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ABSTRACT

Over-parameterization is a recent topic of much interest in the machine learning
community. While over-parameterized neural networks are capable of perfectly
fitting (interpolating) training data, these networks often perform well on test data,
thereby contradicting classical learning theory. Recent work provided an explana-
tion for this phenomenon by introducing the double descent curve, showing that
increasing model capacity past the interpolation threshold can lead to a decrease
in test error. In line with this, it was recently shown empirically and theoretically
that increasing neural network capacity through width leads to double descent. In
this work, we analyze the effect of increasing depth on test performance. In con-
trast to what is observed for increasing width, we demonstrate through a variety of
classification experiments on CIFAR10 and ImageNet32 using ResNets and fully-
convolutional networks that test performance worsens beyond a critical depth. We
posit an explanation for this phenomenon by drawing intuition from the principle
of minimum norm solutions in linear networks.

1 INTRODUCTION

Traditional statistical learning theory argues that over-parameterized models will overfit training
data and thus generalize poorly to unseen data (Hastie et al., 2001). This is explained through the
bias-variance tradeoff; as model complexity increases, so will variance, and thus more complex
models will generalize poorly. Modern deep learning models, however, have been able to achieve
state-of-the-art test accuracy by using an increasing number of parameters (Krizhevsky et al., 2012;
Simonyan & Zisserman, 2015; He et al., 2016). In fact, while over-parameterized neural networks
have enough capacity to interpolate randomly labeled training data Zhang et al. (2017), in practice
training often leads to interpolating solutions that generalize well.

To reconcile this apparent conflict, Belkin et al. (2019a) proposed the double descent risk curve,
where beyond the interpolation threshhold, the risk decreases as model complexity increases. In
neural networks, model complexity has thus far mainly been analyzed by varying network width.
Indeed, in line with double descent, Yang et al. (2020); Nakkiran et al. (2020); Belkin et al. (2019a)
demonstrated that increasing width beyond the interpolation threshhold while holding depth constant
can decrease test loss.

However, model complexity in neural networks can also be increased through depth. In this work, we
study the effect of depth on test performance while holding network width constant. In particular,
we focus on analyzing the effect of increasing depth in convolutional networks. These networks
form the core of state-of-the-art models used for image classification and serve as a prime example
of a network with layer constraints. In this paper we answer the following question: What is the role
of depth in convolutional networks?

In contrast to what has been shown for increasing model complexity through width, we demonstrate
that test performance of convolutional networks worsens when increasing network depth beyond a
critical point, suggesting that double descent does not happen through depth. Figure 1 demonstrates
the difference between increasing width and depth in ResNets (He et al., 2016) trained on CIFAR10.
In particular, Figure 1a shows that increasing width leads to a decrease in test error even when
training accuracy is 100%. This effect is captured by the double descent curve. On the other hand,
Figure 1b demonstrates that training ResNets of increasing depth but fixed width leads to an increase
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(a) ResNet-18 and ResNet-34 of increasing width
on CIFAR10

(b) ResNet of width 64 on CIFAR10.

Figure 1: (a) As explained by double descent, increasing width in ResNets trained on CIFAR10
results in a decrease in test error. (b) In contrast, increasing the depth of ResNets trained on CIFAR10
results in an increase in test loss (results are averaged across 3 random seeds).

in test error. Since network depth is a form of model complexity, this behavior contradicts what is
expected based on double descent. It is therefore critical to carefully analyze and understand this
phenomenon.

The main contributions of our work are as follows:

1. We conduct a range of experiments in the classification setting on CIFAR10 and Ima-
geNet32 using ResNets, fully-convolutional networks, and convolutional neural tangent
kernels, and consistently demonstrate that test performance worsens beyond a critical depth
(Section 3). In particular, in several settings, we observe that the test accuracy of convolu-
tional networks is even worse than that of fully connected networks as depth increases.

2. To gain intuition for this phenomenon we analyze linear neural networks. We demonstrate
that increasing depth in linear neural networks with layer constraints (e.g. convolutional
networks or Toeplitz networks) leads to a decrease in the Frobenius norm and stable rank of
the resulting linear operator. This implies that increasing depth leads to poor generalization,
when solutions of lower Frobenius norm (e.g. solutions learned by linear fully connected
networks) do not generalize (Section 4).

