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Abstract

Pre-trained language models (PLMs) have001
demonstrated their effectiveness in enhancing002
neural machine translation (NMT) tasks. While003
researchers have made numerous attempts to004
enhance the encoder, however, in decoder en-005
hancement, the existing method neglects intra-006
layer information fusion, potentially resulting007
in the underutilization of encoder information.008
In this paper, we propose a model featuring a009
parallel mechanism decoder, facilitating the in-010
tegration of PLM enhancements and enabling011
multi-granularity information fusion in the de-012
coder. We evaluate our proposed method on013
the IWSLT14 De-En task and obtain significant014
improvements in model performance with tiny015
modifications.016

1 Introduction017

Pre-trained language models, such as GPT (Rad-018

ford et al., 2018, 2019), BERT (Kenton and019

Toutanova, 2019), XLM (Conneau and Lample,020

2019), have been extensively utilized to improve021

neural machine translation tasks (Baziotis et al.,022

2020; Sun et al., 2021; Weng et al., 2022a), and023

make significant progress. Among these models,024

BERT has attracted considerable attention from re-025

searchers in recent years (Yang et al., 2020; Weng026

et al., 2020; Hwang and Jeong, 2023) due to its027

compact design, ease of use, and exceptional per-028

formance quality.029

From a structural perspective, BERT can be con-030

sidered as a pre-trained encoder. Since NMT typ-031

ically employs an "encoder-decoder" framework,032

efforts to leverage BERT for NMT enhancement033

generally focus on two key areas: encoder enhance-034

ment and decoder enhancement.035

Regarding encoder enhancement, Guo et al.036

(2020) effectively relieves the catastrophic for-037

getting problem (McCloskey and Cohen, 1989)038

during fine-tuning by introducing adapters while039

keeping the pre-trained parameters frozen. Weng 040

et al. (2022b) incorporates multi-task learning and 041

a Layer-wise Coordination Structure to better ex- 042

ploit BERT’s encoding capability, thus enhancing 043

the overall quality of the translation model. Duan 044

and Zhao (2023) further enhances the encoder’s 045

encoding capability through multi-task fine-tuning 046

and Half-layers Knowledge Distillation techniques. 047

However, methods to integrate BERT into the 048

decoder are relatively scarce. This may be due to 049

significant differences between the decoder of trans- 050

lation models and BERT in terms of structure, func- 051

tionality, etc., which limits its effectiveness in the 052

decoder (Ma et al., 2021). Simple fine-tuning meth- 053

ods often fail to yield substantial improvements in 054

the decoder (Weng et al., 2022b). Therefore, Duan 055

and Zhao (2023) first proposed a method that can 056

utilize BERT in the autoregressive decoder. By di- 057

viding the encoding and prediction functions of the 058

decoder, they can effectively use BERT to enhance 059

the encoding capability of the decoder. However, 060

this approach overlooks the decoder’s ability to in- 061

tegrate information from both the source and target 062

sides. It only uses the outputs of the BERTs for 063

the source and target languages, thereby depriving 064

the decoder of the ability to fuse information from 065

the source language across multiple granularities, 066

ultimately constraining the model’s final quality. 067

In this paper, to effectively utilize BERT in the 068

decoder of translation models while achieving high- 069

quality encoding, information fusion, and predic- 070

tion capabilities, we propose a parallel mechanism 071

decoder model. Each layer of the decoder consists 072

of two parallel sub-layers: the encoding sub-layer 073

directly employs the BERT of the target language 074

to encode historical prediction information; the fu- 075

sion sub-layer initializes by the same BERT and 076

integrates information from the encoder output and 077

the decoder state of the previous layer. With this 078

method, our model can effectively leverage BERT’s 079

encoding and prediction capabilities while ensur- 080
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Figure 1: Structures of some existing autoregressive NMT models. The green layer indicates pre-trained BERT, the
blue layer indicates that the parameters are frozen, and the orange layer indicates that the parameters are trainable.

