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Abstract

Large Language Models (LLMs) have demonstrated remarkable performance
in real-world applications. However, adapting LLMs to novel tasks via fine-
tuning often requires substantial training data and computational resources that
are impractical in few-shot scenarios. Existing approaches, such as In-context
learning and Parameter-Efficient Fine-Tuning (PEFT), face key limitations: In-
context learning introduces additional inference computational overhead with
limited performance gains, while PEFT models are prone to overfitting on the
few demonstration examples. In this work, we reinterpret the forward pass of
LLM:s as an optimization process, a sequence of preconditioned gradient descent
steps refining internal representations. Based on this connection, we propose
Optimization-Inspired Few-Shot Adaptation (OFA), integrating a parameterization
that learns preconditioners without introducing additional trainable parameters,
and an objective that improves optimization efficiency by learning preconditioners
based on a convergence bound, while simultaneously steering the optimization path
toward the flat local minimum. Our method overcomes both issues of ICL-based
and PEFT-based methods, and demonstrates superior performance over the existing
methods on a variety of few-shot adaptation tasks in experiments.

1 Introduction

The compelling performance of Large Language Model (LLM) has been demonstrated in real-world
applications such as code generation [13}143}45], scientific reasoning [69[14]], healthcare [57. 166, 167],
and robotics [10,56]. This phenomenon can be attributed to the adaptation of pretrained base models
toward the target tasks. Full parameter fine-tuning as a straightforward method requires tremendous
computational resources and training data, which is usually not practical. Parameter-Efficient Fine-
Tuning (PEFT) [29} (73] 46, [27] methods aim to reduce these costs by partially tuning the parameters,
while these algorithms still require a relatively large amount of high-quality training data. Especially,
when only a few data samples are given for adaptation to new tasks, they suffer from the overfitting
problem and fail to learn generalizable adapters [41} 44} 311 120} 137].

To enable adaptation with few-shot data on new tasks, In-context learning (ICL) [54, [11]] offers
an alternative approach by leveraging prompt engineering techniques. It stores a small set of
demonstration examples in a buffer and modifies the forward pass to enable LLMs to generate
answers for new queries. While ICL reduces data cost and mitigates the overfitting problem of
parameter-efficient fine-tuning (PEFT), it still faces several significant challenges. For instance, the
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stored demonstration samples introduce additional computational burdens, slowing the inference
process. Besides, the improvement of the model on the target domain is highly constrained, since
limited or even no learnable parameters are used for adaptation, resulting in the incapability of
ICL algorithms to absorb the entire knowledge presented in the data and generalize to unseen
data. When the demonstration examples exceed a certain threshold, the model’s performance is
usually saturated [39, 41]]. In addition, the prompt format has an unpredictable impact on the ICL’s
performance [68} [81]], and the existing mechanism designs are usually intuitive without theoretical
support, leading to unexplainable failures. In this work, we address the following question:

For few-shot adaptation, how can we develop an efficient method that avoids overfitting to few-shot
data, as commonly observed in PEFT, while also overcoming ICL’s lack of learnable parameters and
extra inference cost?

Existing works [64} [15} 14} 13} 18} [71} [79} [74] have demonstrated that the forward pass of an LLM
for few-shot adaptation can be deemed as an optimization process with a sequence of gradient
descent (GD) steps. However, these GD steps usually ignore the task-specific preconditioning
matrices. As a result, this optimization process is not controllable, leading to sub-optimal adaptation
performance. To this end, we first extend this process as preconditioned gradient descent (PGD),
where the LayerNorm layers are integrated as learnable preconditioning matrices, which do not
introduce learnable parameters while enabling the control of the few-shot adaptation process to avoid
overfitting.

Thanks to our learnable preconditioners, we propose to steer the optimization trajectory toward task-
specific solutions by enhancing two key properties: optimization efficiency and generalization ability.
Since the number of optimization steps is tied to the number of attention layers, we first introduce
an objective that promotes smoother optimization paths by optimizing step ratio, which implicitly
tightens convergence bounds and improves optimization efficiency. To enhance generalization ability,
we further propose an additional objective term that encourages convergence to flat regions of the loss
landscape by minimizing the local sharpness. However, directly computing the sharpness is intractable.
Our method estimates sharpness indirectly by minimizing the trace of the preconditioned Hessian
at each step using the Hutchinson approximation [2]]. As a result, unlike prior sharpness estimation
approaches [23| [82] [32]], often incurring significant computational overhead, our approximation
makes it more scalable and LLM-compatible.

In summary, we introduce a novel optimization-inspired framework for few-shot adaptation, OFA,
which improves both optimization efficiency and generalization ability for few-shot adaptation
by steering the internal optimization via learnable preconditioners. It provides a new technical
solution to this task, avoiding both issues of PEFT requiring expensive computational resources and
adaptation datasets, and ICL relying on unstable prompt engineering techniques and extra inference
cost. Extensive experiments across various datasets and LLM architectures demonstrate the superior
performance of OFA over existing baselines. The contributions are listed as follows:

* We propose Optimization Inspired Few-Shot Adaptation (OFA), which frames the few-shot
adaptation task as the learning of iteration-wise preconditioning matrices within the internal
LLM optimization process, overcoming both issues of ICL-based and PEFT-based methods.

* We design the learning objectives to learn these internal optimization preconditioning
matrices for enhancing the optimization efficiency and generalization ability while analyzing
their contribution to the convergence speed and generalization bound theoretically.

* The proposed algorithm demonstrates superior performance among all the baseline models,
including both ICL-based and PEFT, mainly LoRA-based, methods. Notably, OFA can
achieve improvements of 4% - 10% with Llama2-7B and Llama3-8B-Instruct on all the
challenging benchmarks compared with the SOTA method, I2CL [39].

