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Abstract

In multi-objective learning (MOL), several possibly competing prediction tasks must be solved jointly
by a single model. Achieving good trade-offs may require a model class G with larger capacity than what
is necessary for solving the individual tasks. This, in turn, increases the statistical cost, as reflected in
known MOL bounds that depend on the complexity of G. We show that this cost is unavoidable for some
losses, even in an idealized semi-supervised setting, where the learner has access to the Bayes-optimal
solutions for the individual tasks as well as the marginal distributions over the covariates. On the other
hand, for objectives defined with Bregman losses, we prove that the complexity of G may come into play
only in terms of unlabeled data. Concretely, we establish sample complexity upper bounds, showing
precisely when and how unlabeled data can significantly alleviate the need for labeled data. These rates
are achieved by a simple, semi-supervised algorithm via pseudo-labeling.

1 Introduction

The multi-objective learning (MOL) paradigm has recently emerged to extend the classical problem of risk
minimization from statistical learning to settings with multiple notions of risk [31, 18, 57, 26]. Multi-
objective learning problems are ubiquitous in practice, as it often matters how our models behave with
respect to multiple metrics and across different populations. For example, consider designing a policy
for a self-driving car: the risks could measure different notions of safety (e.g., safety of passengers or
pedestrians), or safety under various conditions (e.g., different locations and weather conditions).

More formally, we study the MOL setting with K population risk functionals R1, . . . ,RK, each quantifying
an average, possibly different, loss ℓk incurred by a prediction model g over the data distribution Pk. The
aim is to learn models from a class G that minimize all K excess risks Ek(g) := Rk(g)− infRk jointly, using
only finite-sample access to the distributions. Here, infRk is the Bayes risk of the kth task, which is the
smallest achievable risk over all measurable functions. Specifically, we study the sample complexity of
learning the set of Pareto optimal models in G. Recall that a model is Pareto optimal in G if any alternative
model in G that reduces one risk necessarily increases another (see Definition 1); we often simply say that
such a model makes an optimal trade-off. Under mild conditions, the set of Pareto optimal models can be
recovered by minimizing a family of scalarized objectives Ts that we call the s-trade-offs:1

min
g∈G

Ts(g) := s
(
E1(g), . . . , EK(g)

)

the s-trade-off achieved by g

, s ∈ S (1)

1We scalarize the excess risks Ek because they each capture the suboptimality with respect to what is theoretically attainable
when optimizing Rk without consideration for other risks. Notice however that the Pareto set of the excess risks Ek is the same as
the Pareto set of the risks Rk , as they are equal up to the constants infRk . We further motivate this in Section 2.3 and Fig. 1a.
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where the map s : RK → R is from some family S of scalarization functions that aggregates the excess
risks into a single statistic. Notice that if the excess risks were known, the problem in Eq. (1) would
reduce to a family of classical (multi-objective) optimization problems [42, 52, 37]. However, because the
objectives in Eq. (1) depend on distributional quantities that are unknown, we need to learn the solutions
from data. Specifically, we study the sample complexity of achieving Eq. (1) up to errors εs > 0, a problem
we call S-Multi-Objective Learning, or S-MOL for short. This problem is formalized in Definition 2.

Two main lines of work have studied the sample complexity of MOL, both predominantly in the supervised
framework. In the multi-distribution learning (MDL) literature [26, 3, 49, 71], the goal of the learner is to
recover a solution to Eq. (1) for one specific s-trade-off induced by the scalarization s(v) = maxk∈[K] vk.
This yields the familiar min-max formulation of MOL.2 And in the literature for the general S-MOL
setting [18, 57], the learner aims to solve Eq. (1) for multiple scalarizations. Both lines establish sample
complexity bounds in terms of capacity measures of G, which can be shown to be tight in the worst case.

However, solutions with good trade-offs may only be found in a complex model class G even when
individual tasks are easy to solve in smaller classes Hk. In such cases, previous worst-case results do not
address whether it is really necessary to pay the full, supervised statistical cost of S-MOL over G. This
motivates our consideration of semi-supervised multi-objective learning, in which the learner has access
to both labeled and (cheaper) unlabeled data for each of the K tasks. In the single-objective setting, it is
well-known that access to unlabeled data can, at times, significantly reduce the amount of labeled data
required [16, 68]. But for multi-objective learning, the sample complexity in a semi-supervised setting is
largely unexplored, with only a few exceptions [4, 63] that rely on additional assumptions for unlabeled
data to be helpful (cf. Section 6). Thus, the more holistic question we aim to address in this paper is

Given that each task k ∈ [K] is solvable in a hypothesis class Hk, how much labeled and
unlabeled data is needed to achieve trade-offs available in a larger function class G?

The authors in [63] recently established the first sample complexity bounds in a similar semi-supervised
multi-objective setting, but under rather stringent assumptions (see Section 6 for a more in-depth
discussion of their results). In contrast, in this paper, we give a holistic characterization of the conditions
when unlabeled data can help and by how much. In terms of sample complexity upper bounds, we show
that for a large class of losses, the capacity of G comes into play only in the amount of unlabeled data
required, while the amount of labeled data merely depends on that of H1, . . . ,HK. Moreover, we show
that these rates are achieved by a simple, pseudo-labeling-based algorithm.

Concretely, our contributions are as follows:

• We first show hardness of S-MOL under uninformative losses via a minimax sample complexity lower
bound that holds even when the learner knows the Bayes-optimal models for each task and has access
to the marginal distributions over unlabeled data, i.e., infinite unlabeled data (Section 3.1).

• We then prove that risks induced by Bregman divergence losses—which include the square and cross-
entropy losses—effectively disentangle the multi-objective learning problem. For Bregman losses,
information about individual risk minimizers can significantly reduce labeled sample complexity in
the semi-supervised setting via a simple pseudo-labeling algorithm (Section 3.2).

• Specifically, for S-MOL with Bregman losses, we first provide a uniform bound over the excess
s-trade-offs of the pseudo-labeling algorithm for bounded, Lipschitz losses via uniform convergence
(Section 4.1). Our major technical contribution then lies in proving localized rates that are distribution-
specific under stronger assumptions (Section 4.2). Crucially, the labeled sample complexity in both
bounds only depends on the classes {Hk}K

k=1, while G only appears in the unlabeled sample complexity.

Our analysis reveals an interesting insight: even though the pseudo-labeling algorithm is reminiscent
of single-objective semi-supervised learning procedures, the reason behind the benefits of unlabeled
data turns out to be fundamentally different. In single-objective learning, unlabeled data can only
help if, roughly speaking, the marginal carries information about the labels [12, 25, 74]. Our results,

2Contrary to Eq. (1), in the MDL literature, the risks are usually directly scalarized.
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in contrast, hold without any such assumptions. In multi-objective learning, unlabeled data helps the
learner determine the relative importance of each test instance to each task: if the likelihood of an input is
higher under one task than another, a model can accordingly prioritize the more relevant risk to achieve
better trade-offs. This information may be completely independent of the labels assigned by each task.

2 Semi-supervised multi-objective learning

In this section, we formally introduce the semi-supervised S-multi-objective learning problem. For ease
of reference, an overview of notation is provided in Table 2 of Appendix F.

2.1 Preliminaries and the individual tasks

Let X be the feature space, and Y ⊆ Rq the label space. We are interested in K prediction tasks, indexed
by k ∈ [K] := {1, . . . , K}, over joint distributions Pk of (Xk, Yk) on the product space X ×Y . We denote
the underlying joint probability measure by P. From each task, we observe nk i.i.d. labeled samples
{(Xk

i , Yk
i )}

nk
i=1 from Pk, and Nk i.i.d. unlabeled samples {X̃k

i }
Nk
i=1 from the marginal of Pk on X , denoted Pk

X .
Let D denote the combined dataset of both labeled and unlabeled data. For each task k ∈ [K], we define
the population and empirical risks of a function f : X → Y as

Rk( f ) := E
[
ℓk(Yk, f (Xk))

]
and R̂k( f ) :=

1
nk

nk

∑
i=1

ℓk(Yk
i , f (Xk

i )), (2)

where ℓk : Y × Y → R is a (not necessarily symmetric) loss function with ℓk(y, ŷ) being the loss incurred
by predicting ŷ when the true label is y. Further, we write Fall for the set of all functions f : X → Y for
which all integrals in this paper are well-defined.3 For each k ∈ [K], we assume access to a function class
Hk ⊆ Fall that contains a population risk minimizer of Rk, that is, there exists a f ⋆k ∈ Fall such that

f ⋆k ∈ arg min
f∈Fall

Rk( f ) and f ⋆k ∈ Hk. (3)

The risk that any model f : X → Y incurs is at least Rk( f ⋆k ), so we focus our attention on achieving small
excess risk with respect to the Bayes optimal predictor, defined as

Ek( f ) := Rk( f )−Rk( f ⋆k ). (4)

2.2 Pareto optimality and scalarization

In multi-objective learning, our aim is to learn models g from some function class G that, ideally, achieve
low excess risk on all tasks simultaneously. Since, by assumption, the individual tasks are optimally solved
in Hk, we only consider hypothesis classes G ⊂ Fall that satisfy G ⊇ ⋃

k∈[K] Hk. But even if G is very
large, minimizing all excess risks may not be possible. In particular, in this work we do not assume that
there exists one f : X → Y that performs well across objectives (as opposed to the collaborative learning
framework [13] or the setting in [4]). Instead, the aim is to recover the set of Pareto optimal solutions in the
class G for the K objectives, formally defined as follows.

Definition 1 (Pareto optimality). Let E1, . . . , EK be a collection of excess risk functionals defined in Eq. (4).
We say that a function g ∈ G is Pareto optimal in G if there is no other g′ ∈ G such that

∃k ∈ [K] s.t. Ek(g′) < Ek(g) and ∀j ∈ [K], Ej(g′) ≤ Ej(g).

3Formally, we assume Fall to be a subset of the K Bochner spaces L2(Pk
X), k ∈ [K] of functions X → (Rq, ∥ · ∥2).
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The subset of G containing all Pareto optimal functions is called the Pareto set. The subset of RK containing
the excess risk vectors of the Pareto set is called the Pareto front, defined as

F(G) :=
{(

E1(g), . . . , EK(g)
)

: g is in the Pareto set of G
}
⊆ RK.

In words, any model in G that reduces one risk over a Pareto optimal model must increase another risk.
Every Pareto-optimal model corresponds to a distinct “preference” or “trade-off”, all of which are equally
valid from a decision-theoretic perspective [28]. We can quantify such trade-offs using scalarization
functions s : RK → R that, for all f ∈ Fall, map the vector of excess risks into a scalar objective4

Ts( f ) = s
(
E1( f ), . . . , EK( f )

)
with gs ∈ arg min

g∈G
Ts(g), (5)

see also Eq. (1). We call Ts( f ) the s-trade-off achieved by f . It has a natural interpretation: recall that
Ek(gs) is the cost incurred by the k-th task to make this particular type of trade-off over myopically
optimizing Rk. Then, Ts(gs) aggregates these costs (see Fig. 1). This interpretation also further motivates
scalarizing the excess risks instead of the risks: if one task were to have much higher Bayes risk than
another, scalarizing the risks directly would not aggregate the additional cost, cf. Fig. 1a.

Two popular examples of scalarization families are Tchebycheff and linear scalarizations, defined as

Smax =

{
smax

λ (v) = max
k∈[K]

λkvk | λ ∈ ∆K−1
}

, Slin =

{
slin

λ (v) =
K

∑
k=1

λkvk | λ ∈ ∆K−1

}
, (6)

where ∆K−1 is the (K − 1)-probability simplex. They represent the worst-case and averaged notions of
excess risks, respectively (see Fig. 1a for a visualization of the Tchebycheff scalarization). Minimizing
these families of scalarizations recovers the Pareto set under some conditions (e.g., convexity for linear
scalarization), see the detailed discussions in [45, 22, 42]. But of course, other scalarizations also exist [22].
Our most general result (Section 4.1) holds for scalarizations that satisfy the reverse triangle inequality
and positive homogeneity, defined as

∀v, w ∈ RK : |s(v)− s(w)| ≤ s(|v1 − w1| , . . . , |vK − wK|),
∀v ∈ RK, α > 0 : s(αv) = α · s(v).

(7)

Both the linear and Tchebycheff scalarizations from Eq. (6) satisfy the properties in Eq. (7).

2.3 Multi-objective learning

Because infg∈G Ts(g) may be arbitrarily large, we evaluate our empirical estimates of gs using the excess
s-trade-off, defined, for f ∈ Fall, as

Ts( f )− inf
g∈G

Ts(g). (8)

The S-MOL problem is then to achieve small excess s-trade-off across scalarizations with high probability.

Definition 2 (S-MOL). Let S be a family of scalarizations s : RK → R, (εs)s∈S a family of positive
real numbers, and δ ∈ (0, 1). Let A be an algorithm that, provided with a dataset D and the function
classes {Hk}K

k=1 and G, returns a family of functions {ĝs : s ∈ S} ⊂ G. Then A solves the S-multi-objective
learning (S-MOL) problem with parameters ((εs)s∈S , δ), if

P

(
∀s ∈ S : Ts(ĝs)− inf

g∈G
Ts(g) ≤ εs

)
≥ 1 − δ, (S-MOL)

where the probability is taken with respect to draws of the training dataset D.
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attainable risks: Fall G H1,H2

(a) The attainable risks in each function class
and one Tchebycheff scalarization of the risks
and of the excess risks.

E1

E2

F(Fall)

F(G) F(H2)

F(H1)

λ1

λ2

(b) The larger G, the smaller the
minimal s-trade-off within G due
to low “bias”.

E1

E2

F(Fall)
F(G)

F̂(G)

λ1

λ2

(c) The larger G, the larger the
excess s-trade-off on the function
class G due to high “variance”.

Figure 1: (a) All attainable risks for the function classes Fall,G,H1,H2. Using scalarizations on the risks directly
can be misleading if the Bayes risk of one task is much larger than that of another: even if both tasks have equal
weight, the Tchebycheff scalarization (6) may inadvertently only solve one task (triangles). Scalarizing the excess
risks avoids this (dots). (b) The Pareto fronts for the classes H1,H2,G,Fall in the space of excess risks, and two
Tchebycheff scalarizations smax

λ (6) with different λ (gray dashed line), with the corresponding trade-off minimizers
(dots), and the gap to the minimizers in Fall (bi-directed red arrows). (c) The population and empirical Pareto
F(G) and F̂(G), and the excess s-trade-off of the estimated Pareto points (bi-directed red arrows) on the same two
Tchebycheff scalarizations.

From the population-level optimization perspective in Eq. (1), better trade-offs become possible as the
class G grows. This is visualized in Fig. 1b, showing the Pareto fronts achieved by the function classes
Fall,G,H1,H2 in a two-objective setting. The separation between the Pareto front F(G) and the theoretical
optimum F(Fall) can be seen as the “multi-objective bias” incurred in S-MOL due to a conservative
choice of G. For two Tchebycheff scalarizations, the red bi-directed arrows in Fig. 1b reflect this point-wise
“bias”. However, because the Pareto front needs to be learned from finite samples, we would also expect
from classical learning theory that as G grows, so does the “multi-objective variance” of an empirical
Pareto front F̂(G). Fig. 1c illustrates this by the gap between F(G) and F̂(G), and for the same two
Tchebycheff scalarizations, the red bi-directed arrows reflect the excess s-trade-off. In the next section we
first address how much excess trade-off any algorithm necessarily incurs when learning F(G) from data.

3 Motivating Bregman losses: A hardness result

To answer this in the context of a semi-supervised setting, we now argue that for the unlabeled data to
help solve S-MOL, the structure of the loss functions is key.

3.1 A sample complexity lower bound for ideal semi-supervised S-MOL

Let us consider the class of PAC-learners for S-MOL, which are learners that achieve S-MOL for all
distributions over X ×Y . For concreteness, consider multi-objective binary classification with zero-one
loss, where S is the entire family of linear scalarizations Slin:

Definition 3 (Multi-objective binary classification). Let G be a hypothesis class with VC dimension
dG ∈ N on a data domain X ×Y where Y = {0, 1}. For each task k ∈ [K], define ℓk(y, ŷ) = 1{y ̸= ŷ} to
be the zero-one loss.

For supervised S-MOL with εs ≡ ε for all s ∈ Slin, prior works achieve a sample complexity upper
bound of O(KdG/ε2), up to logarithmic terms, see [18, 57] and Corollary A.1. In fact, a matching lower

4We assume that there exists gs ∈ G such that Ts(gs) = infg∈G Ts(g). Otherwise, all our arguments go through with an
ε-minimizer in G, so we do not lose any generality with this assumption.
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bound of Ω(KdG/ε2) holds as well: after all, the set of s-trade-offs {Ts : s ∈ Slin} contains the individual
excess risk functionals Ek, and hence solving S-MOL requires the learner to solve the K original tasks as
well. The lower bound then follows from standard agnostic PAC-learning [55, Theorem 6.8]. In short,
previous upper bounds are tight and the sample complexity of supervised S-MOL is Θ(KdG/ε2), which
also coincides with the sample complexity of MDL under non-adaptive sampling [71].

In the semi-supervised S-MOL setting, the question now becomes: can the unlabeled data reduce the
label complexity of this problem? Perhaps surprisingly, we now show that the same lower bound holds,
even if the learner has additional access to Bayes optimal classifiers f ⋆k and the marginal distributions Pk

X .

Proposition 1 (Hardness of semi-supervised multi-objective binary classification). Fix any K > 1 and any
ε ∈ (0, 1/12). For a given tuple (P1, . . . , PK), denote by Sk a labeled dataset consisting of i.i.d. samples from Pk,
let f ⋆k be a Bayes optimal classifier of Pk, and let Pk

X be the marginal distribution on X . Denote by A any algorithm
that, given {Sk, f ⋆k , Pk

X}K
k=1, returns a set of classifiers {ĝs ∈ G : s ∈ Slin}.

If A achieves (S-MOL) with εs ≡ ε for all linear scalarizations s ∈ Slin, δ ≤ 1/6, and for all distributions
(P1, . . . , PK) in the multi-objective binary classification setting (Definition 3), then the total number of labeled
samples it requires is at least |S1|+ · · ·+ |SK| ≥ CKdG/ε2 where C > 0 is a universal constant.

See Appendix D.1 for the proof. Proposition 1 shows that the label sample complexity lower bounds
for supervised S-MOL cannot be improved for the problem in Definition 3—even in an idealized semi-
supervised S-MOL setting where the learner has infinite unlabeled data and can perfectly solve the
individual learning tasks. Moreover, contrary to the MDL setting [71], adaptive sampling cannot improve
upon learners using non-adaptively sampled data.

Proposition 1 crucially hinges on the zero-one loss through the following intuition: Suppose you flip
two biased coins A, B ∈ {0, 1}, one with probability P(A = 1) = a > 1/2, and one with probability
P(B = 1) = b < 1/2. The most accurate predictors of the outcomes of each coin separately are the
constant predictors 1 and 0, irrespective of the actual values of a and b. However, suppose now you
would like to minimize the linear scalarization of both prediction errors with weights λ1 = λ2 = 1/2.
Then striking an optimal trade-off would require knowing both a and b, since

arg min
y∈{0,1}

λ1E [1{A ̸= y}] + λ2E [1{B ̸= y}] =





{1} if a > 1 − b,
{0, 1} if a = 1 − b,
{0} if a < 1 − b.

Therefore, in this example, knowing the optimal predictors for each coin separately does not help with
minimizing the trade-off. This effect is due to the zero-one loss not being a proper scoring rule in the sense
that knowing the minimizer does not provide any information about the distribution, nor about the
expected (excess) loss of a prediction, which is necessary for weighing the risks of two different tasks
against each other. And indeed, other losses, such as the hinge or absolute deviation loss, suffer from the
same problem. See also [60] for a discussion of calibration in multi-objective learning.

In our main results, we show that this lower bound can be circumvented in learning settings where the
loss functions are proper in the above sense, and hence more informative.

3.2 Bregman divergence losses and a pseudo-labeling algorithm

In this section, we introduce Bregman losses and their key property that allows us to leverage unlabeled
data and alleviate labeled sample complexity via a pseudo-labeling algorithm.

Definition 4 (Bregman loss). Let Y be convex. A loss ℓ : Y ×Y → [0, ∞] is called a Bregman loss if there is
a strictly convex and differentiable potential ϕ : Y → R such that ℓ(y, ŷ) = ϕ(y)− ϕ(ŷ)− ⟨∇ϕ(ŷ), y − ŷ⟩.

Many standard prediction losses are Bregman losses. For example, the squared loss can be obtained by
setting ϕ(y) = ∥y∥2

2, the logistic loss by choosing ϕ(y) = y log y + (1 − y) log(1 − y), and the Kullback-
Leibler divergence using ϕ(y) = ∑

q
k=1 yj log yj. As we now show, an important fact that we will leverage

6



about learning with a Bregman loss is that the associated excess risk functional can be expressed in terms
of its minimizer. To state it precisely, we introduce the notions of population and empirical risk discrepancies
of a function f ∈ Fall from some h ∈ Hk, defined as:

dk( f ; h) := E
[
ℓk(h(Xk), f (Xk))

]
, d̂k( f ; h) :=

1
Nk

Nk

∑
i=1

ℓk(h(X̃k
i ), f (X̃k

i )). (9)

We further define for some h1 ∈ H1, . . . , hK ∈ HK and h = (h1, . . . , hK) the population and empirical
scalarized risk discrepancies of a function f ∈ Fall from h as

ds( f ; h) = s(d1( f ; h1), . . . , dK( f ; hK)), d̂s( f ; h) = s(d̂1( f ; h1), ..., d̂K( f ; hK)). (10)

We are now ready to state Lemma 1, proved in Appendix D.2.

Lemma 1 (Properties of Bregman losses, based on [6]). For each k ∈ [K], let ℓk be a Bregman loss with
potential ϕk. If both E[Yk] and E[ϕk(Yk)] are finite, then up to almost sure equivalence, it holds that

f ⋆k (·) := arg min
f∈Fall

Rk( f ) = E
[
Yk|Xk = ·

]
and ∀ f ∈ Fall, Ek( f ) = dk( f ; f ⋆k ).

