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ABSTRACT

Robots operating in the real world require both rich manipulation skills as well
as the ability to semantically reason about when to apply those skills. Towards
this goal, recent works have integrated semantic representations from large-scale
pretrained vision-language (VL) models into manipulation models, imparting them
with more general reasoning capabilities. However, we show that the conventional
pretraining-finetuning pipeline for integrating such representations entangles the
learning of domain-specific action information and domain-general visual informa-
tion, leading to less data-efficient training and poor generalization to unseen objects
and tasks. To this end, we propose PROGRAMPORT, a modular approach to better
leverage pretrained VL models by exploiting the syntactic and semantic structures
of language instructions. Our framework uses a semantic parser to recover an exe-
cutable program, composed of functional modules grounded on vision and action
across different modalities. Each functional module is realized as a combination
of deterministic computation and learnable neural networks. Program execution
produces parameters to general manipulation primitives for a robotic end-effector.
The entire modular network can be trained with end-to-end imitation learning
objectives. Experiments show that our model successfully disentangles action and
perception, translating to improved zero-shot and compositional generalization in a
variety of manipulation behaviors. Project webpage at: https://progport.github.io.

1 INTRODUCTION

Robotic manipulation models that map directly from raw pixels to actions are capable of learning
diverse and complex behaviors through imitation. To enable more abstract goal specification, many
such models also take as input natural language instructions. However, this vision-language manipu-
lation setting introduces a new problem: the agent must jointly learn to ground language tokens to its
perceptual inputs, and correspond this grounded understanding with the desired actions. Moreover, to
fully leverage the flexibility of language, the agent must handle novel vocabulary and compositions
not explicitly seen during training, but specified at test time (Fig. 1).

(a) Training Examples (b) Zero-Shot Gen. Test

“Pack the yellow flower
into the brown box”

“Push the green blocks 
into the blue square” 

“Pack the ring into the 
brown box”

“Push the yellow flower
into the blue square”

(c) Compositional Gen. Test

Figure 1: Zero-Shot and Compositional Generalization: Our framework, PROGRAMPORT, is
capable of generalizing to combinations of unseen objects and manipulation behaviors at test time.
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Figure 2: (a) Existing manipulation models entangle visual grounding from pretrained VL models with
task-specific policy learning. (b) Our disentangled approach leverages program-based representation
of language semantics to yield faithful VL-grounding and improved genearlization.

To these ends, many recent works have relied on large pretrained vision-language (VL) models such
as CLIP (Radford et al., 2021) to tackle both grounding and zero-shot generalization. As shown
in Fig. 2a, these works generally treat the pretrained VL model as a semantic prior, for example,
by partially initializing the weights of image and text encoders with a pretrained VL model (Ahn
et al., 2022; Khandelwal et al., 2022; Shridhar et al., 2022a). These models are then updated via
imitating expert demonstrations. However, this training scheme entangles the learning of domain-
specific control policies and domain-independent vision-language grounding. Specifically, we find
that these VL-enabled agents overfit to their task-specific data, leveraging shortcuts during training
to successfully optimize their imitation learning (IL) objective, without learning a generalizable
grounding of language to vision. This phenomenon is particularly apparent when the agent is given
language goals with unknown concepts and objects, or novel compositions of known concepts and
objects. For example, an agent that overfits to packing shapes into a box can fail to generalize to
other manipulation behaviors (e.g. pushing) involving the same shapes.

In this work, we introduce PROGRAMPORT, a program-based modular approach that enables more
faithful vision-language grounding when incorporating pretrained VL models for robotic manip-
ulation. Given the natural language instruction, we first use a Combinatory Categorial Grammar
(CCG) (Steedman, 1996) to parse the sentence into a “manipulation program,” based on a compact but
general domain-specific language (DSL). The program consists of functional modules that are either
visual grounding modules (e.g., locate all objects of a given category) or action policies (e.g., produce
a control parameter). This enables us to directly leverage a pretrained VL model to ground singular,
independent categories or attribute descriptors to their corresponding pixels, and thus disentangles
the learning of visual grounding and action policies (Fig. 2b).

Our programmatically structured, modular design enables PROGRAMPORT to successfully learn more
performant imitation policies with fewer data across 10 diverse tasks in a tabletop manipulation
environment. We show that after training on a subset of objects, visual properties, and actions, our
model can zero-shot generalize to completely different subsets and reason over novel compositions
of language descriptors, without further finetuning (Fig. 1).

2 BACKGROUND

Problem formulation. We take a manipulation primitive-based approach to robot learning. At a
high level, we assume our robot is given a set of primitives P (e.g., pick, place, and push). Such
primitives are usually defined by interaction modes between the robot and objects, parameterized by
continuous parameters, and their composition spans a wide range of tasks. Throughout the paper, we
will be using the simple primitive set P = {pick,place} in a tabletop environment as the example,
and extend our framework to other primitives such as pushing in the experiment section.

Therefore, our goal is to learn a policy π mapping an input observation ot at time t to an action at.
Each at is a tuple of two control parameters (Tpick,Tplace), which, in the pick-and-place setting,
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parameterizes the poses for the robot end effector when picking and placing objects, respectively.
This formulation also generalizes to other primitives such as pushing, in which case the control
parameters are the pre and post-push locations. More specifically, in a language-guided tabletop
manipulation task, our observation is given by ot = (xt, lt). Here, xt ∈ RH×W×4 is the top-down
orthographic RGB-D projection of the 3D visual scene, while lt is a natural language description of
the desired goal. The control parameters Tpick,Tplace both lie in SE(2).

To learn such a policy, we assume access to a set of expert demonstrations D =

{d1, d2, . . . , dn}, each consisting of discrete time-indexed scene-language-action tuples so that
di = {(x1, l1,a1), (x2, l2,a2), . . . , (xj , lj ,aj)}. The policy π can be trained with an imitation
learning objective by randomly sampling a particular tuple at time t from any demonstration.

