with
effectively a longer prompt than that of OPRO.

5.3 Unifying Prompts and Functions Optimization

Many LLM agents today, e.g., specified by LangChain [29] and DSPy [22], have many components.
These libraries provide optimization tools to optimize a small portion of their workflows, predom-
inantly the prompt that goes into an LLM call. However, for building self-adapting agents that
can modify their own behavior, only allowing the change to one part of a workflow but not others
can be limiting. In this experiment, we test Trace’s ability in joint prompt optimization and code
generation. Specifically, we optimize a given DSPy-based LLM agent and tune its three components:
the meta-prompt prompt_template, a function create_prompt that modifies the prompt with the
current question, and a function extract_answer that post-processes the output of an LLM call.

We set up an end-to-end prompt-and-code optimization pipeline. We use an automatic evaluation
function to compare the LLM’s output with the ground truth, which requires the LLM agent to generate
outputs not only with the correct answer but also in the correct format (following the guidelines
of [30]). We use the Big-Bench Hard dataset [21] (15 examples for training, 5 for validation, and the
rest for testing). We compare Trace with DSPy’s COPRO module (which optimizes the meta-prompt).
In Table 1, we show that Trace is able to optimize a DSPy program beyond what DSPy’s COPRO
optimizer can, especially on algorithmic tasks. This result shows how Trace can concretely improve
upon existing LLM prompt optimization libraries. We show learned codes in Appendix J.

BBH all NLP Algorithmic BBH all NLP Algorithmic
0-shot (23 tasks) (12 tasks) (11 tasks) 0-shot (23 tasks) (12 tasks) (11 tasks)

DSPy 41.6 53.8 32.6 DSPy + CoT 70.4 73.7 68.0
DSPy-PO 55.3 69.0 45.2 DSPy-PO + CoT 71.6 73.9 70.0

Trace 59.5 70.9 51.1 Trace + CoT 78.6 75.8 80.6

Table 1: End-to-end workflow optimization for an LLM benchmark (Big-Bench Hard) in 0-shot setup. CoT
refers to Chain-of-Thought prompting and PO refers to DSPy’s own prompt optimizer (COPRO). We use Trace
to optimize a DSPy program, starting from the same program and prompt template specified by DSPy.

5.4 Long-Horizon Robot Manipulator Control

We test the ability of Trace to optimize long-horizon workflows with complex dependencies and
to “back-propagate through time”. We use Trace to train the controller code (in Python) for a
simulated Sawyer robot manipulator. We use the Meta-World environment from LLF-Bench [23]
as the simulator and consider three tasks: Reach, Pick-place, and Push. For each task, LLF-Bench
provides a task instruction and meaning of the action space, which we use as the context ω of
the OPTO problem. The observation is a Python dictionary of vectors, indicating the end-effector
position, the goal position, the gripper status, etc. The action space is a 4-dimensional vector to
control the relative position of the end-effector and the gripper state. In each time step, the LLF-Bench
Meta-World simulator returns the observation and natural language feedback to guide the robot. An

8

(a) Reach (Test) (b) Pick-place (Test) (c) Push (Test)

Figure 6: Learning the feedback control policy (code) for a simulated Sawyer manipulator in LLF-Bench
Meta-World. In each iteration (x-axis), one episode of rollout (10 steps) is performed, and then the policy is
updated. The mean and standard error of the success rate over 10 seeds are shown.

episode ends if the robot successfully solves the problem or because of time-out. We consider an
episodic training setting. The initial condition for all iterations in training is the same. We evaluate
the learned policy in terms of success, starting from 10 held-out initial conditions. The task horizon
is 10 steps, which is sufficient for task completion, and each training iteration has one rollout. The
output feedback in OPTO is a textual representation of task success. In addition to the controller
code, we also decorated the reset and step functions of the gym environment so that the entire rollout
can be traced end-to-end. We compare Trace with OPRO; because of the streaming OPTO setting,
our OPRO implementation only proposes one candidate in each iteration, which is then evaluated and
provided with the output feedback.

The experimental results are summarized in Fig. 6. Trace denotes OptoPrime using memory, and
Trace NoMem denotes OptoPrime without memory. We show learned code in Appendix J. OptoPrime
is clearly the top-performing optimizer, especially the version with memory. OPRO is able to solve
Reach at the start, but its performance degraded over iterations (this instability was mentioned in
[13]) and gets a similar performance as OptoPrime (without memory) in Push. To validate that
the performance of OptoPrime is indeed due to using the execution trace, we include an ablation
where we mask out the execution trace, which leads to a significant decline in performance and
stability. This experiment features the most complex graph structures among all the experiments. The
experimental results here are quite impressive, showing that Trace is able to learn a sophisticated
control logic in dozens of interactions, not only working on the training initial conditions but also on
held-out testing ones too. We discuss some limitations in Appendix I.6.

5.5 Comparison with TextGrad

After the submission of our work to NeurIPS, another AutoDiff-like framework, TextGrad [24],
was released, which shares the same goal of end-to-end optimizing AI workflows as Trace. In
comparison, TextGrad propagates text feedback, whereas Trace propagates minimal subgraphs
(see Section 3.3). The graph-based design of Trace, which separates the tracing infrastructure
and optimization algorithms, makes it more flexible. In fact, we easily implemented TextGrad as
an optimizer in the Trace framework, but the reverse is not possible (because TextGrad couples
the infrastructure and the optimization algorithm together). In addition, unlike TextGrad, Trace
supports jointly optimizing heterogeneous parameters and can be applied to directly trace a given
computational workflow without the need to rewrite the workflow using pre-defined templates. Please
see Appendix H for more discussion comparing the two frameworks.

In this experiment, we apply Trace to directly decorate the evaluation code released with the TextGrad
library and optimize the parameters following their training/evaluation pipeline line-by-line. This
experimental design makes the comparison fair by allowing each optimizer to access the same LLM
APIs around the same time, and showcases the flexibility of Trace framework to optimize any com-
putational workflow. We pick the Solution optimization [24, Table 2] and Prompt optimization [24,
Table 3] for the reasoning tasks experiments. Please see [24] for details on the exact setup. We
compare OptoPrime, TextGrad9, and a reimplementation10 of TextGrad as an optimizer in Trace.
We find that all these algorithms achieve similar success rates in these experiments. One noticeable
difference is that OptoPrime is about 3x faster wall-clock time than TextGrad since OptoPrime makes
a single call to LLM in each optimization step, whereas TextGrad calls linear to the graph’s size.

9The numbers in the original paper cannot be reproduced exactly despite using the released TextGrad code.
10All algorithms in Trace see the same graph, which is slightly different from the graph of TextGrad.

9

OptoPrime
(Trace) Time TextGrad

(24-10-30) Time TextGrad
(Trace)

TextGrad
(Reported)

MMLU-Machine Learning 86.6 (0.2) 1.7 (0.6) 86.1 (0.5) 3.5 (1.1) 86.3 (0.2) 88.4
MMLU-College Physics 94.1 (0.8) 1.2 (0.3) 93.1 (0.7) 2.3 (0.4) 93.3 (0.6) 95.1

Google-proof QA 59.6 (1.3) 12.2 (1.4) 53.2 (0.6) 19.5 (1.9) 54.0 (0.7) 55.0

BBH Counting 89.4 (0.1) 55.9 (4.5) 89.2 (1.2) 142.9 (9.3) 87.6 (1.7) 91.9
BBH Word Sorting 71.6 (3.1) 82.5 (10.1) 72.0 (0.4) 211.1 (16.8) 71.4 (2.5) 79.8

GSM8K 82.5 (0.1) — 82.4 (0.6) — 82.0 (0.2) 81.1

Table 2: Comparison between Trace and TextGrad. The optimizer is GPT-4o-2024-08-06, and the student
model is GPT-35-turbo-1106. The results show the mean and the standard error of success rate of the last iterate
computed by 5 seeds. The experiment time reported is in minutes (the time involves not just training but also
validation and testing by running TextGrad’s original pipeline); the time of GSM8K experiment is omitted as the
experiment time (>8hrs) is determined primarily by the evaluation not optimization.

6 Limitations

We highlight that Trace, OPTO and OptoPrime are a first step towards end-to-end generative opti-
mization and building self-adapting workflows. They have limitations in their current form. OPTO
captures rich feedback, but it is important to specify a solution concept as well as the feedback
source. We provide guidance for feedback design in Section 3.2 and discuss notions of optimality
in Appendix F. We believe designing feedback will be as important as designing loss function in deep
learning, both of which are open research questions. Also, Trace cannot convert all computational
workflows into OPTO problems, e.g., stateful functions that modify their state in place cannot be
represented as a DAG without modification, and distributed/parallel computing workflows are incom-
patible with the current implementation (though in theory Trace can run in an asynchronous way so
long as the overall graph does not end up with cycles). Finally, while Trace is designed to be generic
and future-proof, the OptoPrime optimizer is preliminary. Although we demonstrated that OptoPrime
could work well with moderate-size graphs, it is not a provably optimal algorithm and uses more
tokens than OPRO, though, in our experiments, OPRO’s performance does not improve even when
given a large token budget. The debugging ability and context limits of the LLM used in OptoPrime
crucially determine the scale of problems that we can practically address today. Consequently, more
research is needed for designing token-efficient generative optimization algorithms.

7 Conclusion and Future Work

We created Trace that can convert a computational workflow optimization problem into an OPTO
problem, and we demonstrated a tractable OPTO optimizer, OptoPrime. This is just a first step
towards a new paradigm of end-to-end generative optimization, with exciting avenues for future work.
We discuss a few selected ones below. Please see Appendix A for a longer discussion.

In OptoPrime, we connect optimization to an LLM’s reasoning capability. Techniques that have been
proposed to improve LLM reasoning, e.g. Chain-of-Thought [31], Few-Shot Prompting [32], Tool
Use [33], and Multi-Agent Workflows [5] could also help improve OptoPrime or design new OPTO
optimizers. We conjecture that a hybrid workflow of LLM and search algorithms, can enable a truly
general-purpose OPTO optimizer. Along the way, we must settle on how to delineate the agent vs.
the optimizer. How to trade off the generality of optimizer vs. crafting side-information in the context
ω to achieve task-specific performance is an open question.

In Trace, we chose a specific propagator (MSP), which maximally preserves information for a general
computation graph. We can instead specialize it for specific computations, e.g. to accommodate
very large graphs with a hierarchical graph representation. Going a step beyond the basic memory
module we experimented with in OptoPrime, we anticipate that an optimizer that can reason about
how a workflow will behave under counterfactual parameter settings can be more efficient than
OptoPrime and can enable a divide-and-conquer approach to OPTO. More research is needed to
study the theoretical properties of OPTO (such as optimization landscape and complexity). We hope
our preliminary effort in Appendix F can provide some guidance. Finally, in this paper, we focused
on output feedback and context that can be compactly textualized. We anticipate that computational
workflows with rich non-textual contexts and output feedback will also benefit from automatic
generative optimization through appropriate applications of Trace (e.g., with VLMs).

10

Acknowledgments and Disclosure of Funding

We would like to thank John Langford, Ahmed Awadallah, Jennifer Neville, Andrey Kolobov, Ricky
Loynd and Paul Mineiro for thought-provoking discussions. We would also like to thank Tobias
Schnabel, Ruijie Zheng, Wanqiao Xu, and Kaiwen Wang for their valuable feedback on an early draft
of this manuscript. Additionally, we thank Anqi Li, Omar Khattab, David Hall, Yifan Mai, Bryan He,
Yash Chandak, Emma Brunksill, and Dawen Liang for their suggestions and feedback. The work was
partially done while Adith Swaminathan was at Microsoft Research.

References
[1] Matei Zaharia, Omar Khattab, Lingjiao Chen, Jared Quincy Davis, Heather Miller, Chris

Potts, James Zou, Michael Carbin, Jonathan Frankle, Naveen Rao, and Ali Ghodsi. The shift
from models to compound AI systems. https://bair.berkeley.edu/blog/2024/02/18/
compound-ai-systems/, 2024.

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[3] Albert Ziegler, Eirini Kalliamvakou, X. Alice Li, Andrew Rice, Devon Rifkin, Shawn Simis-
ter, Ganesh Sittampalam, and Edward Aftandilian. Productivity assessment of neural code
completion. In SIGPLAN International Symposium on Machine Programming, page 21–29,
2022.