Along with Eqs. (5) and (10), Lemma 1 implies Ts( f ) = ds( f ; f ⋆) for f ⋆ = ( f ⋆1 , . . . , f ⋆K). Note that the
second part of Lemma 1 implicitly decomposes the risk into a task-specific intrinsic noise and bias term
(the discrepancy). It turns out that Bregman divergences are, up to transformation of the label space,
the only loss functions that enjoy such a “clean” bias-variance decomposition, see [27, Theorem 12] and
Appendix B for a discussion. This bias-variance decomposition is crucial, because it justifies the following
pseudo-labeling multi-objective learning algorithm (PL-MOL, Algorithm 1).

Algorithm 1 Pseudo-labeling (PL-MOL)

1: for k ∈ [K] do
2: Compute ĥk = arg minh∈Hk

R̂k(h)
3: end for
4: for s ∈ S do
5: Compute ĝs = arg ming∈G d̂s(g; ĥ)
6: end for
7: Return {ĝs : s ∈ S}.

First, we minimize the individual empirical risks R̂k
over Hk to obtain ĥ = (ĥ1, . . . , ĥK), the set of empirical
risk minimizers; thus, we estimate the task-wise Bayes-
optimal models f ⋆k (Line 2).5 Given Lemma 1, we can
then approximate the excess risks Ek via the empirical
risk discrepancies d̂k(·; ĥk) taken with respect to ĥk using
unlabeled data. Accordingly, the s-trade-off Ts(·) can be
approximated by d̂s(·; ĥ). The empirical estimate of the
Pareto set in G is then given as the minimizer of d̂s(·; ĥ)
in G (Line 5). In this second step, of course, one could
also reuse the covariates of the labeled data, but this would at most yield a constant gain.

Notice that the second step (Line 5) is equivalent to first pseudo-labeling all unlabeled data using the
ERMs, and then passing it to the supervised S-MOL algorithm from [57] (“ERM-MOL”, Algorithm 2
discussed in Appendix A.2). Finally, note that from a computational perspective, even if S is not finite,
Algorithm 1 can be implemented, e.g., using hypernetworks, see Appendix A.1.

3.3 Characterization of models with optimal trade-offs: A variational inequality

The pseudo-labeling method illustrates how one can estimate the s-trade-off solutions gs ∈ G from both
labeled and unlabeled data when the losses are Bregman divergences. We now show that Bregman
losses also enable characterizing the minimizers gs via a variational inequality in some cases. From
this inequality, in turn, we can derive conditions for gs to have a particularly simple representation.
Specifically, in the case of learning with Bregman losses and linear scalarizations s ∈ Slin in a convex
model class G, we can show the following result.

5Here, we use ERM for each task separately, but in principle, any algorithm can be used to estimate the f ⋆k ’s. In particular, if
there were assumptions about information flow between different Pk’s, then it could be of interest to deploy an algorithm tailored
to multi-task learning. However, we do not impose such assumptions, and hence our algorithm and corresponding bounds do not
take advantage of potential shared information between the different tasks.

7



Lemma 2 (Variational characterization of minimizers). For each k ∈ [K], let ℓk be a Bregman loss with
potential ϕk. Suppose s = slin

λ is linear with weights λ, and µs := ∑K
k=1 λkPk

X . Denote by ⟨·, ·⟩s the inner product
defined as ⟨ f , f ′⟩s =

∫
⟨ f (x), f ′(x)⟩ dµs(x). Then for every non-empty, convex and closed set G ⊆ Fall,

Ts(g) = inf
g′∈G

Ts(g′) if and only if ∀g′ ∈ G :

〈
K

∑
k=1

λk
dPk

X
dµs

∇2ϕk(g)(g − f ⋆k ), g′ − g

〉

s

≥ 0

where ∇2ϕk(g) denotes the function x 7→ ∇2ϕk(g(x)). If G is bounded, such a g ∈ G is guaranteed to exist.

Lemma 2 is a direct consequence of Lemma D.6 and Theorem 46 in [67]. From this lemma, we can
derive the s-trade-off solutions gs analytically in the special case where G = Fall and all potentials are
shared ϕk = ϕ. In that case, since the set of feasible models is unconstrained, the variational inequality in
Lemma 2 holds with equality. In particular, the first argument of ⟨·, ·⟩s must vanish, up to µs-equivalence.
Thus, we can deduce that the s-trade-off solution is of the form

gs(x) = ∑
k∈[K]

wk(x) f ⋆k (x), where wk(x) = λk
dPk

X
dµs

(x)

so that x 7→ wk(x) is non-negative and ∑k∈[K] wk(x) ≡ 1. In short, the optimal prediction with respect
to the s-trade-off on the instance x ∈ X is a convex combination of the individual Bayes optimal labels.
Additionally, if the marginals are shared Pk

X = PX, then each dPk
X/dµs = 1, so the weights wk are

independent of x. However, these are specific settings, and gs does not generally need to take this form. We
will later make use of this specific form in Section 4.2 for our more specialized result.

4 Sample complexity upper bounds for pseudo-labeling

We now present uniform and localized upper bounds for Algorithm 1 for Bregman losses in terms of
Rademacher complexities. Specifically, we use the coordinate-wise Rademacher complexity of a Y-valued
function class H ⊆ Fall under distribution Pk

X with n samples, which is defined as

Rk
n(H) := E

Xk
1 ,...,Xk

n∼Pk
X

σ11,σ12,...,σnq∼Rad

[
sup
h∈H

∣∣∣∣∣
1
n

n

∑
i=1

q

∑
j=1

σijhj(Xk
i )

∣∣∣∣∣

]
.

We discuss the choice and properties of this Rademacher complexity in Appendix E.2.

4.1 A uniform learning bound

We start with some assumptions on the loss functions ℓk that we require for our bounds.

Assumption 1 (Regularity of the losses). For each k ∈ [K], let ℓk be a Bregman loss satisfying:6

• Its associated potential function ϕk is µk-strongly convex in Y with respect to ℓ2-norm, so that for all
y, y′ ∈ Y , it holds that ℓk(y, y′) = ϕk(y)− ϕk(y′)− ⟨∇ϕk(y′), y − y′⟩ ≥ µk

2 ∥y − y′∥2
2.

• The loss is Lk-Lipschitz continuous in both arguments with ℓ2-norm in Rq, that is, for all y, y′, y′′ ∈ Y
it holds that |ℓ(y, y′)− ℓ(y, y′′)| ≤ Lk ∥y′ − y′′∥2 and |ℓ(y′, y)− ℓ(y′′, y)| ≤ Lk ∥y′ − y′′∥2.

• The loss is bounded by some constant Bk < ∞ as ℓk ≤ Bk.

6The norm of the strong convexity potential and Lipschitz continuity in the first argument can be replaced by an arbitrary
norm in Theorem 1. Replacing the norm of the Lipschitz continuity in the second argument in Theorem 1 entails using other
vector Rademacher complexities, described in Appendix E.2. They cannot be replaced in Theorem 2. Moreover, for our results it is
sufficient for the Lipschitz property to hold on the range of G.
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The boundedness enables the concentration bounds used in our results and is a common assumption,
and the strong convexity and Lipschitz continuity enable using a vector contraction inequality from
[39], as well as establishing a uniform approximation of the excess risks (see the proof outline below).
Most Bregman losses satisfy Assumption 1 on bounded domains Y , while some (like the logistic loss)
require careful treatment of Lipschitz continuity if the gradient is unbounded at the boundary of Y (cf.
Corollary 1 and Lemma E.1). We now state our first main result.

Theorem 1. Suppose that Assumption 1 holds. Let S be any class of scalarizations that satisfy the reverse
triangle inequality and positive homogeneity in Eq. (7), and let {ĝs : s ∈ S} be the class of solutions returned by
Algorithm 1. Then (S-MOL) holds for any δ ∈ (0, 1) and εs = s(ε1, . . . , εK), where each εk is bounded by

εk ≤ Ck


Rk

Nk
(G) +

(
log(K/δ)

Nk

)1/2

+

√

Rk
nk
(Hk) +

(
log(K/δ)

nk

)1/2

 , (11)

with Ck = max{4Lk,
√

2Bk, Lk
√

24Lk/µk, Lk
√

6Bk/µk}.

Theorem 1 is proved in Appendix D.3. Using VC bounds on the Rademacher complexity (see Lemma E.6),
Theorem 1 implies that for VC (subgraph) classes G and Hk = H with VC dimensions dG , dH, only
O(KdH/ε4) labeled and O(KdG/ε2) unlabeled samples are necessary to achieve ε-excess s-trade-off uni-
formly for all scalarizations. Comparing this with the sample complexity Θ(KdG/ε2) from Proposition 1,
it is apparent that for Bregman losses, Algorithm 1 can alleviate the label complexity of S-MOL signifi-
cantly when dG ≫ dH, and completely eradicates its dependence on G. It shows that a large complexity
of G can be compensated by a large amount of unlabeled data Nk, as long as Rk

Nk
(G) → 0 for Nk → ∞.

Notice that, under Assumption 1, the map g 7→ Ek(g) or its domain G can be non-convex, in which case
non-linear scalarizations are necessary to reach the entire Pareto front. Theorem 1 applies to many such
scalarizations, and in particular, the Tchebycheff scalarizations from Eq. (6).

Proof outline of Theorem 1. Using the inequality d̂s(ĝs; ĥ) ≤ d̂s(gs; ĥ) and the identity Ts(g) = ds(g; f ⋆)
from Lemma 1, the proof of Theorem 1 reduces to bounding the two terms ds(ĝs; f ⋆)− d̂s(ĝs; ĥ) and
d̂s(gs; ĥ)− ds(gs; f ⋆). By the reverse triangle inequality and positive homogeneity of the scalarization
defined in (7), both are controlled in each coordinate k ∈ [K] by the uniform bound

sup
g∈G

∣∣∣d̂k(g; ĥk)− dk(g; f ⋆k )
∣∣∣ ≤ sup

g∈G

∣∣∣d̂k(g; ĥk)− dk(g; ĥk)
∣∣∣

︸ ︷︷ ︸
error from finite unlabeled data

+ sup
g∈G

∣∣∣dk(g; ĥk)− dk(g; f ⋆k )
∣∣∣

︸ ︷︷ ︸
error from finite labeled data

.

The bounds for both terms use the boundedness from Assumption 1 through McDiarmid’s inequality
[41] and the Lipschitz continuity in the second argument for a vector contraction inequality [40]. Further,
the Lipschitz continuity from Assumption 1 together with the contraction inequality enables us to
bound the first term with the global Rademacher complexity of G that is independent of ĥk. Finally, the
strong convexity and Lipschitz continuity in the first argument from Assumption 1 implies the bound
sup f∈Fall

∣∣dk( f ; ĥk)− dk( f ; f ⋆k )
∣∣ ≲ E1/2

k (ĥk) for the second term (Lemma D.4). This is the origin of the
square-root in Theorem 1, which is unavoidable in a uniform bound. In turn, we bound the excess risk of
ĥk in terms of the global Rademacher complexity of Hk using standard uniform convergence arguments.
To aggregate the errors, we take a union bound over the K labeled and unlabeled empirical processes.
Due to the global suprema, the final bound then holds uniformly for all scalarizations.

4.2 A localized learning bound

The analysis in Theorem 1 is crude: it estimates the excess risks on all of Hk and G, which is why the
global Rademacher complexities appear in the bound and the unusual extra square-root appears. Such an
analysis can be overly conservative, and a localized bound can provide much tighter statistical guarantees
[8, 35]. To facilitate a localized analysis for Algorithm 1, we require some additional assumptions. First of
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all, we only consider linear scalarizations, that is, S ⊆ Slin from Eq. (6), mostly for the following norms
to be Hilbert norms: for all k ∈ [K], s ∈ Slin, and f ∈ Fall, define

∥ f ∥2
k := E∥ f (Xk)∥2

2 and ∥ f ∥2
s := s

(
∥ f ∥2

1 , . . . , ∥ f ∥2
K

)
.

We also require the following shape, strong convexity and smoothness assumptions.

Assumption 2 (Shape, strong convexity and smoothness). Recall that f ⋆k ∈ arg min f∈Fall
Rk( f ).

• For all k ∈ [K], the function classes Hk − f ⋆k are star-shaped around the origin, that is, for all α ∈ [0, 1],
if h ∈ Hk − f ⋆k , then αh ∈ Hk − f ⋆k . Moreover, the function class G is convex and closed.

• There exists a constant γ > 0 so that for all s ∈ S and all h ∈ H1 × · · · × HK, the map g 7→
ds(g; h)− γ ∥g∥2

s is convex on G.

• For some 0 < ν < ∞, the second and third derivatives of the potentials ϕk are bounded on Y as
supy∈Y

∥∥∇2ϕk(y)
∥∥

2 ≤ ν and supy∈Y
∥∥∇3ϕk(y)

∥∥
2 ≤ ν where ∥·∥2 denotes the ℓ2-operator norms.

The shape constraints are commonly used in local Rademacher complexity proofs [8], and the strong
convexity acts as a “multi-objective Bernstein condition” [8, 34]. Moreover, the convexity of G, strong
convexity, and smoothness also enable a variational argument that is integral to the bound based on
Lemma 2 (see proof outline below for details). For a refined version of our result, we also require the
following norm-equivalence assumption that allows relating errors in ∥·∥s-norm to errors in ∥·∥k-norm.

Assumption 3 (Norm equivalence). All covariate distributions Pk
X are absolutely continuous with respect

to the mixture distributions ∑K
k=1 λkPk

X for all slin
λ ∈ S , and there is a constant η so that

∀k ∈ [K], slin
λ ∈ S : ess sup

dPk
X

d
(

∑K
k=1 λkPk

X

) ≤ η2 < ∞.

Specifically, as proved in Lemma D.7, Assumption 3 is equivalent to imposing ∥·∥k ≤ η ∥·∥s for all k ∈ [K]
and s ∈ S . Sufficient conditions for Assumption 3 are that all weights of the linear scalarizations in S are
bounded away from zero, or Pk

X ≪ Pj
X and ess sup dPk

X/dPj
X ≤ η2 for all k, j ∈ [K].

We are now ready to state the learning bound in terms of localized Rademacher complexities. Recall that
f ⋆k is the Bayes model for the kth task, cf. Eq. (3), and for any h = (h1, . . . , hK) ∈ H1 × · · · ×HK, define

gh
s := arg min

g∈G
ds(g; h),

so that gs = g f ⋆
s , cf. Eq. (5). The result depends on the Rademacher complexities of the following sets of

functions, defined using the balls B∥·∥k
= { f ∈ Fall : ∥ f ∥k ≤ 1} as

Hk(r) := (Hk − f ⋆k ) ∩ rB∥·∥k
and Gk(r; h) :=

⋃

s∈S
(G − gh

s ) ∩ rB∥·∥k
. (12)

The excess s-trade-off is bounded in terms of the following critical radii, defined for each k ∈ [K] as

lk = inf
{

r ≥ 0 : r2 ≥ Rk
nk
(Hk(r))

}
and uk = inf

{
r ≥ 0 : r2 ≥ Rk

Nk
(Gk(r; f ⋆))

}
. (13)

Critical radii like these are the key quantities of localized generalization bounds [8, 35]. They can be
bounded using VC dimension (Lemma E.6) or with (generic) chaining [21, 59]. We define the worst-case
critical radius in G by replacing f ⋆ in the definition of uk with a supremum over ground-truth functions h

ūk := sup
h∈H1×···×HK

inf
{

r ≥ 0 : r2 ≥ Rk
Nk

(Gk(r; h))
}

, (14)

and then uk ≤ ūk. The same quantity appears in our main result.
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f ⋆1

f ⋆2
g′s

ĝs

uk + lk

lk

ũk

gs
ĥ1

ĥ2

G

Gk(ũk; ĥ) ⊂ Gk(uk + lk; f ⋆)

f ⋆1

f ⋆2
g′s

ĝs

uk + lk

ĥ1

ĥ2

G

Figure 2: Informal visualization of the proof of Theorem 2. We first localize the set of estimators {ĝs : s ∈ S} (dotted
red line) around the random “helper” set {g′s : s ∈ S} (dashed blue line) within the set Gk(ũk; ĥ). We then expand a
set Gk(uk, f ⋆) centered at the “true” set {gs : s ∈ S} (solid green line) to include the set Gk(ũk; ĥ) ⊂ Gk(uk + lk; f ⋆)
where lk bounds the maximal deviation of gs to g′s. This way, we may bound the critical random critical radius u of
Gk(ũk, ĥ) in terms of the deterministic critical radius u of Gk(u; f ⋆) and lk as ũ2

k ≲ u2
k + l2k .

Theorem 2. Let S ⊆ Slin be a set of linear scalarizations, and let Assumptions 1 and 2 hold. Then, if δ > 0
is sufficiently small, the output {ĝs : s ∈ S} from Algorithm 1 satisfies (S-MOL) with probability 1 − δ and
εs = s(ε1, . . . , εK), where

εk ≲ Ck

(
ū2

k + l2k +
(

N−1
k + n−1

k

)
log(4K/δ)

)
(15)

and Ck = (ν3(1+diam∥·∥2
(Y))/γ2)max{L2

k/γ2 + Bk/γ, L2
k/µ2

k + Bk/µk}.7 If additionally Assumption 3 holds, then for
l2S = sups∈S s(l21, . . . , l2K) and nS = (sups∈S s(1/n1, . . . , 1/nK))

−1 we have

εk ≲ C̃k

(
u2

k + l2S + (N−1
k + n−1

S ) log(4K/δ)
)

, (16)

with C̃k = Ck · (ην/γ)2 maxk∈[K]
(

Bk/µk + L2
k/µ2

k

)
.

The proof of Theorem 2 can be found in Appendix D.4. By comparing Eq. (11) with Eq. (15), we can see
that, under the additional assumptions, Theorem 2 yields much better rates than Theorem 1, whenever
the critical radii are (much) smaller than the global Rademacher complexities. Effectively, Theorem 1
provides a “slow rate” analysis, while Theorem 2 provides a “fast rate” analysis. Additionally, Theorem 2
avoids the “doubly slow rate” Rk

nk
(Hk)

1/2 that appears in Theorem 1, and hence can potentially yield
a speed-up of power 4 over Theorem 1; for instance, if H has VC (subgraph) dimension dH, then the
label complexity reduces to order O(KdH/ε) compared to the O(KdH/ε4) from Theorem 1. While Eq. (15)
depends on the worst location of the true Pareto set gs in G (through ūk), Eq. (16) refines this bound by
also showing the adaptivity of the algorithm to the specific location of the true Pareto set gs in G.

In the setting where the algorithm has access to the marginals {Pk
X}K

k=1, called the ideal semi-supervised
setting [68], the proof of Theorem 2 also yields a slightly tighter bound than (15) by combining Eqs. (33)
and (37). Under Assumptions 1 and 2, we obtain εs = s(ε1, . . . , εK) with

εk ≲ Ck

(
l2k + n−1

k log(2K/δ)
)

,

where Ck =
ν3

γ2

(
1 + diam∥·∥2

(Y)
)
(Bk/µk + L2

k/µ2
k).

Proof outline of Theorem 2. Again, we decompose the excess s-trade-off into two terms: Assumption 2
implies smoothness of g 7→ ds(g; f ), which combined with Lemma 1 and a triangle inequality yields

Ts(ĝs)− inf
g∈G

Ts(g) ≲
∥∥ĝs − g′s

∥∥2
s︸ ︷︷ ︸

error from finite unlabeled data

+
∥∥g′s − gs

∥∥2
s︸ ︷︷ ︸

error from finite labeled data

=: Tun
s + Tlab

s ,

7We assume min {Lk , µk} /γ ≥ 1 for all k ∈ [K]; otherwise, the same holds without the squares on each ratio.
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where we defined the additional “helper” models g′s = arg ming∈G ds(g; ĥ) that are random with respect
to the labeled data through ĥ, but deterministic with respect to the unlabeled data and correspond to
the estimator in the ideal semi-supervised setting where the marginals Pk

X are known [68]. Our proof then
consists of three steps that all contain non-standard arguments. Fig. 2 visualizes the proof.

First, we bound Tlab
s . Using standard localization, we show that the excess risk of the ERMs ĥk is

of order l2k . Here we use the star-shaped assumption on Hk − f ⋆k from Assumption 2; if it fails to
hold, we could use the star-hull of Hk − f ⋆k instead. We then show how this excess risk propagates
to the models g′s using an argument inspired by [63, Theorem 1]:8 we prove a quadratic stability of
the minimizer h 7→ gh

s = arg ming∈G ds(g; h) under the smoothness, strong convexity and convexity of
G from Assumption 2, using a variational argument based on Lemma 2 (Proposition D.1) to obtain
∥g′s − gs∥2

s ≲ ∑K
k=1 λk∥ĥk − f ⋆k ∥2

k . Crucially, a linear bound follows directly from the Lipschitz continuity
of the losses, but the quadratic bound avoids the square-root from Theorem 1. Combining this bound
with the risk bounds of the ERMs yields Tlab

s ≲ s(l21, . . . , l2K) and directly proves the bound in the ideal
semi-supervised setting.

Second, we bound Tun
s . Because S-MOL requires solving all scalarized problems simultaneously, there is

no single ground-truth around which we could localize. Instead, we use that the Lipschitz contraction of
the loss from [39] allows us to consider the differences ĝs − g′s. And while the location of g′s in G varies
with s, the differences ĝs − g′s are all “centered at the origin” and the intersections of G − g′s with some
ball of radius r > 0 may significantly overlap for different s ∈ S , see right side of Fig. 2. This leads to the
definition of the random function class Gk(r; ĥ) in Eq. (12) centered around {g′s : s ∈ S} on which we use
Talagrand’s concentration inequality [58] (applicable thanks to the boundedness from Assumption 1).
Using the strong convexity9 from Assumption 2 as a multi-objective version of the Bernstein condition
from classical localization [10, 34], we then show that Tun

s ≲ s(ũ2
1, . . . , ũ2

K), where ũk is the critical radius
of Gk(r; ĥ), without bounding ∥ĝs − g′s∥k ≲ uk.