Vision-language manipulation. Akin to Transporter Networks (Zeng et al., 2020), our policy π is
composed of two functions, Qpick and Qplace, outputting dense pixelwise action values over RH×W ,
and operating in sequence. Qpick first decides a particular pixel location Tpick in the top-down visual
field to pick the target object; Qplace then conditions on the pick location to decide a particular place
pose Tplace for the object:

Tpick = argmax
(u,v)∈H×W

Qpick ((u, v) ∣ xt, lt) , Tplace = argmax
τi∈{τ}

Qplace (τi∣xt, lt,Tpick) (1)

where poses representing the manipulation end effector primitives are apriori discretized into the
set {τ}, composed of discrete pixel locations and a discrete set of 2D rotation angles. Recently,
CLIPort (Shridhar et al., 2022a) proposed to integrate pretrained vision-language (VL) models into
such frameworks. Shown in Fig. 2a, in CLIPort, both Qpick and Qplace are based on two-stream fully-
connected network (FCN) architectures. The encoders of the FCNs are initialized from pretrained
weights of CLIP (Radford et al., 2021), while the control parameter decoders are randomly initialized
and optimized. Similar paradigms have also been applied to other manipulation environments such as
Khandelwal et al. (2022) and Ahn et al. (2022).

While the pretraining-finetuning framework can leverage features from the pretrained CLIP encoders
to inform the model on a wide array of vision-language semantics, its monolithic structure entangles
the learning of vision-language grounding and action policies. This has two drawbacks: poor data
efficiency and overfitting. More specifically, since training data will only contain a finite number
of compositions of action, category, and property terms, the model usually fails to generalize to
manipulation instructions that contain novel compositions of seen terms and unseen terms.

3 PROGRAMPORT

The key idea of our framework PROGRAMPORT is that reliably utilizing pretrained vision-language
(VL) models in manipulation involves leveraging the structure of natural language. Given the visual
input and natural language instruction, PROGRAMPORT parses the instruction into a program based on
a domain-specific language (DSL). Each generated program corresponds to a hierarchical structure
of functional modules implemented by neural networks, each fulfilling a specific operation over the
vision or action representation. The program executor executes the program upon the visual input
and derives the control parameters to action primitives. This compositional design disentangles the
learning for visual grounding modules (e.g., locating the objects being referred to) and the action
modules (e.g., predicting the control parameters). Concretely, it enables us to directly leverage
pretrained VL models such as CLIP as the visual grounding module without further finetuning, and
to only focus on learning action modules, which improves the transparency, data efficiency, and the
generalization of the system. A visual overview of our framework is available in Fig. 3.

In the remainder of this section, we first describe the structure of our manipulation programs, and how
they are derived from natural language instructions (Section 3.1). We then detail the neural modules
which realize their execution (Section 3.2). Finally, we specify the training paradigm (Section 3.2).

3.1 PROGRAMMATIC REPRESENTATIONS OF MANIPULATION INSTRUCTIONS

At the core of the proposed PROGRAMPORT framework is a programmatic representation for instruc-
tions. Illustrated in Fig. 2b, we use a program to represent the underlying semantics of the natural
language instruction. Each program has a hierarchical structure composed of functional modules.
Each functional module takes the outputs from its predecessors, the visual input, and optionally
additional concepts from the language (e.g., red) and computes the outputs (e.g., an attention mask).
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Figure 3: The execution of a manipulation program. A CCG parser first generates a manipulation
program. The task-agnostic visual grounding modules then identify visual semantics associated with
the desired objects and targets. Finally, the task-specific action modules leverage these grounding
results to output the manipulation control parameters.

We present the detailed definition of our domain-specific language (DSL) in Appendix A.1. All
functional modules can be categorized into two groups: visual grounding modules and action
modules. Visual grounding modules take as input language descriptors, and return spatial masks over
the corresponding locations in the visual scene. In this paper, the only visual grounding module we
consider is the filter operation, which localizes objects that have certain properties (as in filter(blue,
...) will return blue objects in the scene). In contrast, action modules generate control parameters
for robot primitives. They take as input the outputs from visual grounding modules. For example,
the goal module generates a 2D pose that has a specified spatial relationship with another object (as
in goal(in, ...) will return a location in the stated object). The do(pack, ..., ...) operator takes three
arguments: the action name pack, the object to be packed, and the goal location, both specified as
masks over the input image, and generates the control parameter for the robot’s next move.

Semantic parsing with a combinatory categorial grammar. To parse language instructions into a
program structure, we use the Combinatory Categorial Grammar (CCG) formalism (Steedman, 1996).
A CCG parser is composed of a small (less than 10) set of universal categorial grammar rules and a
domain-specific lexicon. Each lexicon entry maps a natural language word (e.g., red) to its syntactic
type (e.g., N/N) and semantic form (e.g., λx.filter(red, x)). The notation N/N indicates that this word
can be combined with a word on its right with type N (noun), and the semantic form indicates that
this word corresponds to a visual grounding module that selects red objects from the scene.

PROGRAMPORT uses a predefined lexicon, manually specified by the programmers. We choose
to use a predefined CCG for three main reasons. First, CCG enables a compact definition of a
domain-specific semantic parser. For each word in the vocabulary, we only need to annotate 1 or
2 entries. Second, the CCG parser is naturally compositional: given only the syntax and semantic
forms for individual words, it is able to parse whole sentences with complex linguistic structures
such as nested prepositional phrases. Third, and most importantly, the CCG parser can handle
unknown words at test time. In particular, following work on syntactic bootstrapping (Abend et al.,
2017; Alishahi & Stevenson, 2008), for a novel word (e.g., pack the daxy shape into the box), the
parser first “guesses” its syntactic type by ensuring that the entire sentence parses successfully
(in this case, the inferred syntactic type is N/N), and predicts its semantic form following a prior
distribution of p(semantics∣syntax), under the current lexicon. In this case, the predicted semantic
form is λx.filter(daxy, x).