[4] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence,
and Andy Zeng. Code as policies: Language model programs for embodied control. In IEEE
International Conference on Robotics and Automation, pages 9493–9500, 2023.

[5] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen LLM applications via
multi-agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

[6] Andrew R Conn, Katya Scheinberg, and Luis N Vicente. Introduction to derivative-free
optimization. SIAM, 2009.

[7] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In Learning and Intelligent Optimization, pages 507–523.
Springer, 2011.

[8] Peter I Frazier. Bayesian optimization. Recent Advances in Optimization and Modeling of
Contemporary Problems, pages 255–278, 2018.

[9] Thomas Bäck and Hans-Paul Schwefel. An overview of evolutionary algorithms for parameter
optimization. Evolutionary computation, 1(1):1–23, 1993.

[10] Josep Ginebra and Murray K Clayton. Response surface bandits. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 57(4):771–784, 1995.

[11] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. In ICLR, 2023.

[12] Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng. Automatic
prompt optimization with “gradient descent” and beam search. In EMNLP, pages 7957–7968,
2023.

[13] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In ICLR, 2024.

[14] Tobias Schnabel and Jennifer Neville. Prompts as programs: A structure-aware approach to
efficient compile-time prompt optimization. arXiv preprint arXiv:2404.02319, 2024.

11

https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/

[15] Eric Zelikman, Eliana Lorch, Lester Mackey, and Adam Tauman Kalai. Self-taught optimizer
(STOP): Recursively self-improving code generation. arXiv preprint arXiv:2310.02304, 2023.

[16] Allen Nie, Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan. The importance of
directional feedback for LLM-based optimizers. arXiv preprint arXiv:2405.16434, 2024.

[17] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, 1986.

[18] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: a survey. Journal of Machine Learning
Research, 18(153):1–43, 2018.

[19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: an imperative
style, high-performance deep learning library. In NeurIPS, pages 8026–8037, 2019.

[20] Karthik Nagaraj, Charles Killian, and Jennifer Neville. Structured comparative analysis of
systems logs to diagnose performance problems. In USENIX Symposium on Networked Systems
Design and Implementation, pages 353–366, 2012.

[21] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, et al. Challenging BIG-Bench
tasks and whether chain-of-thought can solve them. In Findings of the ACL, pages 13003–13051,
2023.

[22] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri
Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. DSPy:
Compiling declarative language model calls into self-improving pipelines. arXiv preprint
arXiv:2310.03714, 2023.

[23] Ching-An Cheng, Andrey Kolobov, Dipendra Misra, Allen Nie, and Adith Swaminathan.
LLF-Bench: Benchmark for interactive learning from language feedback. arXiv preprint
arXiv:2312.06853, 2023.

[24] Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. TextGrad: Automatic “differentiation” via text. arXiv preprint arXiv:2406.07496,
2024.

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[26] Toru Seo. UXsim: An open source macroscopic and mesoscopic traffic simulator in python–a
technical overview. arXiv preprint arXiv:2309.17114, 2023.

[27] Courtney Slavin, Wei Feng, Miguel Figliozzi, and Peter Koonce. Statistical study of the impact
of adaptive traffic signal control on traffic and transit performance. Transportation Research
Record, 2356(1):117–126, 2013.

[28] James Kennedy and Russell Eberhart. Particle swarm optimization. In ICNN, volume 4, pages
1942–1948, 1995.

[29] LangChain Team. Langchain tracing. https://blog.langchain.dev/tracing/, 2023.

[30] Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie
Tang. AgentBench: Evaluating LLMs as agents. In ICLR, 2024.

[31] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H Chi,
Quoc V Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In NeurIPS, pages 24824–24837, 2022.

12

https://blog.langchain.dev/tracing/

[32] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In NeurIPS, 2020.

[33] Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. In NeurIPS, 2023.

[34] James Wexler. Artificial Intelligence in Games: A look at the smarts behind Lionhead Studio’s
“Black and White” and where it can and will go in the future. https://www.cs.rochester.
edu/~brown/242/assts/termprojs/games.pdf, 2002.

[35] Weiran Yao, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Yihao Feng, Le Xue, Rithesh R
N, Zeyuan Chen, Jianguo Zhang, Devansh Arpit, Ran Xu, Phil L Mui, Huan Wang, Caiming
Xiong, and Silvio Savarese. Retroformer: Retrospective large language agents with policy
gradient optimization. In ICLR, 2024.

[36] Alessandro Sordoni, Xingdi Yuan, Marc-Alexandre Côté, Matheus Pereira, Adam Trischler,
Ziang Xiao, Arian Hosseini, Friederike Niedtner, and Nicolas Le Roux. Joint prompt optimiza-
tion of stacked LLMs using variational inference. In NeurIPS, 2023.

[37] Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jurgen
Schmidhuber. Language agents as optimizable graphs. arXiv preprint arXiv:2402.16823, 2024.

[38] Ruotian Ma, Xiaolei Wang, Xin Zhou, Jian Li, Nan Du, Tao Gui, Qi Zhang, and Xuanjing
Huang. Are large language models good prompt optimizers? arXiv preprint arXiv:2402.02101,
2024.

[39] Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic,
Eric Xing, and Zhiting Hu. PromptAgent: Strategic planning with language models enables
expert-level prompt optimization. In ICLR, 2024.

[40] Xinyu Tang, Xiaolei Wang, Wayne Xin Zhao, Siyuan Lu, Yaliang Li, and Ji-Rong Wen.
Unleashing the potential of large language models as prompt optimizers: An analogical analysis
with gradient-based model optimizers. arXiv preprint arXiv:2402.17564, 2024.

[41] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language
models to self-debug. In ICLR, 2024.

[42] Zeyuan Ma, Hongshu Guo, Jiacheng Chen, Guojun Peng, Zhiguang Cao, Yining Ma, and
Yue-Jiao Gong. LLaMoCo: Instruction tuning of large language models for optimization code
generation. arXiv preprint arXiv:2403.01131, 2024.

[43] Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language
models to enhance bayesian optimization. In ICLR, 2024.

[44] Michael R. Zhang, Nishkrit Desai, Juhan Bae, Jonathan Lorraine, and Jimmy Ba. Using large
language models for hyperparameter optimization. arXiv preprint arXiv:2312.04528, 2023.

[45] Gábor Bartók, Dean P Foster, Dávid Pál, Alexander Rakhlin, and Csaba Szepesvári. Partial
monitoring—classification, regret bounds, and algorithms. Mathematics of Operations Research,
pages 967–997, 2014.

[46] Laurent Hascoet and Mauricio Araya-Polo. Enabling user-driven checkpointing strategies in
reverse-mode automatic differentiation. arXiv preprint cs/0606042, 2006.

[47] Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-
propagation for bilevel optimization. In AISTATS, pages 1723–1732, 2019.

[48] Ching-An Cheng, Jonathan Lee, Ken Goldberg, and Byron Boots. Online learning with
continuous variations: Dynamic regret and reductions. In AISTATS, pages 2218–2228, 2020.

[49] Sham Machandranath Kakade. On the Sample Complexity of Reinforcement Learning. PhD
thesis, University College London, 2003.

13

https://www.cs.rochester.edu/~brown/242/assts/termprojs/games.pdf
https://www.cs.rochester.edu/~brown/242/assts/termprojs/games.pdf

A Perspective: Deep Agent Workflows

We posit that the current practice of manually engineering computational workflows to build AI
systems is analogous to programmers in the early 2000s hand-coding neural network weights to
create engaging AI characters in video games [34]. Just like AutoDiff enabled the automatic and
scalable optimization of deep neural networks with billions of parameters, we believe that Trace is
the first step towards automatic and scalable optimization of “Deep Agent Workflows” to power even
more capable AI systems. However, there are several limitations of the current implementation of
Trace that need to be addressed to build Deep Agent Workflows.

When designing interactive AI systems that learn from their interactions, we need to define the
parameters and feedback of the system. Parameters are the internal attributes that can be updated by
the learning algorithm employed by the system. Feedback are the things observed and recorded by
the system as a product of its interactions, and that provide signal for learning. Trace enables the
development of new learning algorithms (e.g. through OptoPrime) that incorporate rich feedback
to update heterogenous parameters. In contrast, AutoDiff for deep neural networks uses numerical
feedback (e.g. rewards or loss functions) to optimize numerical parameters (e.g. tensors). Black-box
optimization techniques (e.g. Reinforcement Learning) can use numerical feedback to optimize
heterogenous parameters (e.g. codes, hyper-parameters as well as tensors), though they are inefficient.
In the experiments, we saw that Trace was more efficient than black-box methods by using a
generalization of back-propagation. Finally, Trace can use rich feedback (e.g. language) to extract
more signal for learning.

What can be traced? Trace cannot convert all computational workflows into OPTO problems.
Workflows with recursive bundle operators or those requiring distributed/parallel computing are
not compatible with the current implementation. A future work would be to expand the Trace
implementation to support these scenarios. In addition, the current implementation of Trace does
not trace the execution within an operator defined by bundle, though in principle this is possible.
There are also ambiguities in how an existing workflow can be traced and represented as a DAG. One
example is when there is some sub-workflow following an if condition and another one following
else. One can choose to wrap the entire code, including if and else, by bundle as a single operator.
On the other hand, one can also just wrap the sub-workflows and not trace the if condition nor
represent it as part of the DAG. (That is, suppose the if condition is true; from the DAG, one cannot
see the alternate path under else). The latter choice has a flavor of applying “stop-gradient” on
the boolean condition, whereas the first choice enables back-propagation through also the logical
condition. We summarized some design considerations in Section 3.2. We foresee the choice of what
to trace and how to trace in building Deep Agent Workflows will be an on-going research problem,
similar to neural network architecture design.

Where do we get rich feedback? The OPTO framework captures an abstraction of rich feedback,
called trace feedback (the execution trace and the output feedback), but it requires specification
of operator descriptions and output feedback source to guide the optimization effectively. OPTO
can be more efficiently solvable than black-box problems only when the trace feedback provides
information beyond reward signals; otherwise, information-wise, OPTO is no easier than black-box
problems. The Trace framework automates the generation of the execution trace in OPTO, when users
of Trace decorate the workflow end-to-end. Currently, OptoPrime uses the docstring of operators in
the execution trace to understand the operators; nonetheless, Trace logs also the source code of the
decorated methods, which can also be used in the future to design optimizers that uses more details
of the operators. In our experiments, we focus on output feedback that is automatically generated. In
other contexts, e.g. users interacting with chatbots, we can natively gather natural language feedback
or synthesize feedback [16] based on raw observations. We also anticipate that feedback in the form
of images (e.g. users’ gestures) or videos (e.g. videogame player showing a desired correction to
agent’s behavior) will be readily available and can be used as the output feedback in the OPTO
framework. While Trace can handle this feedback, the current design of OptoPrime does not handle
non-textual content (either in parameters, inputs or feedbacks). We anticipate future work along the
lines of [16] on enhancing feedback design and developing guidelines for designing more informative
and directive optimizer and feedback mechanisms.

14

How to design adaptive optimizer for general OPTO problems? The proposed OptoPrime
optimizer shows the possibility of designing a single optimization algorithm to solve a range OPTO
problems from diverse domains. However, we remark that OptoPrime is just the first step; it is akin
to the vanilla gradient descent algorithm, which shows a proof of concept but is not scalable for large
problems. The current design of OptoPrime has several scalability limitations due to its summary
approach that updates parameters through one call to an LLM. While we show in Section 5.1,
that OptoPrime can compete with ADAM in small problems, OptoPrime is not as computational
efficient and cannot scale as well as ADAM; therefore, for large-scale numerical problems, Trace and
OptoPrime with the current design does not replace classical AutoDiff. OptoPrime is also limited
by the ability of LLMs. It has difficulty in handling parameters or nodes that cannot be compactly
represented in text, which prevents it from optimizing neural network weights, or reasoning with
large, stateful objects like a database. Similarly, it likely cannot handle large graphs (with thousands
of nodes) at the moment, as such a large graph would result in a huge context which may be beyond
what LLMs can understand and reason about reliably. This limitation is aggravated when dealing with
noisy feedback or systems, as we need to present multiple graphs and feedback in the context at once.
We also do not know how to rigorously define the concept of step size, which however we expect is
important to handle noisy or local feedback. We need further research on graph simplification and
representation, to reduce complexity and improve the efficiency of feedback propagation. Lastly,
right now OptoPrime represents the constraints on parameters as part of the text description, but we
have observed that LLMs do not always follow it. An effective workaround is to implement constraint
checking in the workflow to throw exceptions (which are then handled as feedback). More specialized
constraint handling techniques is an interesting research direction (e.g. “projecting” OPTO solver
proposals for parameters onto their feasible sets), but they are not implemented in OptoPrime yet.