Third, since Gk(r; ĥ) is random with respect to the labeled data, we need to further bound the random
critical radii ũk. We discuss two ways of bounding it: Option 1 simply uses the supremum from Eq. (14),
because then clearly ũk ≤ ūk. Option 2 exploits that we already showed that g′s is close to gs. To that end,
we use the critical radii uk from the set Gk(r; f ⋆) centered around the set {gs : s ∈ S}, cf. Eq. (13). We
then (essentially) show that Gk(ũk; ĥ) ⊂ Gk(uk + ∆k; f ⋆), where ∆k = sups∈S ∥gs − g′s∥k. Some algebra
(Proposition D.3) then shows ũk ≲ uk + ∆k. Combining the bound on Tlab

s and the norm equivalence from
Assumption 3 yields ∆k ≲ l2S , and so Tun

s ≲ s(u2
1 + l2S , . . . , u2

K + l2S ), concluding the proof.

4.3 Discussion of the bounds

We now discuss the bounds of Theorems 1 and 2, and how they could potentially be extended.

Consistency of pseudo-labeling. To begin with, a word of caution: while Theorems 1 and 2 imply
consistency of PL-MOL for Bregman losses, when the losses are not Bregman divergences, Algorithm 1
can even be inconsistent, and hence worse than straight-forward ERM (Algorithm 2). Specifically, the
intuition discussed after Proposition 1 can be formalized as follows: Let Nk = nk = n ∈ N and let
S = {slin

λ } with fixed weights λ. There exists a multi-objective binary classification setting with zero-one
loss (Definition 3) and weights λ, so that the output ĝs from Algorithm 1 satisfies

lim
n→∞

P

(
Ts(ĝs) > inf

g∈G
Ts(g) + c

)
= 1 (17)

for some universal constant c > 0 (e.g., c = 0.1), while Algorithm 2 is consistent. The proof of this is
provided in Appendix D.5.

8See Section 6 for a more detailed comparison with [63].
9Also note that the strong convexity of the potential from Assumption 1 does not imply the strong convexity of the risk

discrepancy: in general, Bregman divergences (i.e., our losses) are not convex in the second argument.
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Generalization beyond Bregman losses. At first glance, the inconsistency from Eq. (17), together with
Proposition 1, suggests that trying to generalize our results beyond Bregman losses may be hopeless. As
previously noted, the key property that the pseudo-labeling Algorithm 1 and Theorems 1 and 2 exploit is
a bias-variance decomposition (Lemma 1) and under mild regularity assumptions, Bregman losses are
the only losses that have this property—up to a bijective transformation of the target space, then known
as g-Bregman divergences [27, Theorem 12].10 As such, the pseudo-labeling Algorithm 1 is expected to
work only if the losses are in this set of generalized Bregman divergences. Nevertheless, it is interesting to
determine for exactly which losses the semi-supervised setting can improve upon the supervised one. It
turns out that under stronger assumptions, and using a tailored version of the pseudo-labeling algorithm,
it is possible. We provide a first result of this kind in Appendix B.

Adaptivity and weakening Assumption 3. The second bound of Theorem 2, Eq. (16), is adaptive to
the exact location of the set {gs : s ∈ S} in G. Depending on the geometry of G, this set may lie in a “low
complexity region” of G. If that is the case, then the radii uk can be smaller than ūk, and the bound adapts
to this low complexity. But this comes at a cost: to prove Eq. (16), we require the norm equivalence from
Assumption 3, and have to replace lk by lS . This stems from using Option 2 in the above proof outline to
bound the random critical radii ũk using Proposition D.3. Intuitively, the distance of g′s to gs can only
be controlled in the norm ∥·∥s; in particular, if λk = 0, then there is no reason that g′s should be close to
gs in the norm ∥·∥k. But ũk, defined through ∥·∥k, has to bound the kth coordinate for all scalarizations
s ∈ S , making the norm equivalence from Assumption 3 necessary. For finite sets of scalarizations, on
the other hand, this can be avoided (but replaced by a union bound), see Corollary A.2. Hence, there
seems to be an inherent tension between controlling the error for all scalarizations simultaneously and
proper adaptivity to the local complexity of the problem. It is interesting to explore this tension further
and whether a different proof technique could improve upon it.

Generalization to other scalarizations. While Theorem 1 demonstrates benefits of the semi-supervised
setting for many scalarizations, the localized bounds in Theorem 2 rely on the linearity of the scalarization.
For example, in Lemma D.6, we use the induced Hilbert space to define the notion of the gradient
∇gds(g; h) with respect to ∥·∥s, and in Proposition D.2 we use linearity to move between scalarized
and coordinate-wise empirical processes, see Eq. (45). Generalizing Theorem 2 to other scalarizations,
therefore, would be an interesting research direction that requires substantially different tools.

5 Examples

We now discuss two applications of the main results. We provide more details on the examples and their
proofs, as well as an additional example and some visualizations, in Appendix C.

5.1 Logistic regression

Denote for any q ∈ [1, ∞] the norm balls Bd
q = {w ∈ Rd : ∥w∥q ≤ 1}. Suppose that the covariates lie in

the space X = Bd
∞ ⊂ Rd, and that the labels in Y = [0, 1] for each task follow the Bernoulli distribution

Yk|Xk = x ∼ Ber(σ(⟨x, w⋆
k ⟩))

where σ(x) = 1/(1 + exp (−x)) denotes the sigmoid function and we assume that w⋆
k ∈ Bd

1 . This is the
standard logistic regression setup. The Bayes-optimal models with respect to the logistic loss ℓ(y, ŷ) =
−(y log(ŷ) + (1 − y) log(1 − ŷ)) are given by f ⋆k (·) = σ(

〈
·, w⋆

k
〉
) ∈ H = {h(x) = σ(⟨x, w⟩) : w ∈ Bd

1}.
However, striking a good trade-off between the tasks within H can be impossible (see Fig. 3 for a simple
example). To circumvent this issue, we may want to use some feature map Φ : Bd

∞ → Bp
∞ with p ≫ d, and

then learn in the larger function class G = {g(x) = σ(⟨Φ(x), w⟩) : w ∈ Bp
1}. For example, p = O(dκ) and

10Interestingly, this exact characterization was an open problem until recently, see [14, 27].
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task 1

label 0 label 1

task 2

label 1 label 0

labels
disagree

f ⋆1f ⋆2

(a) data distribution (b) training data and decision boundaries with logistic loss

(c) logistic loss (d) zero-one loss (large sample sizes)

Figure 3: Learning trade-offs in the classification problem visualized in Fig. 3a (more details can be found in
Appendix C.2). We show 1) supervised linear models, 2) supervised polynomial kernels, and 3) the mixture through
the semi-supervised PL-MOL algorithm. (b) The training data and decision boundaries of the three methods, with a
score threshold of 1/2, for varying trade-off parameters λ1. (c) The Pareto fronts for logistic loss and the s-trade-off
as a function of the parameter λ1 in the linear scalarization. (d) The Pareto fronts for zero-one loss and the s-trade-off
as a function of the parameter λ1. We repeat the experiment 10 times and show corresponding interquartile ranges.

H ⊆ G whenever Φ maps to the set of all polynomial features up to degree κ. In this setting, Algorithm 1
effectively exploits unlabeled data to achieve good trade-offs in the larger function class G, as we show in
Corollary 1. This straightforwardly follows from Theorem 1; the proof is given in Appendix C.4.

Corollary 1 (Logistic regression). In the setting described above, let S be some class of scalarizations satisfying
reverse triangle inequality and positive homogeneity. Suppose that mink∈[K] Nk ≥ log(p + K) and mink∈[K] nk ≥
log(d + K). Then, the output of Algorithm 1 {ĝs : s ∈ S} satisfies (S-MOL) with probability at least 0.99 and
εs = s (ε1, . . . , εK) where εk ≲ (log(dK)/nk)

1/4 + (log(pK)/Nk)
1/2.

We can also empirically observe the benefits of the semi-supervised method, Algorithm 1 (PL-MOL),
over purely supervised approaches—namely, over running Algorithm 2 to learn models from either H
(ERM-MOL linear) or G (ERM-MOL polynomial). Fig. 3 visualizes a toy classification problem with linear
scalarization (see Appendix C.2 for full details), and it compares the resulting decision boundaries, Pareto
fronts, and excess s-trade-off across the different approaches.

The ‘bias-variance trade-off’ discussed in Section 2.3 arises here. In this case, the individual tasks can be
perfectly solved over the family of linear classifiers H. However, ERM-MOL over H necessarily fails to
find good trade-offs, since this model class is insufficiently expressive for the multi-objective learning
problem and has large bias. On the other hand, the ERM-MOL over G yields large estimation error or
has high variance, since there was not enough labeled data to solve for trade-offs over the much larger
family of polynomial classifiers. In contrast, the PL-MOL algorithm reduces this variance using only
additional unlabeled data. In this experiment, we can also corroborate the importance of the loss function.
Fig. 3d shows that PL-MOL can be inconsistent when the losses are not Bregman divergences, cf. Eq. (17).
While the Pareto front found by PL-MOL dominates the other methods, it incorrectly weighs the different
objectives per linear scalarization, resulting in a sub-optimal excess s-trade-off (in the sense of Eq. (17)).
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Figure 4: On the left: one fit of the methods on n1 = n2 = 5 labeled and N1 = N2 = 100 unlabeled samples with
weights λ = (1/2, 1/2). In the center: excess s-trade-off as a function of labeled and unlabeled sample sizes for fixed
weights λ = (1/2, 1/2). We fix the unlabeled and labeled sample sizes to 212 and 25, respectively. On the right: the
excess s-trade-off of PL-MOL as a function of unlabeled sample size N1 while n1 = n2 = N2 = 25 are fixed, and for
varying weights. We repeat each experiment 10 times and show median, 20% and 80% quantiles.

5.2 Non-parametric regression with Lipschitz functions

Let X = [0, 1] and Y = [0, 1]. Let ℓk be the square loss. Define for 0 < LH < LG the function classes
H = {h : [0, 1] → [0, 1] : h is LH-Lipschitz} and G = {g : [0, 1] → [0, 1] : g is LG -Lipschitz}. Furthermore,
let K = 2 and Pk

X have a density pk on [0, 1] with respect to the Lebesgue measure. So that Eq. (3) holds,
assume that there exist two functions f ⋆1 , f ⋆2 ∈ H for which E[Yk|Xk = x] = f ⋆k (x) for all x ∈ [0, 1]. We
now apply Theorem 2 to obtain upper bounds for S-MOL in this setting.

Corollary 2. Let S ⊆ Slin be a set of linear scalarizations. Then the output {ĝs : s ∈ S} of Algorithm 1 satisfies
(S-MOL) with probability 0.99 and εs = s(ε1, . . . , εK) where εk ≲ (LH/nk)

2/3 + (LG/Nk)
2/3 for all s ∈ S .

The proof of Corollary 2 can be found in Appendix C.4. Note that we recover the familiar minimax rate
n−2/3 of Lipschitz regression. In comparison, the crude, unlocalized bound from Theorem 1 would yield
the potentially much slower rates L1/4

H n−1/4
k + L1/2

G N−1/2
k .

Let us use the example of regression with square loss to further discuss the intuition why unlabeled data
helps here. In the setting from above, consider the linear scalarization s ∈ Slin with weight 1/2 on each
objective. The solution to min f∈Fall

Ts( f ) can easily be shown to be the point-wise weighted average

x 7→ p1(x) f ⋆1 (x) + p2(x) f ⋆2 (x)
p1(x) + p2(x)

,

see Lemma 2. If the Lipschitz constant LG happens to be large enough for this function to be included in
G, then gs from Eq. (5) is exactly given by this expression. However, in general, the Lipschitz constant of
this function may be much larger than the Lipschitz constant of H, LH, when the densities vary more
than the Bayes-optimal models f ⋆k . The reason that unlabeled data helps follows directly: at each point
x ∈ [0, 1], we need to estimate both f ⋆1 (x), f ⋆2 (x) and the likelihoods p1(x), p2(x) of x occurring in each
task. And of course, these likelihoods can be estimated (indirectly) using only unlabeled data.

We illustrate this in Fig. 4 on the following example: Let H be a set of almost constant functions (that is,
LH = 0.2), and let f ⋆1 ≡ a and f ⋆2 ≡ b for two constants a, b ∈ [0, 1]. Minimizing Ts(h) for the weights
λ = (1/2, 1/2) over H yields the solution hs ≈ (a + b)/2 while for large enough LG , the solution in G
becomes gs = (p1a + p2b)/(p1 + p2). On the left of Fig. 4, we show one data instance and the resulting
models from Algorithms 1 and 2 when the densities are p1(x) = 0.7 sin(20x) + 1 and p2 = 2 − p1. In
the center and on the right, we show the excess s-trade-off in this setting as a function of sample size.
We can see the rates predicted by Corollary 2: when we fix the unlabeled sample sizes as large enough
(N1 = N2 = 212), PL-MOL achieves a small excess s-trade-off already for small labeled sample sizes.
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Meanwhile, ERM-MOL requires a labeled sample size to be of the same order 212 before it achieves a
similar excess s-trade-off. At the same time, if we fix the labeled sample size sufficiently large to learn
the almost constant functions in H, only PL-MOL improves with an increasing number of unlabeled
data. In both cases, the familiar n−2/3-rate from Lipschitz regression is observable, as also predicted by
Corollary 2. Finally, on the right of Fig. 4, we see that if we keep all sample sizes fixed—except for N1—,
then the rates are eventually bottlenecked by the harder task for all scalarizations; the risks stagnate at
λ2N−2/3

2 ≍ λ2, which (up to constants and the smaller order terms) again corresponds to Corollary 2.

6 Related work

Our pseudo-labeling method is connected to many fields that are adjacent to multi-objective learning,
like stacked generalization [64, 44], Mixture-of-Experts approaches [43], boosting and weak to strong
generalization [24], multi-task learning [38, 70, 65, 2, 39, 48], multi-risk settings [20, 36, 56], and learning
for multi-objective optimization [46, 52, 73]. We provide a detailed discussion of these in Appendix A.1.

Semi-supervised learning. Semi-supervised single-objective learning is a well-established field of
research, and the question of when and how unlabeled data can help in a single learning problem is rather
subtle [16, 25, 74, 5]. Interestingly, the reason that unlabeled data helps in our setting is quite different
from how it can help in single-objective learning. Contrary to our setup, results that demonstrate a benefit
of semi-supervised settings in single-objective learning usually require the marginals to carry some
form of information about the labels (such as clusterability, manifold structure, low-density separation,
smoothness, compatibility, etc.) [53, 50, 16], without which semi-supervised learners are no better than
ones that discard the unlabeled data altogether [25, 12]. Our results, on the other hand, hold regardless of
such assumptions: if the likelihood of a sample is higher under one task than another, a model with a
good trade-off prioritizes that task, and unlabeled data enables (implicitly) estimating that likelihood.
This is true, even if that likelihood carries no additional information about the labels.

Multi-distribution learning. In the (supervised) multi-distribution learning (MDL) setting, the goal is
to learn only one s-trade-off for the scalarization s(v) = max vk. Then, for VC-classes of dimension dG ,
the label complexity to achieve excess s-trade-off ε > 0 is Θ̃((K + dG)/ε2) using an on-demand sampling
framework, in which the algorithm is allowed to decide which distribution to sample from sequentially
[26, 3, 49, 71]. Importantly, this adaptive sampling improves upon the “trivial” rate Θ(KdG/ε2) (see [71]
and Appendix A.2) by removing the multiplicative dependence on the number of objectives. For non-
adaptive sampling, the rate Θ(KdG/ε2) is tight, that is, the fact that the algorithm has to solve only one
scalarization does not improve upon the sample complexity of solving all scalarizations, cf. Corollary A.1.
Of course, the statistical complexity under adaptive sampling must fail to hold for S-MOL with multiple
scalarizations, because it includes all individual learning tasks. MDL is also related to collaborative
(where the tasks are assumed to share a ground-truth), federated, and group DRO frameworks, for which
we refer the readers to the discussions in [26, 71, 13]. In [4], the authors propose a semi-supervised
framework for group DRO (a problem related to MDL). The underlying assumption in [4] is that for each
label-scarce group, there exists a group with sufficiently much labeled data and which is “related enough”
for cross-group pseudo-labeling to be effective (similar to the collaborative learning setup).

Generalization for all trade-offs (S-MOL). Applying ERM on labeled data to solve S-MOL was
analyzed in [18, 57] and in [17] through algorithmic stability; we discuss their results in Appendix A.2. As
far as we are aware, we are the first to study the S-MOL problem in the general semi-supervised setting.
The closest work to ours is [63], where the question of learning Pareto manifolds in high-dimensional
Euclidean space was studied in a semi-supervised setting. They assume that 1) the ground-truths exhibit a
sufficiently sparse structure and 2) the objectives have a benign parametrization (their Assumptions 1,2, and
3): the paper considers parametric function classes, and the algorithm that achieves the bounds requires
knowledge about a parameter θk ∈ Rq so that Rk depends on distribution Pk only through θk. Estimating
these parameters and then performing standard multi-objective optimization can enable learning in high
dimensions. The resulting two-stage estimator is similar to our pseudo-labeling algorithm, and they can
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coincide, e.g., for linear regression with square loss. Moreover, in [63] the necessity of unlabeled data in
high-dimensional linear regression is shown. While we borrow an idea for the stability argument in our
Proposition D.1, our results apply to far more general settings.

Comparison of label sample complexities. In order to compare the label sample complexity of our
results with prior work, we summarize the resulting bounds in Table 1 for VC (subgraph)-classes G and
Hk = H with VC dimensions dG , dH. Recall that in the ideal setting, the marginals are known.

Table 1: Label complexities up to logarithmic factors from this (gray) and prior work for VC (subgraph) classes. It
holds that dH ≤ dG and potentially dH ≪ dG . A definition of dΘ is in Appendix B; both dΘ ≪ dG and dΘ ≫ dG are
possible. Note that these results are not strictly comparable, as they depend on varying technical assumptions.

zero-one loss Bregman divergence losses

problem class upper bound lower bound upper bound

supervised MDL dG+K
ε2 [71, 49] dG+K

ε2 [26] dG+K
ε2 [71]

supervised S-MOL KdG
ε2 [57] / Cor. A.1 KdG

ε2 Prop. 1 KdG
ε2 [57] / Prop. A.1

ideal semi-sup. S-MOL KdG
ε2 [57] / Cor. A.1 KdG

ε2 Prop. 1 KdH
ε4 Thm. 1

ideal semi-sup. S-MOL
(with stronger assumptions)

KdΘ
ε4 Prop. B.1 — KdH

ε Thm. 2

7 Conclusion

This work studies when it is possible to mitigate the statistical cost of multi-objective learning, in which
we illuminate the roles of unlabeled data and of the loss functions. This need arises because the function
classes that contain models achieving good trade-offs may need to be much larger than those that are
well-suited for any one task. We show that for general losses, the label complexity of learning multiple
trade-offs simultaneously in a class G is determined solely by the complexity of G, even when the learner
has full access to marginal distributions and the Bayes optimal models for each task (Proposition 1). But
for Bregman losses, a simple pseudo-labeling algorithm can significantly reduce the label complexity
(Theorem 1), where unlabeled data can fully absorb the statistical cost of the expressive model class. Our
analysis with local Rademacher complexities further refines these bounds (Theorem 2) and shows, among
other things, adaptivity of the algorithm under some conditions.

Future work may investigate the tension between controlling the errors of all scalarizations and adaptive
rates, and in this context, whether Assumption 3 is really necessary (see discussion in Section 4.3).
Moreover, it would be interesting to relax structural assumptions in Theorem 2, e.g., by generalizing it to
non-linear scalarizations, and to apply our framework to generative models, which naturally fit into our
vector-valued, divergence-based setting.
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A More on related work

We briefly review adjacent literature (Appendix A.1), and then discuss works on generalization in
multi-objective learning (MOL) for all trade-offs (Appendix A.2).
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A.1 Adjacent related works

There are many works considering multi-risk settings in different contexts (not to be confused with the
multiple competing risks in survival analysis, cf. [33]), for example, in fairness or insurance mathematics
through the lens of multiple quantile risk measures [20, 36, 56]. Our work specifically is related to the
fields of ensembling, multi-task learning, and Pareto set learning.

Learning multiple models for one task. Recall that in our Algorithm 1, we first learn multiple models
(one per task), and combine them into a family of models that trade off the different risks. In comparison,
there are many different ways in which combining multiple models can also help on a single task, usually
by using some sort of ensembling. For instance:

• Stacked generalization combines multiple base models via a meta-model that takes their predictions as
input features and outputs the final prediction [64, 44].

• Mixture-of-Experts models maintain a collection of expert predictors, and use a routing mechanism to
select one or more experts based on the new input. This routing is often done through a direct soft
gating or a weighted combination of the models [43].

• Boosting aggregates multiple weak learners to form a single strong predictor for one task, typically
through sequential training where each model corrects the errors of the previous ensemble [24].

In contrast to any of these methods, our pseudo-labeling algorithm uses the predictions from individual
models (in our work ERMs for simplicity) as training targets and fits a new model (or family of models)
from scratch using the unlabeled inputs. This distinction is essential: unlike the aforementioned methods,
our algorithm does not aggregate existing models to solve a single task, but instead leverages them
as a supervisory signal to reduce the statistical cost of learning trade-offs in a richer function class.
In particular, the described methods do not address the core challenge in MOL: the need to reconcile
conflicting objectives within a single model. Our method explicitly constructs a family of joint predictors
that trades off competing risks and can—or sometimes even must—deviate significantly from any of the
base models.