3. Against conventional wisdom, our findings indicate that increasing depth does not always
lead to better generalization. Namely, our results provide evidence that the driving force
behind the success of deep learning is not the depth of the models, but rather their width.

2 RELATED WORK

We begin with a discussion of recent works analyzing the role of depth in convolutional networks
(CNNs). Yang et al. (2020) study the bias-variance decomposition of deep CNNs and show that
as depth increases, bias decreases and variance increases. This work observes that generally the
magnitude of bias is greater than that of variance, and thus overall risk decreases. However, the
focus of their analysis on depth is not on the interpolating regime. In fact, they posit that it is
possible for deeper networks to have increased risk. We extend their experimental methodology for
training ResNets and demonstrate that, indeed, deeper networks have increased risk.

Neyshabur (2020) studied the role of convolutions, but focuses on the benefit of sparsity in weight
sharing. Their work analyzed the effect of depth on fully-convolutional networks, but only consid-
ered models of two depths. Urban et al. (2017) analyzed the role of depth in student-teacher CNNs,
specifically by training shallow CNNs to fit the logits of an ensemble of deep CNNs. This differs
from our goal of understanding the effect of depth on CNN’s trained from scratch on CIFAR10;
furthermore, the ensemble of CNNs they consider only have eight convolutional layers, which is
much smaller than the deep ResNets we consider in our experiments.

Xiao et al. (2018) provides initial evidence that the performance of a CNN may degrade with depth;
however, it is unclear whether this phenomenon is universal across CNNs used in practice or simply
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an artifact of their specific initialization designed to train deep CNNs. In fact, Xiao et al. (2020)
establish that the convolutional neural tangent kernel (CNTK) solution approaches that of the neural
tangent kernel (NTK) as depth increases. In our work, we analyze the generalization of the CNTK
as a function of depth in Section 3.3. We show that as depth increases, test error monotonically
decreases and then increases. Lastly, Xiao et al. (2018) Figure 4a and Xiao et al. (2020) Figure 2a,b
provide examples of accuracy worsening with increasing depth in CNNs, but we demonstrate this
phenomenon systematically across a number of settings.

Other works have aimed to understand the role of depth in CNNs by characterizing implicit regular-
ization in over-parameterized deep CNNs. Radhakrishnan et al. (2019) characterized the inductive
bias of over-parameterized autoencoders and demonstrated that with sufficient depth, these networks
become locally contractive around training examples. Zhang et al. (2020) similarly studied the role
of depth in autoencoders in the more restrictive setting of a single training example. Nguyen & Hein
(2018) studied optimization in deep CNNs and showed that increasing depth increases representa-
tional power, while increasing width smooths the optimization landscape. While each of these works
identified forms of implicit regularization which occur with depth in CNNs, they did not provide an
explicit connection to generalization in CNNs used for classification, which is the focus of our work.

On the other hand, previous works studying generalization via double descent have primarily fo-
cused on over-parameterization through increasing width. In particular, Belkin et al. (2019a) and
Nakkiran et al. (2020) demonstrated that double descent occurs when increasing the width of neural
networks trained on MNIST (LeCun et al., 1998) and CIFAR10 respectively. Several theoretical
works demonstrated double descent theoretically (Hastie et al., 2019; Belkin et al., 2019b; Mitra,
2019; Muthukumar et al., 2020; Bibas et al., 2019; Bartlett et al., 2020), but analyzed linear or shal-
low non-linear models with an increasing number of features. Our work performs a similar empiri-
cal analysis to Nakkiran et al. (2020), but on the impact of depth instead of width in CNNs, thereby
identifying contrasting behaviors between the two different ways of increasing model complexity.

3 EMPIRICAL EVIDENCE IN NON-LINEAR CLASSIFIERS

We now present our main set of experiments demonstrating that the test accuracy of convolutional
networks decreases when increasing depth past a critical threshold. We begin with a demonstration
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Figure 2: Train and test accuracy of the Fully-Conv Net as a function of depth, for CIFAR10 input
images. Increasing depth beyond a critical value leads to a decrease in test accuracy. As depth
increases, the performance of the Fully-Conv Net approaches that of a wide fully connected network
(shown in red). All experiments are performed across 5 random seeds.
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of this phenomenon for fully-convolutional networks applied to CIFAR10 and ImageNet32. We
then demonstrate that this phenomenon holds also for ResNets applied to CIFAR10. Lastly, we
show that this phenomenon occurs for the convolutional neural tangent kernel (CNTK) on subsets
of CIFAR10. Our training methodology is outlined in Appendix C.