3.2 PROGRAMPORT ARCHITECTURE

PROGRAMPORT executes the parsed programs by following their hierarchical structures. Overall,
both visual grounding and action modules consume outputs from their predecessors and individual
concepts parsed by the CCG, instead of the entire language instruction, and produce outputs. By
disentangling manipulation in such a structured fashion, our architecture can learn to flexibly leverage
vision-semantic priors across a myriad of specific manipulation contexts.
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Visual grounding modules. The key functionality of a visual grounding module is to localize visual
regions corresponding to objects with a given language-specified property (i.e., filter(flower, ...)). To
imbue our manipulation model with semantic understanding of diverse object properties and spatial
relationships, including those unseen in the manipulation demonstration data, we borrow from the
recent zero-shot semantic segmentation model MASKCLIP (Zhou et al., 2022). Given the input image
xt and a singular concept c (e.g., flower), we use the image encoder G and text encoder H from a
pretrained CLIP model to obtain deep features G(xt) ∈ RH′×W ′×D1 andH(c) ∈ RD2 , respectively*.
Here, we denote the spatial dimensions of the visual features as H ′ ×W ′, and the feature dimensions
of the visual and language streams as D1,D2, respectively.

Recall that vanilla CLIP uses attention pooling to pool the visual features at different spatial locations
into a single feature vector, and apply a linear layer to align the vector with the language encoding.
We adopt a simple modification from MASKCLIP to achieve a similar semantic alignment of features,
while preserving the spatiality of G(xt). In particular, we initialize two 1 × 1 convolution layers
Cv and Cl with weights from the penultimate and last linear layers of the CLIP attention pooling
mechanism, respectively. The Cv layer is initialized from the value encoder in the QKV-attention
layer (Vaswani et al., 2017), while the Cl layer is initialized from the last linear layer. Applying them
sequentially will project the visual feature into the same space as the language feature. Finally, our
grounding module Fgrounding generates a dense mask over image regions of concept c via:

Fgrounding(xt,c) = ∑[TILE (H(c)) ⊙ Cl (Cv (G(xt)))] ∈ RH′×W ′

, (2)

where TILE defines a spatial broadcast operator, in this case for the language embedding vector to
the spatial dimensions of the visual features, the ⊙ is the Hadamard product, and the summation
is over the feature dimension D2. This formulation of our semantic module allows us to leverage
CLIP’s large-scale vision-language pretraining to generalize semantics to open vocabulary categories,
including objects and their visual properties. Moreover, since our semantic program has decomposed
the input language phrase lt into individual visual concepts, we can compose multiple filter programs
with the intersection operation. Specifically, this is implemented as in NS-CL (Mao et al., 2019) by
taking the element-wise min of the generated masks, parsing out image regions that do not satisfy
the combination of language descriptors.

Action modules. At their core, our action modules extend the architecture from CLIPORT, and finally
generate the control parameters (Tpick,Tplace). In the pick-and-place setting, the visual grounding of
the object to be picked (i.e., the mask output by the corresponding filter operations) can be directly
interpreted as a distribution for Tpick. Therefore, in this section, we will focus on how PROGRAMPORT
predicts Tplace conditioned on Tpick, the visual grounding of the target location (e.g., the orange box),
and the desired relation (e.g., in). The corresponding module is the “goal” operator. There are two
design principles. First, besides the image and text, the action modules should also be conditioned
on the grounding results from visual grounding modules (i.e., a spatial grounding map indicating
the position of target objects). Second, we want to prevent overfitting the action module to visual
categories presented at training time. Therefore, we extend the architecture for Qplace to take the
spatial grounding maps from previous visual modules with the following modifications.

First, we bilinearly upsample or downsample the input masks to the spatial dimensions of different
layers within the CLIPort feature backbone, and multiply the interpolated grounding map with these
intermediate layers. In contrast to other fusion strategies such as concatenation, this fusion strategy
ensures that the grounding map will not simply be ignored by the action modules. Second, we
upsample the grounding map to the spatial dimensions of the output action maps, and perform direct
element-wise matrix multiplication with the action map. Since the grounding map can be viewed as
a mask of the objects being referred to, this multiplication effectively forces the action modules to
attend to regions where pick objects and place locations are described in the manipulation instruction.
Overall, the end-effector poses in SE(2) can be output by appropriately adapting Eq. (1):

Tplace = argmax
τi∈{τ}

Up (Fgrounding) ⊙ Qplace (τi∣xt, lt,Tpick,Fgrounding) , (3)

where Up(⋅) is an upsampling operator, and ⊙ is the Hadamard product. More details are available
in Appendix A.6. In the simple SE(2) pick-and-place setting under the Transporter or CLIPort
framework, simply specifying the locations of the object and its target pose is sufficient, and thus
do(pack, ..., ...) operates as an identity function.

*In practice we use a language prompt instead of a single word, following MASKCLIP (Zhou et al., 2022).
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Example. Recall that the program for the instruction “pack the blue hexagon in the orange box”
is given by do(goal(filter(filter(hexagon), blue), filter(filter(box), orange), in), pack). As shown
in Fig. 3, our first set of filter modules take the input image and output masks corresponding to
“hexagon” shapes and “box” objects. The next stage similarly filters for “blue” and “orange” objects.
To compose these adjectives with their corresponding nouns from the previous stage, we take their
elementwise min, returning masks corresponding to “blue hexagon” and “orange box”, respectively.
Next, our goal module takes the masks for the referred objects, which correspond to the picked
object and its general place region, and outputs a distribution over SE(2) pose for the object that
is semantically consistent with the “in” target location. Finally, our do module outputs the final
control parameters to the robot end-effector. In this case, it contains Tpick from the execution of
filter(filter(hexagon), blue), and the Tplace output by the goal module.

Training. Our model can be trained in an end-to-end fashion, given the observation-action tuples
(xt, lt,at), via an imitation learning objective. Note that each action at is itself a tuple described by
(Tpick,Tplace). Thus, given a random observation-action tuple (xt, lt,at) sampled from some expert
demonstration di ∈ D at time t , we fit our model by minimizing the cross-entropy loss:

L = −ETpick [log softmax(Qpick((u, v)∣xt, lt)] −ETplace [log softmax(Qplace(τi∣xt, lt,Tpick)] (4)

4 EXPERIMENTS

In this section, we will show that the modularity of PROGRAMPORT enables better vision-language
grounding and generalization, which empirically translates to strong zero-shot generalization (i.e.,
understanding instructions with unseen visual concepts), and compositional generalzation (i.e.,
understanding novel combination of previously seen visual and action concepts). We also provide
validation of our approach on real world experiments in Appendix A.4.