Learning multiple models for multiple tasks. Multi-task learning (MTL), including semi-supervised
MTL, is a problem that is related to MOL in that both are used in settings where multiple learning
problems need to be solved. However, in MTL, the aim is to learn multiple models, one per task, and
exploit relatedness between tasks to improve sample complexity [38, 70]. As such, the problem of striking
a trade-off, which is at the heart of MOL, is not present in MTL. For example, suppose a new instance
x ∈ X is observed. In MTL, we can make multiple different predictions, one per task, in the hope that
each prediction is good for the corresponding task. In MOL, on the other hand, we have to commit to one
prediction for all tasks. Aside from these differences, as mentioned, if there is a relationship between the
different learning problems, we could employ off-the-shelf MTL algorithms to adapt our pseudo-labeling
algorithm by learning the task-specific models in the first part of the algorithm (Line 2 in Algorithm 1).
Finally, from a technical perspective, it is worth mentioning that (localized) Rademacher complexities
have been used for MTL in [65, 2, 39, 48].

Learning for multi-objective optimization. A recent line of research has introduced the so-called
Pareto set learning (PSL) framework [52, 37, 46], which has found various applications, e.g., in finetuning
language models on multiple objectives [62]. PSL is an approach to making learning algorithms such
as Algorithms 1 and 2 computationally tractable: instead of producing a family of models, one for
each trade-off, PSL approximates this family with one fixed function that takes both weights of the
objectives and covariates as input (often called a hypernetwork [46]). However, importantly, there is no
direct connection of PSL to the learning part of the MOL problem: it is actually purely a computational
technique. Specifically, if one approximates the outputs of Algorithms 1 and 2 with PSL, then it inherits
their statistical guarantees up to the approximation errors. The name Pareto set learning has its origin in
the fact that to find such a PSL function, it is common to minimize some expected scalarization, where
the expectation is taken with respect to weights of the objectives [69]. A standard way to make this
tractable is to sample the weights [46]. Generalization is then usually discussed in terms of the number of
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sampled weights, not the data. See also [63] for a discussion. Finally, beyond hypernetworks, various
other learning techniques have been deployed for multi-objective optimization when evaluating the
objectives is expensive, such as active learning in [73, 72, 30].

A.2 Generalization for multiple scalarizations

In multi-objective optimization, decision makers can be broadly categorized based on whether they have
an a priori or an a posteriori preference over Pareto solutions [28, 32]. An a priori decision maker aims
to recover a specific Pareto model, which is the solution to a trade-off Ts that is known beforehand. In
contrast, an a posteriori decision maker will first recover the whole Pareto set. Recall from Section 2.3 or
[22] that, under mild conditions, this entails solving a family of optimization problems

∀s ∈ S , min
g∈G

Ts(g). (18)

The preference of such a decision maker is then informed by the set of trade-offs that are possible.

The learning version of the problem has been studied for both types of decision makers, where the trade-
off functionals need to be estimated from data. This leads to two types of algorithms and generalization
bounds. The a priori approach has been especially developed in the context of learning with fairness or
multi-group constraints [26, 3, 49, 71]. The a posteriori approach, to which our work mostly belongs, has
been studied by [18, 57].

Then, to learn the Pareto set, empirical risk minimization (ERM), or perhaps more aptly empirical trade-
off minimization, is a natural approach to learning all Pareto solutions. The idea is simply to use labeled
data sampled for each of the K tasks to empirically estimate the s-trade-off functional Ts of any model.
The Pareto set can then be found by minimizing the estimated trade-offs. This algorithm, that we call
empirical risk minimization for multi-objective learning (ERM-MOL), is formalized in Algorithm 2.

Learning the Pareto set through ERM has been described and analyzed by [18], where S is a family of
linear scalarizations. In particular, they provide a sample complexity upper bound that depends on the
complexity of S through a covering number of the weights that appear in S . Later, [57] extended the ERM
framework to go beyond the empirical estimator of the risk functionals, allowing for any “statistically
valid” estimator based on uniform convergence. They further improve the sample complexity upper
bound by removing dependency on S in [57, Theorem 2]. Their result can be used to derive bounds for
ERM in S-MOL: we now instantiate their bound in our setting (see Section 2.1), making the following
assumption to enable comparison with our results:

Assumption 4 (Regularity conditions for ERM-MOL). The risk and excess risk functionals are equal,

∀k ∈ [K] : inf
f∈Fall

Rk( f ) = 0.

Proposition A.1 (Sample complexity of ERM-MOL). Suppose that Assumption 4 holds and that the loss
ℓk(·, ·) is bounded by B and Lk-Lipschitz continuous in the second argument for each k ∈ [K]. Let S be any class
of scalarizations satisfying reverse triangle inequality and positive homogeneity (7). Then, for any δ ∈ (0, 1),
the class of solutions returned by Algorithm 2, {ĝs : s ∈ S}, satisfies (S-MOL) with probability 1 − δ and
εs = s

(
ε1, . . . , εK), where for each k ∈ [K], εk is given by:

εk = 6LkR
k
nk
(G) + 2B

(
2 log(K/δ)

nk

)1/2

. (19)

We demonstrate the implications of this bound for a VC class and for linear scalarizations below, using
the VC bound on the Rademacher complexity (Lemma E.6):

Corollary A.1. Let G be any hypothesis class with VC dimension dG ∈ N on data domain X × Y where
Y = {0, 1}. For each task k ∈ [K], define ℓk(y, y′) = 1{y ̸= y′} be the zero-one loss (cf. Definition 3). Let
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Algorithm 2 ERM for Multi-objective Learning (ERM-MOL)

Input: Labeled data
{
(Xk

i , Yk
i )
}nk

i=1
, hypothesis space G, scalarization set S .

1: for k ∈ [K] do
2: Define the empirical risk functional: R̂k(g) := 1

nk
∑nk

i=1 ℓk
(
Yk

i , g(Xk
i )
)
.

3: end for
4: for s ∈ S do
5: Minimize the empirical s-trade-off: ĝs = arg ming∈G s

(
R̂1(g), . . . , R̂K(g)

)
.

6: end for
7: Return {ĝs : s ∈ S}.

(P1, . . . , PK) be any tuple of data distributions over X × Y . Then, for any δ, ε > 0, the output of Algorithm 2
{ĝs : s ∈ Slin} satisfies (S-MOL) with probability 1 − δ and εs = ε for all s ∈ Slin whenever the number of
samples is at least nk = Ω

(
dG+log(K/δ)

ε2

)
for each k ∈ [K].

See Appendix A.3 for proofs.

Dependence on the size of S in our results. The authors in [57] noted that the dependence on S
in [18] is sub-optimal, in the worst case by a factor of K log nk, and that such a dependence could be
removed. Here, we should add that this is only true because in [57] the learning bounds are exclusively
globally uniform—no localization bounds were derived. Similarly, the bound from our Theorem 1 is also
independent of the size of S . Theorem 2, on the other hand, paints a more nuanced picture: the size of
the sets Gk(r; f ⋆) from Eq. (12) depends on the size of S through a union: if all local neighborhoods of the
gs are “similar,” then S does not affect the bound at all. However, if the local neighborhoods are very
different, then the union may be larger than any of the individual neighborhoods and hence the bound
will grow with the size of S ; see the right side of Fig. 2. See also Section 4.3. Nonetheless, if S is finite,
Theorem 2 also yields the following bound.

Corollary A.2. Let S ⊆ Slin be finite and let Assumptions 1 and 2 hold. Define

uk(s) := inf
{

r ≥ 0 : r2 ≥ Rk
Nk

(
rB∥·∥k

∩ (G − gs)
)}

.

Then, if δ > 0 is sufficiently small, the output {ĝs : s ∈ S} from Algorithm 1 satisfies (S-MOL) with probability
1 − δ and εs = s(ε1, . . . , εK), where

εk ≲ C̃k

(
u2

k(s) + l2k + (N−1
k + n−1

k ) log(4K |S| /δ)
)

,

with C̃k = C̃k(s) from Eq. (16) where we set η2 = η2(s) := max {1/λk : k ∈ [K], λk > 0} for s = slin
λ .

Proof. Consider the where S = {slin
λ } is singleton. Because we only consider this one scalarization, we can

make the following case distinction for each k ∈ [K]: either λk = 0, so we can ignore index k completely,
or λk > 0 and so ess sup dPk

X/d(∑K
j=1 Pj

X) ≤ 1/λk. Hence, Assumption 3 is satisfied for S = {slin
λ } with

η2(slin
λ ) = max {1/λk : k ∈ [K], λk > 0}. The bound for S = {slin

λ } follows from Theorem 2, and the
corollary for a finite S follows from a union bound.

A.3 Proofs for ERM-MOL

Proof of Proposition A.1. The proof is analogous to the proof of [57, Theorem 2], additionally using
Rademacher complexity and McDiarmid’s bound to bound the supremum (denoted CN in [57]) and
slightly different assumptions on the scalarizations. We repeat the proof here for completeness.
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Fix δ > 0. By a standard Rademacher bound (also see Appendix D.3), the following generalization
guarantee holds for each task k ∈ [K],

P

(
∀g ∈ G :

∣∣R̂k(g)−Rk(g)
∣∣ ≤ εk/2

)
≥ 1 − δ

K
. (20)

For any scalarization s, let T̂s denote the empirical s-trade-off

T̂s(g) = s
(
R̂1(g), . . . , R̂K(g)

)
.

Then, Ts is well-approximated by T̂s. By Assumption 4, Rk = Ek, so that when the event Eq. (20) holds
for all k ∈ [K], and this occurs with probability at least 1 − δ by a union bound, we obtain that:

sup
g∈G

∣∣T̂s(g)− Ts(g)
∣∣ = sup

g∈G

∣∣s
(
R̂1(g), . . . , R̂K(g)

)
− s
(
R1(g), . . . ,RK(g)

)∣∣

≤ sup
g∈G

s
(∣∣R̂1(g)−R1(g)

∣∣, . . . ,
∣∣R̂K(g)−RK(g)

∣∣)

≤ s
(
ε1/2, . . . , εK/2

)
, (21)

where the first inequality used the reverse triangle inequality, and the second inequality used the above
claim. In particular, this will allow us to bound the excess s-trade-off of ĝs as follows:

Ts(ĝs)− Ts(gs) = Ts(ĝs)− T̂s(ĝs)︸ ︷︷ ︸
(a)

+ T̂s(ĝs)− T̂s(gs)︸ ︷︷ ︸
(b)

+ T̂s(gs)− Ts(gs)︸ ︷︷ ︸
(c)

≤ s
(
ε1/2, . . . , εK/2

)
+ s
(
ε1/2, . . . , εK/2

)

≤ s
(
ε1, . . . , εK

)
,

where the (a) and (c) terms both contribute at most s(ε1/2, . . . , εK/2) error from Equation (21), while the
(b) term is non-positive, since ĝs minimizes the empirical s-trade-off T̂s. The last inequality follows from
the positive homogeneity of the scalarizations.

Proof of Corollary A.1. From Proposition A.1 and the VC bound on Rademacher complexity (Lemma E.6),
there exists a constant C > 0 such that for each k ∈ [K] we have εk ≤ ε for whenever nk is sufficiently
large:

nk ≥
1
ε2

(
72C2L2

kdG + 16B2 log
K
δ

)
.

The result follows, since we have that for any s ∈ Slin:

s
(
ε1, . . . , εK

)
≤ s
(
ε, . . . , ε

)
= ε,

which concludes the proof.

B Beyond Bregman losses: pseudo-labeling for zero-one loss

In this section, we revisit the example of zero-one loss to discuss what changes in our setting could
enable the semi-supervised setting to help after all, as alluded to in Section 4.3. In particular, we have to
introduce an assumption that circumvents the negative result in Proposition 1 (and Eq. (17)). It turns out
that we have to strengthen our most basic assumption that each task separately is easy to learn according
to Eq. (3). Instead, we may assume that some auxiliary problem, namely learning θk(x) := E[Yk|Xk = x]
(which does not correspond to f ⋆k in this setting), is easy. Then an algorithm may, as a first step, use
another loss to estimate θk and then use the fact that the excess risk in terms of zero-one loss can be
expressed as Ek(g) = E[|2θk(Xk)− 1| · |g(Xk)− 1{θk(Xk) ≥ 1/2}|].
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Let Θk be function spaces from X to [0, 1] and let θ̂k(·) := arg minθ∈Θk
1
nk

∑nk
i=1(Yk − θ(Xk))2 as well as

d̂0/1
s (g; θ̂) := s(d̂0/1

1 (g; θ̂1), . . . , d̂0/1
K (g; θ̂K)), where we defined the zero-one risk discrepancy

d̂0/1
k (g; θ̂k) =

1
Nk

Nk

∑
i=1

[∣∣∣2θ̂k(X̃k
i )− 1

∣∣∣ ·
∣∣∣g(X̃k

i )− 1
{

θ̂k(X̃k
i ) ≥ 1/2

}∣∣∣
]

.

In the next proposition, we replace Eq. (3) with assuming that E[Yk|X = ·] ∈ Θk, and in particular, we do
not—and in some strong sense cannot—assume that Θk ⊆ G.

Proposition B.1. Consider the multi-objective binary classification setting (Definition 3) and let S be a class of
scalarizations that satisfies the reverse triangle inequality and is positive-homogeneous (7). Suppose it holds that
E[Yk|X = ·] ∈ Θk. Then {ĝs ∈ arg ming∈G d̂0/1

s (g; θ̂) : s ∈ S} satisfies (S-MOL) with probability 1 − δ and
εs = s(ε1, . . . , εk), where

εk = 12


Rk

Nk
(G) +

√
log(2K/δ)

Nk
+

√

Rk
nk
(Θk) +

(
log(2K/δ)

nk

)1/2

 .

The proof of Proposition B.1 is in Appendix B.1 and is analogous to that of Theorem 1. Denoting dΘk the
VC subgraph dimension (a.k.a. pseudo dimension) of Θk and dG the VC dimension of G, by Lemma E.6
we can see that the proposition yields a label complexity of KdΘk /ε4 and an unlabeled sample complexity
of KdG/ε2. But does Proposition 1 not prevent any benefit for zero-one loss? What happened?

There is no contradiction: the Rademacher complexity of Θk may be arbitrarily larger than the Rademacher
complexity of any Hk from Eq. (3). It is exactly this phenomenon that Proposition 1 exploits: even when
we know f ⋆k , we can come up with a hard instance where the Rademacher complexity of Θk is of the
same order as G, yielding the need for correspondingly many labeled samples, and hence being unable to
benefit from unlabeled data. Only under the (much) stronger assumption that the auxiliary problem of
learning x 7→ E[Yk|Xk = x] is easy, may we benefit from unlabeled data.

B.1 Proof of Proposition B.1

Denote θk(·) := E[Yk|Xk = ·] ∈ Hk. In the multi-objective classification setting with zero-one loss, we
can write (e.g., [19, Section 2.1])

Ek(g) = E
[∣∣∣2θk(Xk)− 1

∣∣∣ ·
∣∣∣g(Xk)− 1

{
θk(Xk) ≥ 1/2

}∣∣∣
]

.

Denote temporarily fθ(x, g) = |2θ(x)− 1| · |g(x)− 1 {θ(x) ≥ 1/2}|. Then

| fθ(x, g)− fθ′(x, g)| ≤
∣∣|2θ(x)− 1| −

∣∣2θ′(x)− 1
∣∣∣∣+

∣∣2θ′(x)− 1
∣∣ ·
∣∣1
{

θ′(x) ≥ 1/2
}
− 1 {θ(x) ≥ 1/2}

∣∣
(a)
≤ 2

∣∣θ(x)− θ′(x)
∣∣+ 2

∣∣θ(x)− θ′(x)
∣∣ ≤ 4

∣∣θ(x)− θ′(x)
∣∣ .

where in (a) we used that the indicators can only disagree if |θ′(x)− θ(x)| ≥ |θ(x)− 1/2|. It follows that
for any g ∈ G,

∣∣∣Ek(g)− d̂0/1
k (g; θ̂k)

∣∣∣ ≤
∣∣∣Ek(g)− d0/1

k (g; θ̂k)
∣∣∣+
∣∣∣d0/1

k (g; θ̂k)− d̂0/1
k (g; θ̂k)

∣∣∣

=
∣∣∣E
[

fθk (Xk, g)− f
θ̂k
(Xk, g)

]∣∣∣+
∣∣∣d0/1

k (g; θ̂k)− d̂0/1
k (g; θ̂k)

∣∣∣

≤ 4E
[∣∣∣θk(Xk)− θ̂k(Xk)

∣∣∣
]
+
∣∣∣d0/1

k (g; θ̂k)− d̂0/1
k (g; θ̂k)

∣∣∣ .

Be bound each term separately.
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First, analogous to Eq. (31) in the proof of Theorem 1, since the square loss is 2-Lipschitz on [0, 1], with
probability at least 1 − δ/(2K)

E
[∣∣∣θk(Xk)− θ̂k(Xk)

∣∣∣
]
≤
√

E

[(
θk(Xk)− θ̂k(Xk)

)2
]
≤
√

24Rk
nk
(Θk) + 2

(
2 log(2K/δ)

nk

)1/2

.

For the second term, we use that g 7→ fθ(x, g) is 1-Lipschitz continuous. Denote c(x) = 1 {θ(x) ≥ 1/2};
then ∣∣ fθ(x, g)− fθ(x, g′)

∣∣ ≤ |2θ(x)− 1|
∣∣|g(x)− c(x)| −

∣∣g′(x)− c(x)
∣∣∣∣ ≤

∣∣g(x)− g′(x)
∣∣ .

Hence, using contraction again, we get the analogous bound to Eq. (30) with probability 1 − δ

sup
g∈G

∣∣∣d0/1
k (g; θ̂k)− d̂0/1

k (g; θ̂k)
∣∣∣ = sup

g∈G

∣∣∣∣∣
1

Nk

Nk

∑
i=1

f
θ̂k
(X̃k

i , g)− E
[

f
θ̂k
(Xk, g)

]∣∣∣∣∣

≤ 2Rk
Nk
({x 7→ f

θ̂k
(x, g) : g ∈ G}) +

√
2 log(1/δ)

Nk

≤ 6Rk
Nk
(G) +

√
2 log(1/δ)

Nk
.

Hence, we have proved that with probability 1 − δ, for all k ∈ [K], we have

sup
g∈G

∣∣∣Ek(g)− d̂0/1
k (g; θ̂k)

∣∣∣ ≤
√

24Rk
nk
(Θk) + 2

(
2 log(2K/δ)

nk

)1/2

+ 6Rk
Nk
(G) +

√
2 log(2K/δ)

Nk
.

The rest of the proof is then identical to the proof of Theorem 1 provided in Appendix D.3, but we replace
the “claim” with this previous uniform bound.

C More examples

In this section, we discuss an “easy” example for classification, the toy setting used in Fig. 3, and provide
another example applying Theorem 2 to linear regression.

C.1 An easy example for classification

Let X = R2 and Y = [0, 1]. Consider the two distributions P1, P2, defined by sampling the covariates
from a mixture of Gaussians, and then labeling from a linear logistic model:

X1 ∼ 1
2N (0, I2) +

1
2N (−e1, I2), X2 ∼ 1

2N (0, I2) +
1
2N (e1, I2),

Y1|X1 = x ∼ Ber(σ (⟨x,−e1⟩+ 1/2)), Y2|X2 = x ∼ Ber(σ (⟨x, e1⟩+ 1/2)).

In this model, when using cross-entropy loss, each task is solved optimally by a linear classifier that
discriminates between the two Gaussians in each task, that is, by f ⋆1 (x) = σ (⟨x,−e1⟩+ 1/2) and
f ⋆2 (x) = σ (⟨x, e1⟩+ 1/2), respectively. However, striking a good trade-off using linear models in the two
tasks simultaneously is impossible. Specifically, consider the function classes (note the slightly different
setup to Section 5.1) defined as

H =
{

h : x 7→ ⟨w, x⟩+ b : w ∈ 20 · B2
2 , b ∈ R

}
,

G =
{

g : x 7→ ⟨w, Φ(x)⟩+ b : w ∈ 20 · B10
2 , b ∈ R

}
,
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Figure 5: Classification with logistic loss on two tasks (one per row) that are not fully compatible. The gray lines
are the decision boundaries for the ERMs ĥ1, ĥ2 of the two tasks. The black lines and red/blue shading show the
decision boundary of the three methods (one per column).

where Φ maps x to all of its p = (2+3
2 ) = 10 polynomial features up to degree 3. In one data instance

of n1 = n2 = 24 labeled data points sampled from the statistical model defined above, we run three
different algorithms on cross-entropy loss using linear scalarization with equal weights:

• ERM-MOL (Algorithm 2) on the function class H of linear models.

• ERM-MOL (Algorithm 2) on the function class G of polynomial kernels.

• PL-MOL (Algorithm 1) using H in the first stage for all tasks, and G in the second stage with an
additional number of N1 = N2 = 400 unlabeled data points.

We now show the resulting decision boundaries at threshold 1/2 in Fig. 5.

Clearly, striking a good trade-off in H is not possible, while the variance of the larger function class G
induces a larger error on the few (n1 = n2 = 24) labeled data points. Algorithm 1 (PL-MOL) on the other
hand reduces this variance using the N1 = N2 = 400 unlabeled data points.

C.2 A hard example for classification

We now discuss another example, where finding a trade-off is harder than in the previous example. This
is the same problem used in Fig. 3. Specifically, consider the data from Fig. 3a: the support of task 2 is
completely contained within the support of task 1, and in particular, there is an area where the labels of
the two tasks disagree (the bottom left “striped rectangle”). Both tasks are optimally solvable by linear
models, but trying to solve both tasks at the same time is impossible, even in Fall. Meanwhile, better
trade-offs still become available using, e.g., polynomial features.

We sample n1 = n2 = 25 data points uniformly from the regions in Fig. 3a and, in Figs. 3b and 3c, label
them according to the linear logistic model Yk|Xk = x ∼ Ber( f ⋆k (x)), that is, with noise and in accordance
with Eq. (3). Again, we run the three different algorithms on the logistic loss using linear scalarization:
ERM-MOL (Algorithm 2) on the function class H of linear models, ERM-MOL on the function class G of
linear models on polynomial features up to degree 5, and PL-MOL (Algorithm 1) using H in the first
stage for all tasks, and G in the second stage with an additional number of N1 = N2 = 300 unlabeled
data points. PL-MOL fits linear models to the labeled data and uses these to predict (soft) pseudo-labels
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for the unlabeled data, resulting in Fig. 6. Some resulting decision boundaries of each method are shown
in Fig. 3b, and the Pareto fronts (on the test data) as well as excess s-trade-offs are shown in Fig. 3c.