2 Related Work

Transformer implements gradient descent. The recent works demonstrate that the pre-trained
transformers, Large Language Models, can implement optimization algorithms such as gradient
descent, with each attention layer corresponding to one optimization iteration (64, |15} 4} 138}, (71} [79,
72]. Without changing the parameters, LLMs can adapt to novel tasks with only a few demonstration
examples through implicitly conducted optimization algorithms with similar behavior of multiple



step gradient descent. This phenomenon has also been empirically observed in [15}164]. Based on
this, one line of study [35] modifies the forward pass mechanism to improve the few-shot adaptation
performance. Then the later research work explores the underlying property from a variety of
perspectives, including the initialization, the demonstration sample efficiency [1], and complicated
minmax optimization [30]. Ahn et al. [3]] further claims that the preconditioned gradient descent
algorithm can be learned on the random samples, whose preconditioning matrices vary according to
the input feature distribution of the layer. Based on these studies, we aim to improve the optimization
efficiency from the convergence speed and generalization perspective under the constraint that only a
fixed number of certain optimization steps are accessible.

Efficient model adaptation. The pretrained models are expected to capture transferable knowledge
for the benefit of novel task training efficiency on the computational resource and data samples.
One line of research focuses on adapting models to the target tasks when a few samples are avail-
able [21} 148, 5. 160, 155) 58]]. To achieve this, few-shot learners [21} 48| learns a set of transferable
parameter initialization on the related tasks, thus with the limited number of training samples and
adaptation steps, the model can converge to optimums. The following research works further extend
this idea by developing advanced optimization geometry [S1}[25] 26], learnable adaptation process
components [38]], and accurate gradient estimation [22]]. Another lines of research explore a general-
izable feature space to enable category separation by learning advanced metrics and the position of
categories 58,163} 16 9, [75]]. In the LLM era, adapting the pretrained model with low cost, namely
the computational resources and the amount of data points, is in high demand. Parameter-efficient
fine-tuning (PEFT) models reduce the adaptation spends by identifying the efficient tuning compo-
nents, learning the row rank adapters [29} 42] and their initialization [73}46,27]. Even though these
methods reduce adaptation cost dramatically in comparison with full model adaptation, they still
fail to generalize when only a few samples are allowed. To the best of our knowledge, Liu et al.
[40] shares a similar motivation to narrow the gap between PEFT and few-shot adaptation with ours;
however, their work focuses on the empirical tricks and introduces extra parameters and increases
the computational burden in the inference stage. In this work, we utilize the LLM property, that the
inference process can be theoretically interpreted as the optimization process under the In-context
learning region, and design novel objective terms to enable fast convergence and generalization.

3 Method

In this section, we introduce the proposed method for adapting the model using a few demonstration
samples. Building on our insight that the optimization path, implicitly defined by the forward pass of
a large language model (LLM), can be steered by modifying layer-wise preconditioning matrices, we
propose Optimization Inspired Few-Shot Adaptation. Our method is designed to address two key
essential properties for effective adaptation: optimization efficiency and generalization ability. These
are encouraged through two corresponding penalty objective terms.

3.1 Optimization-inspired perspective for LLMs

The pretrained LLMs implement gradient descent for the adaptation to the target domain when
prompted with the demonstration samples [64} [15] |4} 13| [8]]. More formally, with n query-answer
prompt pairs, denoted as = € R? and y € R, the LLM model yields an answer (" t1) regarding the
novel query ("1 We simplify the notations with matrix format by denoting Z; as the output from
the ¢-th layer, while Zj is framed as the raw input data:
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where d and n denote the input dimension and number of demonstration examples, respectively, and
0 represents the replaceable unknown variable corresponding to z("*1). It has been theoretically
substantiated [3} 164} [79] that the ¢-th attention layer of a transformer-based LLM, F'(-) = fro...o
ft o f1(+), implements an iteration of gradient descent:

ZO = [Z(l) 2(2) . Z(n) Z(n+1)} =

Zt+1 = Zt - nPtVE(Zt) (2)
sit. fi(Z) = —nP NV L(Z:) = Atn(Zy),



with the objective defined by

L =|F(Zo)asinin — ¥ 13,
where 7 represents the learning rate and P, = I is an identical matrix which does not modify the up-
date information, n P,V L(Z;), implemented by an attention layer, f;(-). As the ideal preconditioning
matrix depends on the input data distribution [3]], in this work, we learn the layer (iteration) wise
preconditioning matrix, characterizing the task-specific optimization path.

3.2 Parameterization for Learnable Preconditioning Matrix

Building on the theoretical insight that an attention layer can be interpreted as a gradient descent (GD)
step, we integrate learnable preconditioning matrices via LayerNorm, an often overlooked component
in prior analytical works [24} 3]. Owing to its small parameter size and strategic position within the
Transformer architecture, LayerNorm serves as a lightweight and tuning-efficient parameterization of
the preconditioners for preconditioned GD. Specifically, in modern LLMs such as Llama [61} [62]
and GPT-2 [53]], each LayerNorm layer is parameterized by a single vector, resulting in fewer
parameters than even a rank-1 LoRA model. These layers are typically placed after attention blocks
and normalize the output of those blocks:

Vﬁ(Zt) — Mt
Ot

Zp1 =21 — 't , I'y = diag(y),
where p; and o are the mean and standard deviation of VL(Z;), and T'y = diag(~y;) represent the
learnable diagonal matrix in the LayerNorm. Then the learnable preconditioning matrix in this
optimization process is characterized as:
1
Zyy1 =2y — BVL(Z;), Pp=T4- —
t
where the potential bias term I'; - ’;—: can be simplified as zero since in the modern LLMs [70} 161}, 162}

52117, [77], LayerNorm is usually instantiated by RMSNorm [76] whose mean vector ju; is set as zero
vector instead of estimated during the forward pass.

3.3 Learning for Fast Convergence

By framing the forward pass of the transformer, fed with the prompt and query, the model gradually
predicts the answer through an iterative optimization of the representation through the attention
blocks. However, due to the architecture-specific constraints of LL.Ms, such as the fixed number of
layers, it remains unclear whether the efficiency of this process is guaranteed or whether the process
truly converges to an optimal solution.