3.1 IMAGE CLASSIFICATION WITH FULLY-CONVOLUTIONAL NETWORKS

To understand the role of depth in convolutional networks, we begin with a simplified model of a
convolutional network, which we call the Fully-Conv Net. The architecture of a Fully-Conv Net
of depth d and width w for a classification problem with c classes is depicted in Figure 9 of the
Appendix and consists of the following layers:

• A convolutional layer with stride 1, 3 input filers, and w output filters, followed by batch
norm (Ioffe & Szegedy, 2015) and a LeakyReLU activation (Xu et al., 2015).

• d− 1 convolutional layers with stride 1, w input filters, and w output filters, each followed
by batch norm and LeakyReLU activation.

• 1 convolutional layer with stride 1, w input filters, and c output filters. This is followed by
an average pool of each of the output filters to produce a c-dimensional prediction.

Crucially, this network depends only on convolutional layers, a nonlinear activation, and batch norm;
it does not depend on other components commonly found in deep learning architectures such as
residual connections, dropout, downsampling, or fully connected layers. We note that this model is
not designed to necessarily perform well, but rather to isolate and understand the effect of increasing
the number of convolutional layers.

We trained the Fully-Conv Net on 2, 5, and 10 classes from CIFAR10 (Krizhevsky, 2009). All
experiments were performed using 5 random seeds to reduce the impact of random initialization.
Models were trained using Adam (Kingma & Ba, 2015) with learning rate 10−4 for 2000 epochs,
and we selected the model with the best training accuracy over the course of training. We used the
Cross Entropy loss, and down-sampled images to 16 × 16 resolution to reduce the computational
burden. See Appendix C for a list of all classes used. The resulting train and test accuracies are
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Figure 3: Train and test accuracy of the Fully-Conv Net as a function of depth, for ImageNet32
input images. Increasing depth beyond a critical threshold again leads to a decrease in test accuracy.
Increasing depth beyond a critical value leads to a decrease in test accuracy. As depth increases, the
performance of the Fully-Conv Net approaches that of a wide fully connected network (shown in
red). All experiments are performed across 5 random seeds.
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Figure 4: Increasing depth well past the interpolation threshold leads to a decrease in test accuracy.
All experiments are across 3 random seeds. (a) We trained Fully-Conv nets of increasing depth but
fixed width 32 on 10 classes of CIFAR10. (b) We trained Fully-Conv nets of increasing depth but
fixed width 32 on 10 classes of ImageNet32.

shown in Figure 2. As expected, as depth increases, training accuracy becomes 100%. However,
beyond a critical depth threshold, the test accuracy begins to degrade sharply. Furthermore, the value
of this critical depth appears to increase as the number of training classes increases.

In addition to CIFAR10, we also applied the Fully-Conv Net to subsets of ImageNet32 (Chrabaszcz
et al., 2017), which is ImageNet downsampled to size 32 × 32. We again trained on 2, 5, and
10 classes, using the same training procedure as for CIFAR10. Training and test accuracies for
ImageNet32 are shown in Figure 3. Again, we observe that as depth increases past a critical value,
test performance degrades.

Remarks. When training to classify between 2 and 5 classes, the test accuracy continues to de-
crease even when increasing depth past the interpolation threshold, i.e. even after achieving 100%
training accuracy. This in contrast to double descent where increasing model complexity beyond
the interpolation threshold leads to an increase in test accuracy. Interestingly, as depth increases, the
test accuracy approaches that of a fully connected network. While the Fully-Conv Nets were before
or at the interpolation threshold for the 10 class setting in Figures 2 and 3, Figure 4 demonstrates
that a similar decrease in test accuracy occurs also after the interpolation threshold for wider models
which can interpolate the data.