Dataset. Our dataset extends the benchmark proposed by CLIPORT (Shridhar et al., 2022a), in turn
based on the Ravens benchmark from Zeng et al. (2020). The CLIPORT benchmark consists of 10
language-conditioned manipulation tasks in a PyBullet simulation environment. Tasks are performed
by a Universal Robot UR5e with a suction gripper end-effector. Every episode in a task is constructed
by sampling a set of objects and properties (such as object type, color, size etc.), and manipulating a
subset of the objects to some desired conformation, which is described by a language goal.

Model details, training, and evaluation. Our visual grounding modules use the weights from the
frozen, pretrained ViT-B/16 CLIP encoder. We train for 200k iterations with AdamW and a learning
rate of 0.0002. We use either n = 100 or n = 1000 training demonstrations, and evaluate on 100
test demonstrations. Our evaluation metric follows Shridhar et al. (2022a) based on the same CLIP
encoders, where a dense score between 0 (failure) and 100 (success) represents the fraction of the
episode completed correctly. For baselines, we compare to CLIPORT across two settings: the single
setting, where the model trains and tests on a single task at a time, and the multi setting, where the
model trains on all tasks at once, and is independently evaluated on each individual task.

4.1 ZERO-SHOT GENERALIZATION

To evaluate zero-shot generalization, all of our main results in Table 1 use the “unseen” variants of the
tasks, as described in Shridhar et al. (2022a). Concretely, the train and test splits of each task involve
different objects and object properties, with minimal overlap. For example, out of 11 total possible
colors for objects, only 3 are shared for both train and test episodes. Or for tasks involving real-world
objects from the Google Scanned Objects dataset (Downs et al., 2022), a total of 56 household
items are split into mutually exclusive sets of 37 train items and 19 test items. Crucially, for a
fair comparison, these test language descriptors are also entirely missing from the predefined CCG
lexicon, and so semantic goal parsing must rely on the probabilistic approach described in Section 3.1.
Our results show that our model effectively grounds object concepts described in language with the
visual scene, and with the exception of the align-rope task, outperforms our baselines across the
benchmark (Table 1). Align-rope is challenging for PROGRAMPORT because it is hard for the CLIP
model to ground abstract spatial concepts used in this task (e.g. front and back).

Data efficiency. Not only do we outperform the baselines by a large margin, but on many tasks,
our method does significantly better with 10× fewer demonstrations. For example, on the “packing-
shapes” task, our best-performing model trained on 100 demonstrations outperforms its corresponding
baseline trained on 1000 demonstrations by 25.0 points.
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packing-
box-pairs

packing-google-
objects-seq

packing-google-
objects-group

separating-
small-piles

separating-
large-piles

# demonstrations 100 1000 100 1000 100 1000 100 1000 100 1000

CLIPORT (single) 67.1 72.0 64.1 70.8 79.3 82.1 75.9 74.3 62.4 66.9
CLIPORT (multi) 77.1 72.3 66.9 71.6 77.0 81.7 65.9 63.7 54.2 59.1

PROGRAMPORT (single) 72.6 78.0 78.4 79.7 79.0 81.2 76.8 77.9 63.8 69.5
PROGRAMPORT (multi) 82.3 85.7 73.5 84.0 80.7 83.9 77.0 78.8 63.0 68.2

align-rope packing-shapes assembling-kits put-blocks-in-bowls towers-of-hanoi

# demonstrations 100 1000 100 1000 100 1000 100 1000 100 1000

CLIPORT (single) 84.8 94.1 42.0 38.0 32.2 34.7 36.8 29.9 94.6 99.0
CLIPORT (multi) 81.2 70.3 38.0 32.0 30.2 26.9 55.9 46.7 75.2 69.1

PROGRAMPORT (single) 77.5 86.9 52.0 54.0 40.6 42.4 38.2 38.7 97.6 98.4
PROGRAMPORT (multi) 78.4 89.1 57.0 63.0 39.2 46.8 54.2 57.7 97.0 96.3

Table 1: Zero-Shot Generalization. Training and validation splits for all tasks involve different
objects, object properties, or other spatial descriptors.

Input

“Pack the lion figure 
in the brown box”

ProgPort CLIPort

Figure 4: Qualitative pick and place affordances for PROGRAMPORT and CLIPORT. PROGRAMPORT
compositionally reasons over independent visual semantics in a zero-shot fashion, correctly picking
and placing the target object. CLIPORT identifies both pick object and place location incorrectly.

This data efficiency is derived from our improved grounding properties: by semantically parsing
and visually grounding one object concept at a time, we more effectively leverage the pretrained VL
model. Moreover, note that the best-performing CLIPORT models for different tasks are mostly the
single variants. This suggests the zero-shot performance of CLIPORT relies heavily on overfitting
to the actions of the specific task, as opposed to leveraging the general visual grounding enabled
by CLIP. With PROGRAMPORT, the gap between our single and multi model variants is much
smaller, and indeed the multi variants are often the stronger manipulators. PROGRAMPORT thus
leverages diverse visual and action information across tasks more effectively, and possesses scalability
with respect to both the number of demonstrations as well as the number of tasks.

Improved vision-language grounding. Qualitatively, we show more interpretable and robust
affordance maps compared to the baseline (Fig. 4). By grounding a single object or property at a time,
and then leveraging our DSL operations to compose together these masks, we ground the different
concepts. For Tpick, the lion figure is extremely small within the visual scene, and positioned in a
crowded area; our visual grounding modules are still able to compose the concepts of figure and
lion together in a zero-shot manner, informing an accurate pick affordance. Similarly, for Tplace, the
baseline is confused by the visual similarity between the box and the porcelain plate. By contrast,
our visual grounding modules compose box and brown together to focus on the left box-like object.

