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ABSTRACT

Modern handheld devices can acquire burst image sequence in a quick succes-
sion. However, the individual acquired frames suffer from multiple degradations
and are misaligned due to camera shake and object motions. The goal of Burst
Image Restoration is to effectively combine complimentary cues across multiple
burst frames to generate high-quality outputs. Towards this goal, we develop a
novel approach by solely focusing on the effective information exchange between
burst frames, such that the degradations get filtered out while the actual scene
details are preserved and enhanced. Our central idea is to create a set of pseudo-
burst features that combine complimentary information from all the input burst
frames to seamlessly exchange information. The pseudo-burst representations en-
code channel-wise features from the original burst images, thus making it easier
for the model to learn distinctive information offered by multiple burst frames.
However, the pseudo-burst cannot be successfully created unless the individual
burst frames are properly aligned to discount inter-frame movements. Therefore,
our approach initially extracts preprocessed features from each burst frame and
matches them using an edge-boosting burst alignment module. The pseudo-burst
features are then created and enriched using multi-scale contextual information.
Our final step is to adaptively aggregate information from the pseudo-burst fea-
tures to progressively increase resolution in multiple stages while merging the
pseudo-burst features. In comparison to existing works that usually follow a late
fusion scheme with single-stage upsampling, our approach performs favorably,
delivering state of the art performance on burst super-resolution and low-light im-
age enhancement tasks. Our codes and models will be publicly released.

1 INTRODUCTION

High-end DSLR cameras can capture images of excellent quality with vivid details. With the grow-
ing popularity of smartphones, the main goal of computational photography is to generate DSLR-
like images with smartphone cameras (Ignatov et al., 2017). However, the physical constraints of
smartphone cameras hinder the image reconstruction quality. For instance, small sensor size limits
spatial resolution and small lens and aperture provides noisy and color distorted images in low-light
conditions (Delbracio et al., 2021). Similarly, small pixel cavities accumulate less light therefore
yielding low-dynamic range images. To alleviate these issues, one natural solution is to use burst
(multi-frame) photography instead of single-frame processing (Hasinoff et al., 2016).

The goal of burst imaging is to composite a high-quality image by merging desired information
from a collection of (degraded) frames of the same scene captured in a rapid succession. However,
burst image acquisition presents its own challenges. For example, during image burst capturing, any
movement in camera and/or scene objects (almost always the case in handheld devices) will cause
misalignment issues, thereby leading to ghosting and blurring artifacts in the output image (Wronski
et al., 2019). Therefore, there is a pressing need to develop a multi-frame processing algorithm that
is robust to alignment problems and requires no special burst acquisition conditions. We note that
existing burst processing techniques (Bhat et al., 2021a;b) extract and align features of burst images
separately and usually employ late feature fusion mechanisms, which can hinder flexible informa-
tion exchange among frames. In this paper, we present a burst image processing approach, named
BIPNet, which is based on a novel pseudo-burst feature fusion mechanism that enables inter-frame
communication and feature consolidation. Specifically, a pseudo-burst is generated by exchanging
information across frames such that each feature tensor in the pseudo-burst contains complimentary
properties of all input frames in the burst sequence.
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Before synthesizing pseudo-bursts, it is essential to align the input burst frames (having arbitrary
displacements) so that the relevant pixel-level cues are aggregated in the later stages. Existing
works (Bhat et al., 2021a;b) generally use explicit motion estimation techniques (e.g., optical flow)
to align input frames which are typically bulky pretrained modules that cannot be fully integrated
within an end-to-end learnable pipeline. This can result in errors caused during the flow estimation
stage to be propagated to the warping and image processing stages, thereby negatively affecting the
generated outputs. In our case, the proposed BIPNet implicitly learns the frame alignment with
deformable convolutions (Zhu et al., 2019) that can effectively adapt to the given problem. Further,
we integrate the edge boosting refinement via back-projection operation (Haris et al., 2018) in the
alignment stage to retain high-frequency information. It facilitates sustaining the alignment accu-
racy in cases where highly complex motions between burst images exist and only the deformable
convolutional may not be sufficient for reliable alignment.