B Related Work

Framework for Computational Workflows Frameworks such as LangChain [29], Semantic
Kernels, AutoGen [5], DSPy [22] allow composing computational workflows and provide hand-
engineered optimizers to tune an LLM’s context (i.e. prompt templates, few shot examples, or
tool libraries) using scalar feedback with black-box search techniques. They support tracing of the
workflow to aid in profiling, debugging and visualization. In contrast, Trace uses tracing for automatic
optimization, and constructs a different representation of the computational graph which is suited
for that purpose. Moreover, Trace is designed to be general-purpose and agnostic to the underlying
frameworks of computational workflows users choose. In principle, one can apply Trace to decorate
and tune a workflow based on a mix of Autogen, LangChain, DSPy codes. In fact, our experiments
in Appendix I use workflows declared using both AutoGen and DSPy.

Optimization of Graphs of LLM Workflows There are multiple efforts to optimize the computa-
tional graph of LLM workflows, which is a special case of the OPTO problem. These algorithms
focus on optimizing prompts. SAMMO [14] is an example for prompts that uses additional graph
structure to make the optimizer efficient. SAMMO represents the prompt parameter itself as a
program so as to enable more efficient black-box search through the space of programs. DSPy
[22] can optimize directly the prompts or the few-shot examples to include using scalar reward
feedback. Retroformer [35] uses another small language model (LM) to provide suggestions/feedback
(i.e. changing prompts) to improve the behavior of an actor LLM, where the small LM is tuned by
offline RL. Deep Language Networks [36] view all of the prompts in an LLM workflow as tunable
parameters and jointly optimizes them. They discovered that optimizing each parameter in isolation
instead produces subpar results. [37] frames LLM systems as graph where nodes are operations
and edges are messages/connections. (Note that this is different from the DAG used in Trace; here
nodes are messages and edges are input-output of operators) and optimizes for the connection on
edges (binary variables) by REINFORCE using scalar reward feedback and prompts by LLMs . They
optimize each component separately without considering each other; for example, the prompts are
optimized individually without considering the graph topology or how they are used down the road.
We suspect this approach can be less stable. Their prompt optimization part also does not take output
feedback, but simply use an LLM to self-check whether the prompt meets the need of generating
desired functions the user specified. In contrast to these works, through the OPTO framing, Trace
supports joint optimization of all parameters (prompts, hyperparameters, codes) with rich feedback,
and is agnostic to graph structures (e.g., changing these parameters can dynamically change the graph

15

structure and connections between nodes). Users of Trace are free to specify which parameters they
want to automatically optimize via online interactions.

LLM-Optimizers for Prompts and Codes There is a huge and fast growing literature on using
LLMs as optimizers to improve prompts [12, 11, 38–40] or codes [41, 15, 42, 38]. Different from
the works mentioned above, here the focus has been on an isolated problem (e.g., changing the
behavior of a single LLM or improving the code generation in the question-answering format) rather
than considering a non-trivial workflow or agent with multiple components like above. They do not
consider optimizing prompts or codes as one component of a bigger workflow (e.g. implementing
an autonomous agent), which is harder and requires the right credit assignment. In addition, these
LLM-based optimizers, including OPRO [13], often propose only principles of how prompts should
be designed and requires crafting problem specific prompts (as opposed to a single optimization
prompt that can be applied to different problems). For adapting them to new problems, users need to
design new prompts. Trace can also be applied to optimize trivial OPTO problems where the returned
graph has just a single node of the parameter (which are the scenarios considered by these works).
Nonetheless, the main focus of this paper is to study how optimization can be done efficiently as
the graph becomes nontrivial and for diverse applications. Trace achieves this by using the abstract
OPTO problem framing. Since OPTO encapsulates domain specific info in the graph, it enables
designing fully instantiated optimizers that can be applied to multiple problems, rather than just
principles which then requires hand crafting prompts for individual problems like previous works.

LLM-Optimizers for Hyperparameters Recent works like [43, 44] use LLMs to optimize numer-
ical hyperparameters, as an alternate to Bayesian optimization. Here in the experiments we show
that Trace + OptoPrime also can effectively learn hyperparamters, faster than Bayesian optimization.
The main difference between Trace and the aforementioned work is the representation of the prob-
lem. In Trace, we provide the graph to the LLM-based optimization (through the pseudo-algorithm
representation), and we consume rich language feedbacks on the output, both of which accelerates
hyper-parameter optimization.

OPTO Related Setups OPTO is a generalization of partial monitoring games [45]. If there exists
a latent loss function that the feedback f adheres to (e.g. as in [23]), those OPTO instances can be
written as partial monitoring game. However OPTO admits a more general notion of feedback f , and
we discuss solution concepts for them in Appendix F. On the other hand, OPTO can be also viewed
as a special case of Learning from Language Feedback (LLF) setup defined in [23] with observations
as the trace feedback. This is a framing of a meta LLF problem. In the LLFBench Meta-World
experiments of this paper (Section 5), we show Trace can be used to learn policy for LLF problems
grounded to an application too.

AutoDiff and Back-propagation Back-propagation has been shown to be a very effective tool in
optimizing differential computational workflows. Our design of Trace is inspired by back-propagation
and the ease of use of the AutoDiff framework PyTorch [19]. Nonetheless, we highlight that back-
propagation (Backward Mode Differentiation) is not the only AutoDiff algorithm. For example, the
gradient can be computed in a forward mode (Forward Mode Differentiation) as well, and there
are also techniques of Checkpointing [46] and Truncated Back-Propagation approximation [47] for
efficiency. What are the equivalent ideas of these methods for general computational workflows? We
think this is an interesting future research direction.

C Examples of OPTO

To ground the OPTO setup, we show how OPTO is related to some existing problems with examples.

Example 4 (Neural network with back-propagation). The parameters are the weights. g is the
neural computational graph and f is the loss. An example context ω can be “Minimize loss”. The
back-propagation algorithm, in view of the OPTO formulation, is embedded in the OPTO optimizer.
For example, an OPTO optimizer here is a composition of back-propagation and gradient descent,
where back-propagation takes τ to compute the propagated gradient at the parameter.

Example 5 (Code Debugging). The parameters are the codes. g denotes the stacked trace and f is
the error message returned by a compiler. ω can be “Make no error”.

16

Example 6 (RL). The parameters are the policy. g is the trajectory (of states, actions, rewards)
resulting from running the policy in a Markov decision process; that is, g documents the graphical
model of how an action generated by the policy, applied to the transition dynamics which then returns
the observation and reward, etc. f can be the termination signal or a success flag. ω can be “Maximize
return” or “Maximize success”.
Example 7 (Hyperparameter Tuning of ML Pipeline). The parameters are e.g. learning rates and
architectures. g describes the stages of the ML pipeline and the evaluation on the validation set, and
f is the validation loss. ω can be “Minimize validation error”.
Example 8 (Prompt Optimization of an LLM Agent). The parameters are the prompt of an LLM
workflow. g is the computational graph of the agent and f is the feedback about the agent’s behavior
(which can be scores or natural language). ω can be “Maximize score” or “Follow the feedback”.
Example 9 (Multi-Agent Collaboration). The parameters are each agent’s prompts. g describes the
entire conversation flow between agents, and f is the feedback about whether the task is successful
after each agent performs their action. ω can be “A group of agents coordinate to finish a task.”.

As mentioned, the computational graph g returned by the Trace Oracle T may have different graph
structures. The length of the execution trace, e.g., in the debugging example above depends on how
far the code executes. Similarly, the rollout length of in the RL problem can be randomly determined.
The formulation of the Trace Oracle abstracts the details of a computational workflow, so problems
from different domains can be framed in the unified framework. This abstraction allows us to design
the computational tool Trace for various applications.

D Trace Handles Error in Execution as Feedback

It is worth mentioning that execution error can be directly used as feedback to optimize parameters
in Trace. When execution error happens within a method decorated by bundle, Trace would adds a
special exception node to the global computational graph and throw an TraceExecutionError to stop
the computation. The computational graph ends at where the execution error happens. This exception
node becomes the new output of the inputs to the decorated method (since the original method raises
an error) and is the output of the truncated computational graph. Messages in TraceExecutionError
can then be used as the feedback f in OPTO and propagated from the exception node to the parameters.
By calling an OPTO optimizer, the parameters can be updated to avoid causing the same execution
error. See the exception handling code in Fig. 2.

We find that this error handling mechanism has two convenient usages. First, this allows using Trace
to automatically debug issues in the workflow due to incorrect parameter settings. Such errors can
happen frequently especially when codes are parameters, as during optimization codes not satisfying
syntax or downstream API requirements can happen. The second usage is to enforce constraints the
workflow has to satisfy at different stags of computation. With Trace, if an intermediate computed
result does not satisfy the constraint, we can simply throw an exception which states the desired
constraint. This error signal would be caught by Trace and can then provide early feedback to
efficiently improve the parameters, since the graph is truncated at the error.

E Analysis of Trace

E.1 Proof of Complexity

Algorithm 2 propagates the subgraph, represented by a priority queue (implemented as a min-heap).
At a time, it needs to maintain the subgraphs coming from W children separately. This leads to
the space complexity of O(WN). This O(WN) space complexity leads to the extra WN logN
factor in the time complexity of MSP compared with back-propagation, which is the time needed for
merging W subgraphs of size O(N).

E.2 Proof of Lower bounds

Consider an OPTO problem whose goal is to find a parameter matching a k-digit binary number.
The computation checks each digit against a reference number in an arbitrary order. The feedback is
either “N th check failed” or “All checks succeeded”. Propagated feedback must communicate k bits

17

of information to interpret the feedback correctly; and the minimal subgraph conveys exactly that
information. Updating the parameter using the minimal subgraph is trivial, whereas without it there
are 2k possibilities to check.

F When is OPTO Efficiently Solvable?

We show that OPTO covers a wide range of complicated optimization problems. This shows that if
OPTO can be efficiently solved, then many complex workflows can be efficiently optimized. However,
the generality of OPTO also raises some fundamental questions, such as if OPTO is well defined
and when OPTO can be efficiently solved. These questions stem from its generality of the context ω
and the output feedback f in OPTO, since e.g. they can be anything descriable texts. This flexibility
makes the scope of OPTO go beyond standard mathematical optimization problems, where a setup
has a fixed context ω (e.g., “First-order optimization”) and a fixed type of output feedback f (a
descent direction). Fully characterize the properties of OPTO, due to its generality, is beyond the
scope of this paper and would require years of future research to come. Nonetheless, here we attempt
to provide some preliminary answers and point out some research questions.

F.1 What is a solution?

Classical mathematical optimization problems have a problem definition which itself is the solution
concept. For example, in a minimization problem, it is clear we want to find the minimum of an
objective function; even for problems as abstract and general as an equilibrium problem, the problem
setup clearly states the solution concept of finding a point/set satisfying an equilibrium inequality [48].
One common pattern of these problems is that the solution concept is something that can be described
as conditions on feedback that the parameter should satisfy.

By contrast, in a OPTO problem (Θ, ω, T), by varying the context ω, the desired parameter can
change from one extreme to another. For example ω may state “Follow the feedback” or “The
feedback is adversarial.”. Therefore, we need define the solution concept of OPTO differently, rather
than just using the feedback. We need to also consider the context ω appropriately. Below we make
an attempt to give an axiom of OPTO for its solution to be well defined.

Axiom 1 (Verifiability). There is an verification oracle (a human, a machine learning model, or a
polynomial-time algorithm) when given (θ, ω, f) can verify whether θ is a solution or not.

Notice the verification oracle in Axiom 1 is not limited to just algorithms. This is intentional because
we currently do not have algorithms that are intelligent enough to process the wide range of contexts
and feedback that OPTO allows. Therefore, we include human judgement or the use of LLMs or
other AI systems as part of the definition, while acknowledging the impreciseness of the statement
due to OPTO’s soft computing nature. Lastly we note the verifiability is only defined with respect
to the context ω and the output feedback f , not the execution trace g. That is, the verification of a
solution depends only on the output of computation.

F.2 Does a solution exist?