4.2 COMPOSITIONAL GENERALIZATION OF VISUAL GROUNDING AND BEHAVIORS

To evaluate compositional generalization, we introduce 4 new tasks which re-combine basic unary
object concepts from the original 10 tasks (Table 2). We do not train directly on these tasks; by
evaluating on them only, we assess the ability to reason compositionally about the distinct visual
properties, spatial relationships, and manipulation primitives learned at training time. For example,
the packing-location-box task contains instructions of the form “pack the {shape} into the {loc}
box”, where both shape and loc are objects and spatial descriptors seen independently throughout
various tasks at training time, but now appear in a test-time context that requires the model to reason
semantically over their combination. For a full specification of these tasks, please refer Appendix A.2.
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packing-color-box packing-location-box separating-location-piles pushing-shapes

100 1000 100 1000 100 1000 100 1000

CLIPORT (single) 23.0 24.0 11.0 13.7 48.1 43.8 2.4 3.2
CLIPORT (multi) 19.0 18.2 10.0 8.3 39.9 41.0 2.7 7.6

PROGRAMPORT (single) 64.0 68.0 56.0 62.5 69.2 72.4 32.3 36.9
PROGRAMPORT (multi) 72.0 76.3 62.0 67.1 68.4 70.5 36.6 40.2

Table 2: Compositional Generalization. Models can learn different object shapes, colors, and
manipulation properties from different tasks. We show that only PROGRAMPORT hierarchically
composes these learned concepts and behaviors together to perform well in more complex tasks.

Method Semantic
Supervision

packing-
shapes

packing-google-
objects-seq

assembling-
kits

separating-
small-piles

put-blocks-
in-bowls

100 1000 100 1000 100 1000 100 1000 100 1000

PROGRAMPORT (single) MaskCLIP 52.0 54.0 78.4 79.7 40.6 42.4 76.8 77.9 38.2 38.7
GT 97.0 98.0 95.8 95.9 92.0 93.4 80.6 86.4 97.2 96.3

PROGRAMPORT (multi) MaskCLIP 57.0 63.0 73.5 84.0 40.6 42.4 77.0 78.8 54.2 57.7
GT 96.0 98.0 96.2 96.4 91.0 94.5 81.2 87.2 99.3 97.7

Table 3: Disentanglement of visual semantics and action. Replacing MASKCLIP grounding maps
with ground truth segmentation maps of objects and targets yields near-perfect manipulation.

Length-based generalization to new action settings. Our fourth generalization task (pushing-
shapes) is much more difficult, involving language instructions of the form “push the {color} {shape}
into the {location} {color} square”. Note that this task evaluates both compositional generalization
and “length generalization”. The latter assesses the ability of the model to generalize beyond the
assumption of at most one visual descriptor per object in similar training tasks. Furthermore, this
task requires the model to zero-shot generalize to entirely new actions; only pushing of simple,
regularly-structured blocks is learned at training time, whereas shapes are much larger, irregular, and
have different friction properties. PROGRAMPORT exhibits much better performance here (+32.6
mean reward), compared to the CLIPORT baseline, which fails entirely.

4.3 ABLATION: DISENTANGLEMENT OF ACTION AND PERCEPTION

To illustrate the disentanglement of action and perception in our modular design, we perform an addi-
tional ablation study. Specifically, we train our model normally on all 10 main tasks from Section 4.1,
and at test time, we choose 5 diverse tasks out of the 10. For each test episode, we replace the attention
maps generated by the semantic modules with ground truth segmentation maps corresponding to the
picked objects and place locations. This effectively poses the question: given a perfect perception of
the scene, how would our action modules behave? A properly disentangled model would be able to
leverage the noiseless ground truth visual grounding and decide the appropriate actions to perform.
As apparent in Table 3, performance across all tasks improves dramatically when provided the ground
truth information. This suggests that our action modules do not overfit to task-specific shortcuts
when optimizing the imitation objective, but actually learn to leverage the attention maps provided by
the semantic modules in a disentangled manner. Such disentanglement has also been translated to
improved compositional generalization for our model.

5 RELATED WORK

Learning language-guided robot behavior. Many prior works have explored enhancing robotic
behavior through language-conditioned imitation learning (Lynch & Sermanet, 2021; Stengel-Eskin
et al., 2022; Stepputtis et al., 2020) and reinforcement learning (Andreas et al., 2018; Luketina et al.,
2019; Misra et al., 2017). With the rise of powerful transformer-based architectures, recent works
have used large-scale pretrained vision-language representations to improve performance for tabletop
manipulation (Shridhar et al., 2022a), visual navigation (Khandelwal et al., 2022), and real-world skill
learning and planning (Ahn et al., 2022; Huang et al., 2022). For example, CLIPORT shows that by
integrating embeddings from the CLIP VL model into the Transporter manipulation framework (Zeng
et al., 2020), a robot can better generalize to manipulating new objects in a zero-shot manner.
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However, in contrast with our method PROGRAMPORT, these works do not leverage the semantic
structure in natural language to ground individual visual and action concepts. Rather, prior works use
the pretrained language model as a monolith that consumes the entire language input and outputs a
latent embedding. This embedding is not grounded to individual concepts within the language inputs,
which leads to poor generalization when faced with novel (combinations) object attributes.

Neurosymbolic learning. Prior works have shown neurosymbolic learning, which refers to the
integration of deep neural networks for pattern recognition and symbolic structures such as programs
for reasoning, as an effective mechanism for enforcing VL grounding (Mao et al., 2019; Wu et al.,
2019). Mao et al. (2019) is a representative work that learns to jointly disentangle independent
visual concepts and parse natural language sentences, from natural supervision in VQA. The learned
concepts can be composed for novel downstream tasks via programmatic (re)composition of neural
network modules, enabling zero-shot and compositional generalization. More generally, a structured
approach involving neural perception of vision and language, and higher-order symbolic reasoning
has appeared previously (Li et al., 2020; Nottingham et al., 2021; Sun & Alexandre, 2013). Beyond
improved VL-grounding, this approach has also translated to improved performance and data effi-
ciency on many downstream tasks, such as reinforcement learning (Cheng et al., 2019; Verma et al.,
2019), scientific discovery (Cranmer et al., 2020; Shah et al., 2020) and robotics (Zellers et al., 2021).