Figure 6: Pseudo-labeled data using PL-
MOL with logistic loss.

As discussed in Section 4.3, the pseudo-labeling Algorithm 1 can
fail when the losses are not Bregman divergences, and even be
inconsistent in terms of s-trade-off, as demonstrated in Eq. (17).
While for the proof of Eq. (17) a simple coin-flip example is suf-
ficient, in the example from Fig. 3a, this effect also happens. To
amplify this effect, in Fig. 3d we generate the labels in task 1
without any noise, and in task 2 according to this model:

Y(2)|X(2) = x ∼
{

0 x is in the “red region” of task 2,
Ber(0.65) x is in the “blue region” of task 2,

where recall the different regions from Fig. 3a. Merely changing
the loss to the zero-one loss then breaks Algorithm 1 in the sense
of Eq. (17). In Fig. 3d, we show how the same algorithms perform
in a large sample regime (n1 = n2 = 400). PL-MOL does not attain
the best-possible trade-off within G, even when it recovers the
Pareto front of G.

C.3 ℓ2-constrained linear regression

We now discuss another example where the localization can yield much tighter results than Theorem 1.
To that end, we consider the following problem of constrained linear regression with squared loss.

Let X = Bd
2 , Y = [−1, 1], and ℓk be the squared loss. For R ∈ [0, 1], define the hypothesis spaces

H = {h(x) = ⟨x, w⟩ : ∥w∥2 ≤ R} and G = {g(x) = ⟨x, w⟩ : ∥w∥2 ≤ 1}. We consider distributions that

satisfy E
[
Yk|Xk = x

]
=
〈
w⋆

k , x
〉
, that is, a (possibly heteroscedastic) zero-mean noise model

Yk =
〈

w⋆
k , Xk

〉
+ ξk with ∀x ∈ X : E

[
ξk|Xk = x

]
= 0,

where f ⋆k =
〈
w⋆

k , ·
〉
∈ H ⊂ Fall for all k. Suppose that the covariance matrices of Xk have smallest

eigenvalue bounded from below by κ ∈ [R, 1] (which is easily satisfied). Theorem 2 then yields the
following corollary, proven in Appendix C.4.

Corollary C.1 (ℓ2-constrained linear regression). In the setting described above, the output of Algorithm 1
satisfies (S-MOL) with probability 0.99 and εs = s(ε1, . . . , εK) for all s ∈ Slin (Eq. (6)), where

εk ≲ min
{

1
κnk

,
2R√

nk

}
+ min

{
1

κNk
,

2√
Nk

}
.

Here 1/nk and 1/Nk are the localized rates, where Theorem 1 would yield 1/
√

nk and 1/
√

Nk instead.
Notice that if H is very small (i.e., R < 1/(2κnk)), then the first term is small due to the smaller complexity
of H, while the second term may only become small due to larger unlabeled sample size Nk.

C.4 Proofs for the Examples

In this section we provide the proofs of Corollaries 1, 2 and C.1.

Proof of Corollary 1. We apply Theorem 1 to the setting. First, note that f ⋆k (x) = E
[
Yk|Xk = x

]
=

σ(
〈

x, w⋆
k
〉
) is contained in H, so that Eq. (3) holds. Also note that the loss ℓ(y, ŷ) = −(y log(ŷ) + (1 −

y) log(1− ŷ)) is a Bregman loss (Definition 4) induced by the potential ϕ(y) = y log y+ (1− y) log(1− y).
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Moreover, for all g ∈ G we have that g(X ) ⊂ [σ(−1), σ(1)], since for all w ∈ Bp
1 and Φ(x) ∈ Bp

∞ we have
that |⟨w, Φ(x)⟩| ≤ ∥w∥1 ∥Φ(x)∥∞ ≤ 1.

We can then check Assumption 1 (using the remark that only the range of G needs to be considered):

1. Because d2

dy2 ϕ(y) = 1/(y(1 − y)) ≥ 4 for all y ∈ [0, 1], we have that ϕ is 4-strongly convex.

2. Making use of the fact that the range of functions in G lies in [σ(−1), σ(1)], we get that ℓ is L-
Lipschitz in both arguments with L = 3

2σ(−1)σ(1) . To see that, employ Lemma E.1 with diam|·|(Y) =

1 and d2

dy2 ϕ(y) ≤ 1
σ(−1)σ(1) on the range of G.

3. Similarly, because the range of functions in G lies in [σ(−1), σ(1)], the loss is bounded by ℓ ≤ B =
− log(σ(−1)).

Hence, we may apply Theorem 1. Standard bounds on the Rademacher complexities yield

Rk
nk
(H) ≤ 1

4

√
2 log 2d

nk
and Rk

Nk
(G) ≤ 1

4

√
2 log 2p

Nk
.

This can be proven using Lipschitz contraction with respect to the sigmoid (which is 1/4-Lipschitz
continuous). For both bounds, there exist distributions so that the bound is tight. Plugging this into
Theorem 1 yields (for some fixed high probability, such as 0.99)

εk ≲
(

log p
Nk

)1/2
+

(
log K

Nk

)1/2
+

√(
log d

nk

)1/2
+

(
log K

nk

)1/2

≲
(

log dK
nk

)1/4
+

(
log pK

Nk

)1/2

where the last inequality holds if max
{

log p
Nk

, log K
Nk

, log d
nk

, log K
nk

}
≤ 1, which we assumed.

Proof of Corollary 2. We verify the assumptions of Theorem 2: Eq. (3) holds by definition of the data
generating model. Assumption 1 and the smoothness from Assumption 2 hold, because the square loss
ℓ is 2-Lipschitz and 1-bounded on Y = [0, 1], and induced by ϕ(y) = y2 which is 1-strongly convex,
and max {ϕ′′, ϕ′′′} ≤ 2. The other parts of Assumption 2 hold because the function classes G and H are
convex, and the strong convexity holds with γs = 1: For every s ≡ slin

λ ∈ Slin a quick calculation shows
that

ds(g; h) =
∫ 1

0
(g(x)− h1(x))2λ1 p1(x) + (g(x)− h2(x))2λ2 p2(x) dx

∥g∥2
s =

∫ 1

0
g2(x)(λ1 p1(x) + λ2 p2(x)) dx

which implies that

ds(g; h)− ∥g∥2
s =

∫ 1

0

(
(g(x)− h1(x))2 − g2(x)

)
λ1 p1(x) +

(
(g(x)− h2(x))2 − g2(x)

)
λ2 p2(x) dx

and hence the strong convexity follows from the convexity of g 7→ (g − a)2 − g2 for any a ∈ R.

To apply Theorem 2, denote the space of 2LG -Lipschitz functions [0, 1] → [−1, 1] as G̃, and note that for
any function g ∈ G we have that G − g ⊂ G̃. Hence, we can see that

Gk(r; h) = rB∥·∥k
∩
⋃

s∈S
(G − gh

s ) ⊂
{

g ∈ G̃ : ∥g∥k ≤ r
}

.
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Denote by N(t,A, ∥·∥) the covering number of a set A with norm ∥·∥ at radius t > 0, see e.g., [61, Chapter
5] for a definition. It is a standard fact [61, Example 5.10] that the metric entropy of {g ∈ G̃ : ∥g∥k ≤ r} is
bounded as

∀0 < t ≤ r : log N
(

t,
{

g ∈ G̃ : ∥g∥k ≤ r
}

, ∥·∥k

)
≤ 8LG

t
.

Hence, using standard bounds with Dudley’s entropy integral [21], we can bound the Rademacher
complexity of this function class by

Rk
Nk

({
g ∈ G̃ : ∥g∥k ≤ r

})
≲

1√
Nk

∫ r

0

√
log N

(
t,
{

g ∈ G̃ : ∥g∥k ≤ r
}

, ∥·∥k

)
dt

≲
1√
Nk

∫ r

0
(LG)1/2t−1/2dt

≲

√
LGr
Nk

and, similarly for Hk(r) we get that

Rk
nk
(Hk(r)) ≲

√
LHr
nk

.

Solving the corresponding inequalities r2 ≥
√

LHr
nk

and r2 ≥
√

LG r
Nk

yields

l2k ≲ L2/3
H n−2/3

k and ū2
k ≲ L2/3

G N−2/3
k .

Plugging this into Eq. (15) from Theorem 2 and noting that 1) for any fixed confidence 1 − δ (such as
0.99) the confidence term goes to zero faster than the main terms, and 2) the constants Ck are universal
constants in this example, yields the result.

Proof of Corollary C.1. Denote Σk = E
[

Xk(Xk)⊤
]
, s ≡ slin

λ and gw = ⟨·, w⟩ ∈ G, so that for any w, w′ ∈ Rd

∥gw − gw′∥2
k = E

[(
gw(Xk)− gw′(Xk)

)2
]
= E

[(〈
w − w′, Xk

〉)2
]
= (w − w′)⊤Σk(w − w′),

and by an identical argument dk(gw; gw′) = (w − w′)⊤Σk(w − w′) = ∥gw − gw′∥2
k . It follows that

ds(gw; f ⋆) =
K

∑
k=1

λk

(
(w − w⋆

k )
⊤Σk(w − w⋆

k )
)

= (w − wλ)
⊤
(

K

∑
k=1

λkΣk

)
(w − wλ) + ds(gwλ

; f ⋆) (22)

where we defined the minimizers

gs ≡ gwλ
with wλ = arg min

∥w∥2≤1
ds(gw; f ⋆) =

(
K

∑
k=1

λkΣk

)−1( K

∑
k=1

λkΣkw⋆
k

)
.

This holds because the unconstrained minimizer coincides with the constrained one, ensured by the
bounded norms

∥∥w⋆
k

∥∥
2 ≤ R ≤ κ and bounded smallest eigenvalue µmin(Σk) ≥ κ—note that because∥∥∥Xk

∥∥∥
2
≤ 1 we have that µmax(Σk) ≤ 1—which implies

∥∥∥∥∥∥

(
K

∑
k=1

λkΣk

)−1( K

∑
k=1

λkΣkwk

)∥∥∥∥∥∥
2

≤ ∑K
k=1 λkµmax(Σk)

∥∥w⋆
k

∥∥
2

∑K
k=1 λkµmin(Σk)

≤ R
κ
≤ 1.
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We verify the assumptions of Theorem 2: Eq. (3) holds by definition of the data generating model.
Assumption 1 and the smoothness from Assumption 2 hold, because ℓ is 4-Lipschitz and 4-bounded on
Y = [−1, 1], and induced by ϕ(y) = y2 which is 1-strongly convex, and max {ϕ′′, ϕ′′′} ≤ 2. The convexity
of ds(g; h)− ∥g∥2

s in Assumption 2 holds with constants γs = 1 by inspecting Eq. (22), and G and H are
clearly convex.

We now bound the critical radius rR := inf
{

r ≥ 0 : r2 ≥ Rk
n(FR(r))

}
of the following function class

FR(r) :=
{
⟨·, w⟩ : ∥w∥2 ≤ 2R, w⊤Σkw ≤ r2}. Note that because µmax(Σ−1

k ) = 1/µmin(Σk) ≤ 1/κ and
Xk

i ∈ Bd
2 , it holds that

E

∥∥∥∥∥
n

∑
i=1

σiXk
i

∥∥∥∥∥

2

Σ−1
k

= E
n

∑
i,j=1

σiσj(Xk
i )

⊤Σ−1
k Xk

j = E
n

∑
i=1

(Xk
i )

⊤Σ−1
k Xk

i ≤ n
κ

,

and thus we get by Jensen’s inequality that for any R, r ≥ 0

Rk
n(FR(r)) ≤

1
n

E

[
sup

w⊤Σkw≤r2

〈
w,

n

∑
i=1

σiXk
i

〉]
≤ r

n
E

∥∥∥∥∥
n

∑
i=1

σiXk
i

∥∥∥∥∥
Σ−1

k

≤ r√
κn

.

and, by standard Rademacher complexity bounds (applying Cauchy-Schwartz and Jensen’s inequality),

Rk
n(FR(r)) ≤

1
n

E

[
sup

∥w∥2≤2R

〈
w,

n

∑
i=1

σiXk
i

〉]
≤ 2R√

n
.

Hence, we can solve r2 ≥ r/
√

κn and r2 ≥ 2R/
√

n to get, taking the minimum of the two,

r2
R ≤ min

{
1

κn
,

2R√
n

}
.

We are now ready to apply Theorem 2. Noting that

Hk(r) = rB∥·∥k
∩ (Hk − f ⋆k ) ⊂

{
⟨·, w⟩ : ∥w∥2 ≤ 2R, w⊤Σkw ≤ r2

}
= FR(r)

and that the set Gk(r; f ⋆) is included in F1(r);

Gk(r; f ⋆) = rB∥·∥k
∩
⋃

s∈S
(G − gs)

=
{
⟨·, w⟩ : w⊤Σkw ≤ r2

}
∩
{
⟨·, w − wλ⟩ : ∥w∥2 ≤ 1, λ ∈ ∆K−1

}

⊂
{
⟨·, w⟩ : w⊤Σkw ≤ r2, ∥w∥2 ≤ 2

}
= F1(r),

we can apply the previous bound on the critical radius and get that

l2k ≤ min
{

1
κnk

,
2R√

nk

}
and ū2

k ≤ min
{

1
κNk

,
2√
Nk

}
.

Plugging this into Theorem 2 yields the result.

D Proofs of the main results

D.1 Proof of Proposition 1

To prove a sample complexity lower bound, we show a reduction from a statistical estimation problem to
the semi-supervised multi-objective binary classification problem.
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We start by constructing a statistical estimation problem, defining a family of distributions parametrized
by the set of Boolean vectors σ ∈ {0, 1}d. We aim to use samples from a distribution to estimate its
associated parameter; the distributions will be designed so that any estimator given insufficiently many
samples will fail to estimate the underlying parameter well for some σ. Then, we show that any learner
that solves the multi-objective learning problem (S-MOL) with εs = ε and δ ≥ 5/6 can be used to
solve the parametric estimation problem, implying a sample complexity lower bound for S-MOL. For
convenience, we reproduce the PAC version of S-MOL here:

∀(P1, . . . , PK) ∈ PK, P

(
∀s ∈ Slin, Ts(ĝs)− inf

g∈G
Ts(g) ≤ ε

)
≥ 5/6, (23)

where P is the set of all distributions over X ×Y .

Let’s consider the K = 2 case first. We show that n ≥ d/1024ε2 samples are necessary.

Defining the statistical estimation problem. Let X0 := {x1, . . . , xd} ⊂ X be a set shattered by G. For
each σ ∈ {0, 1}d, define the distributions P1

σ and P2
σ over X ×Y where (i) the marginal distributions on

X is uniform over the shattered set {x1, . . . , xd}, and (ii) their conditional distributions on Y = {0, 1}
given xi are Bernoulli distributions. Let c = 4ε and define:

P1
σ =

1
d ∑

i∈[d]
δxi ⊗ Ber

(
1
2
+ cσi

)
and P2

σ =
1
d ∑

i∈[d]
δxi ⊗ Ber

(
1
2
− c(1 − σi)

)
.

Fix a sample size n ∈ N. Define the family Q = {Qσ : σ ∈ {0, 1}d}, where:

Qσ =
(

P1
σ ⊗ P2

σ

)⊗n
.

Let Zσ ∼ Qσ consist of n i.i.d. draws from P1
σ and P2

σ each. The statistical estimation problem will be to
construct an estimator σ̂(Zσ) for σ that recovers at least 3/4 of the coordinates of σ:

max
σ

P

(∥σ̂(Zσ)− σ∥1

d
≤ 1

4

)
≥ 5

6
. (24)

Reduction to multi-objective learning. Suppose that a learner can solve the S-MOL problem (23) for
K = 2 using at most n samples. The reduction from estimating σ is as follows:

1. Given any instance σ ∈ {0, 1}d of the above statistical estimation problem, have the learner solve
the MOL problem over (P1

σ , P2
σ) and linear scalarization Slin using data Zσ ∼ Qσ and zero-one loss.

2. Query the learner for the solution to the linear scalarization s1/2 ≡ slin
λ with weights λ = ( 1

2 , 1
2 ).

Denote this solution by ĝs1/2( · ; Zσ) ∈ G and construct the estimator σ̂MOL for σ as:

σ̂MOL(Zσ)i = ĝs1/2(xi; Zσ).

Correctness of reduction. Before proving correctness, we make a few observations:

1. For P1
σ , the conditional label distribution associated to xi ∈ X0 is either biased toward 1 or uniform

over {0, 1}. In either case, under the zero-one loss, the label 1 is Bayes optimal, and so the constant
function f ⋆1,σ ≡ 1 is a Bayes-optimal classifier for P1

σ . Likewise, f ⋆2,σ ≡ 0 is Bayes optimal for P2
σ .

2. A function g : X → Y only incurs excess risk from an instance xi drawn from P1
σ when σi = 1

and g(xi) = 0. Similarly, it accumulates excess risk from instances xi from P2
σ when σi = 0 and

g(xi) = 1. The total excess risks of g is given by:

E1(g) =
2c
d ∑

i∈[d]
σi1
{

g(xi) = 0
}

and E2(g) =
2c
d ∑

i∈[d]
(1 − σi)1

{
g(xi) = 1

}
.
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For the linear scalarization s1/2, we have:

Ts1/2(g) =
1
2

(
E1(g) + E2(g)

)
=

c
d ∑

i∈[d]
1{g(xi) ̸= σi}.

3. Since G shatters X0, it contains a function gσ that satisfies gσ(xi) = σi for all i ∈ [d]. Thus:

inf
g∈G

Ts1/2(g) = Ts1/2(gσ) = 0.

4. Given g : X → Y , define the Boolean vector σg ∈ {0, 1}d by σg,i = g(xi). Then, by our choice of c,
the excess s1/2-trade-off of g is related to the Hamming distance between σg and σ:

Ts1/2(g)− inf
g∈G

Ts1/2(g) ≤ ε ⇐⇒ ∥σg − σ∥1

d
≤ 1

4
, (25)

since Ts1/2(g) =
c
d
· ∥σg − σ∥1.

This last point implies the correctness of the reduction. That is, if a learner can solve (23), then we can use
it to construct σ̂MOL that achieves (24). In particular, (25) shows that:

P

(
Ts1/2

(
ĝs1/2(·; Zσ)

)
− inf

g∈G
Ts1/2(g) ≤ ε

)
= P

(
∥σ̂MOL(Zσ)− σ∥1

d
≤ 1

4

)
.

We now show that this statistical estimation problem requires at least n ≥ /1024ε2 samples across P1
σ

or P2
σ . This holds for any estimator including those that knows that f ⋆1,σ and f ⋆2,σ are Bayes-optimal

classifiers and that the marginal distribution over X for both P1
σ and P2

σ are uniform over the shattered
set. In particular, the lower bound applies to the semi-supervised MOL learner, which is given access to
these Bayes-optimal classifiers and marginal distributions over X .

Minimax lower bound. We now show that if n < d/1024ε2, the following bound holds:

max
σ̂

min
σ

P

(∥σ̂(Z)− σ∥1

d
≤ 1

4

)
<

5
6

,

where σ̂ : (X ×Y ×X ×Y)n → {0, 1}d ranges over all estimators using n samples from P1
σ and P2

σ each.

For every σ̂ and σ it follows from Markov’s inequality that

P

(∥σ̂(Zσ)− σ∥1

d
≤ 1

4

)
= P

(
1 − ∥σ̂(Z)− σ∥1

d
≥ 3

4

)
(26)

≤ 4
3

(
1 − E

[∥σ̂(Zσ)− σ∥1

d

])

=
4
3
− 4

3d
· E
[
∥σ̂(Zσ)− σ∥1

]
.

We lower bound max
σ

E
[
∥σ̂(Zσ)− σ∥1

]
for any estimator σ̂ using Assouad’s lemma:

Lemma D.1 (Assouad’s lemma, [66]). Let d ≥ 1 be an integer and let Q = {Qσ : σ ∈ {0, 1}d} contain 2d

probability measures. Given σ, σ′ ∈ {0, 1}d, write σ ∼ σ′ if they differ only in one coordinate. Let σ̂ be any
estimator. Then

max
σ

E
Z∼Qσ

[
∥σ̂(Z)− σ∥1

]
≥ d

2
· min

{
1 −

√
1
2

KL(Qσ ∥ Qσ′) : σ ∼ σ′
}

,

where KL(·∥·) measures the Kullback-Leibler divergence between two distributions.
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When σ and σ′ differ only in one coordinate, the KL divergence between Qσ and Qσ′ is bounded:

KL(Qσ∥Qσ′) = n · KL(P1
σ∥P1

σ′) + n · KL(P2
σ∥P2

σ′)

= n


1

d ∑
i∈[d]

KL
(

1
2
+ cσi

∥∥ 1
2
+ cσ′

i

)


+ n


1

d ∑
i∈[d]

KL
(

1
2
+ c(1 − σi)

∥∥ 1
2
+ c(1 − σ′

i )

)
 ≤ 8nc2

d
,

where the last inequality holds when c = 4ε ≤ 1/3 by Lemma D.2. Indeed, we’ve assumed ε < 1/12.

By Assouad’s lemma (Lemma D.1) and the above bound on the KL divergence, in the worst-case setting,
any algorithm using n samples will have expected error at least

max
σ

E
Z∼Qσ

[
∥σ̂(Z)− σ∥1

]
≥ d

2
·
(

1 −
√

4nc2

d

)
.

Plugging into Equation (26), we finally obtain:

max
σ̂

min
σ

P

(∥σ̂ − σ∥1

d
≤ 1

4

)
≤ 2

3
+

2
3

√
4nc2

d
<

5
6

,

where the last inequality holds whenever
√

4nc2/d ≤ 1/4, which holds when n < d/1024ε2.