Under Axiom 1, we can start to ask the basic question of whether a solution to an OPTO problem
exists or not. There are clearly problems where no solution exists (that is, no parameter in Θ can be
verified by the verification oracle). For example if the feedback f is contradicting and yet the context
ω is “Follow the feedback.”, then there would be no solution that is satisfactory. On the other hand, if
ω is “Ignore the feedback”, all parameters can be solutions. In the following, we assume solutions of
OPTO under consider exist. This assumption would rule out problems, e.g., where the feedback is
adversary to the context, and makes solving OPTO is a well-defined search problem.

Assumption 1. For an OPTO problem (θ, ω, T), we assume there is at least a parameter θ ∈ Θ such
that it can be verified as a solution by the verification oracle.

F.3 Can OPTO be efficiently solved?

So far our discussion establishes OPTO as a well-defined search problem, based on qualification on
the context ω and the output feedback f . However search problems can be NP-hard. In other words,

18

we know that, without the execution trace, there are search problem instances modeled by some ω and
oracle giving f that cannot be efficiently solved. Take RL for a tabular MDP as an example of OPTO
problem. Without the execution trace (i.e., not seeing the Markovian structure and trajectories), the
problem has an exponential complexity (due to the size of the policy space) and we know by using
the execution trace here, tabular RL can be solved approximately in polynomial time [49]. Another
example is training of neural networks. Without the execution trace, we have a complex black-box
optimization with a loss value, without gradients, whereas an execution trace allows implementation
of back-propagation to compute the gradients at the parameters.

More broadly speaking, if we consider a “human” as an optimizer for OPTO, we see that (expert)
engineers/researchers, when equpped with additional computational tools, can efficiently solve a
broad range of OPTO problems (such as by using the execution trace. From these observations,
we conjecture using information in the execution trace is the key to unlock efficient OPTO. More
precisely, we conjecture that OPTO is efficiently solvable when the context and the trace feedback
need to provide information to construct a corrective search direction. For example, when the output
feedback back is just a scalar loss, and yet the context + execution trace feedback does not provide
enough information to compute a descending direction then OPTO reduces back to a black box
problem. (See the problem instance in Appendix E.2). Nonetheless, identifying which subsets of
OPTO are efficiently solvable is a big open research question.

G Additional Details of Trace and OptoPrime

G.1 Backward Step of Trace

The MSP extracts the minimal subgrpah of the full computational graph of the workflow. Here we
show a visualization using the example in Fig. 4.

x

[ParameterNode]

-1.0

a

[bar] A function...

2.0

y

[add] add inputs..

3.0

z

[mul] multiply..

6.0

Feedback

Execution Flow
Feedback Flow

b

[Node] A node...

1.0

Other parts

(a) This is an illustrative example of the graph con-
structed by Trace and how feedback is backpropagated
to the parameter x.

#Code:
a = bar(x)
y = add(b, a)
z = mul(a, y)

#Definitions:
[mul] This is a multiply operator
[add] This is an add operator.
[bar] This is a method that does

negative scaling.

#Inputs:
b=1.0

#Others:
a=2.0
y=3.0

#Output
z=6.0

#Variable
x=-1.0

#Feedback:
Output should be larger.

(b) We create a succinct summary of the computa-
tion graph using a language that mimics a program.

Figure A.1: Optimization Representation. For a program of x = node(-1.0); a = bar(x); y = a + 1;
z = a * y and the optimization objective of maxx z, Trace automatically constructs a computation graph and
represent the optimization problem as a debugging report. Note that the real program and the traced execution
graph are different.

G.2 Prompts used in OptoPrime

OptoPrime is an LLM-based optimizer. Its prompt is composed of the following parts.

1. System Prompt: Representation Prompt (Fig. A.2) + ReAct+CoT Output Prompt (Fig. A.3)

19

2. User Prompt (Fig. A.4 or Fig. A.5)

where + denotes concatenation. We list the prompt templates of different components below.

1 You ’re tasked to solve a coding/algorithm problem. You will see the instruction, the code,
the documentation of each function used in the code, and the feedback about the execution
result.

2
3 Specifically , a problem will be composed of the following parts:
4 - #Instruction: the instruction which describes the things you need to do or the question

you should answer.
5 - #Code: the code defined in the problem.
6 - #Documentation: the documentation of each function used in #Code. The explanation might

be incomplete and just contain high -level description. You can use the values in
#Others to help infer how those functions work.

7 - #Variables: the input variables that you can change.
8 - #Constraints: the constraints or descriptions of the variables in #Variables.
9 - #Inputs: the values of other inputs to the code, which are not changeable.

10 - #Others: the intermediate values created through the code execution.
11 - #Outputs: the result of the code output.
12 - #Feedback: the feedback about the code’s execution result.
13
14 In #Variables , #Inputs , #Outputs , and #Others , the format is:
15
16 <data_type > <variable_name > = <value >
17
18 If <type > is (code), it means <value > is the source code of a python code, which may

include docstring and definitions.
19

Figure A.2: Representation Prompt that phrases the OPTO update as a pseudo-algorithm question.

1 Output_format: Your output should be in the following json format , satisfying the json
syntax:

2
3 {{
4 "reasoning ": <Your reasoning >,
5 "answer ": <Your answer >,
6 "suggestion ": {{
7 <variable_1 >: <suggested_value_1 >,
8 <variable_2 >: <suggested_value_2 >,
9 }}

10 }}
11
12 In "reasoning", explain the problem: 1. what the #Instruction means 2. what the

#Feedback on #Output means to #Variables considering how #Variables are used in #Code
and other values in #Documentation , #Inputs , #Others. 3. Reasoning about the suggested
changes in #Variables (if needed) and the expected result.

13
14 If #Instruction asks for an answer , write it down in "answer ".
15
16 If you need to suggest a change in the values of #Variables , write down the suggested

values in "suggestion ". Remember you can change only the values in #Variables , not
others. When <type > of a variable is (code), you should write the new definition in the
format of python code without syntax errors , and you should not change the function
name or the function signature.

17
18 If no changes or answer are needed , just output TERMINATE.
19

Figure A.3: ReAct+CoT Output Prompt that instructs LLMs should respond in the format of (reasoning, answer,
suggestion) and explains the output format.

20

1 Now you see problem instance:
2
3 ================================
4 {actual_problem_instance}
5 ================================
6
7 Your response:
8

Figure A.4: User Prompt for OptoPrime without Memory

1 Now you see problem instance:
2
3 ================================
4 {actual_problem_instance}
5 ================================
6
7 Below are some variables and their feedbacks you received in the past.
8
9 {

10 "variables": {
11 {variable1_name }: {variable1_value1}
12 {variable2_name }: {variable2_value1}
13 ...
14 },
15 "feedback": {feedback_1}
16 }
17
18 {
19 "variables": {
20 {variable1_name }: {variable1_value2}
21 {variable2_name }: {variable2_value2}
22 ...
23 },
24 "feedback": {feedback_2}
25 }
26 ...
27
28
29 Your response:
30

Figure A.5: User Prompt for OptoPrime with Memory

1 #Instruction
2 {instruction}
3
4 #Code
5 {code}
6
7 #Documentation
8 {documentation}
9

10 #Variables
11 {variables}
12
13 #Constraints
14 {constraints}
15
16 #Inputs
17 {inputs}
18
19 #Others
20 {others}
21
22 #Outputs
23 {outputs}
24
25 #Feedback:
26 {feedback}

Figure A.6: Problem Template used to fill the User Prompt. By default the Instruction (which is the context ω
of OPTO) is “You need to change the <value> of the variables in #Variables to improve the output in accordance
to #Feedback.”

21

H Comparison between Trace and TextGrad

Beyond the empirical results described in Section 5.5, there are several first principles reasons to
prefer the Trace design to build future LLM-powered generative optimizers.

Joint vs. Individual Parameter Optimization: When there are multiple parameters to be opti-
mized in a workflow, Trace takes a “joint optimization” view (constructing the minimal subgraph
involving all of the parameters described in the initialization of OptoPrime). This flexible design also
allows an alternative approach of “individual optimization” akin to co-ordinate descent if desired, i.e.,
fix all but one parameter and individually optimize each parameter. Such an optimization heuristic
can be accomplished, e.g., by instantiating an OptoPrime instance per parameter and iterating through
their updates; however, for many problems (like the toy example below), this strategy, which TextGrad
employs, can be sub-optimal because a consistent optimizer must additionally maintain state about
any suggested updates to all other parameters when reasoning about an individual parameter update.

1 @bundle ()
2 def function1(x):
3 return x > 0
4 @bundle ()
5 def function2(y):
6 return y % 2 == 0
7 def xor_test(x, y):
8 return function1(x).neq(function2(y))
9 input1 = node(3, trainable=True); input2 = node(4, trainable=True)

10 xor_test(input1 , input2).backward(feedback="Find a set of inputs to make the return True.")

Listing 1: Individual Parameter Optimization is suboptimal in this example compared to Trace.

Heterogenous Parameters: Trace encapsulates all Python datatypes as node, including numbers,
floats, strings, etc. In contrast, many generative optimization libraries like TextGrad restrict their
“variables” (i.e. parameters and intermediate values) to only be strings; consequently running
numerical optimization experiments, or optimizing code alongwith prompts and hyper-parameters
can be challenging to set up.

Modularity: Trace provides a clean separation between the infrastructure (a platform akin to
PyTorch) and a generative optimizer (OptoPrime akin to the Adam optimizer). Trace provides an
object “TraceGraph” that describes the computational graph. This graph is independent of optimizers
and LLMs. Such independent computation graph objects do not exist in TextGrad. We hope the
Trace-provided interface can spur the development of many other generative optimizers, like how
the OpenAI Gym API allowed the development of several Deep RL algorithms targeting a unified
representation of RL problems.

Flexible Representation: The bundle functionality of Trace is more flexible in representing
computations to an LLM than pre-defined templates used in other optimization frameworks. TextGrad
relies on special functions to chain variables together, such as using “FormattedLLMCall”, while
Trace supports any user-defined functions through decorators like bundle.

Scalability: The strategy taken by OptoPrime can scale better to larger graphs (both in terms of
error accumulation across multiple LLM calls, and the costs of multiple LLM calls) compared to
requiring one LLM call per computation node (and we see with bundle that not all computation
nodes present equal difficulty for an optimizer). The difference in terms of computation costs between
the two strategies can be large, especially when not all operators in the graph are as complex as
querying LLM. However there may be even better optimizers that blend OptoPrime and TextGrad
so as to divide-and-conquer huge computation graphs, we are excited about this avenue for future
research.

22

I Experiment Details

I.1 Token Counts

We include token counts for the OPRO and OptoPrime prompts used across all our experiments, at
the first iteration of optimization (note that OPRO’s token usages grows linearly with iterations). We
can see that indeed OptoPrime consumes significantly more tokens than OPRO. However, we observe
consistently that even allowing 7-10x more iterations of OPRO so as to equalize token costs, the
OPRO performance plateaus to a worse level than OPTOPrime (e.g. Figure 1: OPRO at Iter 7 vs.
OptoPrime at Iter 2; Figure 5b: OPRO at Iter 50 vs. OptoPrime at Iter 5; Figure 6b: OPRO at Iter 30
vs. OptoPrime at Iter 10, etc.). OPRO is suboptimal not due to a token limit but instead a lack of
information, which is captured and represented using Trace.

Domain OPRO OptoPrime

Numerical Opt 175 918
BigBench-Hard 400 1883

Traffic Opt 198 1679
MetaWorld 470 7101
Battleship 437 1305

Table A.1: Token counts.

I.2 Battleship

We implement a simple battleship game board in Python. The exact code is in the supplement. The
game offers a string-based visualization of the board. It randomly places different types of ships on a
2-dimensional board with pre-specified width and height when it initializes. The agent does not see
the ship location and has to select a coordinate on the board to hit next. One additional rule of this
game is that the agent can go again if their previous coordinate selection (fire) is a hit, not counting as
the finish of a turn. In Figure 1, we ran 10 trials, where in each trial, we ran 20 iterations of training.
We measure the reward as % of ship squares hit (over all squares occupied by ships). The reward
plateaued at 60% because the game has a chance element (heuristics and strategies can only go so
far – strategy is only in effect if a hit happens. Otherwise, there is no information about where ships
might be).