Our work is similarly inspired to combine structured representations with deep learning, in the new
setting of robot manipulation. However, instead of learning a small set of visual concepts, we leverage
pretrained VL models to cover a larger, open-ended set of concepts, and improve our zero-shot
capabilities. Moreover, we ground not just visual concepts with their language descriptors, but also
abstract actions for robotic primitives, while preserving compositional generalization capability.

Vision-language (VL) grounding. The goal of VL grounding is to identify correspondences
between visual input and descriptors in natural language. Common tasks include visual question
answering (Antol et al., 2015), VL navigation (Anderson et al., 2018), or VL manipulation (Shridhar
et al., 2022a;b). Recent works show that the CLIP (Radford et al., 2021) model trained on 400M
image-caption pairs from the web possesses zero-shot VL grounding capabilities for a wide array of
visual concepts (Kim et al., 2021; Shen et al., 2022). In robotics, this has translated to grounding of
robotic affordances with natural language in models such as CLIPORT (Shridhar et al., 2022a).

However, we find that the naı̈ve approach taken by these works, which leverage only the frozen,
pretrained CLIP embeddings, cannot successfully disentangle task-agnostic visual grounding with
task-specific action policies. Other works show that this naı̈ve integration of pretrained VL models
also affects grounding abilities in 3D space (Thomason et al., 2022), or temporal settings such as
video understanding (Le & Hoi, 2020). In particular, VL grounding is often adversely affected by end-
to-end training (e.g. via an imitation objective), and the resultant models are unable to reason about
novel concepts independently, or compose them de novo for more complex tasks (Lin et al., 2022).
This shortcoming is addressed by PROGRAMPORT through a program-based modular approach.

6 CONCLUSION

In this work, we propose PROGRAMPORT, a program-based modular framework for robotic manipu-
lation. We leverage the semantic structure of natural language to programmatically ground individual
language concepts. Our programs are executed by a series of neural modules, dedicated to learning
either general visual concepts or task-specific manipulation policies. We show that this structured
learning approach disentangles general visual grounding from policy learning, leading to improved
zero-shot and compositional generalization of learned behaviors.

Future work of PROGRAMPORT includes generalization to more free-form natural language instruc-
tions and challenging scenarios where the syntactic context is not sufficient to predict semantics of
novel words. Alternate techniques such as extending human-annotated CCG banks (Bisk & Hocken-
maier, 2013; Zettlemoyer & Collins, 2012), and leveraging the wealth of pretrained language-to-code
models (Chen et al., 2021) can be a concrete path to alleviating this issue. Better representations
that can capture interactions between robots and objects (e.g. grasping poses for different objects)
is another important extension. Finally, subsequent work may also consider jointly learning and
leveraging pretrained representations that are more suitable for grounding interaction modes between
robots and objects, especially for manipulating difficult articulated and deformable objects in our 3D
world (Shridhar et al., 2022b).
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REPRODUCIBILITY STATEMENT

Our simulated dataset details are provided in the Appendix A.2. The most salient training details and
hyperparameters are presented in Section 4 of the main text. DSL details can be found in Appendix A.1
and architecture details are available in Appendix A.6. Our code will also be publicly available.
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A APPENDIX

A.1 DOMAIN-SPECIFIC LANGUAGE

We detail here the operations (Table 4) and types (Table 5) contained within our DSL. The im-
plementation of filter, do and goal are given within the main text. The remaining operations are
parameter-free. In particular, Scene returns a uniform attention map over the visual input; ObjUnion
and ActionConcat take the elementwise max of their input grounding or action maps, respectively.

Operation Signature Semantics

Scene () Ð→ Object Return all objects in visual scene.

Filter (Object, ObjProp) Ð→ Object Return all objects satisfying a vision-language property.

Relate (Object, Object, ObjRel)Ð→ Object Return all objects satistfying a relation between target and reference objects.

Do ({Goal}, Action) Ð→ Plan Perform an action according to a set of goals.

Goal (Object, Object, ObjRel)Ð→ Goal Identify a manipulation goal for an object and target relation.

ObjUnion (Object, Object) Ð→ Object Return the union of two (sets) of objects.

ActionConcat (Plan, Plan) Ð→ Plan Jointly perform two sets of actions.

Table 4: All operations in our DSL for vision-language manipulation.

Type Example Semantics

Object Block, Rope, etc. Manipulation objects.

ObjectProp Red, Dark, etc. Object properties.

ObjRel In, On, etc. Object relationships.

Goal - Manipulation target such as distributions over SE(2) poses.

Plan - End-effector control parameters in SE(2).

Action Pack, Push, etc. Manipulation primitives.

Table 5: All types in our DSL for vision-language manipulation.

A.2 DATASET DETAILS

Our dataset is based off the Ravens benchmark proposed in Zeng et al. (2020), and its adaptation
in Shridhar et al. (2022a). In particular, for our manipulatives, we use the same set of 20 synthetic
shapes and 56 Google Scanned Objects. For modifying visual appearance, we use the same set of 11
colors . Most importantly, we use the same split of “seen” and “unseen” objects and colors, training
on the “seen” splits and testing on the “unseen” splits. These splits are mutually exclusive for the
manipulatives; only ‘red’, ‘green’ and ‘blue’ are shared between splits for the colors.

In the remainder of this section, we detail the specific tasks used within our benchmark, including
visual scene setup and the success metric used to compute the results in Table 1, Table 2 and Table 3.

A.2.1 BASIC TASKS

Packing Box Pairs. Given small boxes of varying colors, and a larger, open-topped brown box, the
goal is to tightly pack all small boxes of two specified colors into the large brown box. Sizes of all
boxes are randomized, and there will be an exact number of the specified small boxes to tightly pack
the larger box, in addition to other distractor small boxes. Occasionally, there will be boxes of only
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one of the two specified colors; the agent must learn to ignore the missing color and pack the boxes
with the one present color.

Success is the fraction of total volume of specified color blocks in the scene that end up packed inside
the brown box.

Packing Google Objects Seq. At each timestep, given a number of Google scanned objects and an
open-topped brown box, the goal is to place a specified object into the box. Each episode is composed
of at least 1 and at most 5 timesteps.