Generalization to all K > 1. The MOL problem with K tasks is at least as hard as M = ⌊K/2⌋ separate
MOL problems each with two tasks. This leads to a total sample complexity lower bound M · d/1024ε2.
We obtain the lower bound CKd/ε2 in the statement of the result by setting C = 1/3072 and using
Lemma D.3, which shows that ⌊K/2⌋ ≥ K/3 for all K > 1.

More explicitly, we can reduce M separate copies of the statistical estimation problem for σ1, . . . , σM into
a single MOL problem over the distributions:

(
. . . , P2k−1

σk
, P2k

σk
, . . .

)
,

where k = 1, . . . , M. Define sk
1/2 to be the linear scalarization that equally divides all weight across the

2k − 1 and 2k components:

sk
1/2(v) =

v2k−1 + v2k
2

.

Then, an estimator σ̂k for σk can be obtained from the by defining as before:

σ̂k,i = ĝsk
1/2

(xi).

The analysis from the K = 2 setting now holds for each k = 1, . . . , M. This implies that at least d/1024ε2

samples must be drawn across each pair of the 2k − 1 and 2kth distributions. This concludes the proof.

Lemma D.2 (KL-divergence bound, e.g. [15]). Let x ∈ (−1/3, 1/3). Then:

KL
(1

2

∥∥ 1
2
+ x
)
≤ 2x2 and KL

(1
2
+ x

∥∥ 1
2

)
≤ 4x2.

Proof. By a direct computation, we have that whenever 4x2 ≤ 1/2, which is satisfied when x ∈
[−1/3, 1/3],

KL
(1

2

∥∥ 1
2
+ x
)
=

1
2

log
1

1 − 4x2 ≤ 2x2,
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where the last inequality holds from the fact that log 1
1−z ≤ z whenever z ∈ [0, 1/2].

For the second inequality, we show that the function ϕ(x) = KL(1/2+ x∥1/2) is L-smooth on (−1/3, 1/3)
where L ≤ 8 and has zero derivative at x = 0. This implies that it is upper bounded by L

2 x2. In particular,
the first and second derivatives are:

ϕ′(x) = log(1 + 2x) + log(1 − 2x) and ϕ′′(x) =
4

1 − 4x2 ,

so that ϕ′′ ≤ 8 whenever x2 ≤ 1/9.

Lemma D.3. Let K > 1 be a natural number. Then, ⌊K/2⌋ ≥ K/3.

Proof. There are two cases:

• When K is even, then ⌊K/2⌋ = K/2 ≥ K/3.

• When K is odd, then ⌊K/2⌋ = (K − 1)/2 ≥ K/3, where the last inequality is equivalent to
3(K − 1) ≥ 2K, which is further equivalent to K ≥ 3.

D.2 Proof of Lemma 1

Let ℓk be a Bregman loss associated with the potential ϕk. The first part is proven in [6, Theorem 1]: for
any Yk such that E[Yk] and E[ϕk(Yk)] are finite, it holds that

f ⋆k = arg min
f∈Fall

E[ℓk(Yk, f (Xk))] = E
[
Yk|Xk = ·

]
.

Then, by definition of Bregman divergences, we have the following generalized Pythagorean identity [7,
Equation (26)]

ℓk(y, x) = ℓk(y, z) + ℓk(z, x)− ⟨y − z,∇ϕk(x)−∇ϕk(z)⟩ ,

so that by the tower property (see also [6, Equation (1)])

Rk( f ) = E[ℓk(Yk, f (Xk))]

= E
[
ℓk(Yk, E

[
Yk|Xk

]
)
]

︸ ︷︷ ︸
Rk( f ⋆k )

+E
[
ℓk(E

[
Yk|Xk

]
, f (Xk))

]

︸ ︷︷ ︸
dk( f ; f ⋆k )

−
〈

E
[
Yk − E

[
Yk|Xk

]]
,∇ϕk( f (Xk))−∇ϕk(E

[
Yk|Xk

]
)
〉

︸ ︷︷ ︸
=0

.

Rearranging yields that Ek( f ) = Rk( f )−Rk( f ⋆k ) = dk( f ; f ⋆k ), which is the second claim.

D.3 Proof of Theorem 1

The proof of Theorem 1 relies on the following lemma on estimating the excess risk functionals Ek with
the risk discrepancies dk( f ; ĥk) under Assumption 1.

Lemma D.4 (Excess risk functional estimation). Suppose that Assumption 1 holds and that a function ĥk
achieves excess risk Ek(ĥk) ≤ εk. Let ck = Lk

√
2/µk. Then, the risk discrepancy functional dk(·; ĥk) defined in

Equation (9) approximates Ek(·) uniformly on Fall, that is,

sup
f∈Fall

∣∣dk( f ; ĥk)− Ek( f )
∣∣ ≤ ck

√
εk.
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Proof. Recall that f ⋆k ∈ Hk is the minimizer of Ek over Fall. Then for all f ∈ Fall:
∣∣dk( f ; ĥk)− Ek( f )

∣∣ =
∣∣dk( f ; ĥk)− dk( f ; f ⋆k )

∣∣ (Lemma 1)

=
∣∣E
[
ℓk
(
ĥk(Xk), f (Xk)

)
− ℓk

(
f ⋆k (Xk), f (Xk)

)]∣∣

≤ LkE
∥∥ĥk(Xk)− f ⋆k (Xk)

∥∥
2 (Lipschitz continuity from Assumption 1)

≤ Lk

√
E
∥∥ĥk(Xk)− f ⋆k (Xk)

∥∥2
2 (Jensen’s inequality)

≤ Lk

√
2
µk

· E
[
ℓk
(

f ⋆k (Xk), ĥk(Xk)
)]

(strong convexity from Assumption 1)

≤ ck
√

εk, (Ek(ĥk) ≤ εk)

which is the claim.

Proof of Theorem 1. For k ∈ [K], let ĥk be the empirical risk minimizer obtained in Line 2 of Algorithm 1
for the kth objective. Let us recall that we use the empirical risk discrepancy d̂k(·; ĥk) as an estimate for
the excess risk Ek(·) = dk(·; f ⋆k ), following the properties of Bregman losses in Lemma 1. We now prove
the theorem assuming that the following claim holds.

Claim. With probability at least 1 − δ, each estimate d̂k(·; ĥk) approximates the population excess risk
functional Ek up to error εk/2:

∀k ∈ [K], sup
g∈G

∣∣d̂k(g; ĥk)− dk(g; f ⋆k )︸ ︷︷ ︸
=Ek(g)

∣∣ ≤ εk/2, (27)

where εk is bounded as in Eq. (11).

Then, for any scalarization s that satisfies the reverse triangle inequality, the s-trade-off Ts is also well-
approximated by empirical scalarized discrepancy d̂s(·; ĥ). In particular, we obtain

sup
g∈G

∣∣d̂s(g; ĥ)− Ts(g)
∣∣ = sup

g∈G

∣∣s
(
d̂1(g; ĥ1), . . . , d̂K(g; ĥK)

)
− s
(
d1(g; f ⋆k ), . . . , dK(g; f ⋆k )

)∣∣

≤ sup
g∈G

s
(∣∣d̂1(g; ĥ1)− d1(g; f ⋆k )

∣∣, . . . ,
∣∣d̂K(g; ĥK)− dK(g; f ⋆k )

∣∣)

≤ s
(
ε1/2, . . . , εK/2

)
, (28)

where the first inequality used the reverse triangle inequality of s, and the second inequality used Eq. (27).
In particular, this allows us to bound the excess s-trade-off of ĝs (cf. Eq. (8)), the minimizer of the empirical
scalarized discrepancy in G obtained in Line 5 of Algorithm 1, as follows:

Ts(ĝs)− Ts(gs) = Ts(ĝs)− d̂s(ĝs; ĥ)︸ ︷︷ ︸
(a)

+ d̂s(ĝs; ĥ)− d̂s(gs; ĥ)︸ ︷︷ ︸
(b)

+ d̂s(gs; ĥ)− Ts(gs)︸ ︷︷ ︸
(c)

≤ s
(
ε1/2, . . . , εK/2

)
+ s
(
ε1/2, . . . , εK/2

)

= s
(
ε1, . . . , εK

)
,

where the (a) and (c) terms both contribute at most s(ε1/2, . . . , εk/2) error from Eq. (28), while the (b)
term is non-positive, since ĝs minimizes the empirical scalarized discrepancy d̂s(·; ĥ). The last equality
follows from positive homogeneity of the scalarization. Then, the result follows for all such scalarizations
simultaneously. It remains to prove Eq. (27).

Proof of claim. Recall that d̂k(g; ĥk) is an empirical estimator of dk(g; ĥk) based on the unlabeled
samples:

d̂k(g; ĥk) =
1

Nk

Nk

∑
i=1

ℓk
(

ĥk(X̃k
i ), g(X̃k

i )
)

and dk(g; ĥk) = E
[
ℓk
(

ĥk(Xk), g(Xk)
)]

,
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where these were defined in Eq. (9). Moreover, dk(g; ĥk) itself is an estimator of the excess risk functional
Ek(g) = dk(g; f ⋆k ), where f ⋆k is the Bayes optimal regression function (Lemma 1). Thus, we have the
decomposition:

∣∣∣d̂k(g; ĥk)− Ek(g)
∣∣∣ =

∣∣∣d̂k(g; ĥk)− dk(g; ĥk)
∣∣∣

︸ ︷︷ ︸
Ta,k

+
∣∣∣dk(g; ĥk)− Ek(g)

∣∣∣
︸ ︷︷ ︸

Tb,k

. (29)

We can bound Ta,k and Tb,k separately:

(a) For each k ∈ [K], we condition on the labeled samples (i.e., on ĥk) and employ a standard Rademacher
bound on the function class:

ℓĥk
◦ G =

{
x 7→ ℓk

(
ĥk(x), g(x)

)
: g ∈ G

}
.

With probability at least 1 − δ/(2K),

Ta,k ≤ sup
g∈G

∣∣∣d̂k(g; ĥk)− dk(g; ĥk)
∣∣∣ ≤ 2Rk

Nk
(ℓĥk

◦ G) + Bk

(
2 log(2K/δ)

Nk

)1/2

≤ 6LkR
k
Nk
(G) + Bk

(
2 log(2K/δ)

Nk

)1/2

, (30)

where the first inequality applies symmetrization (Lemma E.5) and the bounded difference inequality
(Lemma E.2), and the second inequality follows by contraction (Lemma E.4).

(b) For each k ∈ [K], we apply Lemma D.4 to bound Tb,k in terms of the excess risk of ĥk, which is a
minimizer of the empirical risk R̂k(·) defined in Eq. (2):

R̂k(h) =
1
nk

nk

∑
i=1

ℓk
(
Yk

i , h(Xk
i )
)
.

In order to use the lemma, we need to show that the excess risk of ĥk is indeed upper bounded by εk.
First, observe that the excess risk can be upper bounded as follows

Ek(ĥk) = Rk(ĥk)−Rk( f ⋆k )

= Rk(ĥk)− R̂k(ĥk) + R̂k(ĥk)− R̂k( f ⋆k ) + R̂k( f ⋆k )−Rk( f ⋆k )

≤ 2 sup
h∈Hk

∣∣∣R̂k(h)−Rk(h)
∣∣∣ .

Again by symmetrization (Lemma E.5), bounded difference (Lemma E.2), and contraction (Lemma E.4)
for the function class ℓk ◦ Hk := {(x, y) 7→ ℓk(y, h(x)) : h ∈ Hk}, we obtain that with probability at least
1 − δ/(2K),

2 sup
h∈Hk

∣∣∣R̂k(h)−Rk(h)
∣∣∣ ≤ 4Rk

nk
(ℓk ◦ Hk) + 2Bk

(
2 log(2K/δ)

nk

)1/2

≤ 12LkR
k
nk
(Hk) + 2Bk

(
2 log(2K/δ)

nk

)1/2

.

And so, by Lemma D.4, we obtain that with probability at least 1 − δ/(2K),

Tb,k ≤ ck

√

12LkRk
nk
(Hk) + 2Bk

(
2 log(2K/δ)

nk

)1/2

, (31)

where ck = Lk
√

2/µk.
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The claim in Eq. (27) follows by a union bound. By combining Equations (29) to (31), we obtain that with
probability at least 1 − δ, for all k ∈ [K]:

sup
g∈G

∣∣d̂k(g; ĥk)− Ek(g)
∣∣ ≤ εk/2,

where we can set εk as:

εk/2 = 4LkR
k
Nk
(G) + Bk

(
2 log(2K/δ)

Nk

)1/2

+ ck

√

12LkRnk (Hk) + 2Bk

(
2 log(2K/δ)

nk

)1/2

.

This concludes the proof of Theorem 1.

D.4 Proof of Theorem 2

In this section we provide the proof of Theorem 2, but leave some of the technical details to auxiliary
lemmata that we prove after concluding the main proof. See also Fig. 2 for a visualization of the proof.
We outline the proof in Section 4.3.

D.4.1 Preliminaries

We begin by introducing the notation µk = Pk
X as well as the mixture distribution µs = s(µ1, . . . , µK).

Recall the definitions of the (semi-)Hilbert norms

∥ f ∥k :=
√

E
Xk∼µk

∥∥ f (Xk)
∥∥2

2 and ∥ f ∥s :=
√

s
(
∥ f ∥2

1 , . . . , ∥ f ∥2
K

)
.

which correspond to the inner products (denoting ⟨·, ·⟩ the inner product on Rq)

〈
f , f ′

〉
k :=

∫

X

〈
f , f ′

〉
dµk and ⟨·, ·⟩s := s((⟨·, ·⟩k)k∈[K]).

We first verify that these are indeed (semi-)Hilbert norms and inner products.

Lemma D.5. The functions ⟨·, ·⟩k , ⟨·, ·⟩s and ∥·∥k , ∥·∥s defined above are the inner products and norms of the
L2(µk) and L2(µs)-Bochner spaces of functions X → (Rq, ∥·∥2), which are Hilbert spaces.

See [29, Definition 1.2.15] for a definition. We prove Lemma D.5 in Appendix D.4.3 and use it throughout
without explicitly referring to it. Note that we have implicitly assumed that Fall ⊆

⋂
k∈[K] L2(µk).

In order to use first-order calculus throughout the proof (e.g., variational arguments), we derive the
gradient and smoothness of the map g 7→ ds(g; h) below. We also prove Lemma D.7 in Appendix D.4.3.

Lemma D.6 (Gradients and smoothness). For any h ∈ H1 × · · · ×HK, denote by ∇gds(g; h) : X → R the
gradient of the map g 7→ ds(g; h) induced by the Fréchet derivatives on L2(µs) and the inner product ⟨·, ·⟩s. Then
it holds that11

∇gds(g; h) : x 7→
K

∑
k=1

λk
dµk
dµs

(x)∇2ϕk(g(x))(g(x)− hk(x))).

Moreover, if Assumption 2 holds and we denote D = diam∥·∥2
(Y), then the map g 7→ ds(g; h) is Csm :=

ν(1 + D)-smooth in ∥·∥s, that is, the gradient from above is Csm-Lipschitz continuous in g with respect to ∥·∥s.
Moreover, for gh

s = arg ming∈G ds(g; h) and all g ∈ G

ds(g; h)− ds(gh
s ; h) ≤ Csm

2

∥∥∥g − gh
s

∥∥∥
2

s
. (32)

11Note that whenever λk > 0, the Radon-Nikodym derivative dµk/dµs is well-defined.
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Lemma 2 is a direct consequence of the gradient characterization in Lemma D.6 together with Theorem
46 in [67]. Finally, we show that if Assumption 3 holds, the norms ∥·∥k and ∥·∥s are equivalent.

Lemma D.7. Let S ⊂ Slin be in the set of linear scalarizations (6). Then, for any η ∈ [0, ∞)

sup
{∥ f ∥k
∥ f ∥s

: k ∈ [K], s ∈ S , f ∈ Fall

}
≤ η if and only if ∀k ∈ [K], s ∈ S : ess sup

dµk
dµs

≤ η2.

We also prove Lemma D.7 in Appendix D.4.3.

D.4.2 Main proof of Theorem 2

Recall the empirical and population minimizers of the corresponding risk discrepancies from Eq. (9)

∀s ∈ S : ĝs ∈ arg min
g∈G

d̂s(g; ĥ) and gs ∈ arg min
g∈G

ds(g; f ⋆).

Our goal is to bound Ts(ĝs)− infg∈G Ts(g) simultaneously for all s ∈ S . By Lemma 1, we have Ts(ĝs)−
infg∈G Ts(g) = ds(ĝs; f ⋆)− ds(gs; f ⋆) so that we focus on bounding this equivalent expression.

The basic decomposition of our proof is a triangle inequality with a helper set of minimizers of the
population risk discrepancy, defined with respect to pseudo-labeled data as

g′s ∈ arg min
g∈G

ds(g; ĥ).

Specifically, by the smoothness from Lemma D.6, we can bound the excess trade-off as

ds(ĝs; f ⋆)− ds(gs; f ⋆) ≤ Csm

2
∥ĝs − gs∥2

s ≤ Csm
( ∥∥ĝs − g′s

∥∥2
s︸ ︷︷ ︸

=:Tun
s

+
∥∥g′s − gs

∥∥2
s︸ ︷︷ ︸

=:Tlab
s

)
. (33)

Here Tlab
s quantifies the error from having a finite amount of labeled data to estimate f ⋆k with ĥk and

how that error propagates to g′s, and Tun
s quantifies how close to g′s we can get with the finite amount

of unlabeled data. Our goal will be to bound the terms Tlab
s and Tun

s using localization, simultaneously
for all s ∈ S . For the general proof technique of localization, we take inspiration from the approaches
outlined in [61, 54, 34, 8, 10, 35].

We proceed in three main steps also outlined in Section 4.3.

1. To bound Tlab
s , we first use standard localization bounds for the ERMs in each task separately, using

uniform bound on the local sets Hk(r) = (Hk − f ⋆k ) ∩ rB∥·∥k
from Eq. (12). We then show how their

errors translate to g′s through a deterministic stability argument.

2. To bound Tun
s , we condition on ĥ and simultaneously localize around the (random) functions g′s for all

s ∈ S , resulting in a uniform learning bound on local sets

Gk(r; ĥ) = rB∥·∥k
∩
⋃

s∈S
(G − g′s) (34)

that are “centered” at the helper set {g′s : s ∈ S}.

3. The resulting bound on Tun
s from the previous step is random, because g′s depends on ĥ, so we need to

further bound it. We prove two ways of doing that, so that the bound takes the minimum of the two:
the critical radius of Gk(r, f ⋆) = rB∥·∥k

∩⋃s∈S (G − gs) from Eq. (12) together with the bound on Tlab
s ,

or a worst-case bound taking the supremum over such {g′s : s ∈ S}.

See also Fig. 2 for a visualization of the corresponding sets.

Throughout, we heavily use the following monotonicity property of the Rademacher complexity, analo-
gous to the usual localization proofs. The proof can be found in Appendix D.4.4.
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Lemma D.8. Consider the sets from Eqs. (12) and (34). Under Assumption 2, the functions

r 7→
Rk

nk
(Hk(r))

r
and r 7→

Rk
Nk
(Gk(r; h))

r
(35)

are non-increasing on (0, ∞) for all h ∈ H1 × · · · ×HK.

Step 1: Localization for ERMs in Hk and bounding Tlab
s . In this step, we first bound the error of learning

f ⋆k with the ERMs ĥk (or, in fact, any other estimator that satisfies the basic inequality R̂k(ĥk) ≤ R̂k( f ⋆k )).
Recall the definition Hk(r) = (Hk − f ⋆k ) ∩ rB∥·∥k

from Eq. (12), and the corresponding critical radii lk =

inf
{

r ≥ 0 : r2 ≥ Rk
nk
(Hk(r))

}
. Using the non-increasing property from Lemma D.8, we can summarize

the bound in the following Lemma.

Lemma D.9. Under Assumptions 1 and 2, and if δ > 0 is sufficiently small, we have that P(Elab
δ ) ≥ 1− δ, where

we define the event

Elab
δ :=

{
∀k ∈ [K] :

∥∥∥ĥk − f ⋆k
∥∥∥

2

k
≲

L2
k

µ2
k
l2k +

(
Bk
µk

+
L2

k
µ2

k

)
log(K/δ)

nk
=: ζ2

k

}
. (36)

The proof of Lemma D.9 can be found in Appendix D.4.5, and it essentially follows the localization
technique from [8]: We bound the suprema of the empirical process over Hk(r) using Talagrand’s
inequality (Lemma E.3) in terms of the Rademacher complexity and variance. Using Lemma D.8 and a
peeling argument, we get the bound in terms of the critical radius.

Next, we show that the bound from Eq. (36) directly translates into a bound on the helper set {g′s : s ∈ S}
with respect to labels from ĥ but known covariate distributions. To do so, we prove the following stability
result. Effectively, it removes the square-root from Lemma D.4 that appears in Theorem 1.

Proposition D.1 (Quadratic stability of minimizers). Denote gh
s = arg ming∈G ds(g; h) and Cst := ν2/4γ2.

Under Assumptions 1 and 2, we have for any h, h′ ∈ H1 × · · · ×HK, any s = slin
λ ∈ S , that

∥∥∥gh
s − gh′

s

∥∥∥
2

s
≤ Cst

K

∑
k=1

λk
∥∥hk − h′k

∥∥2
k .

We prove Proposition D.1 in Appendix D.4.6. Note that a linear bound would directly follow from
Lipschitz continuity of the losses. However, this would yield much slower statistical rates than the
stability argument from Proposition D.1. Recalling the definition of ζk from (36), we can now use

Proposition D.1 with gĥ
s = g′s, g f ⋆

s = gs, to conclude that on Elab
δ , it holds that for all s ∈ S ,

Tlab
s =

∥∥g′s − gs
∥∥2

s ≲ Cst · s
(

ζ2
1, . . . , ζ2

K

)
. (37)

Eq. (37) describes how well our estimators would approximate the true set {gs : s ∈ S} if we had an
infinite amount of unlabeled data. In that sense, this can be seen as an intermediate result in the ideal
semi-supervised setting by combining Eqs. (33) and (37).