To address these issues, we enhance optimization efficiency and stability by introducing a loss
objective to mitigates the risk of gradient explosion and oscillation conducted by the forward pass.
Specifically, by optimizing this loss objective, we refine the step ratios defined by:

1Ze+1 — Z7\| < pullZe = Z7], pe < 1,

where p; works as a proxy reflecting the stability of the optimization process, and Z* denotes the
optimum of the optimization problem. The new objective to equip this property for the few-shot
adaptation by updating all the layer-wise preconditioning matrices, P = { P, }_,, is defined by:

Zy — 7.
Z 1Ze = Zeall 3)
12e — Ziall’
where we denotes the [2-norm by || - || through out the paper. One may notice that by decomposing
|Ze—Ziq1|l

the sum over all the layers, each term, Z=Z increases the penalty strength when the numerator

is larger than the denominator: ||Z; — Zy11|| > ||Z: — Zi—1]| as when || Z; — Zyy o || > || Z: — Zi—1 ||
indicates exploding or oscillating steps, suggesting poor conditioning or overshooting; When over

e . |Zi—2 - . . | Zig1—Z
minimizing the numerator in M will be regulated by the denominator in H\ItZili—glzIH

|Z: — Zyy1|| < ||Z: — Zi—1|| represents contraction, an indicator of convergence. Beyond enhancing
the step-wise optimization quality, Eq. [3|also plays a crucial role in accelerating convergence, which
we substantiate through analysis:

and



Theorem 3.1. Let f : R — R be a twice continuously differentiable function with locally Lipschitz
gradients. Suppose the update rule is given by:

Ziv1 = Zy — PNL(Zy),

where each P, € R? x R? is a learnable preconditioning matrix. Define the step-ratio objective
in Eq.|3| Under the assumption that f admits a local second-order Taylor expansion approximation
at each step, then minimizing J(P) encourages the learned preconditioners P; to induce local
operators I — nP,H, with H; = V2f(Zt) with a smaller spectral radius.

1Ze+1 = Z7| < pell Ze = Z7I, pr < pr—1-
Thus, it induces faster local contraction and improved convergence.

The step-ratio objective 7 (P) serves as a differentiable proxy that captures the stability and effi-
ciency of this optimization process. Smaller step ratios imply smoother convergence and discourage
overshooting or oscillation. By optimizing 7 (P) over preconditioner parameters, we shape the feed-
forward dynamics to mimic efficient optimization, inducing faster adaptation and better generalization
in downstream tasks.

3.4 Learning for Flat Region Convergence

The effectiveness of the flat local minimum for the model’s generalization ability has been theoretically
and empirically explored. Motivated by this, we aim to enable the preconditioning matrix to be used
for flatness-seeking ability by minimizing the sharpness of the loss landscape during the optimization
process. However, the existing method for sharpness estimation [23} [32| (78] developed for the
optimization process requires the explicit expression, while in our setting, such information is not
accessible due to the black box characterization of the update information. In addition, those methods
do not consider the effect of the local sharpness approximation from the preconditioning matrix.
To handle this, we estimate sharpness for the layer-wise preconditioned GD optimization by the
preconditioning Hessian trace:

Hp = tr(PV?L(Z)P]).

However, directly computing this trace is infeasible due to the implicitly defined optimization process,
including the loss function and the gradients. Instead, we utilize a numerical method, the Hutchinson
approximation [2]:

tr(PV2L(Z) Pl ~ %Ey [VTPt(VE(Zt + ePv) — vz(zt))}
~ —— l:l/lTPt(VE(Zt + GPtl/i) — VE(Zt)):| s (4)

where v ~ N (0, I) is a small perturbation sampled layer-wisely, and ¢r(-) represents the operator for
trace calculation, e denotes a small scale number. Note that in the non-convex optimization setting,
tr(P,V2L(Z;)PT) can be negative. This may destabilize the training due to the numerical issue in
the minimization process. To mitigate this issue and maintain the valuable information contained
in the negative values, we regularize this term by adding a Softplus[18] activation function, J(-), to
stabilize the numerical optimization while retaining the information brought by the negative trace.
We provide the implementation details in Algorithm[I} We also analyze the connection between the
flatness of the layer-wise preconditioning matrix and the generalization to understand the reason for
the enhanced generalization ability.

Theorem 3.2. Let Z1 be the final parameters after T’ steps of optimization, with preconditioning up-
date rules in Eq. [Z]and denoting V? Lirain(Zt) as the Hessian at step t with | Py ? Ly ain(Z4)|| 7 mea-
suring the curvature after preconditioning at that step. Assume the loss is smooth, |[V2L(Z)||r < 1,
and the gradient is bounded, ||V L(Z;)|| < G, the generalization gap satisfies:

T
1
]E[Etest(ZT) - £train(ZT)} S O( g Z ||Ptv2£train(Zt)|%‘) .

t=1



Algorithm 1 Sharpness estimation in Optimization Inspired Few-Shot Adaptation

1: Input: Input prompt: Zy, Learnable preconditioners: { P}, Noise scale : €, and, Transformer:

{fih

2: Output: {tr(P,V2L(Z)PF)}

3: The first forward pass: sett = 0

4: whilet <T —1do

5 Zi = f(Zy)

6: PtV£(Zt) == ZtJrl — Zt

7: for ¢ in range(/V) do

8: ; ~ N(0,1)

9: Ziy = fi(Zi + eP)

10: PNL(Z: + eP;) = Z§+1 — (Z: + eP)

11:  end for
12: t?”(PtVQL:(Zt PT Eq I
13: t+=1
14: end while

More intuitively, seeking the right preconditioning matrix at each step helps the optimizer follow the
low-curvature valleys of the loss landscape, leading to solutions that are not only low-loss but also
robust to perturbations, which is beneficial for generalization, and proof is given in Appx.

Building on the two theoretical results, we introduce two penalty terms into the preconditioner
learning objective to guide inference features toward faster convergence in flatter regions of the loss
landscape:

T-1
Z: — Z
W(P) = lop(F(Z) ”12”21 S Y A (RTLZPT). ©)
t=1

where \; and )\ are the tunable hyperparameters, controlling the regularization strength for the
convergence and local flatness, and o g denotes CrossEntropy to guarantee the features, Z;, are
optimized towards the task-specific local minimum.