ing a comprehensive fusion of information from081

both source and target languages at each layer, so082

as to improve the translation quality of the model.083

We experimented on the IWSLT14 German-084

English dataset, and our model achieved 37.30085

BLEU, representing a significant improvement of086

0.82 BLEU over the baseline model. Furthermore,087

we conducted a series of comparative experiments088

to validate the effectiveness of our method.089

2 Related Work090

2.1 Transformer091

The vanilla Transformer (Vaswani et al., 2017)092

works as an encoder-decoder model, wherein the093

encoder encodes the source language, and the de-094

coder generates the target language translation095

word by word in an autoregressive fashion, relying096

on the encoder output and historical prediction.097

Given a parallel sentence pair {x,y}, where098

x and y represent sentences in the source and099

target languages, respectively. The translation100

process of the Transformer can be expressed as101

y = DEC(ENC(x)), where the encoder ENC and102

decoder DEC are each composed of multiple lay-103

ers. Illustrated in Figure 1(a), the output Rn of104

each layer of the encoder can be calculated by:105

Rn = FFNn(S-ATTn(Rn−1)) (1)106

where S-ATT and FFN are self-attention network107

and feed-forward network, respectively. Similarly,108

the output Hn of each layer of the decoder can be109

calculated by:110

Hn = FFNn(C-ATTn(S-ATTn(Hn−1), RN ))
(2)111

where C-ATT is cross-attention network.112

Finally, the training objective L of the model is 113

to minimize the negative log-likelihood, defined as: 114

L = −logP (y|x; θ) (3) 115

116
P (y|x) = softmax(Linear(HN )) (4) 117

Where θ represents the model parameters, and 118

Linear denotes a linear layer that transforms the 119

last hidden states HN into the vocabulary dimen- 120

sion for prediction. 121

2.2 AB-Net 122

To enhance the quality of neural machine transla- 123

tion models leveraging pre-trained language mod- 124

els, Guo et al. (2020) introduced AB-Net. Illus- 125

trated in Figure 1(b), they utilize BERT models 126

of the source language and target language as the 127

primary components of the encoder and decoder, 128

respectively. Through the incorporation of adapters 129

(Bapna and Firat, 2019) at each layer and the freez- 130

ing of pre-trained BERT parameters, they effec- 131

tively mitigate the issue of catastrophic forgetting. 132

Considering the disparities between the parallel 133

nature of BERT pre-training tasks and the autore- 134

gressive decoding process, they choose to construct 135

a non-autoregressive translation model. In this 136

model, the encoder predicts the decoding length 137

additionally, and parallel decoding is executed in 138

the decoder. Consequently, the training objective 139

was adjusted to Masked-Prediction (Ghazvininejad 140

et al., 2019): 141

L = −
m∑
t=1

P (ym|yr,x; θa) (5) 142

where m represents the number of masked tokens, 143

ym and yr respectively denote the masked tokens 144
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Figure 2: Structures of parallel decoder model (Our) and serial decoder model. Each serial decoder layer is initialize
with two adjacent BERTT layers following Ma et al. (2021).

and the remaining tokens in y, and θa represents the145

parameters contained in all adapters in the encoder146

and decoder.147

2.3 External Coordinator148

Duan and Zhao (2023) first proposed a method149

to integrate BERT into the autoregressive decoder,150

termed the External Coordinator, by partitioning151

the self-attention and cross-attention networks of152

the Transformer decoder into two distinct compo-153

nents. As illustrated in Figure 1(c), they grouped154

the self-attention network S-ATT and feed-forward155

network FFN of the decoder as the the decoder, ini-156

tialized using BERT to encode historical prediction157

information. Furthermore, they introduced a coor-158

dinator (He et al., 2018), which takes the outputs159

of encoder and the decoder as inputs. Each layer160

of this coordinator comprised a cross-attention net-161

work C-ATTc and a new feed-forward network162

FFNc, responsible for prediction. Expanding on163

this framework, they further enhanced the transla-164

tion quality of the model by incorporating a series165

of auxiliary tasks to raise the capabilities of each166

part.167

3 Our Model168

Duan and Zhao (2023) achieved successful integra-169

tion of BERT into the decoder of the translation170

model by splitting the decoder. However, this ap-171

proach disrupted the multi-granularity interaction172

of encoding and decoding information. Motivated173

by previous works such as Guo et al. (2020); Ma174

et al. (2021); He et al. (2021), we take the self-175

attention network and cross-attention network in 176

segmentation within the decoder and combine them 177

in a parallel mechanism. Our method aims to pre- 178

serve the capacity for intra-layer interaction be- 179

tween encoding and decoding information while 180

separating the functionalities of self-attention and 181

cross-attention as accomplished in Duan and Zhao 182

(2023). 183

Specifically, our model is shown in Figure 2(a). 184

In this architecture, the encoder employs the source 185

language BERT. Thus, the output Rn of each layer 186

of the encoder can be represented as: 187

Rn = BERTn
s (x)