Noise is always present in images irrespective of the lighting condition in which we acquire them.
Therefore one of our major goals is to remove noise early in the network to reduce difficulty for
the alignment and fusion stages. To this end, we incorporate residual global context attention in
BIPNet for feature extraction and refinement/denoising. While the application of BIPNet can be
generalized to any burst processing task, we demonstrate its effectiveness on burst super-resolution
and burst low-light image enhancement. In super-resolution (SR), upsampling is the key step for
image reconstruction. Existing burst SR methods (Bhat et al., 2021a;b) first fuse the multi-frame
features, and then use pixel-shuffle operation (Shi et al., 2016) to obtain the high-resolution image.
However, we can leverage the information available in multiple frames to perform merging and
upsampling in a flexible and effective manner. As such, we include adaptive group upsampling in
our BIPNet that progressively increases the resolution while merging complimentary features.

The main contributions of this work include:

• An edge boosting alignment technique that removes spatial and color misalignment issues
among the burst features. (Sec. 3.1)

• A novel pseudo-burst feature fusion mechanism to enable inter-frame communication and
feature consolidation. (Sec. 3.2)

• An adaptive group upsampling module for progressive fusion and upscaling. (Sec. 3.3)

Our BIPNet achieves state-of-the-art results on synthetic and real benchmark datasets for the burst
super-resolution and low-light image enhancement tasks. We provide visual examples and compre-
hensive ablation experiments to highlight the main contributing factors in proposed solution (Sec. 4).

2 RELATED WORK

Single Image Super-resolution (SISR). Since the first CNN-based work (Dong et al., 2014), data-
driven approaches have achieved tremendous performance gains over the conventional counterparts
(Yang et al., 2010; Freeman et al., 2002). The success of CNNs is mainly attributed to their archi-
tecture design. Given a low-resolution image (LR), early methods learn to directly generate latent
super-resolved image (Dong et al., 2014; 2015). In contrast, recent approaches learns to produce
high frequency residual to which LR image is added to generate the final SR output (Tai et al.,
2017; Hui et al., 2018). Other notable SISR network designs employ recursive learning (Kim et al.,
2016; Ahn et al., 2018), progressive reconstruction (Wang et al., 2015; Lai et al., 2017), attention
mechanisms (Zhang et al., 2018a; Dai et al., 2019; Zhang et al., 2020), and generative adversarial
networks (Wang et al., 2018; Sajjadi et al., 2017; Ledig et al., 2017). The SISR approaches cannot
handle multi-degraded frames from an input burst, while our approach belong to multi-frame SR
family that allows effectively merging cross-frame information towards a high-resolution output.

Multi-Frame Super-Resolution (MFSR). Tsai & Huang (1984) are the first to deal with the MFSR
problem. They propose a frequency domain based method that performs registration and fusion
of the multiple aliased LR images to generate a SR image. Since processing multi-frames in the
frequency domain leads to visual artifacts (Tsai & Huang, 1984), several other works aim to improve
results by incorporating image priors in HR reconstruction process (Stark & Oskoui, 1989), and
making algorithmic choices such as iterative back-projection (Peleg et al., 1987; Irani & Peleg,
1991). Farsiu et al. (2004) designed a joint multi-frame demosaicking and SR approach that is
robust to noise. MFSR methods are also developed for specific applications, such as for handheld
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devices (Wronski et al., 2019), to increase spatial resolution of face images (Ustinova & Lempitsky,
2017), and in satellite imagery (Deudon et al., 2020; Molini et al., 2019). Lecouat et al. (2021)
retains the interpretability of conventional approaches for inverse problems by introducing a deep-
learning based optimization process that alternates between motion and HR image estimation steps.
Recently, Bhat et al. (2021a) propose a multi-frame burst SR method that first aligns burst image
features using an explicit PWCNet (Sun et al., 2018) and then perform feature integration using an
attention-based fusion mechanism. However, explicit use of motion estimation and image warping
techniques can pose difficulty handling scenes with fast object motions. Recent works (Tian et al.,
2020; Wang et al., 2019) show that the deformable convolution (Zhu et al., 2019) effectively handles
inter-frame alignment issues due to being implicit and adaptive in nature. Unlike existing MFSR
methods, we implicitly learn the inter-frame alignment and then channel-wise aggregate information
followed by adaptive upsampling to effectively utilize multi-frame information.