4 Experiments

In this section, we demonstrate the generalization ability of the calibrated Large Language Models on
various settings. We begin by briefing the configuration of the experiments, including the architecture,
datasets, and baseline models. We then dive into the efficiency of the contribution of the improvement
of each proposed learning objective component.

Tasks. We follow the evaluation protocol utilised in [39]], and apply the same tasks to evaluate
Optimization Inspired Few-Shot Adaptation, which includes sentiment analysis: SST-2 [59], emotion
classification: Emoc [12]], question classification: TREC [36], topic classification AGNews [80],
encompassing 5-way sentiment analysis: SST-5 [59], movie review classification: MR [50]], 14-way
topic classification: DBPedia [33]], subjectivity status categorization: Subj [49], and the hate speech
detection: HateSp18 [16]. All the datasets are downloaded from HuggingFace without further
modification.

Baseline Algorithms. To evaluate OFA, we conduct comparisons with other methods sharing a
similar motivation and are capable of consuming the demonstration samples along with the standard
zero-shot and few-shot (ICL) baselines. We select the recent representative methods solving the tasks
of interest from various directions to demonstrate the superior performance of OFA. Soft-prompt [34]
learns a small set of continuous vectors prepended to the input of data to guide the model’s behavior
to a specific task. Label-anchor [65] shares a similar idea, aiming to learn with Soft-prompt methods,
whereas learning the class label in the embedding space for few-shot or zero-shot adaptation. Task-
vector [28] extracts the task representative vectors from the demonstration samples and injects them
into the novel inner mechanism to steer the inference process, achieving the zero-shot complexity.
I2CL [39] a recent state-of-the-art task-vector based method utilizing the residual stream property to
eliminate the model-specific layer selection process. IA3 [41]] handles the limited adaptation sample



Table 1: Comparison between OFA and other baseline algorithms on Llama2-7B and Llama3-8B-
Instruct. Mean accuracy and standard deviation across five random seeds are reported. Best results

are highlighted in bold.

Dataset ‘ SST-2 SST-5 TREC AGNews Subj HateSp18 DBPedia EmoC MR
Method | Llama2-7B

Zero-shot 83.00 27.00 50.00 70.20 51.40 54.20 72.00 41.80 73.60
Few-shot ICL) | 94444144 41.724368  77.324441 85.684200 52.564309 70.2d4580 96.644048 75481163 93.244050
Soft-prompt 56.2446.99 242440096 55201414  78.004760 57.4044093 59.5616096 74401643  35.081520  54.324176
Label-anchor 83.3245095 27.684491 T7.484349 83.724104 53.001295 64.521509 81.401367 59.12411060 84.4045.89
Task-vector 81.4441473 25964059 65.68+1.93  79.684407 58.564401 67.684+370 89484058  44.644353  82.321537
1A3 93.2842.09 46.081211 84.404599 87.041197 T1.924g08 72444050  94.6811.00 64324105  88.8040.08
12CL 87.684247 39124069 78.561532 85.484116 73.844384 69.881567 90.161186 63.724137  87.6840.96
OFA (Ours) | 95.84.041 508361325 85.921190 89.00:126 88.40i47 83.04i372 97.721052 76.60:239 94.361113

| Llama3-8B-Instruct

Zero-shot 93.00 35.80 71.00 80.40 50.80 67.80 67.40 53.60 86.40
Few-shot (ICL) | 96481045 46.721001 79.921583 89.641050 57481708 52724035 97.001028  65.282420  93.1210.16
Soft-prompt 84681771 38401568 75.681s17 84961380  73.2815.41 62721551 82.88:645 55.321074 75761711
Label-anchor | 93.361050 40.54u5.41 782841407 S84.6d3161 54161005 69484543 87481301  59.36104s  88.2013.60

Task-vector 94.80+2.02 56421115  79.834152  89.21i0s58  76.08+1923  67.121032  79.524184  57.961459  86.52+0.64
1A3 94.321082  49.244006 87.604346 88.361180 82.044743 77201437 92.5641.82 68.0449.24 91.7640.43
12CL 90.84410.9s8 48.964245  79.604622 88.964203 81484468 65.881361 91.204203 64.324205 88.8810.61
OFA (Ours) ‘ 97.081027 58321974 89.0641149 91.841061 92.641343 89.471047 97.921106 79.2414587 94.5640.51

issue by reducing the trainable parameters while regularizing high probability on wrong predictions
and accounting for the length of different answer choices.

Main Results. We compare OFA with baseline methods on four main decoder-only architectures:
Llama2-7B, Llama3-8B, Llama3-8B-Instruct, and GPT2-XL. These architectures are selected for
their suitable memory cost relative to our computational cost. We present the performance of OFA on
Llama2-7B, and Llama3-8B-Instruct in Table[I] in which we can notice that OFA outperforms all the
competitors across all the datasets with noticeable margins. Especially, on DBPedia and Subj, OFA
demonstrates dramatic improvements. In the context that an attention layer performs an optimization
step, we can observe that by retaining the main gradient part intact, tuning the preconditioning
matrices is sufficient to improve the optimization efficiency. We leave the results of other models in
Appx.[A]where a similar performance pattern can be observed.

Ablation Study via Probe Analysis. We study the per-layer feature quality generated by OFA via
probing. To do this, we collected the training datasets by generating per-layer features by feeding
the few-shot adaptation sets to the (trained) model and attaching the corresponding labels, then a set
of linear classifiers is trained to predict the objects based on those features. For a fair comparison,
the same process, including dataset collection and model training, is repeated on the raw model to
construct the baseline. The learned classifiers are employed to predict the per-layer features yielded
from the test data. To illustrate the effect of OFA, we plot the layer-wise accuracy and loss in Figure[T]
from which one can observe that the model trained by OFA consistently outperforms the baseline
model under both metrics across various datasets. More importantly, from an optimization dynamic
perspective, the loss learning curve generated by OFA converges to a more stable region with the
smallest fluctuation in comparison with other methods across different datasets, which indicates the
flat convergence region. As preconditioning matrices steer the optimization path, directly comparing
the steps for achieving the final loss could be unfair; however, we can still observe that OFA reaches
the same loss level with fewer steps in Figure[I} Therefore, OFA not only provides a flat minimum
but also improves the optimization efficiency.