3.2 IMAGE CLASSIFICATION WITH MODERN DEEP LEARNING MODELS

To understand the effect of increasing depth in modern machine learning models, we analyzed
variants of ResNet trained on CIFAR10. ResNet-18 and ResNet-34 consist of 4 stages, each of
which are connected by a downsampling operation. Each stage is comprised of a number of basic
blocks, which are two layers with a residual connection. There is a convolutional layer before the
first stage, and a fully connected layer after the last stage. ResNet-18 uses 2 basic blocks in each
stage, while ResNet-34 uses (3, 4, 6, 3) blocks in each stage respectively. By varying the number
of blocks in each stage, we constructed a variety of ResNet models of different depths; in particu-
lar, by choosing (n1, n2, n3, n4) blocks in each stage, we can construct a ResNet model of depth
2 + 2 · (n1 + n2 + n3 + n4). The width w of a model is defined to be the number of filters in the
first stage; there are then (w, 2w, 4w, 8w) filters in each stage respectively. See Figure 10 of the
Appendix for a diagram. We trained models up to depth 50, see Appendix C for a more detailed
description of the models used.

For Figure 1 and Figure 5, we trained each of our ResNet models using MSE loss on a random
subset of 25,000 training images from CIFAR10, and plotted the test loss as a function of depth.
Our experimental methodology is based on that of Yang et al. (2020). We trained for 500 epochs
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(a) Width = 32 (b) Width = 16

Figure 5: Test loss for ResNet models of width 32 (a) and width 16 (b) increases with depth.

using SGD with learning rate 0.1 and momentum 0.9, and we decreased the learning rate by a factor
of 10 every 200 epochs. We also use their data augmentation scheme of random crops and random
horizontal flips on the training data. In the width 64 and 32 models, test loss increases beyond a
critical depth, and in the width 16 model, test loss does not improve beyond a certain depth. Plots of
the train and test losses and accuracies of all models are given in the Appendix in Figure 12.

Remarks. In Appendix D, we provide the training and test accuracies for the ResNets presented
in this work. We also demonstrate that increasing depth in later blocks of ResNet leads to a more
drastic increase in test error than increasing depth in earlier blocks.

3.3 IMAGE CLASSIFICATION WITH THE CONVOLUTIONAL NEURAL TANGENT KERNEL

To remove the effect of additional factors in modern neural networks such as random initializa-
tion, width, batch normalization, and down-sampling, we turn to the setting of infinite width neural
networks. With proper scaling as width approaches infinity, the solution given by training neural
networks is given by a solution to a corresponding kernel regression problem, where the kernel is
referred to as the neural tangent kernel, or NTK (Jacot et al., 2018). Arora et al. (2019) computed
the NTK for convolutional networks (CNTK); we use their code for the experiments in this section.

We analyze the effect of depth on generalization of the CNTK. Since we are simply running kernel
regression, our predictor perfectly interpolates the training data (i.e. 100% training accuracy and
0 training error). In Figure 6, we compute the CNTK with a training set of roughly 250 examples
each of CIFAR10 planes and trucks. We then calculate the test loss and accuracy on a test set
of roughly 250 planes and trucks. We observe that test error is monotonically decreasing up to a
critical depth, after which it is monotonically increasing. This provides further evidence that such
a phenomenon occurs more generally in convolutional networks. In Appendix D.6, we present
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Figure 6: Test loss and accuracy for the NTK and the CNTK of increasing depths (on a log scale),
trained on a subset of planes and trucks from CIFAR10. Beyond a critical depth, the test error for
the CNTK increases and the accuracy decreases.
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additional empirical evidence that the generalization of the CNTK worsens past a critical depth by
considering classification problems with a varying number of classes.

4 THE ROLE OF DEPTH IN LINEAR NEURAL NETWORKS

In the previous section, we observed that past a critical depth threshold the performance of CNNs
degrades with depth. For Fully-Conv networks, as depth increased, test performance appeared to
approach that of a fully connected network. In this section, we aim to better understand this phe-
nomenon, and in particular determine whether the performance of CNNs of increasing depth does
indeed approach that of a fully-connected network. We turn to the setting of linear neural networks
to simplify this analysis. Linear neural networks are useful for analyzing deep learning phenomena
since they represent linear operators but have non-convex optimization landscapes. Furthermore,
the solution learned by a single layer fully connected network is well understood as it is simply the
minimum Frobenius norm solution Engl et al. (1996)1.