Low-Light Image Enhancement. Images captured in low-light conditions are usually dark, noisy
and color distorted. These problems are somewhat alleviated by using long sensor exposure time,
wide aperture, camera flash, and exposure bracketing (Delbracio et al., 2021; Zamir et al., 2021).
However, each of these solutions come with their own challenges. For example, long exposure yields
images with ghosting artifacts due to camera or object movements. Wide apertures are not available
on smartphone devices, etc. See-in-the-Dark method (Chen et al., 2018) is the first attempt to replace
the standard camera imaging pipeline with a CNN model. It takes as input a RAW input image cap-
tured in extreme low-light and learns to generate a well-lit sRGB image. Later this work is further
improved with a new CNN-based architecture (Maharjan et al., 2019) and by employing a combined
pixel-wise and perceptual loss (Zamir et al., 2021). Zhao et al. (2019) takes the advantage of burst
imaging and propose a recurrent convolutional network that can produce noise-free bright sRGB
image from a burst of RAW images. The results are further improved by Karadeniz et al. (2020)
with their two-stage approach: first sub-network performs denoising, and the second sub-network
provides visually enhanced image. Although these studies demonstrate significant progress in en-
hancing low-light images, they do not address inter-frame misalignment and inter-frame information
interaction which we address in this work.

3 BURST PROCESSING APPROACH

In this section, we describe our burst processing approach which is applicable to different image
restoration tasks, including burst super-resolution, and burst low-light image enhancement. The
goal is to generate a high-quality image by combining information from multiple degraded images
captured in a single burst. Burst images are typically captured with handheld devices, and it is
often inevitable to avoid inter-frame spatial and color misalignment issues. Therefore, the main
challenge of burst processing is to accurately align the burst frames, followed by combining their
complimentary information while preserving and reinforcing the shared attributes. To this end, we
propose a new architecture BIPNet in which different modules operate in synergy to jointly perform
denoising, demosaicking, feature fusion, and upsampling tasks in a unified model.

Overall pipeline. Fig. 1 shows three main stages in the proposed burst image processing framework.
First, the input RAW burst is passed through the edge boosting feature alignment module to extract
features, reduce noise, and remove spatial and color misalignment issues among the burst features
(Sec. 3.1). Second, a pseudo-burst is generated by exchanging information such that each feature
map in the pseudo-burst now contains complimentary properties of all actual burst image features
(Sec. 3.2). Finally, the multi-frame pseudo-burst features are processed with the adaptive group
upsampling module to produce the final high-quality image (Sec. 3.3).

3.1 EDGE BOOSTING FEATURE ALIGNMENT MODULE

One major challenge in burst processing is to extract features from multiple degraded images that are
often contaminated with noise, unknown spatial displacements, and color shifts. These issues arise
due to camera and/or object motion in the scene, and lighting conditions. To align the other images in
the burst with the base frame (usually the 1st frame for simplicity) we propose an alignment module
based on modulated deformable convolutions (Zhu et al., 2019). However, existing deformable
convolution is not explicitly designed to handle noisy RAW data. Therefore, we propose a feature
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FIGURE 1: Holistic diagram of our burst image processing approach. Our network BIPNet takes as input a
RAW image burst and generates a high-quality RGB image. BIPNet has three key stages. (1) Edge boosting
feature alignment to remove noise, and inter-frame spatial and color misalignment. (2) Pseudo-burst feature
fusion mechanism to enable inter-frame communication and feature consolidation. (3) Adaptive group upsam-
pling to progressively increase spatial resolution while merging multi-frame information. While BIPNet is
generalizable to other restoration tasks, here we show super-resolution application.

processing module to reduce noise in the initial burst features. Our edge boosting feature alignment
(EBFA) module (Fig. 2(b)) consists of feature processing followed by burst feature alignment.