Layer-wise Sharpness Analysis. We study the effect of OFA on the models’ layer-wise behavior
across different datasets. By estimating the average sharpness over different test samples by Eq.
One can observe that in Figure [2] the model trained by OFA consistently illustrates the lowest
sharpness among the baseline models across all the layers. Especially, at the end of the optimization
steps, without the regularization in Eq. ] the sharpness quantity of the model trained by CE and
the base model increases dramatically. This phenomenon reflects the sensitivity of the loss to the
different test samples and determines the generalization performance of the model, which can be
further justified by Table[I] To be more specific, the models attain an increase in sharpness at the
final hidden layers, resulting in inferior test accuracy from the target domain.

Layer-wise Step Ratio Analysis. We evaluate the optimization quality of OFA by comparing the
average step ratio on the test set across different optimization steps. Due to minimal visual differences
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Figure 1: Probe Analysis on EMO, SST, and TREC. The layer-wise prediction accuracy (%) and loss
on the test set comparison is conducted with four competitors, CE, CE + Step ratio, CE + Sharpness,
and Ours. CE denotes the Llama2-7B model adapted to the target set through CrossEntropy loss via
updating the layernorm parameters; CE + Step ratio follows the same adaptation protocol as CE but
with Step ratio penalty attached in Eq.[3} CE + Sharpness uses Sharpness in Eq. [ instead while Ours
utilizing the OFA objective in Eq.[3]
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Figure 2: Sharpness comparison on MR, Subj, and TREC. The average sharpness over the test
samples across different layers on three models, with base model denoting the few-shot (ICL) setting,
CE representing the model trained by the CrossEntropy on the demonstration samples, and Ours
trained by OFA via the same adaptation protocol as that utilized in CE.

in earlier layers, we focus on the last 16 layers in Figure 3] Notably, optimizing the step-ratio
objective in OFA results in smoother and more consistent contraction across layers, highlighting
the effectiveness of our learned preconditioning mechanism. In contrast, baseline models exhibit
higher and more erratic step ratios, particularly with sharp increases in the later layers, suggesting
an unstable optimization trajectory. Empirically, it is observed that models with flatter or more
contractive step-ratio profiles tend to achieve better performance, supporting our analysis that step-
ratio minimization enhances optimization efficiency. In addition, the step ratio is typically assumed to
be smaller than one to ensure optimization convergence. However, as shown in Figure 3] particularly
in the few-shot learning setting (Base Model) and in models trained with CE, this assumption does not
empirically hold in the internal optimization dynamics of LLMs. Nevertheless, OFA remains robust
to such violations and achieves faster convergence even with smaller step ratios. In other words, a
step ratio smaller than one is not a strict requirement for our algorithm. Instead, OFA flexibly adapts
to both compliant and non-compliant scenarios, optimizing the step ratio rather than imposing it.

Comparison with LoRA. We compare our method with LoRA [29] for the adaptation efficiency
based on Llama2-7B [61]. A lightweight version where the learnable adapters are only applied
to the value and query project layers is applied to different numbers of ranks, ranging from 1, 16,
64, and 128, to eliminate the effects from this hyperparameter selection. To further reduce the
amount of learnable parameters, the bias sets of the adapters are not learned. The LoRA adapters are
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Figure 3: Step ratio comparison across the test sets of AGNews, Subj, and TREC over each layer of
models based on Llama-7B. We compare the base model with demonstration examples (Base model),
the model fine-tuned using CrossEntropy (CE), and the model tuned with OFA (Ours).

Table 2: The comparison between our method and LoRA on various datasets. Llama2-7B and
Llama3-8B-Instruct are used as the base model, with ranks ranging from 1, 16, 64, and 128. All
the methods are trained and evaluated with 5 trials with different random seeds, along with the
mean performance on classification accuracy (%) and variance reported. The number of trainable
parameters for all settings is attached.

‘ Llama2-7B
Dataset ‘ Rank 128 Rank 64 Rank 16 Rank 1 ‘ Rank1 (our loss) Ours
SST-2 87.641563 80.6411538 86.3616.99 89.64.13.03 88.48.13.34 95.84_ .41
SST-5 28.1249.90 37.16L8 59 31.60+9.10 24.84 19 92 20.80+0.89 50.36.3.08
TREC 52.60124.63 62.68+21.30 33.6812315 22.8819.09 24.3246.02 85.9241 90
AGNews 82.4044.74 62442626 73.1612316 50.56431.36 62.04.£29.5 89.00.+1.26
Subj 75441957 708441041 72.1611452  72.0818.74 72.84111.33 88.4014.76
HateSpeechl 8 72.283:10‘41 73-8816,46 67.963:12,51 69-1419,76 69.383:10‘77 83.04i3_72
DBPedia 93204232 90.761360  95.1640.43 59.44442.01 74.6.433.23 97.7240.52
EmoC 34.40418.45 42.6410186 589611770 25.6442.95 33.24118.28 76.6012 39
MR 82.6845.08 65.36118.40 74.12402056 64.84113.86 64.88118.48 94.3611.13
Trainable parameters (Million) \ 67.10 M 33.55M 8.39M 0.53M \ 0.53 M 0.27M
| Llama3-8B-Instruct