Step 2: Localization along helper Pareto set in G to bound Tun
s . We now need to take into account the

finite sample effect of having only Nk unlabeled samples to estimate the risk discrepancies.

To perform localization around the helper set, we again rely on Talagrand’s concentration inequality
(Lemma E.3). The benefit of Talagrand’s inequality in standard localization usually comes from the fact
that it accounts for the variance of the losses when centered at the ground truth, which can usually be
controlled by its radius of the local function class. We also used this in Step 1. Now, however, we need to
simultaneously localize for all scalarizations s ∈ S . Hence, recall Gk(r; ĥ) from Eq. (34) where, intuitively,
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r uniformly controls the deviations ĝs − g′s for all s ∈ S . To keep track of which g′s any g ∈ Gk(r; ĥ)
“belongs to”, we also define the set

Mk(r) =
{
(s, g) : s ∈ S , g − g′s ∈ Gk(r, ĥ)

}
. (38)

Lifting the set Gk(r; ĥ) to S × G is inspired by a similar trick from multi-objective optimization, where the
Pareto set is often lifted to this larger space to obtain its manifold structure, cf. [51].

We apply Talagrand’s concentration inequality on Mk(r) and use a localization argument, summarized
in the following lemma. Define the radii ũk = inf

{
r ≥ 0 : r2 ≥ Rk

Nk
(Gk(r; ĥ))

}
, and note that these radii

are deterministic with respect to the unlabeled data, but are random with respect to the labeled data
through the ERMs, a point revisited in the next section. Recall that ĝs is the minimizer of d̂s(g; ĥ) and
g′s is the minimizer of ds(g; ĥ) (Eq. (9)). The next proposition bounds Tun

s = ∥ĝs − g′s∥2
s (or, in fact, the

deviation of any estimator satisfying the basic inequality d̂s(ĝs; ĥ) ≤ d̂s(g′s; ĥ)).

Proposition D.2 (Localization along helper Pareto set). Under Assumptions 1 and 2, and for sufficiently small
δ > 0, we have that P(Eun

δ ) ≥ 1 − δ, where we define the event

Eun
δ :=

{
∀s = slin

λ ∈ S :
∥∥ĝs − g′s

∥∥2
s ≲

K

∑
k=1

λk

(
L2

k
γ2 ũ

2
k +

(
L2

k
γ2 +

Bk
γ

)
log(2K/δ)

Nk

)}
. (39)

The proof of Proposition D.2 can be found in Appendix D.4.7.

Step 3: Bounding the random critical radii ũk. Recall that ũk is deterministic with respect to the
unlabeled data, but random with respect to the labeled data. To make the bound fully deterministic, we
prove two bounds, so that their minimum appears in Theorem 2.

Option 1 is taking the trivial approach: recall from Eq. (14) that we define for the function gh
s =

arg ming∈G ds(g; h) the set

Gk(r; h) :=
⋃

s∈S
(G − gh

s ) ∩ rB∥·∥k
.

Then the following deterministic worst-case localized radii

ūk := sup
h∈H1×···×HK

inf
{

r ≥ 0 : r2 ≥ Rk
Nk

(Gk(r; h))
}

bounds ũ2
k ≤ ū2

k (and u2
k ≤ ū2

k) deterministically (i.e., also almost surely).

Option 2 is more nuanced: If Assumption 3 holds, we can combine Eq. (37) with an expansion argument
to bound ũk in terms of the lk and the uk. To relate them, we employ the following key proposition.

Proposition D.3 (Critical radius shift). Let G be any class of functions that is convex (Assumption 2), and let
n ∈ N. Let ∥·∥ be any norm on Fall and let B = { f ∈ Fall : ∥ f ∥ ≤ 1} be its unit ball. Define

G(r) =
⋃

s∈S
(G − gs) ∩ rB and G ′(r) =

⋃

s∈S
(G − g′s) ∩ rB

as well as the critical radii (for Rn defined w.r.t. an arbitrary distribution)

u := inf
{

r ≥ 0 : Rn (G(r)) ≤ r2
}

and ũ := inf
{

r ≥ 0 : Rn
(
G ′(r)

)
≤ r2

}
.

Let ∆ = sups∈S ∥gs − g′s∥. Then it holds that ũ ≤ 5(u + ∆).

The proof of Proposition D.3 can be found in Appendix D.4.8. We can apply Proposition D.3 to our
setting: recall the definitions of G ′

k(r) from Eq. (34) and Gk(r) from Eq. (12), and the definitions ũk =
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inf
{

r ≥ 0 : r2 ≥ Gk(r; ĥ)
}

and uk = inf
{

r ≥ 0 : r2 ≥ Rk
Nk
(Gk(r; f ⋆))

}
. From Assumption 3, Lemma D.7,

and Eq. (37), we know that on Elab
δ from Eq. (36), for ζ2

S = sups∈S s
(
ζ2

1, . . . , ζ2
K
)

sup
s∈S

∥∥g′s − gs
∥∥2

k ≤ sup
s∈S

η2 ∥∥g′s − gs
∥∥2

s ≲ sup
s∈S

η2Cst · s
(

ζ2
1, . . . , ζ2

K

)
≤ η2Cst · ζ2

S =: ∆2.

Employing Proposition D.3 with this ∆ yields ũ2
k ≲ u2

k + η2Cst · ζ2
S .

We define

Cadd := max
k∈[K]

(
Bk
µk

+
L2

k
µ2

k

)
, (40)

l2S := sups∈S s(l21, . . . , l2K), and nS = 1/ sups∈S s(1/n1, . . . , 1/nK). We can bound

ũ2
k ≲ u2

k + η2Cst · ζ2
S

= u2
k + η2Cst sup

s∈S
s



(

L2
k

µ2
k
l2k +

(
Bk
µk

+
L2

k
µ2

k

)
log(4K/δ)

nk

)K

k=1




≤ u2
k + η2CstCadd

(
l2S +

log(4K/δ)

nS

)

≤ η2CstCadd
(
u2

k + l2S +
log(4K/δ)

nS

)
(41)

Note that in general, either bound can be tighter. For practical purposes, it may be easier to bound ūk
anyways, so the detour through uk may be unnecessary.

Putting everything together. From Eq. (33), we see that on Elab
δ/2 ∩ Eun

δ/2, which holds with probability at
least 1 − δ by union bound, for all s ∈ S , the excess s-trade-off Ts(ĝs)− infg∈G Ts(g) is bounded by

Csm
(

Tun
s + Tlab

s

)

≲ Csm

(
K

∑
k=1

λk

(
L2

k
γ2 ũ

2
k +

(
L2

k
γ2 +

Bk
γ

)
log(4K/δ)

Nk
+ Cst

(
L2

k
µ2

k
l2k +

(
Bk
µk

+
L2

k
µ2

k

)
log(4K/δ)

nk

)))

(from Eqs. (37) and (39))

≤
K

∑
k=1

λk CsmCst max

{
L2

k
γ2 +

Bk
γ

,
Bk
µk

+
L2

k
µ2

k

}

︸ ︷︷ ︸
=:Ck

(
ũ2

k + l2k +
(

N−1
k + n−1

k

)
log(4K/δ)

)
,

where ≲ only hides universal constants. From the two options of bounding ũk we obtain:

1. The first bound, valid without Assumption 3: Recalling Csm = ν(1 + D), Cst = ν2

4γ2

Ts(ĝs)− inf
g∈G

Ts(g) ≲
K

∑
k=1

λkCk

(
ū2

k + l2k +
(

N−1
k + n−1

k

)
log(4K/δ)

)

where Ck ≍
ν3(1 + D)

γ2 max

{
L2

k
γ2 +

Bk
γ

,
Bk
µk

+
L2

k
µ2

k

}
.

2. The second bound, valid under Assumption 3, by plugging in Eq. (41) and Cadd from Eq. (40)

Ts(ĝs)− inf
g∈G

Ts(g) ≲
K

∑
k=1

λkC̃k

(
u2

k + l2S +
(

N−1
k + n−1

S
)

log(4K/δ)
)

where C̃k = Ck · η2CstCadd ≍ Ck · η2 ν2

γ2 max
k∈[K]

(
Bk
µk

+
L2

k
µ2

k

)
.
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That concludes the proof of Theorem 2, with the proofs of the auxiliary results presented next.

D.4.3 Proof of preliminary lemmata

Proof of Lemma D.5. The claim for ⟨·, ·⟩k , ∥·∥k , k ∈ [K] is true by definition, but also as a special case of
the scalarized form: for any s = slin

λ ∈ Slin and f , f ′ ∈ L2(µs) we have

〈
f , f ′

〉
s = s(

〈
f , f ′

〉
1 , . . . ,

〈
f , f ′

〉
K) =

K

∑
k=1

λk

∫ 〈
f , f ′

〉
dµk =

∫ 〈
f , f ′

〉
d

(
K

∑
k=1

λkµk

)
=
∫ 〈

f , f ′
〉

dµs

where ⟨·, ·⟩ is the Euclidean inner product. This is exactly the inner product of the Bochner L2(µs) space
(e.g., [29]). Further, plugging in f ′ = f we obtain directly that ⟨ f , f ⟩s = ∥ f ∥2

s , verifying that the norm is
induced by this inner product.

Proof of Lemma D.6. Recall that ⟨·, ·⟩s denotes the inner product of the norm ∥·∥2
s = ∑K

k=1 λk ∥·∥2
k . In this

proof, we use Fréchet derivatives (denoted D) and the corresponding gradients ∇g induced by the inner
product ⟨·, ·⟩s. Background on Fréchet derivatives can be found in [1, 11]. From Lemma D.5 we know
that ∥·∥s actually is the (semi-)Hilbert norm that corresponds to the Bochner L2(µs) space with respect to
the space (Rq, ∥·∥2), where recall that µs denotes the mixture distribution

µs =
K

∑
k=1

λkµk where µk = Pk
X .

It is then easily shown that the gradient of ∑K
k=1 λkE

[
Qk(g(Xk))

]
for any differentiable functions Qk :

Rq ⊃ Y → R with supy∈Y ∥∇Q(y)∥2 ≤ M < ∞, induced by ⟨·, ·⟩s, is given by

∇g

K

∑
k=1

λkE
[

Qk(g(Xk))
]

: X → Rq, x 7→
K

∑
k=1

λk
dµk
dµs

(x)∇Qk(g(x)).

Indeed, for any f ∈ Fall ⊂ L2(µs), we can write the Fréchet derivative as the limit

D

(
K

∑
k=1

λkE
[

Qk(g(Xk))
])

[ f ] =
K

∑
k=1

λk lim
ε→0

E
[

Qk(g(Xk) + ε f (Xk))
]
− E

[
Qk(g(Xk))

]

ε

=
K

∑
k=1

λkE
[〈

∇Qk(g(Xk)), f (Xk)
〉]

(dominated convergence)

=
K

∑
k=1

λk

∫
⟨(∇Qk(g(x)), f (x)⟩ dµk

dµs
(x)dµs(x)

=
∫ 〈 K

∑
k=1

λk
dµk
dµs

(x)∇Qk(g(x)), f (x)

〉
dµs(x)

=

〈
K

∑
k=1

λk
dµk
dµs

(∇Qk ◦ g), f

〉

s

where we could use dominated convergence thanks to supy∈Y ∥∇Q(y)∥2 ≤ M < ∞. This implies the
claimed form of the gradient.

Since ℓk is Lipschitz and differentiable, its gradient in g is bounded. Further,

∇gds(g; h) = ∇g

K

∑
k=1

λkdk(g; hk) = ∇g

K

∑
k=1

λkE
[
ℓk(hk(Xk), g(Xk))

]
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and the gradient of a Bregman divergence in its second argument is given by

∇yDϕ(x, y) = ∇y (ϕ(x)− ϕ(y)− ⟨∇ϕ(y), x − y⟩)
= −∇ϕ(y)−∇2ϕ(y)x +∇2ϕ(y)y +∇ϕ(y)

= ∇2ϕ(y)(y − x),

so that the previous derivations imply for the Bregman losses that

∇gds(g; h) : x 7→
K

∑
k=1

λk
dµk
dµs

(x)∇2ϕk(g(x))(g(x)− hk(x))),

which is the first claim of the lemma.

Note that µs-almost surely ∑K
k=1 λk

dµk
dµs

= 1. Hence, for every fixed h, and g, g′,

∥∥∇gds(g; h)−∇gds(g′; h)
∥∥2

s

=
∫ ∥∥∥∥∥

K

∑
k=1

λk
dµk
dµs

[
∇2ϕk(g)(hk − g)−∇2ϕk(g′)(hk − g′)

]∥∥∥∥∥

2

2

dµs

≤
∫ K

∑
k=1

λk
dµk
dµs

∥∥∥∇2ϕk(g)(hk − g)−∇2ϕk(g′)(hk − g′)
∥∥∥

2

2
dµs (Jensen’s inequality)

≤
∫ K

∑
k=1

λk
dµk
dµs

(∥∥∥∇2ϕk(g)(g − g′)
∥∥∥

2
+
∥∥∥(∇2ϕk(g)−∇2ϕk(g′))(hk − g′)

∥∥∥
2

)2
dµs. (42)

To bound the first term, we use from Assumption 2 that the ℓ2-operator norm of ∇2ϕ(g(x)) is bounded
by ν > 0, so that ∥∥∥∇2ϕk(g)(g − g′)

∥∥∥
2
≤ ν

∥∥g − g′
∥∥

2 .

To bound the second term, we use that ∥hk − g′∥2 ≤ diam∥·∥2
(Y) =: D, and so

∥∥∥(∇2ϕk(g)−∇2ϕk(g′))(hk − g′)
∥∥∥

2
≤ D

∥∥∥∇2ϕk(g)−∇2ϕk(g′)
∥∥∥

2
,

which together with the smoothness from Assumption 2 implies

∥∥∥∇2ϕk(g)−∇2ϕk(g′)
∥∥∥

2
=

∥∥∥∥
∫ 1

0
(∇3ϕk(g + t(g′ − g))(g − g′)dt

∥∥∥∥
2
≤ ν

∥∥g − g′
∥∥

2

Plugging both into Eq. (42) yields

∥∥∇gds(g; h)−∇gds(g′; h)
∥∥2

s ≤
∫ K

∑
k=1

λk
dµk
dµs

ν2(1 + D)2 ∥∥g − g′
∥∥2

2 dµs = ν2(1 + D)2 ∥∥g − g′
∥∥2

s .

Hence, by equivalent characterizations of smoothness (e.g., [11, Corollary 18.14]) it follows that

ds(g; h)− ds(g′; h)−
〈
∇gds(g′; h), g − g′

〉
s ≤

ν(1 + D)

2

∥∥g − g′
∥∥2

s .

For the minimizer gh
s = arg ming∈G ds(g; h) we can use the variational inequality

〈
∇ds(gh

s ; h), g − gh
s
〉

s ≥
0 (e.g., [67, Theorem 46]) to obtain the bound

ds(g; h)− ds(gh
s ; h) ≤ ν(1 + D)

2

∥∥∥g − gh
s

∥∥∥
2

s
.

This concludes the proof.
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Proof of Lemma D.7. Denote µk = Pk
X and µs = ∑k λkµk. Recall the definition of the essential supremum

of a function f : X → R (with respect to µs):

ess sup f = inf
{

a ∈ R : µs( f−1(a, ∞)) = 0
}

.

We start with “⇐”: Since µs({x ∈ X : dµk/dµs(x) ≥ η2}) = 0, for any k ∈ [K], s ∈ S and f ∈ Fall,

∥ f ∥2
k =

∫
∥ f ∥2

2
dµk
dµs

dµs ≤ η2 ∥ f ∥2
s =⇒ ∥ f ∥k ≤ η ∥ f ∥s .

Now we show “⇒”: Choose an arbitrary y ̸= 0 ∈ Y and measurable A ⊂ X , and let f = (y/ ∥y∥2)1A.
Note that ∥ f ∥2

2 = 1A. Then for all s = slin
λ ∈ S

µk(A) =
∫

∥ f ∥2
2 µk = ∥ f ∥2

k ≤ η2 ∥ f ∥2
s = η2

K

∑
j=1

λj ∥ f ∥2
j = η2

K

∑
j=1

λjµj(A) = η2µs(A).

This implies the bound α := ess sup dµk/dµs ≤ η2, since for any ε > 0 we can choose the measurable
event Aε := {x : dµk/dµs(x) ≥ α − ε} which satisfies (by definition) µs(Aε) > 0 and so

η2 ≥ µk(Aε)

µs(Aε)
=

1
µs(Aε)

∫

Aε

dµk
dµs

dµs ≥ α − ε.

Taking ε → 0 concludes the proof.

D.4.4 Proof of Lemma D.8

For the first function, the argument is standard, we repeat it here for completeness. Let 0 < r < r′ and
consider some h ∈ Hk(r′). Then ∥h∥k ≤ r′ and hence ∥(r/r′)h∥k ≤ r, so that (r/r′)h ∈ Hk(r) by the
star-shape of Hk from Assumption 2. Therefore, we have that

r
r′
Rk

nk

(
Hk(r′)

)
= E

[
sup

h∈H(r′)

1
nk

nk

∑
i=1

q

∑
j=1

σij
r
r′

hj(Xi)

]
≤ Rk

nk
(Hk(r))

which is the claim.

For the other function the proof is identical once we realize that the convexity of G from Assumption 2
implies that Gk(r; h) is star-shaped around the origin. Indeed, for any h ∈ H1 × · · · × HK and gh

s =
arg ming∈G ds(g; h), since (G − gh

s ) ∩ rBk is convex and contains the origin,

g ∈
⋃

s∈S
(G − gh

s ) ∩ rBk =⇒ ∀α ∈ [0, 1], αg ∈
⋃

s∈S
(G − gh

s ) ∩ rBk.

We require this star-shapedness for all h ∈ H1 × · · · × HK, because we also localize around g′s = gĥ
s that

are random elements and may be anywhere in G.

D.4.5 Proof of Lemma D.9

The proof of this Lemma is a mixture of Corollary 5.3 in [8] and Theorem 14.20 in [61]; see also [34] for an
exposition. We repeat it here for completeness and because we make slightly different assumptions from
[8, 61], see Remark 1 below. Recall the definition of the sets for any r ≥ 0,

Hk(r) := (Hk − f ⋆k ) ∩ rB∥·∥k
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and the random variables

Tk(r) = sup
h− f ⋆k ∈Hk(r)

∣∣∣(Rk(h)−Rk( f ⋆k ))− (R̂k(h)− R̂k( f ⋆k ))
∣∣∣

which are the suprema of empirical processes indexed by the function classes defined as

{(x, y) 7→ ℓk(y, h(x))− ℓk(y, f ⋆k (x)) : h − f ⋆k ∈ Hk(r)} .

By Assumption 1, these function classes are uniformly bounded by Bk ≥ 0. Hence, by Talagrand’s
concentration inequality (Lemma E.3), for any choice of deterministic radii r1, . . . , rK ≥ 0, the event

Qlab
δ (r1, . . . , rK) :=



∀k ∈ [K] : Tk(rk) ≤ 2E [Tk(rk)] +

√
2

√
τ2

k (rk) log(K/δ)

nk
+ 3

B log(K/δ)

nk





holds with probability at least 1 − δ. Here τ2
k (r) is a short-hand for the variance proxy from Lemma E.3,

defined as
τ2

k (r) = sup
h− f ⋆k ∈Hk(r)

Var
[
ℓk(Yk, h(Xk))− ℓk(Yk, f ⋆k (Xk))

]
.

We now bound E [Tk(rk)] and τ2
k (rk). Using symmetrization (Lemma E.5) and vector contraction

(Lemma E.4), recalling that ℓk is Lk-Lipschitz w.r.t. the ℓ2-norm in its second argument, we can bound

E [Tk(r)] ≤ 6LkR
k
nk
(Hk(r)) and τ2

k (r) ≤ L2
kr2.

Therefore, we get on the event Qlab
δ (r1, . . . , rK) that for all k ∈ [K]

Tk(rk) ≤ 12LkR
k
nk
(Hk(rk)) +

√
2Lkrk

√
log(K/δ)

nk
+ 3B

log(K/δ)

nk
.

Now recall the definition
lk := inf

{
r ≥ 0 : r2 ≥ Rk

nk
(Hk(r))

}
.

By (35), we get that for any r ≥ lk

Rk
nk
(Hk(r))

r
≤

Rk
nk
(Hk(lk))

lk
≤ lk

and therefore, if rk ≥ lk for all k, on the event Qlab
δ (r1, . . . , rK) (which holds with probability at least 1 − δ),

it holds that

Tk(rk) ≤ 12Lkrklk +
√

2Lkrk

√
log(K/δ)

nk
+ 3B

log(K/δ)

nk
=: Φk(rk, δ).

We now choose rk :=
∥∥∥ĥk − f ⋆k

∥∥∥
k
, which are random radii, so we have to perform a peeling argument.

Define the event

Wlab
δ :=

{
∃k ∈ [K], h ∈ Hk : ∥h − f ⋆k ∥k ≥ lk and Tk(∥h − f ⋆k ∥k) ≥ 3Φk(∥h − f ⋆k ∥k , δ)

}
.

Because
∥∥h − f ⋆k

∥∥
k ≤ diam∥·∥2

(Y) =: D, we know that for any M satisfying 2Mlk ≥ D ⇐⇒ M ≥
log(D/lk)/ log(2), for any

∥∥h − f ⋆k
∥∥

k ≥ lk there must be at least one 0 ≤ m ≤ M so that 2m−1lk ≤∥∥h − f ⋆k
∥∥

k ≤ 2mlk. Moreover, a calculation shows that the functions Φk satisfy

∀m ≤ M : 3Φk(2
m−1lk, δ) ≥ Φk(2

mlk, δ/2m).
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for sufficiently small δ, and so P(Wlab
δ ) is bounded by

P

(
⋃

m∈[M]

{
∃k ∈ [K], h ∈ Hk : 2m−1lk ≤ ∥h − f ⋆k ∥k ≤ 2mlk and Tk(∥h − f ⋆k ∥k) ≥ 3Φk(∥h − f ⋆k ∥k , δ)

}
)

≤ ∑
m∈[M]

P
(
∃k ∈ [K] : Tk(2

mlk) ≥ 3Φk(2
m−1lk, δ)

)

≤ ∑
m∈[M]

P (∃k ∈ [K] : Tk(2
mlk) ≥ Φk(2

mlk, δ/2m))
(a)
≤ ∑

m∈[M]

δ

2m ≤ δ.

where in (a) we used that P(Qlab
δ/2m(2ml1, . . . , 2mlK)) ≥ 1 − δ/2m.