3.1.1 FEATURE PROCESSING MODULE

The proposed feature processing module (FPM), shown in Fig. 2(a), employs residual-in-residual
learning that allows abundant low-frequency information to pass easily via skip connections (Zhang
et al., 2018b). Since capturing long-range pixel dependencies which extracts global scene properties
has been shown to be beneficial for a wide range of image restoration tasks (e.g., image/video super-
resolution (Mei et al., 2020) and extreme low-light image enhancement (Arora et al., 2021)), we
utilize a global context attention (GCA) mechanism to refine the latent representation produced
by residual block, as illustrated in Fig. 2(a). Let

{
xb
}
b∈[1:B]

∈ RB×f×H×W be an initial latent
representation of the burst having B number of burst images and f number of feature channels, our
residual global context attention block (RGCAB in Fig. 2(a)) is defined as:
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(
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)))
. Here, Wk

represents a convolutional layer with k×k sized filters and each Wk corresponds to a separate layer
with distinct parameters, γ denotes leaky ReLU activation, Ψ is softmax activation, � represents
element-wise multiplication, and α(·) is the global context attention.

3.1.2 BURST FEATURE ALIGNMENT MODULE

To effectively fuse information from multiple frames, these frame-level features need to be aligned
first. We align the features of the current frame yb with the features of the base ybr frame1. It
processes yb and ybr through an offset convolution layer (W o) and predicts the offset Θ and mod-
ulation scalar ∆m values for yb. With Θ, ∆m and yb, the aligned features ȳb can be computed by
the deformable convolution:

ȳb = W d
(
yb, Θ, ∆m

)
, and ∆m = W o

(
yb, ybr

)
, (2)

where, W d and W o represent the deformable and offset convolutions, respectively. The set Θ =
{∆ni | i = 1, · · · , |<|} denotes offsets where < =(-1, 1), (-1, 0), ..., (1,1) is a regular grid of 3×3
kernel. While, ∆m lies in the range [0, 1] for each ni. More specifically, each position n on the
aligned feature map ȳb is obtained as:

ȳbn =
∑
ni∈<

W d
ni

yb(n+ni+∆ni)
·∆mni

(3)

The convolution will be performed on the non-uniform positions (ni + ∆ni), where ni can be
fractional. The operation is implemented using bilinear interpolation to alleviate this issue.

1In this work, we consider first input burst image as the base frame.
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(a) Feature Processing Module (FPM) (b) Edge Boosting Feature Alignment Module (EBFA)

FIGURE 2: Edge boosting feature alignment (EBFA) module aligns all other images in the input burst to the
base frame. Feature processing module (FPM) is added in EBFA to denoise input frames to facilitate the easy
alignment. � represents element-wise multiplication.

The proposed EBFA module is inspired from the deformable alignment module (DAM) (Tian et al.,
2020) with the following difference. Our approach does not provide explicit ground-truth super-
vision to the alignment module, instead it learns to perform implicit alignment. Furthermore, to
strengthen the feature alignment and to correct the minor alignment errors, using FPM, we obtain
refined aligned features (RAF) followed by computing the high-frequency residue by taking the dif-
ference between the RAF and base frame features and add it to the RAF. The overall process of our
EBFA module is summarized as:

eb = ȳb +W3

(
ȳb − ybr

)
, (4)

where eb ∈ RB×f×H×W represents the aligned burst feature maps, and W3(·) is the convolution.
Although the deformable convolution is shown only once in Fig. 2(b) for brevity, we sequentially
apply three such layers to improve the transformation capability of our EBFA module.

3.2 PSEUDO-BURST FEATURE FUSION MODULE

Existing burst image processing techniques (Bhat et al., 2021a;b) separately extract and align fea-
tures of burst images and usually employ late feature fusion mechanisms, which can hinder flexible
information exchange between frames. We instead propose a pseudo-burst feature fusion (PBFF)
mechanism (see Fig. 3 (a)). This PBFF module generates feature tensors by concatenating the cor-
responding channel-wise features from all burst feature maps. Consequently, each feature tensor
in the pseudo-burst contains complimentary properties of all actual burst image features. Process-
ing inter-burst feature responses simplifies the representation learning task and merges the relevant
information by decoupling the burst image feature channels. Given the aligned burst feature set
e =

{
ebc
}b∈[1:B]

c∈[1:f ]
of burst size B and f number of channels, the pseudo-burst is generated by,

Sc = W ρ
(〈
e1
c , e

2
c , · · · , eBc

〉)
, s.t. c ∈ [1 : f ], (5)

where, 〈·〉 represents concatenation, e1
c is the cth feature map of 1st aligned burst feature set e1, W ρ

is the convolution layer with f output channel, and S = {Sc}c∈[1:f ] represents the pseudo-burst of
size f × f ×H ×W . In this paper, we use f = 64.