SST-2 78.7241337  88.324257  80.92141205  87.0814.81 87.40+5.05 97.08.10.27
SST-5 27.80i9.24 20~32i1,17 27.76i5_45 19~52i0,45 20~32i1.72 58.32i2_74
TREC 61.12198.41  59.00429.23 70.9213032  25.8819.17 27.5246.09 89.0611 .49
AGNews 50.76126.15 50.76123.46 47.88+2160 39.721251 39.12194.40 91.84.10.61
Subj T7.8411373 80.2816.97  81.924657  78.921843 80.9645.55 92.6413 43
HateSpeechlS 71.08i11.19 7008i956 69-36i6,94 63‘60i9.07 68.92i&33 89.47i0_47
DBPedia 91.001107 88‘3210.83 92.921207 57.88139437 73~52:E32,69 97‘9211.06
EmoC 332441328 384441179  47.611784  24.681117 27.68+3.65 79.241 487
MR 87.524934  87.604324 88.284195  87.204+338 87.84413.59 94.56.10.51
Trainable parameters (Million) \ 5453 M 2726 M 6.82 M 043 M \ 043 M 0.27TM

trained on the same adaptation datasets with the fairly tuned hyperparameter following the details in
Appx. [E] From Table 2] one can observe that OFA can defeat all the LoRA models, demonstrating a
significant parameter efficiency for the adaptation with the few-shot demonstration examples, while
the LoRA models, with the smallest amount of learnable parameters, still approximately double ours
and struggle to achieve the same level of performance as ours. In addition, the LoRA rank is sensitive
to the datasets, leading to a greater hyperparameter tuning burden, while in this very few sample case,
LoRA models in general gain relatively high variance due to the overfitting on the demonstration
sample selection. We trained a LoRA model with a similar parameter amount to our model, and our
objective resulted in that OFA boosts the LoRA model performance but still fails to defeat ours. This
is because the LoRA model dramatically modifies the essential optimization component, the gradient,
while ours only tunes the preconditioning matrices.

Sensitivity Analysis to Training Samples. We analyze the impact of the number of training samples
on the performance of OFA through experiments conducted on different models, Llama2 and Llama3-
8B-Instruct, and datasets, HateSP18 and Subj. As shown in Table[3] the performance of OFA steadily
improves as the number of training samples per category increases, eventually saturating when this
number reaches 15. In contrast, the baseline model, ICL, exhibits higher sensitivity to changes in the



Table 3: Performance (Accuracy %) comparison on various shot samples. We illustrate the effects of
the different few-shot samples, ranging from 3, 5, 10, 15, and 20, on ICL and OFA with Llama2-7B
and Llama3-8B-Instruct. The prompt template used for ICL is provided in Appx.[6]

| Llama2-7B
Dataset Method ‘ 3-shot 5-shot 10-shot 15-shot 20-shot
HateSP18 Few-shot (ICL) | 68.814461 70.244580 70.644564 74.231672 70.72145.93
OFA 77.63+14.72 83.041370 83.731311 86.094359 84.971473
| Llama3-8B-Instruct
Subj Few-shot (ICL) | 63.76+6.93 57.48+7.08 54.73+6.46 61.80+584 58.32415562

OFA 88.76+45.80 92.6443.43 93.6244.12 95404385 95.2344.24

Table 4: Model complexity comparison. We compare the theoretical inference parameter complexity
introduced by the ICL-based methods with OFA where M, D, and L represent the number of
demonstration tokens, the model’s dimensionality, and the number of layers in the architecture,
respectively. Q denotes the number of additional learnable tokens used in the Soft-prompt method,
while 1/K corresponds to the compression rate of the associated context-compression technique. We
also attach the practical average time (seconds) cost on DBPedia, the most time-consuming one, over
five trials.

Dataset | Zero-shot Few-shot (ICL) | Soft-prompt Label-anchor ~Task-vector 12CL | OFA
Introduced parameters 0 2MDL 2DL 2M+Q) DL 2(M/K)DL  2DL 0
Inference cost (s) 51.24 59.93 53.64 52.41 56.78 52.59 | 51.37

number of training samples, showing larger performance variance and failing to match the consistent
performance of OFA.

Inference Cost. We compare the inference-time computational complexity of our model against
baseline methods in Table[d] Notably, since OFA is designed to adapt to the target domain at inference
without additional overhead, it introduces no theoretical increase in computational cost. In contrast,
the ICL approaches often require restoring demonstration examples or incorporating computationally
intensive inference algorithms into the base model. As a result, OFA achieves the low inference
inference, which is the same as that of zero-shot methods, a key objective for most existing ICL
approaches. In addition, we record the practical training and inference cost of Llama3-8B-Instruct on
an NVIDIA RTX A6000 for further illustration.

5 Conclusion

In this work, we address the problem of few-shot adaptation in Large Language Models (LLMs). We
build on the perspective that the forward pass of an LLM can be viewed as an optimization process,
and extend this interpretation to a sequence of preconditioned gradient descent steps. Based on this
view, we propose tuning the layer-wise preconditioning matrices to improve both convergence speed
and generalization, using only a few target-task samples. To this end, two theoretically motivated
objective terms are introduced. We evaluate our method across multiple LLMs and benchmark
datasets, demonstrating that adaptation with our objective yields substantial performance gains over
strong baselines. Our approach also points to a promising direction for low-cost LLM adaptation,
particularly in settings with limited data and computational resources.
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2. Limitations
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should reflect on how these assumptions might be violated in practice and what the
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depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We propose two analysis results for our model with two theorems in the method
section, the corresponding proofs are given in the Appendix along with the assumptions
required.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the source of the dataset and the hyperparameter pool used for
model tuning. Besides, the implementation details are carefully described in the algorithm
form in the main paper. All the base models are publicly available with clear source. We
will release our code for all the implementations in the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: All the datasets we used are public, and we give the detailed resource.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We follow the standard benchmark for the experiments, and the tuning details
are given in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We follow the standard training and evaluation protocol with multiple trials to
generate error bars and justify that the improvements introduced by our model are significant.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We give the computational resource for the submission in terms of the GPU
index in the paper.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The author information is not released in the paper.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We have a Broader impacts section in Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: we cite all the datasets and models used in this paper.
Guidelines:

e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Few-shot performance

We report the entire few-shot performance of all the models, Llama2-7B, Llama3-8B-Instruct,
Llama3-8B, and GPT2-XL, in Table[5|to comprehensively evaluate the effectiveness of OFA.