I.3 Numerical Optimization

Any classical numerical optimization problem can be framed as an OPTO problem. Consider h(x)
and a target y∗, in a context ω finding the y∗ by changing x; we know the most useful corrective
f feedback to change x is the gradient ∇hx. Similar to Trace, AutoDiff packages like PyTorch’s
AutoGrad have implemented dynamic graph construction with special classes like torch.Tensor.
We want to validate whether it is possible to rely on binary text feedback, a graph automatically
constructed by Trace, and OptoPrime to update x in the context of minimizing |y − y∗|.
We constructed a synthetic task environment where we can create a complex computation graph with
arbitrarily complex connections between numerical variables. The focus of this environment is on
the complexity of the graph, not on the complexity of the numerical operators. Therefore, we only
use one-dimensional input and basic arithmetic operators to create a numerical optimization problem
solvable by a first-order optimizer. This environment constructs a computational graph by sampling a
number of times. At each time, it will either use a previously computed variable or sample a new
variable, and an operation will be sampled to combine them. The optimization task is, for a fixed
number of steps, an optimizer needs to output x that minimizes y.

We evaluate the following baseline methods. Basic Agent: a basic LLM agent that simply stores past
information of (xt−1, yt−1) in context before choosing the next xt. OPRO Agent: a basic LLM agent
but we implement the state-of-the-art LLM optimizer OPRO [13], which updates the meta-prompt
of the basic LLM agent. Torch + Adam: the problem we construct is end-to-end differentiable.
Therefore, we simply pass in torch.Tensor(x) as input and use Adam optimizer to update. We
tune the learning rate slightly and found 1e-1 to work well. We compare two kinds of Trace-based

23

optimizers: Trace, where we allow OptoPrime to read in the entire computation graph before updating
x, or Trace Masked, where we hide the computation graph.

We run 30 trials over different computation graphs and start all methods with the same initial x, y∗.
We compute the absolute error, which is |y− y∗|. On average, Trace is able to match the best-in-class
first-order gradient optimizer Adam [25]. It is not entirely surprising that all the other baselines
are performing worse due to a lack of access to the computation graph. To our surprise, OPRO,
by only accessing the history of input and output, as well as changing the meta-prompt, is able to
eventually discover the correct solution. This confirms why there were early signs of success using
LLMs for black-box optimization in a simple plug-and-play style. However, OPRO is not an efficient
optimizer because it lacks access to the Trace oracle. We show OPRO struggles even more when the
computation graph gets more complex.

I.4 Traffic Control

We tested OptoPrime in a traffic control problem which is an instance of hyper-parameter tuning. We
used UXSim [26] to simulate traffic at a four-way intersection, where the tunable parameters are the
duration of the green lights for each direction of traffic flow. The feedback is a scalar loss calculated
by monitoring the flow of a pseudo-random sequence of vehicles arriving at the intersection over a
period of 30 minutes. The loss computes an estimate of the delay experienced by all vehicles due
to the intersection, as well as variability in this estimate for every link in the network; lower values
are better. The goal of an optimizer is to identify values for all of the green light duration so as
to minimize the loss using the fewest number of traffic simulations. If the green light duration for
a given traffic flow direction is set too low, then vehicles will queue up over time and experience
delays, thereby lowering the score for the intersection. However, if the green light duration for a
given direction is set too high, vehicles in other directions will queue up and experience delays,
thereby lowering the score for the intersection. Hence an optimizer must find the right trade-off for
temporally distributed and variable demands.

In Figure 5 we report the performance of a SOTA heuristic from the traffic control literature,
SCATS [27] (adapted to this toy setting) as well as two black-box optimization techniques: Gaussian
Process Minimization (GP) [8] and Particle Swarm Optimization (PSO) [28]. All methods are
initialized to evaluate the same starting parameter. GP and PSO further evaluate 5 random parameters;
moreover, if they query a previously evaluated point, that query is replaced by a randomly sampled
parameter. GP constructs a surrogate model to mimic the black-box traffic simulation function
which maps from parameters to observed score. Then it minimizes a utility function (e.g. the lower
confidence bound) using the surrogate model to pick the next parameter to evaluate. PSO on the other
hand maintains 5 particles in parameter space, each with a position and velocity. At each iteration of
PSO, particles update their positions according to their previous positions and velocity, evaluate the
function at the updated positions, and update the velocities of all particles using the observed values.
Although GP and PSO are both black-box methods, GP can be thought to replace Trace oracle with
instead a smooth differentiable surrogate function; whereas PSO is very different and maintains a
candidate set of parameters (can be thought of as conceptually related to OptoPrime with memory).

GP appears to be bad because even when it converged, the exploration heuristic randomly samples
parameters rather than pick the converged parameter. PSO appears bad because 10 iterations is
insufficient for its convergence. Note that given enough number of iterations, black-box approaches
will eventually perform well. Trace is quickly competitive with the SCATS heuristic, whereas OPRO
is not. Moreover, we find that memory is crucial for OptoPrime to perform well at this task. Finally,
Trace consumes additional overhead compared to black-box methods; beyond the space and time
complexity for running the traffic simulation, Trace additionally materializes the computation graph
per iteration. Thus it can also be more expensive per LLM call compared to OPRO.

I.5 BigBench-Hard

Perhaps more surprisingly, there are many components that a workflow needs to learn. Some of these
components can be the prompt to generate output from an LLM, while other components can be code
that needs to further process these outputs. In many workflows today, enabled by LangChain [29]
and DSPy [22], only a small part of this workflow, predominantly, the input to an LLM API call,
is optimized. These libraries optimize input to an LLM, and human engineers process that input

24

1 import trace
2
3 class Predict(trace.Module):
4 def __init__(self):
5 self.prompt_template = trace.node("""
6 Given ‘question ‘, produce the ‘answer ‘.
7 question: {}
8 answer:
9 """,

10 trainable=True)
11
12 def forward(self , question):
13 user_prompt = self.create_prompt(question)
14 response = self.call_llm(user_prompt)
15 answer = self.extract_answer(question ,

response)
16 return answer
17
18 @trace.bundle(trainable=True)
19 def create_prompt(self , question):
20 """ formulate the prompt with the question """
21 return self.prompt_template.format(question)
22
23 @trace.bundle(trainable=True)
24 def extract_answer(self , question , response):
25 """ Extract the answer out of LLM response """
26 answer = response.split("answer:")[1]. strip()
27 return answer

(a) We write a workflow that prompts an LLM for a
question and extracts the answer.

1 import trace
2
3 dataset = load_dataset(link , task)
4 predict = Predict ()
5 optimizer =

trace.Optimizer(predict.parameters ())
6
7 for ex in dataset:
8 # Forward pass
9 response = dp.forward(ex[’question ’])

10 if response == ex[’answer ’]:
11 feedback = "The answer is correct"
12 else:
13 feedback = "The answer is incorrect"
14
15 # Backward pass and update
16 optimizer.zero_feedback ()
17 optimizer.backward(response , feedback)
18 optimizer.step()

(b) The optimizer class takes in any parameter re-
gardless of whether it is code or text. Although the
actual optimization implementation can provide
different treatments to many input types, the user
interface stays consistent.

Figure A.7: LLM-based Workflow Optimization Example.

and integrate it into other systems. Indeed, both libraries can enable robust and swift large-scale
engineering efforts to build LLM-based software. However, if our goal is to develop self-adapting
agents that can modify their own behavior, we should not ignore one of LLM’s greatest strengths:
code generation. Trace allows us to unify prompt optimization and code generation, which enables
the creation of agents capable of fast learning.

In this example of an LLM-based workflow (Figure A.7), there are three parameters that are flagged as
trainable for the optimizer: prompt_template, create_prompt, and extract_answer. Note that
two of them require the LLM to generate Python code, and one of them requires the LLM to modify
a text. Trace abstracted away the different data types and enabled direct update and optimization of
them. Furthermore, a human engineer is often tasked with writing an error-free extract_answer.
The output of an LLM can be highly stochastic and can often change over time; the code that is
used to extract the response of an LLM has to be extremely robust and, therefore, arduous to create.
Whenever a major distribution shift happens in the LLM output, this code needs to be rewritten by a
human engineer, and it is hard for humans to anticipate all of LLM’s output patterns.

We set up the task of end-to-end workflow optimization. Unlike a typical LLM benchmark evaluation,
where a lot of effort went into creating the perfect evaluate(answer, target) method so that all
kinds of LLM outputs were post-processed, cleaned, and formatted to match the ground truth, we
choose a simple evaluation function (that extracts a segment or does exact string matching) and place
the burden on the workflow itself to figure out how to create the right answer to satisfy the evaluation
metric. We choose Big-Bench Hard [21] as our task because it has 23 subtasks and contains both
language and algorithmic tasks.

We split each task dataset into training, validation, and test. For Trace and Trace-CoT, we use the first
15 examples for training, 5 examples for validation (picking the best learned workflow), and then
evaluate the performance on test examples. We use template-based positive and negative feedback
during training. The positive feedback is “The answer is correct! No need to change anything.” The
negative feedback is “The answer is wrong. We expect the output of your answer to be {ANSWER}.
Please modify the prompt and relevant parts of the program to help LLM produce the right answer.”
DSPy’s prompt optimization method does not explicitly require a validation set, therefore, we just
used all 20 examples for training. For both, we only optimize for 1 epoch. We either start with the
vanilla boilerplate prompt template used by DSPy or we use the slightly sophisticated template used
by DSPy’s CoT module. Trace optimizes both DSPy’s original design and outperforms their own
optimizer COPRO by 10% on algorithmic tasks.

Big-Bench Hard requires different answer outputs. Out of 23 tasks, 14 tasks require a multiple-choice
answer with options provided in the question. 4 of them require yes/no. 1 task requires True/False,
while 1 task requires valid/invalid. And the 3 remaining tasks require answers that contain words or

25

Task Name DSPy +CoT DSPy-PO +CoT Trace +CoT

tracking shuffled objects 7 objects 37.39 90.0 90.43 90.43 37.8 87.8
salient translation error detection 51.3 70.87 51.3 69.57 63.0 70.0
tracking shuffled objects 3 objects 39.13 94.35 97.39 93.91 38.7 96.5
geometric shapes 50.43 62.17 59.13 60.43 49.6 62.2
object counting 0.0 40.0 0.0 74.35 42.2 80.4
word sorting 0.0 0.0 0.0 0.43 84.3 74.3
logical deduction five objects 70.0 80.43 70.0 74.78 48.7 75.7
hyperbaton 74.78 86.52 74.78 88.26 78.3 91.7
sports understanding 0.0 0.0 0.0 0.0 79.6 45.7
logical deduction seven objects 68.7 64.78 68.7 64.78 45.7 69.6
multistep arithmetic two 0.0 93.04 0.0 93.04 94.8 88.7
ruin names 84.35 87.83 84.35 87.83 87.8 90.0
causal judgement 7.78 70.66 74.25 70.66 70.1 54.5
logical deduction three objects 85.22 97.39 85.22 97.83 91.7 97.0
formal fallacies 1.74 81.3 62.17 81.3 73.5 67.8
snarks 86.08 87.34 86.08 87.97 81.6 87.3
boolean expressions 0.0 98.26 64.35 98.26 88.7 96.5
reasoning about colored objects 53.04 91.3 89.13 91.3 91.3 95.7
dyck languages 0.0 8.7 7.83 8.7 26.5 9.6
navigate 0.0 95.65 0.0 97.39 59.6 92.6
disambiguation qa 67.83 66.09 73.91 66.09 75.7 59.1
temporal sequences 99.57 99.13 97.39 99.13 97.8 98.3
web of lies 0.0 0.0 0.0 0.0 49.6 90.4
tracking shuffled 5 objects 37.83 96.09 37.83 96.09 58.3 88.7
penguins in a table 69.84 92.86 97.62 92.86 81.7 91.3
movie recommendation 83.48 76.09 83.48 76.09 81.3 75.7
date understanding 69.13 85.65 69.13 85.65 70.4 85.7

Table A.2: Big Bench-Hard Per-Task Result. 0-shot performance. Some 0.0 here shown is because DSPy cannot
find the clean/stripped output that matches what the automatic evaluation method expects. With additional
human engineering, these numbers can improve.

numbers. Even though DSPy’s meta-prompt optimization is trained on each task individually, the
output of LLM to the evaluation method is still not post-processed, resulting in low performances of
these tasks. However, Trace can optimize code and LLM prompt jointly to successfully deliver the
response expected by an automatic evaluation method.