Success is determined by the total volume of all specified objects within the brown box up to the
given timestep, divided by the volume of all specified objects.

Packing Google Objects Group. Given a number of Google scanned objects from at least two
different categories, as well as an open-topped brown box, place all objects of a specified category
into the brown box.

Success is determined by the fraction of volume of specified objects placed within the box,

Separating Small Piles. Given 50 small blocks and two square zones of different colors, positions
and poses, push all the blocks into the zone with a specified color.

Success is determined by the fraction of total blocks within the correct zone.

Separating Large Piles. Given 15 large blocks and two square zones of different colors, positions
and poses, push all the blocks into the zone with a specified color.

Beyond size changes, the large blocks also have more mass and lateral friction compared to their
small counterparts.

Success is determined by the fraction of total blocks within the correct zone.

Align Rope. Given a soft-body rope formed from 20 articulated beads and the outline of a 3-sided
square, the goal is to connect the two endpoints of the rope to two adjacent corners of the square. The
language instruction can specify one of four possible configurations:

1. From front left tip to front right tip
2. From front right tip to back right corner
3. From front left tip to back left corner
4. From back right corner to back left corner

Success is represented by the degree to which the bead poses after manipulation match the line
segment between the two adjacent corners specified in the language goal.

Packing Shapes. Given 4 distractor shapes and 1 specified shape, as well as a open-topped brown
box, the goal is to put the specified shape into the brown box. Shapes are all unique.

Success is binary; 1 if the shape is inside the boundaries of the box, and 0 otherwise.

Assembling Kits. Given 5 shapes and a “kit” of 5 similarly-shaped holes of varying poses, the
goal is to precisely place each shape into its corresponding hole. Shapes are not unique; in the event
that more than one of the same shape exists in the field, the language goal will specify a one-to-one
mapping between shapes and holes, e.g. “put the orange star into the left star shape hole.”

Success is determined by the fraction and degree to which placed shapes match the poses of the shape
holes.

Put Blocks in Bowls. Given a number of blocks of varying colors, and a (possibly different) number
of bowls of (possible different) varying colors, the goal is to place all blocks of a specified color into
some bowl of a specified color. Note that each bowl will fit at most one block, and it is guaranteed
that there are a sufficient number of bowls to achieve the goal.
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Success is determined by the fraction of blocks of the specified color being within any bowl of the
specified color.

Towers of Hanoi. At each timestep, identify and move a ring shape from one of three possible
pegs to another specified peg. Each episode contains 7 such timesteps, which is the ideal solution for
3-ring Towers of Hanoi. The sequence of moves is deterministically composed apriori using a DFS
solver.

Success is determined by the fraction of correct ring placements over timesteps.

Packing Prepositions. Given 4 distractor shapes and 1 specified shape, as well as two brown boxes,
the goal is to place the specified shape into the box with the specified spatial relationship. This spatial
relationship is given relative to one of the 4 distractor shapes. For example, “pack the flower into the
brown box left of the star.”

Success is binary; 1 if the shape is inside the boundaries of the correct box, and 0 otherwise.

A.2.2 COMPOSITIONAL TASKS

After training on basic tasks, we evaluate the baselines and our model on the four compositional
tasks described below. In addition to the visual scene setup and success metric, we also describe their
compositional nature and from which basic tasks we expect the model to learn the requisite building
block behaviors.

Packing Color Box. Given 4 distractor shapes and 1 specified shape, as well as two boxes of
different colors, the goal is to place the specified shape into the box with the specified color. Shapes
are still unique.

Shapes are seen in the “packing-shapes” task and colors are seen in the “packing-box-pairs” task, as
well as the ‘assembling-kits,” “put-blocks-in-bowls,” and “separating-small/large-piles” tasks.

Note that at training time, the model only ever packs objects into a single brown box. Hence, this task
assesses the model’s ability to disentangle and separately ground the packing action and the visual
properties of the box.

Success is binary; 1 if the shape is inside the boundaries of the correct box, and 0 otherwise.

Packing Location Box. Given 4 distractor shapes and 1 specified shape, as well as two brown
boxes, the goal is to place the specified shape into the box with the specified spatial relationship. For
example, “pack the flower into the left brown box.” Shapes are still unique.

Shapes are seen in the “packing-shapes” task and spatial descriptors are seen in the ‘assembling-kits”
task.

Again, the model only ever packs objects into a single brown box at training time. This task assesses
the model’s ability to compose spatial descriptors with the packing action.

Success is binary; 1 if the shape is inside the boundaries of the correct box, and 0 otherwise.

Separating Location Piles. Given 50 small blocks and two square zones of the same color and size,
but different positions and poses, push all the blocks into the zone with a specified spatial relationship.
For example, “push the pile of purple blocks into the left square.”

The small blocks and pushing action are present in the “separating-small-piles” task and spatial
descriptors are seen in the ‘assembling-kits” task.

Akin to the “packing-location-box” task, this task assesses the model’s ability to compose spatial
descriptors with the pushing action.

Success is determined by the fraction of total blocks within the correct zone.

Pushing Shapes. Given 4 distractor shapes and 1 specified shape, and two square zones of the
same size, but different colors, positions and poses, the goal is to push the specified shape into the
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specified zone. Zones also have a spatial descriptor; for example, “push the green ring into the left
blue square.” Shapes are no longer unique, but rather combinations of color and shape are unique
(e.g. there may be two “ring” shapes in the scene, but only one “green ring” shape.)

The pushing action is present in the “separating-small/large-piles” tasks, spatial descriptors are seen
in the ‘assembling-kits” task and shapes are seen within the “packing-shapes” task.

This task is highly challenging. The shapes pushed at test time are distinct from those seen at
training time in “packing-shapes,” and the pushing action is only learned for blocks in the ‘separating-
small/large-piles” tasks. Hence, we test for zero-shot and compositional generalization to novel
objects and visual properties, but also to novel actions. Finally, introducing both spatial and color
descriptors to the target square zones also adds a length-based dimension to the generalization
properties.