Table 5: Comparison between OFA and other baseline algorithms on LLama2-7B, LLama3-8B-
Instruct, LLama3-8B, and GPT2-XL. Mean accuracy and standard deviation across five random seeds
are reported. AGnews and DBPedia are not evaluated for GPT2-XL due to its limitation of context
window size. Best results are highlighted in bold.

Dataset | SST-2 SST-5 TREC AGNews Subj HateSp18 DBPedia EmoC MR
Method | Llama2-7B

Zero-shot 83.00 27.00 50.00 70.20 51.40 54.20 72.00 41.80 73.60
Few-shot (ICL) | 94.4444 44 41.72436s T7.3244.41 85.6842.00 52.56.43.09 70244580  96.6440.48 75.4811 63 93.2440.50
Soft-prompt 56.2446.90 24.2449.96 55.2044.14 78.0047.60 57.4044.93 59.56416.96 74.4046.43 35.0845.29 54.3241 76
Label-anchor 83.3245.95 27.681421 77484349 83.724104 53.004295  64.524809 81.404367 59.1241060 84.4045.89
Task-vector 81444473  25.9640.59 65.6841.03 79.6844.07 58.5644.91 67.684370 89.484958 44.6443 53 82.3245.37
IA3 93.284299  46.084211 84404599  87.044197 71921508 72444059  94.681109  64.321195  88.8012.28
12CL 87.6842.47  39.124969 78.56.45.32 85.4841.16 73.8443.84 69.884567  90.164+1.86 63.7241 37 87.6842.26
OFA (Ours) | 95841041 50.361325 85921190 89.001196 8840447 83.041370 97.72:052 76.601239 94.36413

| Llama3-8B-Instruct

Zero-shot 93.00 35.80 71.00 80.40 50.80 67.80 67.40 53.60 86.40
Few-shot (ICL) | 96.4840.4s8 46.724964 79.9245 83 89.64.40.59 57.48.417.08 52.724935  97.0040.28 65.28.44.29 93.1240.16
Soft-prompt 84.684771 38404568 75.684g17 84.961350 73.284541  62.724554 82.884645 55.324974 75.7647.71
Label-anchor 93.364239 40.544544 78281407 84.644161 54.164295  69.484543 87484304 59.364045  88.2043.69
Task-vector 94.80492.02  56.4241 15 79.8341 52 89.2140.58 76.0841 23 67.1240.32 79.5211 84 57961459 86.5240.64
1A3 94.3210.82  49.2445 06 87.60.43.46 88.3641.80 82.0447.43 77204437  92.5641 82 68.04.+2 24 91.7610.43
12CL 90.8440.9s  48.9649.48 79.6046.22 88.9642 03 81.4844.68 65.884361  91.2049.03 64.3249.05 88.8840.61
OFA (Ours) ‘ 97.08.1007 58321074 89.061149 91.84:061 92643435 89471047 97921106 79241487 94.561051
Method | Llama3-8B

Zero-shot 56.00 33.20 66.40 85.80 50.60 50.80 55.80 40.60 53.80
Few-shot (ICL) | 95.324074  44.3641.93 74.48 1617 87.2041 .04 63.844g 07 70.6045.92  85.564367 52.3043.62 91.8840.86
Soft-prompt 59444125 28441693  70.3211062 85681258  69.124985  63.201488  85.361398  54.20x11.79  60.28411.50
Label-anchor 84.144020 35444048 T7.6842.90 86.2041 81 64.4040.38 68.084107 74244071 59.7243.64 84.28 10.97
Task-vector 94.28 4896 37.204283  75.804150 85.004374  68.40+080  55.6043.41  73.2841927  54.6441099  75.281470
1A3 92.724158  46.4049.580 80.0442 85 85.4449 63 69.24.46.15 62.641386 83.2043.93 64.3643.16 89.5241 48
2CL 87.364321  39.324402  T7.724699 85204232  70.031539  58.081979  86.441041  62.641596  86.8417.29
OFA (Ours) ‘ 96.921035 54.96132 8752144 903610935 91.44.934 86.76.571 97.76.L045 788615585 94.041034
Method ‘ GPT2-XL

Zero-shot 74.76 30.44 35.40 - 64.88 70.84 - 37.88 71.36
Few-shot (ICL) | 73.654889 35.954239  60.6445.00 - 63.82410.55 51.86+3.22 - 38.6246.87  75.7949.25
Soft-prompt 61.044345 23964200 40.60+10.15 - 55.44.44 12 63.9247.06 - 36.6842.70 57.6043.53
Label-anchor 63404882 22364337 66.36+£10.69 - 55.564+426  54.884453 - 36.684270  60.204332
Task-vector 81.084487 28.524137 41.404535 - 71.8141.86 62.48.19 83 - 37.6042.48 78.4042.96
1A3 86.641289  40.5249925  70.9615.61 - 71.524846  70.844363 - 62241350  83.2441.00
12CL 80.1613.9s  35.0d4260 51.4845.26 - 65961483  68.3214.76 - 47921184 83.2043.29
OFA (Ours) ‘ 88.68.1966 42.48.55 70.604644 - 86.111499 T71.44.565 - 65.301415 84.801621

B Proof of Theorem 3.1]

Theorem 3.1. Let f : R — R be a twice continuously differentiable function with locally Lipschitz
gradients. Suppose the update rule is given by:

Zyy1 = Zy — PNV L(Zy),

where each P, € R x R? is a learnable preconditioning matrix. Define the step-ratio objective
in Eq.[3|Under the assumption that f admits a local second-order Taylor expansion approximation
at each step, then minimizing J (P) encourages the learned preconditioners P; to induce local
operators I — nPH; with H; = V2 f(Z;) with a smaller spectral radius.

1Zes1 — Z7|| < pell Ze — Z7|, pr < pr—1-

Thus, it induces faster local contraction and improved convergence.