In this section, we conduct experiments on linear CNNs of increasing depth in both the classification
and autoencoding settings. We show that linear CNNs of increasing depth consistently produce
solutions of decreasing Frobenius norm, thus approaching the solution learned by a single layer
fully connected network. To connect this to generalization, we provide a specific example of a
classification setting where the solution learned by a fully-connected network, and thus linear CNNs
of large depth, generalizes poorly, yet shallow CNNs generalize well. We propose that a similar
mechanism could also explain the decrease in test accuracy beyond a critical threshold in the non-
linear setting.

4.1 PRELIMINARIES

Linear networks are models of the form f(x) = Wd · · ·W1x, where Wi ∈ Rki×ki−1 is a weight
matrix. CNNs are a special type of a constrained neural network, where each weight matrix Wi

belongs to a subspace Si ⊂ Rki×ki−1 of dimension ri. Since the product of linear operators is
linear, these neural networks represent linear functions. In particular, let W = Wd · · ·W1 represent
the operator of a linear network. We will analyze the Frobenius norm (square root of the sum of
squares of the entries) of W and the stable rank (a surrogate for the rank) of W in our analysis.
Definition 1. (Vershynin, 2018, Chapter 7) Given a matrix W ∈ Rd1×d2 , the stable rank of W is
given by:

‖W‖2F
‖W‖2

=

∑
i σ

2
i

σ2
1

;

where {σi} denote the singular values of W .

Computing the Linear Operator Efficiently. Given a linear neural network, it is possible to com-
pute the linear operator by first constructing the matrix representation for each layer and then mul-
tiplying Radhakrishnan et al. (2019). Instead, we use the following simpler approach for producing
the operator. Given a network implementing a map from an s × s image to Rd, we reshape the
s2 × s2 identity matrix as an s2 × s × s tensor (so the batch size is s2) and feed this through the
network. We then reshape the output matrix to be of size d× s2 to obtain the resulting operator.

4.2 LINEAR CONVOLUTIONAL CLASSIFIERS

The following experiment provides an example where fully connected networks do not generalize,
and in which linear convolutional classifiers of increasing depth perform similarly to a fully con-
nected network. Consider a toy dataset of 6 × 6 color images as shown in Figure 7a. We use 2
training examples to represent two classes: Class label 1 has a blue pixel in the upper left hand
corner and class label −1 has a red pixel in the upper left hand corner. We then construct 200 test
examples with 100 having a red pixel and 100 having a blue pixel in a randomly selected location in
the lower right 3× 3 quadrant of the square.

1This assumes zero initialization for the single layer network. When the network has 1 output, the minimum
Frobenius norm solution is the minimum `2 norm solution.
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Figure 7: A toy example demonstrating that increasing depth in linear convolutional networks leads
to operators of decreasing `2 norm, which manifests as a decrease in test accuracy. (a) A visualiza-
tion of samples from our toy dataset. (b) The training and test performance of linear convolutional
networks of varying depth across 5 random seeds. The test accuracy of the minimum `2 norm solu-
tion for this problem is shown as a dashed black line. (c) The `2 norm of the operator with varying
depth. The norm of the minimum `2 norm solution for this problem is shown as a dashed black line.

While simple, this classification setting is useful for comparing the performance of CNNs and fully
connected networks. It is set up to be trivial to solve using the convolution operation, but is such that
the minimum Frobenius norm solution would not be able to generalize. Indeed, as demonstrated
in Figure 7b, a linear fully convolutional network with 5 layers and 32 filters per layer is able to
consistently get 100% test accuracy across 5 random seeds. On the other hand, performing linear
regression to learn the minimum Frobenius norm solution yields a 50% test accuracy.

In Figure 7b, we see that increasing the depth of the fully convolutional network leads to a degrada-
tion in test accuracy. In particular, the average test accuracy across 5 random seeds is approximately
50% for networks of depth 20 or larger, which all obtain 100% training accuracy. In Figure 7c,
we compare the Frobenius norm of the corresponding linear operator across depths and see that the
Frobenius norm decreases with increasing depth. This simple example demonstrates that the perfor-
mance of CNNs of increasing depth approaches that of a fully connected network, which does not
generalize for many image classification tasks. In Appendix D.7, we present an additional experi-
ment with more training samples that again demonstrates a similar phenomenon.