= FFNn(S-ATTn(Rn−1))
(6) 188

where BERTn
s (x) represents the nth layer of the 189

source language BERT. In each layer of the decoder, 190

we consider the self-attention network S-ATT and 191

the feed-forward network FFN as the encoding sub- 192

layer to encode historical information. Similarly, 193

the cross-attention network C-ATT and the newly 194

introduced feed-forward network FFNc are treated 195

as the fusion sub-layer, so as to integrate the context 196

representation Rn of the encoder output (referred 197

to as the fusion module). Therefore, the output Hn 198

of each layer of the decoder can be represented as: 199

Hn = BERTn
tc(H

n−1) + BERTn
ts(H

n−1) (7) 200
201

BERTn
tc(H

n−1) = FFNn
c (ATTn(Hn−1)) (8) 202

203
BERTn

ts(H
n−1) = FFNn(ATTn(Hn−1)) (9) 204

205
ATTn(Hn−1) = S-ATTn(Hn−1)+C-ATTn(Hn−1, RN )

(10) 206
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# Model #Trainable Parameters BLEU
1 Transformer 248M 34.15
2 Transformer + BERT init 200M 35.76
3 External Coordinator (Duan and Zhao, 2023) 329M 36.48
4 Serial Decoder 172M 36.65
5 Our 257M 37.30
6 Our + Freeze encoding sub-layer 171M 37.08

Table 1: The BLEU scores of the proposed model (Our) and the baseline methods on the IWSLT14 En-De task.
The number of trained parameters are also reported.

Model BLEU
AB-Net (serial decoder) 36.65
AB-Net (parallel decoder) 36.99

Table 2: The BLEU scores of the replicated AB-Net
(Guo et al., 2020) and with parallel mechanism decoder.

4 Experiment207

4.1 Datasets208

We evaluated our model on the IWSLT14 English-209

German task, with a training set containing 160k210

sentences pairs, and development and test sets in-211

cluding 2k and 5k sentences pairs, respectively. We212

preprocessed the data following Ma et al. (2021),213

and filtered out training data with lengths exceed-214

ing 400.215

4.2 Model Configurations216

For the pre-trained BERT models used, follow-217

ing Duan and Zhao (2023), we employed ‘bert-218

base-uncased‘ for English and ‘dbmdz/bert-base-219

german-uncased‘ for German. Our model param-220

eters are consistent with those of the pre-trained221

models used, and we fully utilized the tokenization222

and vocabulary of the pre-trained models.223

4.3 Results224

Main experimental results are presented in Table225

1. We used a Transformer baseline with a config-226

uration similar to the pre-trained model (line 1)227

and compared the model initialized using those pre-228

trained model (line 2). For existing methods, we229

reproduced the External Coordinator (Duan and230

Zhao, 2023) but omitted their extensive auxiliary231

tasks and embedding adjustments to ensure a rel-232

atively fair comparison of model structures (line233

3). Our model (line 5) achieved 37.30 BLEU ,234

which represents an improvement of 3.15 and 1.54235

BLEU over random initialization and BERT initial-236

ization for the Transformer, respectively, and a 0.82237

BLEU improvement over the External Coordinator. 238

Our results indicate that our method can further en- 239

hance model quality by multi-granularity encoding- 240

decoding information interaction, besides relieve 241

catastrophic forgetting. 242

To further verify the effectiveness of the parallel 243

mechanism, as shown in Figure 2(b), we imple- 244

mented a serial mechanism decoder referring to 245

Ma et al. (2021) (line 4). The results reveal that 246

the parallel mechanism yielded a more larger im- 247

provement compared to the serial structure, with 248

an increase of 0.65 BLEU. Even when freezing the 249

encoding sub-layers to eliminate the influence of 250

trainable parameters (line 6), the parallel mecha- 251

nism still outperformed by 0.43 BLEU. 252

Finally, considering the similarity between our 253

model and AB-Net (Guo et al., 2020), we repli- 254

cated their work on non-autoregressive translation 255

tasks and adapted the serial adapter in the decoder 256

to a parallel mechanism. The results presented in 257

Table 2 indicate that even in non-autoregressive 258

tasks, the parallel mechanism can achieve a 0.34 259

BLEU improvement compared to the serial struc- 260

ture, further underscoring the effectiveness of our 261

proposed parallel mechanism. 262

5 Conclusion 263

In this paper, we propose a parallel mechanism 264

decoder, which encodes historical predication in- 265

formation and fuses source language information 266

in the decoder. It allows for more effective utiliza- 267

tion of pre-trained BERT and more comprehensive 268

fusion of encoding and decoding information, to 269

enhance the quality of the model. Comparative 270

experiments with existing methods and a series of 271

evaluations demonstrate the effectiveness of our 272

model. 273
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6 Limitations274

Although our work has achieved some success,275

there are still existing the following limitations:276

• Due to time constraints, we just performed ex-277

periments on one translation task. We will fur-278

ther validate our method on translation tasks279

in different languages and data scale.280

• No attempts were combined with the multi-281

task framework proposed by existing methods.282

Hereafter, we will further try to combine the283

multi-task framework to explore more effec-284

tive model structure and training methods.285

• Just did try on the BERT pre-trained model.286

In the future, we will do research on other dif-287

ferent types of pre-trained language models.288
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