Proof. By Taylor’s theorem, for a smooth function f, near point x;, we have:

F(a) = £ + V) (@ — ) + 5 — ) Hilo — ).
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Given the preconditioned gradient descent:

Tip1 — xp = —nPV f(xy),
with the quadratic approximation, we approximate the gradient:

Vf(ze) = He(zy — 27),
then
Tiy1 — x4 = —NPHy (v — 27),
and
xpp1 — " = (I — P Hy)(xp — *).

Then the step-ratio objective becomes:

Z llze — el Z | = nPH(ze — )|

|2t — 21| |2t — 21|

and operator I — nP; H; governs convergence. Assuming:
p¢ = spectral radius(I — nPH;) < 1
Then minimizing 7 (P)) ensures p; decreases over time:

Tt4+1 — J?* = (I — T}Pth)(It — 33*)7

which leads to

[ze41 — 2" || = (L = nPeHe)(ze — 27)|| < pellze — 27|, pr < pe—1-

C Proof of Theorem

Theorem 3.2. Let Z be the ﬁnal parameters after T’ steps of optlmlzatlon with preconditioning up-
date rules in Eq. [Z]and denoting V? Etmm (Z4) VQEtmm (Z4)|| F mea-

2L(Z)|lr <

and the gradient is bounded, ||V L(Z,)|| < G, the generalization gap satisﬁes:

T
1
E[Etest(ZT> - Etrain(ZT)} S O( E Z ||Ptv2£t'rain(Zt)|%‘) .

t=1

Proof. The proof follows from stability-based generalization bounds and Taylor expansion.
Let At = 0t+1 — Ht = *nPtVEtrain(ot)

By a second-order Taylor approximation, for a perturbation e:

L(Z+e)~L(Z)+VL(Z) e+ %GTV2£(Z)6.

Consider the increase in loss under Gaussian perturbation € ~ N (0, 32), used in PAC-Bayes analysis.
The expected curvature-based increase is:

1
E[L(Zr +¢€) — L(Zr)] ~ 3 Tr(SV2L(Zr)).
Since ¥ is shaped by optimization history through {A;}X; [17,/47]. Then, the effective curvature

encountered is influenced by the preconditioned curvature norm:

||A?v2£train(9t>At” = 772V£<9t)TPtVQEtrain<9t)PtV£(et) S 772G2‘|Ptv2£train(9t)”2F-
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Summing over t = 1 to T', we obtain:

T T
Z ||A$v2£train(zt)At|| < 772G2 Z ”Ptvzﬁtrain(zt)HQF
t=1 t=1

Applying a Rademacher complexity or PAC-Bayes-based argument [[19], this leads to:

T
1
ElLie(Z7) = Luin(Zr)] < O | \| ~ > 1PV Lin(Z0) 13

t=1

D Prompting Templates

Table 6: Illustration of prompting templates and label spaces in our setting. The input prompt template
is decomposed into multiple {Sentence} and {Label} pairs, which are placeholders for the input
sentence and its corresponding label. The template containing a single example for each dataset is
generated for the illustration, while in the multiple demonstration example setting, the sentence-label
pairs are stacked and separated by a newline character: ‘\n’.

Dataset Template Label Space

SST-2 Review: {Sentence} negative / positive
Sentiment: {Label}

SST-5 Sentence: {Sentence} terrible / negative / neutral / positive / great
Sentiment: {Label}

MR Review: {Sentence} negative / positive
Sentiment: {Label}

Subj Sentence: {Sentence} objective / subjective
Label: {Label}

DBPedia Input: {Sentence} company / school / artist / athlete / politics /
Label: {Label} transportation / building / nature / village /

animal / plant / album / film / book

AGNews News: {Sentence} World / Sports / Business / Technology
Type: {Label}

TREC Question: {Sentence} Abbreviation / Entity / Person / Location /
Answer Type: {Label} Number

HateSpeech18  Text: {Sentence} neutral / hate

Label: {Label}

EmoC Dialogue: {Sentence} others / happy / sad / angry
Emotion: {Label}

Extra Details We follow the dataset preprocessing protocol from [39] for our experiments setting.
Regarding HateSpeech18, only the first two categories—{0: neutral} and {1: hate} are used, since
the very few number of samples in the other two may impede a comprehensive evaluation of the
model in the test stage.

E LoRA experiment settings

We describe the details of the LoORA implementation in our experiments. For a fair comparison,
the LoRA model trained for each individual dataset is tuned by grid search according to the hy-
perparameter pool, including LoRA alpha, LoRA dropout, optimizer, and learning rate in Table[7]
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Table 7: Hyperparameter Pool for the LoORA model tuning.

Hyperparameter | Values
LoRA alpha 8, 16, 32, 64
LoRA dropout 0.0, 0.05, 0.1
Optimizer AdamW

Learning rate 0.001, 0.0001, 0.00001

F Hyperparameter Pool

We conduct the grid search for fair comparison over all the models, including all the baseline models
and ours. The hyperparameter pool for the model tuning is give in Table|[§]

Table 8: Hyperparameter Pool for the LoRA model tuning.

Hyperparameter | Values

A1 0.1, 0.001, 0.0001, 0.00001, 0.000001
Aa 0.1, 0.001, 0.0001, 0.00001, 0.000001
Optimizer AdamW

Learning rate 0.001, 0.0001, 0.00001,
Weight decay 0.001, 0.0001, 0.00001, 0.000001
Training epoch 20, 50, 60, 80, 100

G Limitation and Future Work

In this work, we address the problem of few-shot adaptation within the LLM framework by en-
hancing both the internal optimization efficiency and the generalization capability of pretrained
models. Specifically, we introduce two distinct objective terms, each targeting one of these properties.
While this design improves performance, it also increases the burden of hyperparameter tuning and
computational overhead. We leave the unification of these objectives into a single term, enabling
joint optimization of both properties, as future work. Moving forward, we aim to contribute to the
community by developing a rigorous theoretical foundation for this adaptation problem and further
improving our method based on these insights.

H Broader impacts
This paper aims to contribute to the advancement of Machine Learning, especially to the few-shot

adaptation of LLMs. While our work may have various societal implications, none require specific
emphasis in this context.
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