I.6 LLFBench Meta-World

We test the ability of Trace to optimize long-horizon workflows with complex dependencies. We
experiment with using Trace to train controller (python code) for a simulated Sawyer robot ma-
nipulator. We use the Meta-World environment of LLF-Bench [23] as the simulator and consider
three tasks reach, pick-place and push. LLF-Bench is a simulated benchmark with gym interface for
testing an agent’s ability to learn from language feedback. In these LLF-Bench Meta-World tasks,
the observation is a dictionary where each field denotes a feature of the state and has a vector value
(e.g., the end-effector position, the goal position, the gripper status, etc.). The keys of the observation
dictionary can differ for each task. The action space is 4-dimensional, which controls the relative
position of the end-effector and the state of the gripper. In each time step, the LLF-Bench Meta-World
simulator returns the observation dictionary and natural language feedback to guide the robot (we use
the ‘a‘ mode of LLF-Bench, with which the language feedback would contain information about the
current performance, explanation of past successes and failures, and suggestions for the next step).
An episode ends if the robot successfully solve the problem or because of time-out. For each task,
LLF-Bench also provides a task instruction explaining that the task is about controlling a Sawyer
robot arm and the meaning of the action space (see [23]). We use that as the context ω of the OPTO
problem. We consider an episodic setting. For each experiment (a random seed), we randomly sample
an initial configuration. Then for each iteration of optimization, we reset the simulator to that sampled

26

(a) Reach (Train) (b) Pick-place (Train). (c) Push (Train).

(d) Reach (Test) (e) Pick-place (Test) (f) Push (Test)

Figure A.8: Learning the feedback control policy (code) for a simulated Sawyer manipulator in LLF-Bench
Metawrold. In each iteration (x-axis), one episode of rollout is performed and then the policy is updated. Mean
and standard error of success rate over 10 seeds are shown.

initial configuration and run the robot policy for 1011 steps or until the episode termination due to
success. We compute the sum of rewards and gives the output feedback f in texts in the format of
“Success: <true/false> Return: <score>”. Note that the initial condition for all iterations within an
experiment is the same so that the optimization problem is deterministic. To evaluate the learned
policy’s performance, for each experiment, we additionally run the learned policy starting from
10 held-out initial conditions, different from the fixed training initial condition. For each training
algorithm discussed, we run it with 30 iterations, where each iteration consists of one episode rollout
and one update.

To optimize the controller with Trace, we declare the control code as the parameter using the bundle
decorator with trainable set to True; the initial control code simply outputs a zero vector [0, 0, 0, 0].
We decorate also the reset and the step function of the gym environment, so that the entire rollout of
an episode can be traced end-to-end. In our implementation, a prototypical rollout would create a
graph with around 30 operations where the controller code parameter is used multiple times. This
graph structure is similar to that of running a recurrent neural network. For Trace, we experiment
with OptoPrime with and without a memory of size 10. In addition to Trace, we implement the
state-of-the-art LLM optimizer OPRO [13] as a baseline. Compared with Trace, OPRO does not use
the execution trace information but rely on just memory of parameter and feedback pairs12 To make
the comparison with Trace fair, we append the feedback observation from LLF-Bench given at each
time step to the final feedback received by OPRO; on the other hand, Trace uses the simple final
feedback of success and return and has to read the per-step feedback from the execution trace. To run
OPRO in the OPTO setting, our implementation only proposes a single candidate in each iteration,
which is then evaluated and provided with the output feedback. Since in [13] OPRO generates about
10 samples per iteration, so one iteration in [13] is roughly equivalent to 10 iterations here.

The experimental results are summarized in Fig. A.8, where we show the success rates at both the
training initial condition as well as the held-out testing initial conditions over 10 seeds. OptoPrime is
clearly the top-performing optimizer, especially the version with memory. OPRO is able to solve
Reach at the start but its performance degraded over iterations (this instability was observed in
[13]) and gets similar performance as OptoPrime (without memory) in Push. To validate that the
performance of OptoPrime is indeed due to using the execution trace, we include an ablation where
we mask out information in #Inputs, #Others, #Code, #Definition in the LLM context (see Fig. A.1b),

11We set the problem horizon to be 10 steps, as we find the expert policies implemented in LLF-Bench can
solve these problems within 10 steps.

12The original version of OPRO uses parameter-score pairs. Since we’re interested in the more general setup
of OPTO, we extend it to use parameter-feedback pairs.

27

which lead to significant degrade in performance and stability. This ablation shows that additionally
using the execution trace provides more informed search direction compared with just using just the
output feedback, which agrees with our hypothesis.

This experiment features the most complex graph structures, and using Trace for optimization here is
similar to back-propagation over time. The experimental results here are quite impressive, showing
that Trace is able to learn a complex control logic in a dozens of interactions, not only working on the
training initial conditions but also on the held-out testing ones too. Nonetheless, we want to point
out some limitations in the current experimental results. We find that the success rate of the learned
policy varies largely across random seeds. Except for Reach (the simplest task), in a seed, often
either it finds a policy close to 1.0 success rate or 0.0 success rate. Therefore, the plots can roughly
be interpreted as how long it takes to find a working policy. In addition, in these experiments, we find
that providing task-related context is necessary. We find the context needs to be informative enough
for humans to understand the problem13; otherwise, the optimization can be solved efficiently with
the time scale considered here. Nonetheless, this requirement is reasonable, as there is no free lunch.

13The original instructions in the v2 environments of LLF-Bench does not contain task specific background,
but only the task name. We find this task name alone, except for Reach, is too vague even for humans to
understand how to read the observation dictionary is related to the problem, so we added additionally one line to
explain the task. Pick-place: “The goal of the task is to pick up a puck and put it to a goal position.”. Push: “The
goal of the task is to push a puck to a goal position.”. Without this extra information, none of the LLM-based
optimizers works in the experiments.

28

J Examples of the Optimized Parameters in the Experiments

1 class Policy(trace.Module):
2 def init(self , width , height):
3 pass
4
5 def __call__(self , map):
6 return self.select_coordinate(map).data
7
8 def select_coordinate(self , map):
9 plan = self.reason(map)

10
11 act = self.act
12 output = act(map , plan)
13 return output
14
15 @trace.bundle(trainable=True)
16 def act(self , map , plan):
17 """
18 Given a map , select a target coordinate in a Battleship game. In map , O denotes

misses , X denotes successes , and . denotes unknown positions.
19 """
20 return
21
22 @trace.bundle(trainable=True)
23 def reason(self , map) -> str:
24 """
25 Given a map , analyze the board in a Battleship game. In map , O denotes misses , X

denotes successes , and . denotes unknown positions.
26 """
27 return [0, 0]
28
29 def train(epochs =10):
30 policy = Policy ()
31 optimizer = FunctionOptimizerV2Memory(policy.parameters ())
32 board = BattleshipBoard ()
33
34 feedback = ""
35 rewards = []
36 board = board.reset()
37 obs = node(board.get_shots ()) # init observation
38 i = 0
39 while i < epochs:
40 try:
41 output = policy.select_coordinate(obs)
42 # not traced
43 obs , reward , terminal , feedback = user_fb_for_placing_shot(board , output.data)
44 except TraceExecutionError as e: # this is a retry
45 output = e.exception_node
46 feedback = output.data
47 reward , terminal = 0, False
48
49 if terminal:
50 board = reset_board ()
51 obs = node(board.get_shots ()) # init observation
52
53 # Update
54 optimizer.zero_feedback ()
55 optimizer.backward(output , feedback)
56 optimizer.step(verbose=True)
57
58

Figure A.9: Battleship Agent and optimization code.

29

1 ## Iteration 1 ; Success : False
2 def reason(self , map) -> str:
3 """
4 Given a map , analyze the board in a game. On map , O denotes misses , X denotes successes ,

and . denotes unknown positions.
5 """
6 # Check for first unknown position to try as a potential move
7 for row_index , row in enumerate(map):
8 for col_index , val in enumerate(row):
9 if val == ’.’:

10 return [row_index , col_index]
11 # Default to [0, 0] if no unknown positions found
12 return [0, 0]
13
14 ## Iteration 2 ; Success : True
15 def reason(self , map) -> str:
16 """
17 Given a map , analyze the board in a game. On map , O denotes misses , X denotes successes ,

and . denotes unknown positions.
18 """
19 # Improved strategic approach by checking . surrounded by more . which might indicate

undetected area
20 max_surrounding = -1
21 best_spot = [0, 0]
22 for row_index , row in enumerate(map):
23 for col_index , val in enumerate(row):
24 if val == ’.’:
25 surrounding = 0
26 for di in [-1, 0, 1]:
27 for dj in [-1, 0, 1]:
28 ni, nj = row_index + di, col_index + dj
29 if 0 <= ni < len(map) and 0 <= nj < len(map [0]) and map[ni][nj] ==

’.’:
30 surrounding += 1
31 if surrounding > max_surrounding:
32 max_surrounding = surrounding
33 best_spot = [row_index , col_index]
34 return best_spot
35
36 ## Iteration 8 ; Success : True
37 def reason(self , map) -> str:
38 """
39 Given a map , analyze the board in a game. On map , O denotes misses , X denotes successes ,

and . denotes unknown positions.
40 """
41 max_surrounding = -1
42 best_spot = [0, 0]
43 for row_index , row in enumerate(map):
44 for col_index , val in enumerate(row):
45 if val == ’.’:
46 surrounding = 0
47 for di in [-1, 0, 1]:
48 for dj in [-1, 0, 1]:
49 ni, nj = row_index + di, col_index + dj
50 if 0 <= ni < len(map) and 0 <= nj < len(map [0]):
51 if map[ni][nj] == ’.’:
52 surrounding += 1
53 elif map[ni][nj] == ’X’:
54 surrounding += 1.5 # increasing emphasis on proximity to

successful hits
55 if surrounding > max_surrounding:
56 max_surrounding = surrounding
57 best_spot = [row_index , col_index]
58 return best_spot
59

Figure A.10: Learned Battleship Code (reason). Functions with the same name are learned during different
iterations or trials.

30

1 ## Iteration 0 (Initialization); Success : False
2
3
4 ## Iteration 1 ; Success : False
5 def act(self , map , plan):
6 """
7 Given a map , select a target coordinate in a game. On map , O denotes misses , X denotes

successes , and . denotes unknown positions.
8 """
9 # Example implementation , more sophisticated logic may be required based on intended

gameplay mechanics
10 return [0, 1]
11
12 ## Iteration 2 ; Success : True
13 def act(self , map , plan):
14 """
15 Given a map , select a target coordinate in a game. On map , O denotes misses , X denotes

successes , and . denotes unknown positions.
16 """
17 # Use information from plan , which is output from __code2 , checking strategic position ,

not just first available
18 best_score = -1
19 best_move = [0, 0, 0] # initially no move is considered
20 for row_index , row in enumerate(map):
21 for col_index , val in enumerate(row):
22 if val == ’.’: # consider all unknown spots
23 hopes_surrounding = 0 # will hold number of ’.’s around the spot
24 for di in [-1, 0, 1]:
25 for dj in [-1, 0, 1]:
26 ni, nj = row_index + di, col_index + dj
27 if 0 <= ni < len(map) and 0 <= nj < len(map [0]):
28 if map[ni][nj] == ’.’:
29 hopes_surrounding += 1
30 score = hopes_surrounding # more ’.’ around , higher the chance of hit
31 if score > best_score:
32 best_score = score
33 best_move = [row_index , col_index]
34 if map[plan [0]][plan [1]] == ’.’ and best_score == -1:
35 return plan # if no better move found , and original place is still unknown
36 return best_move if best_score > -1 else plan # return the best move found , or stick

with the plan if still valid
37
38 ## Iteration 8 ; Success : True
39 def act(self , map , plan):
40 """
41 Given a map , select a target coordinate in a game. On map , O denotes misses , X denotes

successes , and . denotes unknown positions.
42 """
43 best_score = -1
44 best_move = [0, 0]
45 for row_index , row in enumerate(map):
46 for col_index , val in enumerate(row):
47 if val == ’.’ and [row_index , col_index] != plan:
48 hopes_surrounding = 0
49 for di in [-1, 0, 1]:
50 for dj in [-1, 0, 1]:
51 ni, nj = row_index + di, col_index + dj
52 if 0 <= ni < len(map) and 0 <= nj < len(map [0]):
53 if map[ni][nj] == ’.’:
54 hopes_surrounding += 1 # favoring positions with more

unknowns surrounding
55 elif map[ni][nj] == ’X’:
56 hopes_surrounding += 2 # increased incentive for moves near

successful spots
57 score = hopes_surrounding
58 if score > best_score:
59 best_score = score
60 best_move = [row_index , col_index]
61 if best_score > -1:
62 return best_move
63 return plan
64

Figure A.11: Learned Battleship Code (act). Functions with the same name are learned during different
iterations or trials.