Even after generating pseudo-bursts, obtaining its deep representation is essential. For this we use a
light-weight (3-level) UNet to extract multi-scale features (MSF) from pseudo-bursts. We use shared
weights in the UNet, and also employ our FPM (Sec. 3.1.1) instead of regular convolutions.

3.3 ADAPTIVE GROUP UPSAMPLING MODULE

Upsampling is the final key step to generate the super-resolved image from LR feature maps. Ex-
isting burst SR methods (Bhat et al., 2021a;b) use pixel-shuffle layer (Shi et al., 2016) to perform
upsampling in one-stage. However, in burst image processing, information available in multiple
frames can be exploited effectively to get into HR space. To this end, we propose to adaptively and
progressively merge multiple LR features in the upsampling stage. For instance, on the one hand it
is beneficial to have uniform fusion weights for texture-less regions in order to perform denoising
among the frames. On the other hand, to prevent ghosting artifacts, it is desirable to have low fusion
weights for any misaligned frame.
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FIGURE 3: (a) Pseudo-burst is generated by exchanging information across frames such that each feature
tensor in the pseudo-burst contains complimentary properties of all frames. Pseudo bursts are processed with
(shared) UNet to extract multi-scale features. (b) AGU module handles pseudo-bursts features in groups and
progressively performs upscaling. (c) Schematic of dense-attention based upsampler.

Fig. 3(b) shows the proposed adaptive group upsampling (AGU) module that takes as input the
feature maps S = {Sc}c∈[1:f ] produced by the pseudo-burst fusion module and provides a super-
resolved output via three-level progressive upsampling. In AGU, we sequentially divide the pseudo-
burst features into groups of 4, instead of following any complex selection mechanism. These groups
of features are upsampled with the architecture depicted in Fig. 3(c) that first computes a dense
attention map (ac), carrying attention weights for each pixel location. The dense attention maps are
element-wise applied to the respective burst features. Finally, the upsampled response for a given
group of features Ŝg =

{
Si : i ∈ [(g − 1) ∗ 4 + 1 : g ∗ 4]

}g∈[1:f/4] ⊂ S and associated attention
maps âg at the first upsampling level (Level I in Fig. 3(b)) is formulated as:

Sg×2 = WT

(〈
Ŝg � âg

〉)
, and âg = ψ

(
W1

(
W1

(
g∗4∑

i=(g−1)∗4+1

Si

)))
, (6)

where ψ (·) denotes the softmax activation function, WT is the 3×3 Transposed convolution layer,
and âg ∈ R4×f×H×W represents the dense attention map for gth burst feature response group (Ŝg).

To perform burst SR of scale factor ×4, we need in fact ×8 upsampling2. In AGU, we employ three
levels of progressive upsampling due the dimensionality of the pseudo-bursts (Sc ∈ R64×64×H×W ).
We form 16, 4 and 1 feature groups at levels I, II, and III, respectively. Upsampler at each level is
shared among groups to avoid the increase in network parameters.

4 EXPERIMENTS

We evaluate the BIPNet and SOTA approaches on real and synthetic datasets for (a) burst super-
resolution, and (b) burst low-light image enhancement. The source code and trained models will be
made available to the public.

Implementation Details. Our BIPNet is end-to-end trainable and needs no pretraining of any mod-
ule. For network parameter efficiency, all burst frames are processed with shared BIPNet modules
(FPM, EBFA, PBFF and AGU). Overall, the proposed network contains 6.67M parameters. We

2The actual task is to upsample by ×4, additional ×2 is due to the mosaicked RAW LR frames.
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TABLE 1: Performance evaluation on synthetic
and real burst validation sets (Bhat et al., 2021a)
for ×4 burst super-resolution.