4.3 LINEAR AUTOENCODERS

Similar to the case of linear convolutional classifiers, we now demonstrate that increasing depth in
linear convolutional autoencoders leads to a decrease in Frobenius norm and stable rank. As done
in Radhakrishnan et al. (2019); Zhang et al. (2020), we begin with the simple example of a linear
convolutional autoencoder trained on a single image. When there is only a single layer, the authors
in Radhakrishnan et al. (2019); Zhang et al. (2020) prove that the solution must be full rank due to
the sparsity and weight sharing in a convolutional layer. This is demonstrated in Figure 8d,e where
the depth 1 solution has large stable rank.

In Figure 8a,b,d,e, we demonstrate that increasing depth in linear convolutional autoencoders leads
to solutions of decreasing Frobenius norm and stable rank. In particular, we observe that the norm
of the trained networks decreases to approximately that of the minimum Frobenius norm solution,
which is a projection onto the training examples Radhakrishnan et al. (2019); Zhang et al. (2020).

While the previous experiments have considered networks with convolutional layers, in Figure 8c,
we present an example of a linear autoencoder with alternate layer constraints (Toeplitz layers) for
which increasing depth again decreases the operator’s Frobenius norm and stable rank. The key
similarity between this layer constraint and that of a convolutional layer is that both increase repre-
sentational power through depth. Indeed, the authors in Ye & Lim (2016) proved that every matrix
can be decomposed as a product of Toeplitz matrices, and thus, neural networks with Toeplitz layers
are expressive through depth. We note that showing that every matrix can be written as a product of
convolutional layers remains open, but a simple parameter counting argument as given in Radhakr-
ishnan et al. (2019) implies that representational power increases with depth. This experiment thus
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Figure 8: Training layer-constrained linear autoencoders of increasing depth leads to a decrease
in the Frobenius norm and stable rank of the resulting operator. (a,d) We train convolutional net-
works of varying depth on 1 example. (b,e) We train convolutional networks of varying depth on 5
examples. (c,f) We train a network with Toeplitz layers to autoencode a 5 dimensional vector.

provides empirical evidence that the phenomenon of decreasing norm with increasing depth occurs
generally for networks with layer constraints that are more expressive through depth.

5 DISCUSSION

In this work, we presented an empirical analysis of the impact of depth on generalization in CNNs.
We first demonstrated that in modern non-linear CNNs, increasing depth past a critical threshold
led to a decrease in test accuracy. This result is in stark contrast to the role of width in CNNs, as
explained by double descent. Furthermore, for Fully-Conv Nets, we observed that increasing depth
led to performance comparable to that of fully connected networks.

To better understand this phenomenon, we analyzed the operators learned by linear CNNs and
demonstrated that increasing depth in these networks led to a decrease in Frobenius norm and stable
rank of the learned operator. Moreover, as depth increased, we observed that the norm of the opera-
tor approached that of the minimum Frobenius norm solution, which is the solution learned by fully
connected network. As demonstrated by our example in Section 4, in settings where the minimum
Frobenius norm solution does not generalize, we observe that deep convolutional networks do not
generalize. Understanding whether the norm of the functions learned by deep non-linear CNNs ap-
proaches that of functions learned by non-linear fully connected networks is an important direction
of future work that could explain the poor generalization of deep CNNs observed in this work.

Throughout this work, we consistently observed that increasing depth in CNNs beyond the inter-
polation threshold led to a decrease in test accuracy. Hence, our findings imply that practitioners
should decrease depth in these settings to obtain better test performance. An interesting direction
for future work is to understand where the critical depth threshold occurs as a function of width
and number of classes. Importantly, if, as initial evidence in this paper suggests, the critical depth
is correlated with the number of classes, then practitioners should use shallow, wide convolutional
networks for problems with few classes.
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APPENDIX

A FULLY CONVOLUTIONAL NETWORK ARCHITECTURE
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Figure 9: A diagram of the Fully-Conv Net used with width w, depth d, and c classes. Each convo-
lutional layer (except for the last one) is followed by batch norm and LeakyReLU.