31

1 @trace_class
2 class Predict(LLMCallable):
3 def __init__(self):
4 super().__init__ ()
5
6 self.demos = []
7 self.prompt_template = dedent("""
8 Given the fields ‘question ‘, produce the fields ‘answer ‘.
9

10 ---
11
12 Follow the following format.
13
14 Question:
15 Answer:
16
17 ---
18 Question: {}
19 Answer:
20 """)
21
22 self.prompt_template = trace.node(self.prompt_template , trainable=True ,
23 description="[ParameterNode] This is the Prompt

Template to the LLM...")
24
25 @trace.bundle(trainable=True)
26 def extract_answer(self , prompt_template , question , response):
27 """
28 Need to read in the response , which can contain additional thought , delibration and

an answer.
29 Use code to process the response and find where the answer is.
30 Can use self.call_llm (" Return the answer from this text: " + response) again to

refine the answer if necessary.
31
32 Args:
33 prompt_template: The prompt that was used to query LLM to get the response
34 question: Question has a text describing the question but also "Options"
35 response: LLM returned a string response
36 Process it and return the answer in the exact format that the

evaluator wants to see.
37 Be mindful of the type of answer you need to produce.
38 It can be (A)/(B), a number like 8, or a string , or Yes/No.
39 """
40 answer = response.split("Answer:")[1]. strip()
41 return answer
42
43 @trace.bundle(trainable=True)
44 def create_prompt(self , prompt_template , question):
45 """
46 The function takes in a question and then add to the prompt for LLM to answer.
47 Args:
48 prompt_template: some guidance/hints/suggestions for LLM
49 question: the question for the LLM to answer
50 """
51 return prompt_template.format(question)
52
53 def forward(self , question):
54 """
55 question: text
56
57 We read in a question and produces a response
58 """
59 user_prompt = self.create_prompt(self.prompt_template , question)
60 response = self.call_llm(user_prompt)
61 answer = self.extract_answer(self.prompt_template , question , response)
62 return answer
63

Figure A.12: Starting Code for BigBench. We write it in a similar style to DSPy’s Predict module.

32

1 @trace_class
2 class PredictCoT(LLMCallable):
3 def __init__(self):
4 super().__init__ ()
5
6 self.demos = []
7 self.prompt_template = dedent("""
8 Given the fields ‘question ‘, produce the fields ‘answer ‘.
9

10 ---
11
12 Follow the following format.
13
14 Question: question
15 Reasoning: Let’s think step by step in order to produce the answer. We ...
16 Answer: answer
17
18 ---
19 Question: {}
20 """)
21
22 self.prompt_template = trace.node(self.prompt_template , trainable=True ,
23 description="[ParameterNode] This is the Prompt

Template to the LLM...")
24
25 @trace.bundle(trainable=True)
26 def extract_answer(self , prompt_template , question , response):
27 """
28 Need to read in the response , which can contain additional thought , delibration and

an answer.
29 Use code to process the response and find where the answer is.
30 Can use self.call_llm (" Return the answer from this text: " + response) again to

refine the answer if necessary.
31
32 Args:
33 response: LLM returned a string response
34 Process it and return the answer in the exact format that the

evaluator wants to see.
35 Be mindful of the type of answer you need to produce.
36 It can be (A)/(B), a number like 8, or a string , or Yes/No.
37 question: Question has a text describing the question but also "Options"
38 """
39 answer = response.split("Answer:")[1]. strip()
40 return answer
41
42 @trace.bundle(trainable=True)
43 def create_prompt(self , prompt_template , question):
44 """
45 The function takes in a question and then add to the prompt for LLM to answer.
46 The prompt should instruct the LLM to reason , think.
47 Args:
48 prompt_template: some guidance/hints/suggestions for LLM
49 question: the question for the LLM to answer
50 """
51 return prompt_template.format(question)
52
53 def forward(self , question):
54 """
55 question: text
56
57 We read in a question and produces a resposne
58 """
59 user_prompt = self.create_prompt(self.prompt_template , question)
60 response = self.call_llm(user_prompt)
61 answer = self.extract_answer(self.prompt_template , question , response)
62 return answer
63

Figure A.13: Starting Code for BigBench. We write it in a similar style to DSPy’s Predict CoT (0-shot
Chain-of-Thought) module.

33

1 ## Iteration 0 (initialization)
2 def create_prompt(self , prompt_template , question):
3 """
4 The function takes in a question and then add to the prompt for LLM to answer.
5 Args:
6 prompt_template: some guidance/hints/suggestions for LLM
7 question: the question for the LLM to answer
8 """
9 return prompt_template.format(question)

10
11 ## Iteration > 0
12 def create_prompt(self , prompt_template , question):
13 """
14 The function takes in a question and then add to the prompt for LLM to answer.
15 The prompt should now further instruct the LLM to carefully track the ball swaps

occurring step -by-step.
16 Args:
17 prompt_template: some guidance/hints/suggestions for LLM
18 question: the question for the LLM to answer
19 """
20 prompt_template = ’Process this carefully: Step -by-step.’ + prompt_template
21 return prompt_template.format(question)
22

Figure A.14: Learned Predict module for BigBench. Functions with the same name are learned during different
iterations or trials.

34

1 ## Iteration 0 (initialization)
2 def extract_answer(self , prompt_template , question , response):
3 """
4 Need to read in the response , which can contain additional thought , delibration and an

answer.
5 Use code to process the response and find where the answer is.
6 Can use self.call_llm (" Return the answer from this text: " + response) again to refine

the answer if necessary.
7
8 Args:
9 prompt_template: The prompt that was used to query LLM to get the response

10 question: Question has a text describing the question but also "Options"
11 response: LLM returned a string response
12 Process it and return the answer in the exact format that the evaluator

wants to see.
13 Be mindful of the type of answer you need to produce.
14 It can be (A)/(B), a number like 8, or a string , or Yes/No.
15 """
16 answer = response.split("Answer:")[1]. strip()
17 return answer
18
19 ## Iteration > 0
20 def extract_answer(self , response):
21 """
22 Need to read in the response , which can contain additional thought , deliberation and an

answer.
23 Use code to process the response and find where the answer is.
24 Can use self.call_llm (" Return the answer from this text: " + response) again to refine

the answer if necessary.
25 Args:
26 response: LLM returned a string response
27 Process it and return the answer in the exact format that the evaluator

wants to see.
28 Be mindful of the type of answer you need to produce.
29 It can be (A)/(B), a number like 8, or a string , or Yes/No.
30 question: Question has a text describing the question but also "Options"
31 """
32 answer = ’’
33 segments = response.split(’\n’)
34 for segment in segments:
35 if ’Answer:’ in segment:
36 answer = segment.split(’Answer:’)[1]. strip()
37 refined_answer = self.call_llm(’Return the refined answer from this text: ’ + answer)
38 return refined_answer
39
40 def extract_answer(self , prompt_template , question , response):
41 """
42 Processes the LLM response and extracts the final answer in the required format.
43 """
44 # Assuming that the relevant part of the response is after ’Answer:’ and before any

further commentary
45 extracted_part = response.split(’Answer: ’)[1]. split(’ ’)[0]. strip()
46 # Find the section of the answer and return it directly
47 result = re.search(’\([A-E]\)’, extracted_part)
48 if result:
49 return result.group()
50 else:
51 return ’No valid answer found’
52
53 def extract_answer(self , prompt_template , question , response):
54 """
55 Processes the LLM response , extracting and formatting the final answer.
56 Uses code to meticulously parse the response to locate the answer section.
57 Optionally refines the answer by querying the LLM again if necessary.
58
59 Args:
60 response: string from LLM , expected format contains ’Answer:’ followed by the answer.
61 question: Description of the question being addressed , may include ’Options ’
62 """
63 answer = response.split(’Answer:’)[1]. split(’.’)[0]. strip().lower ().split(’,’)[0]. strip()
64 return answer)
65

Figure A.15: Learned Predict module for BigBench. Functions with the same name are learned during different
iterations or trials.

35

1 ## Iteration 0 (initialization)
2 prompt_template = """
3 Given the fields ‘question ‘, produce the fields ‘answer ‘.
4
5 ---
6
7 Follow the following format.
8
9 Question:

10 Answer:
11
12 ---
13 Question: {}
14 Answer:
15 """
16
17 ## Iteration > 0
18 prompt_template = """
19 Given the fields ‘question ‘, produce the fields ‘answer ‘.
20
21 ---
22
23 Follow the following format.
24
25 Question:
26 Answer: Please respond precisely in the format required.
27
28 ---
29 Question: {}
30 """
31

Figure A.16: Learned BigBench Prompt Template.

36

1
2 ## Iteration 0 (initialization); Success: False
3 def controller(obs):
4 """
5 A feedback controller that computes the action based on the observation.
6
7 Args:
8 obs: (dict) The observation from the environment. Each key is a string (indicating a

type of observation) and the value is a list of floats.
9 Output:

10 action: (list or nd.array) A 4-dimensional vector.
11 """
12 return [0, 0, 0, 0]
13
14 ## Iteration 1; Success: False
15 def controller(obs):
16 """
17 A feedback controller that computes the action based on the observation.
18
19 Args:
20 obs: (dict) The observation from the environment. Each key is a string (indicating a

type of observation) and the value is a list of floats.
21 Output:
22 action: (list or nd.array) A 4-dimensional vector.
23 """
24 hand_pos = obs[’hand_pos ’]
25 goal_pos = obs[’goal_pos ’]
26 action = [goal_pos [0] - hand_pos [0], goal_pos [1] - hand_pos [1], goal_pos [2] -

hand_pos [2], 0]
27 # Adjusting the last element of the action based on whether the hand is close enough to

trigger grasping
28 if abs(goal_pos [0] - hand_pos [0]) < 0.02 and abs(goal_pos [1] - hand_pos [1]) < 0.02 and

abs(goal_pos [2] - hand_pos [2]) < 0.02:
29 action [3] = 1 # Assuming action [3] = 1 triggers closing the gripper
30 return action
31
32 ## Interation 5; Success: False
33 def controller(obs):
34 """
35 A feedback controller that computes the action based on the observation.
36
37 Args:
38 obs: (dict) The observation from the environment.
39 Output:
40 action: (list or nd.array) A 4-dimensional vector.
41 """
42 hand_pos = obs[’hand_pos ’]
43 puck_pos = obs[’puck_pos ’]
44 goal_pos = obs[’goal_pos ’]
45 gripper_open = 1 if obs[’gripper_distance_apart ’][0] > 0.5 else 0
46
47 # Adjusting strategy to close the gripper when in proximity of the puck
48 if gripper_open and ((abs(hand_pos [0] - puck_pos [0]) < 0.05) and (abs(hand_pos [1] -

puck_pos [1]) < 0.05) and (abs(hand_pos [2] - puck_pos [2]) < 0.05)):
49 action = [0, 0, 0, 1] # Close the gripper
50 elif not gripper_open:
51 direction_to_goal = [0.09 - hand_pos [0], 0.95 - hand_pos [1], 0.12 - hand_pos [2]]
52 action = [direction_to_goal [0], direction_to_goal [1], direction_to_goal [2], 0] #

Move towards the suggested pose once puck is grasped
53 else:
54 # Move towards the puck first if not carrying it
55 direction_to_puck = [puck_pos [0] - hand_pos [0], puck_pos [1] - hand_pos [1],

puck_pos [2] - hand_pos [2]]
56 action = [direction_to_puck [0], direction_to_puck [1], direction_to_puck [2], 0]
57
58 return action

Figure A.17: Learned Code for LLFBench Meta-World Pick-Place (Part 1). Functions with the same name are
learned during different iterations or trials.

37

1
2
3 ## Iteration 10; Success: False
4 def controller(obs):
5 """
6 A feedback controller that computes the action based on the observation.
7
8 Args:
9 obs: (dict) The observation from the environment.