Methods SyntheticBurst (Real) BurstSR
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Single Image 36.17 0.909 46.29 0.982
Deudon et al. (2020) 37.45 0.92 46.64 0.980
DBSR (Bhat et al., 2021a) 40.76 0.96 48.05 0.984
LKR (Lecouat et al., 2021) 41.45 0.95 - -
MFIR (Bhat et al., 2021b) 41.56 0.96 48.33 0.985

BIPNet (Ours) 41.93 0.96 48.49 0.985

TABLE 2: Importance of BIPNet modules evaluated on
synthetic burst validation set for ×4 burst SR.

Modules A1 A2 A3 A4 A5 A6 A7 A8

Baseline 3 3 3 3 3 3 3 3
FPM (§3.1.1) 3 3 3 3 3 3 3
DAM (§3.1.2) 3 3 3 3 3 3
RAF (§3.1.2) 3 3 3 3 3
PBFF (§3.2) 3 3 3 3
MSF (§3.2) 3 3 3
AGU (§3.3) 3 3
EBFA (§3.1) 3

PSNR 36.38 36.54 38.39 39.10 39.64 40.35 41.25 41.55

Demosaick + DBSR LKR BIPNet HR
SISR (Bhat et al., 2021a) (Lecouat et al., 2021) (Ours) Ground-truth.

FIGURE 4: Visual results for ×4 burst SR on SyntheticBurst dataset (Bhat et al., 2021a). Compared to other
approaches, our BIPNet yields images that are more vivid and visually closer to the ground-truth.

train two separate models: (1) SR on synthetic data, and (2) image enhancement. The models are
trained with Adam optimizer for 300 epochs for synthetic SR and 100 epochs for image enhance-
ment. While for SR on real data, we fine-tuned our BIPNet for 15 epochs with pre-trained weight
on SyntheticBurst dataset. Cosine annealing strategy (Loshchilov & Hutter, 2016) is employed to
steadily decrease the learning rate from 10−4 to 10−6 during training. We use horizontal and vertical
flips for data augmentation. Additional network details are given in Appendix B.

4.1 BURST SUPER-RESOLUTION

We perform SR experiments for scale factor ×4 on the SyntheticBurst and BurstSR (real-world)
datasets, recently presented in (Bhat et al., 2021a).

Datasets. (1) SyntheticBurst dataset consists of 46,839 RAW bursts for training and 300 for vali-
dation. Each burst contains 14 LR RAW images (each of size 48×48 pixels) that are synthetically
generated from a single sRGB image. Each sRGB image is first converted to the RAW space using
the inverse camera pipeline (Brooks et al., 2019). Next, the burst is generated with random rotations
and translations. Finally, the LR burst is obtained by applying the bilinear downsampling followed
by Bayer mosaicking, sampling and random noise addition operations. (2) BurstSR dataset consists
of 200 RAW bursts, each containing 14 images. To gather these burst sequences, the LR images and
the corresponding (ground-truth) HR images are captured with a smartphone camera and a DSLR
camera, respectively. From 200 bursts, 5,405 patches are cropped for training and 882 for validation.
Each input crop is of size 80×80 pixels.

SR results on synthetic data. We evaluate our BIPNet with the several burst SR method such as
HighResNet (Deudon et al., 2020), DBSR (Bhat et al., 2021a), LKR (Lecouat et al., 2021), and
MFIR (Bhat et al., 2021b) for ×4 upsampling. Table 1 shows that our method performs favor-
ably well. Specifically, our BIPNet achieves PSNR gain of 0.37 dB over the previous best method
MFIR (Bhat et al., 2021b) and 0.48 dB over the second best approach (Lecouat et al., 2021).
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(a) Results on SyntheticBurst dataset

(b) Results on real-world BurstSR dataset

1st frame DBSR MFIR BIPNet HR
input burst (Bhat et al., 2021a) (Bhat et al., 2021b) (Ours) Ground-truth.