Packing Nested Prepositions. Given 4 distractor shapes and 1 specified shape, as well as two
brown boxes, the goal is to place the specified shape into the box with the specified spatial relationship.
This spatial relationship is given sequentially, relative to 2 of the 4 distractor shapes. For example,
“pack the flower into the brown box left of the star right of the diamond.” Shapes are still unique.

Shapes are seen in the “packing-shapes” task and relative spatial descriptors are seen in the ‘packing-
prepositions” task.

Again, the model only ever packs objects into a single brown box at training time. This task assesses
the model’s ability to compose relative spatial descriptors alongwith the packing action.

Success is binary; 1 if the shape is inside the boundaries of the correct box, and 0 otherwise.

A.3 EXPERIMENTS WITH PREPOSITIONAL PHRASES

Task details are available in Appendix A.2.

packing-prepositions packing-nested-prepositions

CLIPort 28.0 17.0
ProgramPort 45.0 31.0

Table 6: Experiments with relate operator. packing-prepositions evaluates zero-shot generalization
whereas packing-nested-prepositions evaluates compositional generalization.

A.4 REAL WORLD EXPERIMENTS

We collect 40 demonstrations of tabletop pick-and-place tasks using a Franka Panda robot arm with a
parallel gripper end-effector. Pick objects are common household objects including tape measure,
tennis balls, spoons, as well as plastic fruits such as bananas, pears, peaches, etc. These are placed
into plates, bowls and blocks of different colors (red, blue, green, purple etc.). For example, a
language goal may take on the form “pack the banana in the red plate.” Success criteria is the same
as the “packing-shapes” task in simulation. We train on 30 demonstrations, and hold out the other 10
demonstrations for validation. For test evaluation, we use 10 demonstrations for in-distribution pick
objects and place locations, and another 10 with out-of-distribution pick objects and place locations.
Test results are shown in Table 7 and visualized in Fig. 5.

packing-objects-seen packing-objects-unseen

ProgramPort 70.0 80.0

Table 7: Real world packing objects task. The seen suffix involves new instructions containing the
same objects seen in the training set, whereas the unseen suffix evaluates zero-shot generalization to
new instructions containing novel objects.
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Pack the purple block in the red plate

Figure 5: Real world packing-shapes task. Pick locations on objects are highlighted in green, and
place locations are highlighted in red.
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A.5 ADDITIONAL AFFORDANCE VISUALIZATIONS

We present qualitative examples of PROGRAMPORT’s and CLIPORT’s attention mask across four
different tasks in Figures 6, 7, 8, 9. PROGRAMPORT outputs masks over every independent visual
concept, while CLIPORT only outputs masks over the final pick and place locations. For all tasks
shown, PROGRAMPORT is able to more accurately localize the target locations compared to CLIPORT.

Input

“Pack the ring in the 
brown box”

ProgPort CLIPort

Figure 6: Packing-shapes.Input

“Put the white blocks 
in a orange bowl”

ProgPort CLIPort

Figure 7: Put-blocks-in-bowls.Input

“Push the blue blocks 
into the purple 
square”

ProgPort CLIPort

Figure 8: Separating-small-piles.Input

“Pack the circle in 
the blue box”

ProgPort CLIPort

Figure 9: Qualitative affordance evaluations for different zero-shot and compositional tasks.
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A.6 MODEL DETAILS

In this section, we also illustrate and further describe the architectures of our visual grounding and
action modules.

Pretrained CLIP RN50

CLIP RN50 

Image Encoder 

(Frozen)

CLIP RN50 

Text Encoder 

(Frozen)

��

(1x1 

Conv)

��
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“orange”

7 x 7 x 2048
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7 x 7 x 1024

7 x 7 x 1024

RGB Input: 

H x W x 3

Language Input

Previous Grounding Map: 

H x W x 1

Weight init.

���(⋅,⋅)

Figure 10: Visual grounding module example: filter.

Our visual grounding modules leverage pretrained CLIP embeddings via a layer-weight initialization
scheme. Formally, CLIP is trained via an embedding-level contrastive objective on 400M image-
caption pairs, which we represent as tuples (xt, lt). CLIP is comprised of an image encoder
(ResNet-50) G and a text encoder (transformer)H, which featurize their respective components in
the input, yielding a visual feature map V and a text embedding u. To generate a visual embedding
vector v, a spatial weighted-sum of V is performed via qkv-style attention (Vaswani et al., 2017),
followed by a linear layer F :

v = F
⎛

⎝
∑
i,j

softmax(
Embq (AvgPool (V)) ⋅ Embk(Vi,j)T

C
)Embv(Vi,j)

⎞

⎠
(5)

where Embq,k,v(⋅) are linear embedding layers and C is some fixed scalar. Image and text embeddings
u,v are then orchestrated to the same representation latent space via CLIP’s contrastive training
objective.

To obtain an attention map over xt representing the language concepts described in lt, we need to
maintain the spatiality of the visual feature map V . To this end, we remove the summation over pixels
i, j, and introduce two 1×1 convolution layers, Cv (initialized with the weights from linear embedding
layer Embv) and Cl (initialized with the weights from the linear layer F ). This is illustrated in Fig. 10.
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Figure 11: Action module example: goal.

The two-stream FCN encoder-decoder architecture used in our action modules borrow heavily from
CLIPort. However, we find that simply treating the pick or place grounding maps as an additional
fourth channel to the RGB visual input results in the decoder layers ignoring the visual semantics
represented by these grounding maps. To solve this issue, we first bilinearly upsample or downsample
the grounding map to the spatial resolution of different layers of the decoder. We then directly
multiply these grounding maps with the outputs of the decoder layers, explicitly encoding the notion
of attention into these latent features.

20


	Introduction
	Background
	ProgramPort
	Programmatic Representations of Manipulation Instructions
	ProgramPort Architecture

	Experiments
	Zero-Shot Generalization
	Compositional Generalization of Visual Grounding and Behaviors
	Ablation: Disentanglement of Action and Perception

	Related Work
	Conclusion
	Appendix
	Domain-Specific Language
	Dataset Details
	Basic Tasks
	Compositional Tasks

	Experiments with Prepositional Phrases
	Real World Experiments
	Additional Affordance Visualizations
	Model Details