10 Output:
11 action: (list or nd.array) A 4-dimensional vector.
12 """
13 hand_pos = obs[’hand_pos ’]
14 puck_pos = obs[’puck_pos ’]
15 goal_pos = obs[’goal_pos ’]
16 gripper_open = 1 if obs[’gripper_distance_apart ’][0] > 0.5 else 0
17
18 normalize = lambda x: [i / max(abs(max(x, key=abs)), 1) for i in x]
19
20 # Close the gripper when close to the puck and the gripper is open
21 if gripper_open and ((abs(hand_pos [0] - puck_pos [0]) < 0.05) and (abs(hand_pos [1] -

puck_pos [1]) < 0.05) and (abs(hand_pos [2] - puck_pos [2]) < 0.05)):
22 return [0, 0, 0, 1]
23 # When the puck is grasped , move towards the goal position with a normalized direction
24 elif not gripper_open and ((abs(hand_pos [0] - puck_pos [0]) < 0.1) and (abs(hand_pos [1] -

puck_pos [1]) < 0.1) and (abs(hand_pos [2] - puck_pos [2]) < 0.1)):
25 direction_to_goal = [goal_pos [0] - hand_pos [0], goal_pos [1] - hand_pos [1],

goal_pos [2] - hand_pos [2]]
26 return normalize(direction_to_goal) + [0]
27 # When the gripper is open and not close enough to the puck , move towards the puck
28 else:
29 direction_to_puck = [puck_pos [0] - hand_pos [0], puck_pos [1] - hand_pos [1],

puck_pos [2] - hand_pos [2]]
30 return normalize(direction_to_puck) + [0]
31
32 ## Iteration 13; Success: True
33 def controller(obs):
34 """
35 A feedback controller that computes the action based on the observation.
36
37 Args:
38 obs: (dict) The observation from the environment.
39 Output:
40 action: (list or nd.array) A 4-dimensional vector.
41 """
42 hand_pos = obs[’hand_pos ’]
43 puck_pos = obs[’puck_pos ’]
44 goal_pos = obs[’goal_pos ’]
45 gripper_open = 1 if obs[’gripper_distance_apart ’][0] > 0.5 else 0
46
47 normalize = lambda x: [i / max(abs(max(x, key=abs)), 1) for i in x]
48 # Close the gripper when close to the puck and the gripper is open
49 if gripper_open and ((abs(hand_pos [0] - puck_pos [0]) < 0.05) and (abs(hand_pos [1] -

puck_pos [1]) < 0.05) and (abs(hand_pos [2] - puck_pos [2]) < 0.05)):
50 action = [0, 0, 0, 1] # Close the gripper
51 elif not gripper_open and ((abs(hand_pos [0] - puck_pos [0]) < 0.1) and (abs(hand_pos [1] -

puck_pos [1]) < 0.1) and (abs(hand_pos [2] - puck_pos [2]) < 0.1)):
52 # When the puck is grasped , adjust direction towards the goal with improved

precision and ensure successful pickup
53 direction_to_goal = normalize ([goal_pos [0] - hand_pos [0], goal_pos [1] - hand_pos [1],

goal_pos [2] - hand_pos [2]])
54 action = direction_to_goal + [1] # Keep the gripper closed
55 else:
56 # Move towards the puck first if not carrying it
57 direction_to_puck = normalize ([puck_pos [0] - hand_pos [0], puck_pos [1] - hand_pos [1],

puck_pos [2] - hand_pos [2]])
58 action = direction_to_puck + [0] # Open the gripper to prepare for grasping
59
60 return action

Figure A.18: Learned Code for LLFBench Meta-World Pick-Place (Part 2). Functions with the same name are
learned during different iterations or trials.

38

1 # Iteration 1
2 {
3 "reasoning ": "The task involves controlling a robotic arm to perform a pick -place

operation by interpreting observations and generating appropriate control actions (4D
vectors) to move the arm towards the goal. The objective is to adjust the controller ’s
code (__code0) based on feedback received at each step of the process. The feedback within
#Others suggests whether the movements made by the arm are leading it closer to or
farther from the goal , along with advice on what coordinates to aim for next (e.g.,
[-0.07 0.68 0.12 0.]). The controller ’s code currently returns a static action [0,
0, 0, 0], which does not adjust based on observations and hence does not efficiently
move the robotic arm towards the goal. Given the repetitive feedback suggesting to go to
[-0.07 0.68 0.12 0.], it appears that the controller needs to dynamically compute
actions based on the difference between the current positions (hand_pos , puck_pos) and
the goal_pos , along with possibly manipulating the gripper state for pick and place
operation.",

4 "answer ": "",
5 "suggestion ": {...}
6 }
7
8
9 # Iteration 5

10 {
11 "reasoning ": "The instruction involves creating a controller for a Sawyer robot arm to

solve a pick -and -place task by providing sequential control actions based on
observations of the environment and state of the robot. The feedback indicates that
despite the actions taken , the success criteria have not been met , with the latest
attempt achieving a return of 0.9574427394250022. The code provided for __code0 defines
a controller function using the observed state to compute control actions aimed at
grasping a puck and moving it to a goal position while adjusting the gripper based on
its distance from the puck. Feedback throughout the execution indicates that the
controller adapts its strategy based on proximity to the puck and whether it has been
picked up. Feedback also suggests that the gripper ’s opening and closing actions are
central to the task ’s success , with corrections being made to close the gripper when
necessary. The controller ’s logic for determining movements toward the puck or goal and
adjusting the gripper state appears reasonable , but the feedback implies that
adjustments might be required to ensure task completion. This could include fine -tuning
the conditions under which the gripper is closed or adjusting the thresholds for puck
pickup and delivery to the goal.",

12 "answer ": "",
13 "suggestion ": {}
14
15 # Iteration 10
16 {
17 "reasoning ": "The task involves programming a robot arm to pick up a puck and place it

at a goal position by providing sequential 4-dimensional action vectors. The action
vectors represent target positions and gripper states (open or close) based on the
robot ’s and puck ’s current positions. The feedback indicates that despite optimizing the
controller logic to close the gripper when near the puck , move towards the puck when
it’s not grasped , and head towards the goal once the puck is grasped , the actions have
not resulted in task completion. Specifically , repeated suggestions to close the
gripper (indicating it remained open when it should have been closed) and guidance on
where to move next suggest that the action selection logic might not be effectively
responding to the environment ’s state or might not be properly engaging the gripper at
the right times. The latest code includes a condition to normalize the direction of
movement and checks for gripper position , but there seems to be a misunderstanding or
oversight in adjusting the robot ’s behavior based on the scenario to successfully
complete the pick -place task.",

18 "answer ": "",
19 "suggestion ": {...}
20 }
21 }

Figure A.19: Example Responses of LLM for LLFBench Meta-World Pick-Place (Part 1); Content in suggestion
is omitted for space (represented as ...); please see the code examples.

39

1 # Iteration 12
2 {
3 "reasoning ": "In this task , the controller function for the Sawyer robot arm manipulates

the robot ’s actions based on the observed environment to achieve a pick -and -place task.
The function correctly defines actions based on the robot ’s hand position , the puck ’s
position , the goal position , and the gripper ’s state. However , the feedback after each
step in the documentation indicates that although the robot is making progress towards
the goal , there is an issue with the gripper ’s action state not being switched to
’close ’ (1) at the crucial moment when the robot is close enough to the puck. Most
feedback comments suggest that the robot is moving in the right direction but fails to
grasp the puck due to the gripper not closing. This inefficiency appears to arise from
the conditions set for closing the gripper and possibly the normalized direction
towards the goal after the puck has been grasped. The condition for closing the gripper
(when close enough to the puck) seems to be met , but the action selected afterwards
does not effectively lead to puck manipulation or goal achievement in the most
optimized manner , as indicated by the ’Feedback ’ messages suggesting movements that
imply needing adjustments in action selection.",

4 "answer ": "",
5 "suggestion ": {...}
6 }
7
8 # Iteration 13 (Success)
9 LLM response:

10 {
11 "reasoning ": "The instruction requests improvements based on feedback for a Sawyer robot

arm ’s controller function , aiming to accomplish a pick -and -place task. The controller
function accepts observations about the robot and the environment and computes an
action to move the robot accordingly. \n\nThe feedback provided indicates the task was
successfully completed with a suggestion that the final command should have been
‘[0.04, 0.88, 0.24, 1]‘, which probably indicates the precise position and gripper
state (closed) needed to achieve the task goal. The feedback suggests the need for
fine -tuning actions especially towards the end of the task to ensure the robot ’s
gripper is appropriately positioned and the gripper state is correct for completing the
task. Since the feedback for the current code positively notes ’Success: True ’ with a
high return value , no modifications are recommended for ‘__code0 ‘. \n\nPrevious feedback
instances with lower success metrics and recommendations for change highlight the
iterative improvements to the controller logic , specifically related to grip control
and movement precision. The aim was to adjust the controller ’s response to observation
inputs to accurately position the gripper and handle the puck. The current code
evidently manages these aspects well by normalizing directions and managing the
gripper ’s open -close state effectively under varying circumstances (proximity to puck
or goal and whether the puck is already grasped). These adjustments have likely led to
the successful output in the described problem.",

12 "answer ": "No changes are recommended as the feedback indicates successful task
completion and suggests the controller ’s current logic adequately addresses the task ’s
requirements .",

13 "suggestion ": {}
14 }

Figure A.20: Example Responses of LLMs for LLFBench Meta-World Pick-Place (Part 2); Content in suggestion
is omitted for space (represented as ...); please see the code examples.

40

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions (Trace, OPTO, OptoPrime) are clearly stated in the introduc-
tion and detailed in Sections 2,3,4, and claimed improvements are validated in Section 5.
Meanwhile the aspirational goal of self-improving interactive agents is elaborated separately
in the concluding Section 7.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

41

Answer: [Yes]
Justification: There are theorems about the computational complexity of Trace and an
information theoretic lower bound on propagated feedback. Both theorems are proved
in Appendix E.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental setups are outlined in Section 5 and detailed in Appendix I.
Supplementary material additionally provides the exact code that was run to produce all
results, and only requires user to supply an OpenAI API key.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

42

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All of the code to implement Trace and OptoPrime are provided in the
supplementary material. All of the experiments described in the paper are reproducible with
the supplied code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental setups are outlined in Section 5 and detailed in Appendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experiments include standard error bars from ≥ 10 replications.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

43

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All the experiments use the same compute resources (LLM API for OptoPrime
and machine to run Trace), which are listed at the start of Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The contributions of this paper (a framework analogous to PyTorch to general-
ize the backpropagation algorithm) do not have direct safety or security implications.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Sections 6 and 7 we discuss both the aspirational goals and their broader
impacts.

Guidelines:

44

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: There are no models, data or APIs released along with the paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Datasets used in the experiments (e.g. BigBench-Hard) are properly attributed.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

45

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: There is code implementing Trace and OptoPrime that are released along with
the paper. The code repository contains licenses and several tutorial notebooks documenting
each functionality. There are no datasets or models in the release, hence datasheets and
modelsheets are not applicable for this release.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: There are no crowdsourcing or human subject studies conducted in this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

46

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

47

	Introduction
	Toward Efficient End-to-End Optimization of Computational Workflows
	Example of Trace in Action
	A New World of Optimization

	Optimization with Trace Oracle
	Problem Definition of OPTO

	Trace: The Next AutoDiff
	Design of Trace
	Using Trace Primitives for Effective Execution Tracing
	Backward Feedback Propagation: Realizing the Trace Oracle of OPTO

	Design of the First OPTO Optimizer
	Experiments
	Validating with Numerical Optimization
	Tuning Hyperparameters to Orchestrate Complex Systems
	Unifying Prompts and Functions Optimization
	Long-Horizon Robot Manipulator Control
	Comparison with TextGrad

	Limitations
	Conclusion and Future Work
	Perspective: Deep Agent Workflows
	Related Work
	Examples of OPTO
	Trace Handles Error in Execution as Feedback
	Analysis of Trace
	Proof of Complexity
	Proof of Lower bounds

	When is OPTO Efficiently Solvable?
	What is a solution?
	Does a solution exist?
	Can OPTO be efficiently solved?

	Additional Details of Trace and OptoPrime
	Backward Step of Trace
	Prompts used in OptoPrime

	Comparison between Trace and TextGrad
	Experiment Details
	Token Counts
	Battleship
	Numerical Optimization
	Traffic Control
	BigBench-Hard
	LLFBench Meta-World

	Examples of the Optimized Parameters in the Experiments