FIGURE 5: Comparisons for ×4 burst super-resolution on SyntheticBurst and BurstSR datasets (Bhat et al.,
2021a). Our BIPNet produces more sharper and clean results than other competing approaches. Many more
examples are provided in Appendix C.

Fig. 4 shows that the reproductions of the competing algorithms contain color shifts (top row), and
less vivid than those produced by our BIPNet (bottom row). Similarly, visual results provided in
Fig. 5(a) show that the super-resolved images produced by our method are more sharper and faithful
to the ground-truth than those of the other algorithms. Our BIPNet is capable of reconstructing
structural content and fine textures, without introducing artifacts and color distortions. Whereas, the
reproductions of DBSR, and MFIR contain splotchy textures.

FIGURE 6: Results for ×8 burst SR on SyntheticBurst
dataset (Bhat et al., 2021a). (a) 1st burst frame. (b)
Our BIPNet. (c) Ground truth. Our method effectively
recovers image details in extremely challenging cases.

To show the effectiveness of our method on
large scale factor, we perform experiments for
the×8 burst SR. We synthetically generate LR-
HR pairs following the same procedure as we
described above for SyntheticBurst dataset. Vi-
sual results in Fig. 6 show that our BIPNet is
capable of recovering rich details for such large
scale factors as well, without any artifacts. Ad-
ditional examples can be found in Appendix C.

SR results on real data. The LR input
bursts and the corresponding HR ground-truth
in BurstSR dataset suffer with minor mis-
alignment as they are captured with differ-
ent cameras. To mitigate this issue, we
use aligned L1 loss for training and aligned
PSNR/SSIM for evaluating our model, as in

previous works (Bhat et al., 2021a;b). To perform training on real BurstSR dataset for ×4 upsam-
pling, we initialize our BIPNet with the pre-trained weights on SyntheticBurst dataset. The image
quality scores are reported in Table 1. Compared to the previous best approach MFIR (Bhat et al.,
2021b), our BIPNet provides performance gain of 0.16 dB. The visual comparisons in Fig. 5(b)
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TABLE 3: Burst low-light image enhance-
ment methods evaluated on the SID dataset
(Chen et al., 2018). Our BIPNet provides 3.07
dB improvement over the previous best algo-
rithm in literature.

Methods PSNR ↑ SSIM ↑ LPIPS ↓
Chen et al. (2018) 29.38 0.892 0.484
Maharjan et al. (2019) 29.57 0.891 0.484
Zamir et al. (2021) 29.13 0.881 0.462
Zhao et al. (2019) 29.49 0.895 0.455
Karadeniz et al. (2020) 29.80 0.891 0.306

BIPNet (Ours) 32.87 0.9365 0.305
FIGURE 7: Burst low-light image enhancement on Sony
subset (Chen et al., 2018). (a) Karadeniz et al. (2020). (b)
BIPNet (Ours). (c) Ground truth. Our BIPNet better pre-
serves color and structural detail in the enhanced images.

show that our BIPNet is more effective in recovering fine details in the reproduced images than
other competing approaches.

Ablation Study. Here we present ablation experiments to demonstrate the impact of each individ-
ual component of our approach. All ablation models are trained for 100 epochs on SyntheticBurst
dataset (Bhat et al., 2021b) for SR scale factor ×4. Results are reported in Table 2. For the baseline
model, we employ Resblocks (Lim et al., 2017) for feature extraction, simple concatenation oper-
ation for fusion, and transpose convolution for upsampling. The baseline network achieves 36.38
dB PSNR. When we add the proposed modules to the baseline, the results improve significantly
and consistently. For example, we obtain performance boost of 1.85 dB when we consider the de-
formable alignment module DAM. Similarly, RAF contributes 0.71 dB improvement towards the
model. With our PBFF mechanism, the network achieves significant gain of 1.25 dB. AGU brings
1 dB increment in the upsampling stage. Finally, EBFA demonstrate its effectiveness in correct-
ing alignment errors by providing 0.3 dB improvement in PSNR. Overall, our BIPNet obtains a
compelling gain of 5.17 dB over the baseline method.