B RESNET ARCHITECTURE

3x3	conv
w	filters

3x3	conv
w	filters

3x3	conv
2w	filters

3x3	conv
4w	filters

3x3	conv
2w	filters

3x3	conv
4w	filters

3x3	conv
8w	filters

3x3	conv
8w	filters

3x3	conv
w	filters

Fu
lly
	C
on
ne
ct
ed
	L
ay
er

32
x3
2	
Im

ag
e

Lo
gi
ts

Stage	1	(32x32) Stage	2	(16x16) Stage	3	(8x8) Stage	4	(4x4)

Figure 10: A diagram of the custom ResNet models used. The ith block is repeated ni times in
stage i. The first convolutional layer in stages 2, 3, and 4 downsamples the input using a stride of 2,
while the remaining layers have a stride of 1.

C EXPERIMENTAL DETAILS

All models were trained on an NVIDIA TITAN RTX GPU using the PyTorch library.

An anonymized repository with code used for this paper can be found here: https://
anonymous.4open.science/r/ebf33ffa-565e-408d-ae5f-12d91f942000/
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Dataset Network Width Activation Optimizer Init. Train	 Size #	Epochs Loss Trials Figure

CIFAR10 Fully-Conv 16

LeakyReLU
Adam
lr=1e-4

Kaiming
Normal

5000 /class

2000,	
or 100%	
accuracy

Cross
Entropy

5 2

5
5000	/class

CIFAR10 FCN 4096

ImageNet32 Fully-Conv 16 1300	/class 5 3

ImageNet32 FCN 4096 1300	/class 5

CIFAR10 Fully-Conv 32
3 4

5000	/class

1300	/class

ImageNet32 Fully-Conv 32
3

CIFAR10 ResNet 64

ReLU

SGD	 w/
momentum

LR	schedule	
from	Yang	
et	 al	(2020)

Default
Pytorch

2500/class 500 MSE 3 1a,	12,	13ae

ResNet 32 3 5a,	12,	13bf

ResNet 16 3 5b, 12,	13cg

ResNet 8
3 13dh,	14

ResNet
Increase	
Stage	 1

32
1 15

ResNet
Increase	
Stage	 3

32 1 15

ResNet10
ResNet18
Varied

kernel	 size

32 1 17

ResNet 32 500/class 2000 1 16

CIFAR10 CNTK Infinite ReLU N/A N/A 100/class,
250/class

N/A MSE 1 6,	18

Toy
classification

Linear	
Conv

32 None Adam
lr=1e-4

Xavier	
Uniform

2, 8 Until	
Convergence

MSE 5 7,	19

Cifar10 Linear	
Conv

16 None Adam
lr=1e-4

Xavier	
Normal

1,	5 Until	
Convergence

MSE 5 8

Figure 11: Experimental details for all experiments conducted.
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Model Depth Blocks per Stage
10 1, 1, 1, 1
12 1, 1, 2, 1
14 1, 2, 2, 1
16 2, 2, 2, 1
18 2, 2, 2, 2
20 2, 2, 3, 2
22 2, 3, 3, 2
26 3, 3, 3, 3
30 3, 4, 4, 3
34 3, 4, 6, 3
38 3, 4, 8, 3
42 3, 4, 10, 3
46 3, 4, 12, 3
50 3, 4, 14, 3

Table 1: Stage breakdown for all ResNet models used.

# Classes Classes used
2 dog, cat
5 bird, cat, deer, dog, horse

10 all classes

Table 2: CIFAR10 classes considered in this work.

# Classes Classes used
2 kit_fox, English_setter
5 2 classes + Siberian_husky, Australian_terrier, English_springer

10 5 classes + Egyptian_cat, Persian_cat, malamute, Great_Dane, Walker_hound

Table 3: ImageNet32 classes considered in this work.
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(a) Train Losses of ResNet models with widths
16, 32, and 64.

(b) Test Losses of ResNet models with widths 16,
32, and 64.

Figure 12: Train and Test losses of the ResNet models for all widths.
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Figure 13: Train and Test accuracies for the ResNet models of width 8, 16, 32, and 64, for increasing
depths.

D ADDITIONAL EXPERIMENTS

D.1 ADDITIONAL RESNET PLOTS

In Figure 12, we plot the train and test losses of all ResNet models used (for widths 16, 32, 64).
Additionally, in Figure 13 we plot the accuracies of all ResNet models.

D.2 EFFECT OF DEPTH IN MODELS WITH SMALL WIDTHS

The only model in which test loss continues to increase is the width 8 model. We argue this is
because the width 8 model is not sufficiently over-parameterized; in fact, in Figure 14, we see that
the width 8 model is unable to reach zero training loss, while all the other models are after sufficient
depth.

D.3 EFFECT OF DOWNSAMPLING

In Figure 15 we compare a ResNet model where we increase the number of blocks in the first stage
versus a model where we increase the number of blocks in the third stage. We observe that the model
where the third stage blocks are increased performs worse. This is likely because adding a block
in a later stage, after downsampling, increases the effective depth of the model more than adding a
block in an earlier stage.
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(a) Train losses for the width 8 ResNet model, for
increasing depths.

(b) Test losses for the width 8 ResNet model, for
increasing depths.

Figure 14: Train and test losses for the width 8 ResNet model. We see that test loss decreases as
model depth increases, but train loss has still not reached 0, even for large depths.

Figure 15: Test losses for the width 32 ResNet model where the 1st stage blocks are increased versus
the model where the 3rd stage blocks are increased.

Figure 16: Test losses for the width 32 ResNet samples, trained on 500 samples per class.

D.4 EFFECT OF NUMBER OF SAMPLES

In Figure 16 is a plot of test losses when training the width 32 ResNet model on 500 samples per
class ( 1

10 of CIFAR10). Number of training epochs is increased accordingly. We observe that test
loss increases as depth increases, showing that this phenomenon is robust to change in sample size.

D.5 EFFECT OF KERNEL SIZE

Another form of overparameterization is increasing the kernel size for convolutional filters. In Fig-
ure 17, we train ResNet-10 and ResNet-18 of width 32 and varying kernel sizes, and observe that as
kernel size increases, test loss increases. This is consistent with our proposed explanation based on
expressivity, since increasing kernel size increases representational power independent of depth.
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Figure 17: Train and test losses for width 32 models for increasing kernel size. We observe that test
loss increases as kernel size increases.
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Figure 18: Test loss and test accuracy for the CNTK trained on subsets of Cifar10 with 2, 5 and 10
classes. We observe that generalization improves up to a critical depth, after which it worsens.

D.6 ADDITIONAL CNTK EXPERIMENTS

We also train the CNTK on subsets of CIFAR10 of varying number of classes. We use 100 train
and 100 test examples per class, and train on both 2 classes (birds and deer), 5 classes (cats, dogs,
horses, bids, and deer), and 10 classes (all of CIFAR10). The test losses and accuracies are shown
in Figure 18. Again, we see that generalization is unimodel, with test loss decreasing until a critical
depth and increasing afterwards, which is in agreement with our main CNTK experiment in Figure 6.
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We note that training the CNTK for large depths is computationally prohibitive. The runtime scales
quadratically in the number of training samples; furthermore, training the depth 500 CNTK on 1
GPU for 500 train and 500 test samples took approximately 2 days.

D.7 ADDITIONAL LINEAR CONVOLUTIONAL NETWORK EXPERIMENTS
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Figure 19: An additional toy example demonstrating that increasing depth in linear convolutional
networks leads to operators of decreasing `2 norm, which manifests as a decrease in test accuracy.
Instead of having only 1 training sample of each class, we now sample 4 from each class randomly
from the upper left quadrant of a 6 × 6 square. Our network uses 64 filters per layer, with a kernel
size of 3, and zero padding. (a) The training and test performance of linear convolutional networks
of varying depth across 3 random seeds. The test accuracy of the minimum `2 norm solution for this
problem is shown as a dashed black line. (c) The `2 norm of the operator with varying depth. The
norm of the minimum `2 norm solution for this problem is shown as a dashed black line.

D.8 TEST LOSSES FOR FULLY CONVOLUTIONAL EXPERIMENTS
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Figure 20: Test losses for models in Figure 2 (on CIFAR10). The error for the convolutional net-
works is in blue and that of full connected networks is in red.
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Figure 21: Test losses for models in Figure 3 (on ImageNet32). The error for the convolutional
networks is in blue and that of full connected networks is in red.
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Figure 22: Test losses for the models in Figure 4.
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