4.2 BURST LOW-LIGHT IMAGE ENHANCEMENT

To further demonstrate the effectiveness of BIPNet, we perform experiments for burst low-light
image enhancement. Given a low-light RAW burst, our goal is to generate a well-lit sRGB image.
Since the input is mosaicked RAW burst, we use one level AGU to obtain the output.

Dataset. SID dataset (Chen et al., 2018) consists of input RAW burst images captured with short-
camera exposure in low-light conditions, and their corresponding ground-truth sRGB images. Fol-
lowing Karadeniz et al. (2020), we use the Sony subset of SID to train the network. The Sony subset
contains 161, 20 and 50 distinct burst sequences for training, validation and testing, respectively.

Burst low-light image enhancement results. In Table 3, we report results of several low-light
enhancement methods. Our BIPNet yields significant performance gain of 3.07 dB over the ex-
isting best method (Karadeniz et al., 2020). Similarly, the visual example provided in Fig. 7 also
corroborates the effectiveness of our approach.

5 CONCLUSION

We present a burst image restoration and enhancement framework which is developed to effectively
fuse complimentary information from multiple burst frames. Instead of late information fusion
approaches that merge cross-frame information towards late in the pipeline, we propose the idea of
pseudo-burst sequence that is created by combining the channel-wise features from individual burst
frames. In order to avoid mismatch between pseudo-burst features, we propose an edge-boosting
burst alignment module that is robust to camera-scene movements. The pseudo-burst features are
enriched using multi-scale information and later progressively fused to create upsampled outputs.
Our state-of-the-art results on two image restoration and enhancement applications corroborate the
generality and effectiveness of BIPNet.
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A APPENDIX

Here we describe the architectural details of the proposed BIPNet, and present additional visual
comparisons with existing state-of-the-art approaches for burst SR.

B NETWORK ARCHITECTURE DETAILS

B.1 EDGE BOOSTTING FEATURE ALIGNMENT (EBFA)

The proposed feature processing module (FPM) consists of three residual-in-residual (RiR) groups.
Each RiR is made up of three RGCAB and each RGCAB contains basic residual block followed by
global context attention as shown in Fig.2(a). Although, the deformable convolution layer is shown
only once in the Fig.2(b) for simplicity, we apply three such layers to improve the feature alignment
ability of the proposed EBFA module.

B.2 PSEUDO BURST FEATURE FUSION (PBFF)

The proposed PBFF is as shown in Fig.3(a). It consists of multi-scale feature (MSF) extraction
module which is made up of light-weight 3-level UNet. We employed one FPM (with 2 RiR and 2
RGCAB in each RiR) after each downsample and upsample convolution layer. Number of convo-
lution filters are increased by a factor of 1.5 at each downsampling and decreased by the rate of 1.5
after each upsampling operation. We simply add features extracted at each level to the upsampled
features via skip connections.

B.3 ADAPTIVE GROUP UP-SAMPLING (AGU)

Our AGU module is shown in Fig.3(c). It aggregates the input group of pseudo bursts and pass
them through a bottleneck convolution layer of kernel size 1×1 followed by a set of four parallel
convolution layers, each with kernel size of 1×1 and 64 filters. Further, the outputs from previous
step are passed through the softmax activation to obtain the dense attention maps.

C ADDITIONAL VISUAL RESULTS FOR BURST SR

The results provided in Fig. C.1 and Fig. C.2 show that our method performs favorably on both real
and synthetic images for the scale factor . The true potential of the proposed approach is demon-
strated in C.3, where it successfully recover the fine-grained details from extremely challenging LR
burst images (that are downscaled by a factor of ×8).
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FIGURE C.1: Comparison for ×4 burst SR on SyntheticBurst dataset (Bhat et al., 2021a).
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BIPNet
(Ours)

HR
Ground-truth

FIGURE C.2: Comparison for ×4 burst SR on real BurstSR dataset (Bhat et al., 2021a). The reproductions
of our BIPNet are perceptually more faithful to the ground-truth than those of other methods.
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1st frame of input burst BIPNet (Ours) Ground-truth

FIGURE C.3: Results for ×8 SR on images from SyntheticBurst dataset (Bhat et al., 2021a). Our method
effectively recovers image details in extremely challenging cases.
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