Now, by the standard risk decomposition, we have that

Rk(ĥk)−Rk( f ⋆k ) = Rk(ĥk)− R̂k(ĥk) + R̂k(ĥk)− R̂k( f ⋆k )︸ ︷︷ ︸
≤0

+R̂k( f ⋆k )−Rk( f ⋆k ) ≤ 2Tk

(∥∥∥ĥk − f ⋆k
∥∥∥

k

)
,

and we can make a case distinction.

Remark 1. Many localization proofs for general loss functions only assume strong convexity and Lipschitz
continuity (see, e.g., Section 14.3 in [61]), and therefore one needs to handle the case where the L2-radius
is bounded but the excess loss is not (tightly) bounded, which would occur in the first case below. In our
setting, by the smoothness (Lemma D.6), a bounded radius directly implies bounded excess risk, so this
case cannot occur and no separate treatment is required.

Either rk =
∥∥∥ĥk − f ⋆k

∥∥∥
k
≤ lk and we are done, or rk =

∥∥∥ĥk − f ⋆k
∥∥∥

k
> lk, and so, because P(Wlab

δ ) ≤ δ, we
have with probability at least 1 − δ

Tk (rk) = Tk

(∥∥∥ĥk − f ⋆k
∥∥∥

k

)
≤ 3Φk

(∥∥∥ĥk − f ⋆k
∥∥∥

k
, δ
)
= 3Φk (rk, δ) .

Recall that by Assumption 1, ϕk is µk-strongly convex w.r.t. ∥·∥2, so that ℓk(y, y′) ≥ µk
2 ∥y − y′∥2

2. Hence,
we have that

r2
k = E

Xk∼Pk
X

∥∥∥ĥk(Xk)− f ⋆k (Xk)
∥∥∥

2

2

≤ 2
µk

E
Xk∼Pk

X

ℓk

(
f ⋆k (Xk), ĥk

)
=

2
µk

(
Rk(ĥk)−Rk( f ⋆k )

)
≤ 4

µk
Tk(rk) ≤

12
µk

Φk (rk, δ) ,

where we used Lemma 1 in the second equality. Solving r2
k ≤ 12

µk
Φk (rk, δ) for rk, we get that

r2
k ≤ 82944 L2

k
µ2

k
l2k +

144
µk

(
Bk +

8 L2
k

µk

)
log(K/δ)

nk
.

Hence, in either case we have

r2
k ≲

L2
k

µ2
k
l2k +

(
Bk
µk

+
L2

k
µ2

k

)
log(K/δ)

nk
.

Therefore, because P(Wlab
δ ) ≤ δ, we have that P(Elab

δ ) ≥ 1 − δ, where

Elab
δ :=

{
∀k ∈ [K] :

∥∥∥ĥk − f ⋆k
∥∥∥

2

k
≲

L2
k

µ2
k
l2k +

(
Bk
µk

+
L2

k
µ2

k

)
log(K/δ)

nk

}
.

which concludes the proof for localization in Hk.
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D.4.6 Proof of Proposition D.1

Recall the form of the gradient ∇gds(g; h) from Lemma D.7. For every fixed g, and any h, h′,

∥∥∇gds(g; h)−∇gds(g; h′)
∥∥2

s

=
∫ ∥∥∥∥∥

K

∑
k=1

λk
dµk
dµs

(∇2ϕk(g)(hk − g)−∇2ϕk(g)(h′k − g))

∥∥∥∥∥

2

2

dµs

≤
∫ K

∑
k=1

λk
dµk
dµs

∥∥∥(∇2ϕk(g)(hk − g)−∇2ϕk(g)(h′k − g))
∥∥∥

2

2
dµs (Jensen’s inequality)

≤ ν2
K

∑
k=1

λk

∫ dµk
dµs

∥∥hk − h′k
∥∥2

2 dµs

= ν2
K

∑
k=1

λk
∥∥hk − h′k

∥∥2
k . (43)

This is what we call “cross-smoothness”.

Denote g = gh
s and g′ = gh′

s . We may now use a generalization of the stability argument used in the proof
of Theorem 1 in [63], where the following argument was used in Rm and for unconstrained optimization:
By the convexity of G (Assumption 2), and the optimality of g, g′ we get these two variational inequalities
〈
∇gds(g; h), g′ − g

〉
s ≥ 0 and

〈
∇gds(g′; h′), g − g′

〉
s ≥ 0 ⇐⇒

〈
∇gds(g′; h′), g′ − g

〉
s ≤ 0,

see Lemma 2 and [67, Theorem 46]. Combining both, and subtracting
〈
∇gds(g; h′), g′ − g

〉
on both sides

we see that
〈
∇gds(g; h)−∇gds(g; h′), g′ − g

〉
s ≥

〈
∇gds(g′; h′)−∇gds(g; h′), g′ − g

〉
s . (44)

From the second item in Assumption 2, and the main results in [47], we get that the right-hand side of
(44) is lower bounded as

2γ
∥∥g − g′

∥∥2
s ≤

〈
∇gds(g′; h′)−∇gds(g; h′), g′ − g

〉
s ,

and from the cross-smoothness in (43), we get that the left-hand side of (44) is upper bounded by
〈
∇gds(g; h)−∇gds(g; h′), g′ − g

〉
s ≤

∥∥∇gds(g; h)−∇gds(g; h′)
∥∥

s

∥∥g′ − g
∥∥

s

≤ ν
∥∥g′ − g

∥∥
s

√√√√ K

∑
k=1

λk
∥∥hk − h′k

∥∥2
k .

Combining the two, we can see that

2γ
∥∥g − g′

∥∥2
s ≤ ν

∥∥g′ − g
∥∥

s

√√√√ K

∑
k=1

λk
∥∥hk − h′k

∥∥2
k =⇒

∥∥g − g′
∥∥2

s ≤ ν2

4γ2

K

∑
k=1

λk
∥∥hk − h′k

∥∥2
k .

This is the claimed quadratic bound.

D.4.7 Proof of Proposition D.2

Throughout this proof, condition on the ĥk. In particular, all expectations and variances are conditioned
on ĥk. Recall from Eq. (34) that for any r ≥ 0

Gk(r; ĥ) =
⋃

s∈S
(G − g′s) ∩ rB∥·∥k
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and from Eq. (38) that
Mk(r) =

{
(s, g) : s ∈ S , g − g′s ∈ Gk(r; ĥ)

}
.

The first part of this proof is mostly standard and follows the same proof structure as Lemma D.9. Define
the random variables

Zk(r) := sup
(s,g)∈Mk(r)

∣∣∣(d̂k(g; ĥk)− d̂k(g′s; ĥk))− (dk(g; ĥk)− dk(g′s; ĥk))
∣∣∣

= sup
(s,g)∈Mk(r)

∣∣∣∣∣
1

Nk

Nk

∑
i=1

(ℓk(ĥk(X̃k
i ), g(X̃k

i ))− ℓk(ĥk(X̃k
i ), g′s(X̃k

i )))

− E(ℓk(ĥk(Xk), g(Xk))− ℓk(ĥk(Xk), g′s(Xk)))

∣∣∣∣∣

which are the suprema of an empirical processes over the function classes for k ∈ [K]
{

x 7→ ℓk(ĥk(x), g(x))− ℓk(ĥk(x), g′s(x)) : (s, g) ∈ Mk(r)
}

By Assumption 1, these function classes are uniformly bounded by Bk ≥ 0. Hence, by Talagrand’s
concentration inequality (Lemma E.3), for any choice of deterministic radii r1, . . . , rK ≥ 0, the event

Qun
δ (r1, . . . , rK) =



∀k ∈ [K] : Zk(rk) ≤ 2E [Zk(rk)] +

√
2

√
σ2

k (rk) log(K/δ)

Nk
+ 3

Bk log(K/δ)

Nk





holds with probability at least 1 − δ. Here σ2
k (rk) is a short-hand for the variance proxy from Lemma E.3,

defined in this section as

σ2
k (r) = sup

(s,g)∈Mk(r)
Var

[
ℓk(ĥk(Xk), g(Xk))− ℓk(ĥk(Xk), g′s(Xk))

]
.

We now bound E [Zk(r)] and σ2
k (r). Using symmetrization (Lemma E.5) in addition to vector contraction

(Lemma E.4), recalling that ℓk is Lk-Lipschitz w.r.t. ℓ2-norm in its second argument, we can bound

E [Zk(r)] ≤ 6LkR
k
Nk
(Gk(r; ĥ)) and σ2

k (r) ≤ L2
kr2.

Therefore, we get on the event Qun
δ (r1, . . . , rK) that

Zk(rk) ≤ 12LkR
k
Nk
(Gk(r; ĥ)) +

√
2Lkrk

√
log(K/δ)

Nk
+ 6Bk

log(K/δ)

Nk
.

Define
ũk := inf

{
r ≥ 0 : r2 ≥ Rk

Nk
(Gk(r; ĥ))

}
.

By Lemma D.8, which holds under Assumption 2, we get that for any r ≥ ũk

Rk
Nk
(Gk(r; ĥ))

r
≤

Rk
Nk
(Gk(ũk; ĥ))

ũk
≤ ũk.

Therefore, if rk ≥ ũk for all k, on the event Qun
δ (r1, . . . , rK) (which holds with probability at least 1 − δ), it

holds that for all k ∈ [K],

Zk(rk) ≤ 12Lkrkũk +
√

2Lkrk

√
log(K/δ)

Nk
+ 3Bk

log(K/δ)

Nk
=: Ψk(rk, δ).
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We now come to the part of the proof that is less standard. Consider the family of random radii

rs
k :=

∥∥ĝs − g′s
∥∥

k s ∈ S .

We perform a peeling argument to bound the probabilities of the two events

Wun
δ,0 := {∃k ∈ [K] : Zk(ũk) ≥ Ψk(ũk, δ)}

Wun
δ,1 :=

{
∃k ∈ [K], s ∈ S , g ∈ G :

∥∥g − g′s
∥∥

k ≥ ũk and Zk(
∥∥g − g′s

∥∥
k) ≥ 3Ψk(

∥∥g − g′s
∥∥

k , δ)
}

.

Remark 2. Contrary to Remark 1, here we include the case where the radii are small, because we have to
control all K radii simultaneously. One could also adapt the following proof without this case, but the
resulting bound would be the same (up to constants).

By the previous derivations, P
(

Wun
δ,0

)
≤ δ, and for Wun

δ,1 we apply a peeling argument. Because

∥g − g′s∥k ≤ diam∥·∥2
(Y) =: D, we know that for any M satisfying

2Mũk ≥ D ⇐⇒ M ≥ log(D/ũk)/ log(2),

and for any ∥g − g′s∥k ≥ ũk there must be at least one 0 ≤ m ≤ M so that 2m−1ũk ≤ ∥g − g′s∥k ≤ 2mũk.
Moreover, a calculation shows that the functions Ψk satisfy

∀0 ≤ m ≤ M : 3Ψk(2
m−1ũk, δ) ≥ Ψk(2

mũk, δ/2m)

for small enough δ, which yields that

P
(

Wun
δ,1

)
= P

(
⋃

m∈[M]

{
∃k ∈ [K], s ∈ S , g ∈ G : 2m−1ũk ≤

∥∥g − g′s
∥∥

k ≤ 2mũk

and Zk(
∥∥g − g′s

∥∥
k) ≥ 3Ψk(

∥∥g − g′s
∥∥

k , δ)
}
)

≤ ∑
m∈[M]

P
(
∃k ∈ [K] : Zk(2

mũk) ≥ 3Ψk(2
m−1ũk, δ)

)

≤ ∑
m∈[M]

P (∃k ∈ [K] : Zk(2
mũk) ≥ Ψk(2

mũk, δ/2m))
(a)
≤ ∑

m∈[M]

δ

2m ≤ δ.

where in (a) we used that P(Qun
δ/2m(2mũ1, . . . , 2mũK)) ≥ 1 − δ/2m. Combining the two with a union

bound yields P
(
(Wun

δ,0 )
c ∩ (Wun

δ,1 )
c
)
≥ 1 − 2δ. Condition on (Wun

δ,0 )
c ∩ (Wun

δ,1 )
c.

By the standard risk decomposition, we get for all s ∈ S

ds(ĝs; ĥ)− ds(g′s; ĥ) = ds(ĝs; ĥ)− d̂s(ĝs; ĥ) + d̂s(ĝs; ĥ)− d̂s(g′s; ĥ)︸ ︷︷ ︸
≤0

+d̂s(g′s; ĥ)− ds(g′s; ĥ)

≤ ds(ĝs; ĥ)− d̂s(ĝs; ĥ) + d̂s(g′s; ĥ)− ds(g′s; ĥ)

= s
((

dk(ĝs; ĥk)− d̂k(ĝs; ĥk) + d̂k(gs; ĥk)− dk(g; ĥk)
)

k∈[K]

)

≤ s
(
(Zk(rs

k))k∈[K]
)

(45)

Further, by the “multi-objective Bernstein condition” ∥ĝs − g′s∥2
s ≤ 1

γ (ds(ĝs; ĥ)− ds(gs; ĥ)), implied by
the second item from Assumption 2, and Eq. (45),

r2
s := s

(
(rs

1)
2, . . . , (rs

K)
2
)
=
∥∥ĝs − g′s

∥∥2
s

≤ 1
γ

(
ds(ĝs; ĥ)− ds(g′s; ĥ)

)
≤ 1

γ
s
(
(Zk(rs

k))k∈[K]
)

.
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On the event (Wun
δ,0 )

c ∩ (Wun
δ,1 )

c, we thus get for every s = slin
λ ∈ S

r2
s ≤ 1

γ


 ∑

k: rs
k≤ũk

λkΨk(ũk, δ) + ∑
k: rs

k>ũk

λk3Ψk(rs
k, δ)


 ≤ 1

γ

(
K

∑
k=1

λkΨk(ũk, δ) +
K

∑
k=1

λk3Ψk(rs
k, δ)

)
.

We can simplify the first term using ab ≤ 1
2 (a2 + b2) as

1
γ

K

∑
k=1

λkΨk(ũk, δ) =
1
γ

K

∑
k=1

λk

(
12Lkũ

2
k +

√
2Lkũk

√
log(K/δ)

Nk
+ 3Bk

log(K/δ)

Nk

)

≤ 1
γ

K

∑
k=1

λk

(
13Lkũ

2
k + (Lk + 3Bk)

log(K/δ)

Nk

)
=: bs,1.

Plugging this into the bound on r2
s yields

r2
s ≤ 1

γ

K

∑
k=1

λk

(
36Lkrs

kũk + 5Lkrs
k

√
log(K/δ)

Nk
+ 18Bk

log(K/δ)

Nk

)
+ bs,1

=
1
γ

K

∑
k=1

(√
λk · rs

k

)(√
λk

(
36Lkũk + 5Lk

√
log(K/δ)

Nk

)

︸ ︷︷ ︸
=:ak

)
+ 18

1
γ

K

∑
k=1

λk
Bk log(K/δ)

Nk︸ ︷︷ ︸
=:bs,2

+bs,1

≤ 1
γ

(
K

∑
k=1

λk(rs
k)

2

)1/2( K

∑
k=1

λka2
k

)1/2

+ bs,1 + bs,2︸ ︷︷ ︸
=:bs

= rs

(
K

∑
k=1

λk
a2

k
γ2

)1/2

︸ ︷︷ ︸
=:as

+bs

where the last inequality is Cauchy-Schwarz. Some algebra shows that r2
s ≤ rsas + bs implies r2

s ≤
2(a2

s + bs), and so

r2
s ≤ 2

K

∑
k=1

λk


 1

γ2

(
36Lkũk + 5Lk

√
log(K/δ)

Nk

)2

+ 13
Lk
γ
ũ2

k +
(Lk + 3Bk)

γ

log(K/δ)

Nk
+

18
γ

Bk log(K/δ)

Nk




≲
K

∑
k=1

λk

((
L2

k
γ2 +

Lk
γ

)
ũ2

k +

(
L2

k
γ2 +

Lk
γ

+
Bk
γ

)
log(K/δ)

Nk

)

≲
K

∑
k=1

λk

(
L2

k
γ2 ũ

2
k +

(
L2

k
γ2 +

Bk
γ

)
log(K/δ)

Nk

)

where in the last line we used Lk/γ ≥ 1. Therefore, because P
(
(Wun

δ,0 )
c ∩ (Wun

δ,1 )
c
)
≥ 1 − 2δ, we have

that P
(
Eun

δ

)
≥ 1 − δ, where

Eun
δ :=

{
∀s = slin

λ ∈ S :
∥∥ĝs − g′s

∥∥2
s ≲

K

∑
k=1

λk

(
L2

k
γ2 ũ

2
k +

(
L2

k
γ2 +

Bk
γ

)
log(2K/δ)

Nk

)}
,

which concludes the proof of this part.

D.4.8 Proof of Proposition D.3

Recall that ∆ = sups∈S ∥gs − g′s∥. For every r ≥ 0, we have the following key inclusion

G ′(r) ⊂ G(r + ∆) +
{

gs − g′s : s ∈ S
}
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To see that, let h = g − g′s ∈ G ′(r). Then h + (g′s − gs) = g − gs and ∥h + (g′s − gs)∥ ≤ r + ∆.

Because Rademacher complexity is sub-additive, we get that for all r ≥ 0

Rn
(
G ′(r)

)
≤ Rn

(
G(r + ∆) +

{
gs − g′s : s ∈ S

})

≤ Rn (G(r + ∆)) +Rn
({

gs − g′s : s ∈ S
})

≤ Rn (G(r + ∆)) +Rn (G(∆))

where in the last step we used that

−
{

gs − g′s : s ∈ S
}
=
{

g′s − gs : s ∈ S
}
⊂ G(∆).

Using that for all r ≥ u we have Rn (G(r)) ≤ r2, we get that

Rn
(
G ′(u + ∆)

)
≤ Rn (G(u + 2∆)) +Rn (G(∆)) ≤ (u + 2∆)2 +Rn (G(∆))

and using that r 7→ Rn (G(r)) /r is non-increasing (by Assumption 2 and Lemma D.8), we get that

Rn (G(∆)) ≤
∆

u + ∆
Rn (G(u + ∆)) ≤ ∆(u + ∆),

which together yields
Rn
(
G ′(u + ∆)

)
≤ (u + 2∆)2 + ∆(u + ∆).

Again, by the fact that r 7→ Rn (G ′(r)) /r is non-increasing (Lemma D.8), we get that for all r ≥ u + ∆

Rn
(
G ′(r)

)
≤ r

u + ∆
Rn
(
G ′(u + ∆)

)
≤ r

u + ∆

(
(u + 2∆)2 + ∆(u + ∆)

)

In particular, for the choice r = 5(u + ∆)

Rn
(
G ′(5(u + ∆))

)
≤ 5(u + ∆)

u + ∆

(
(u + 2∆)2 + ∆(u + ∆)

)

= 5
(
(u + ∆)2 + 2(u + ∆)∆ + ∆2 + ∆(u + ∆)

)

≤ 5(5(u + ∆)2)

= (5(u + ∆))2

which implies that ũ ≤ 5(u + ∆), completing the proof.

D.5 Proof of Equation (17)

Let X = {x0}, Y = {0, 1} and let G = {g(x0) = y : y ∈ {0, 1}}. From now on, we let y ≡ g(x0).
Consider the two random variables Y1, Y2, so that P(Y1 = 1) = p1 and P(Y2 = 1) = p2. Moreover,
denote y1 ≡ f ⋆1 (x0) and y2 ≡ f ⋆2 (x0). We get that

Ts(y) = λ1E
[
1{Y1 ̸= y}

]
+ λ2E

[
1{Y2 ̸= y}

]

= λ1 ((1 − y)p1 + y(1 − p1)) + λ2 ((1 − y)p2 + y(1 − p2))

It follows that

ys = arg min
y∈{0,1}

Ts(y) =

{
1 λ1 p1 + λ2 p2 > 1/2
0 else

with Ts(ys) = min {λ1 p1 + λ2 p2, 1 − (λ1 p1 + λ2 p2)}.
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Now, Algorithm 1 first estimates the ERMs from the i.i.d. data

ŷ1 = arg min
y∈{0,1}

1
n

n

∑
i=1

1{Y1
i ̸= y} = 1 { p̂1 > 1/2} ŷ2 = arg min

y∈{0,1}

1
n

n

∑
i=1

1{Y2
i ̸= y} = 1 { p̂2 > 1/2}

where we defined p̂k =
1
n ∑n

i=1 Yk
i . Then, PL-MOL sets (note that the unlabeled data has no effect here)

ŷs = arg min
y∈{0,1}

λ11{ŷ1 ̸= y}+ λ21{ŷ2 ̸= y} =

{
1 λ1ŷ1 + λ2ŷ2 > 1/2,
0 else.

Now choose λ = (1/4, 3/4) and p1 = 1, p2 = 2/5. Then λ1 p1 + λ2 p2 = 11/20 > 1/2 and so ys = 1, but
λ1y1 + λ2y2 = 1/4 < 1/2. We can see that

ŷs = 0 ⇐⇒ λ1ŷ1 + λ2ŷ2 =
1
4

ŷ1 +
3
4

ŷ2 < 1/2

⇐= ŷ1 = y1 and ŷ2 = y2

⇐= p̂1 > 1/2 and p̂2 < 1/2

in which case Ts(ŷs) = Ts(0) = λ1 p1 + λ2 p2 = 11/20 and Ts(ys) = Ts(1) = 1 − (λ1 p1 + λ2 p2) = 9/20.
And so, since by the law of large numbers P ( p̂1 > 1/2 and p̂2 < 1/2) → 1, we see that

lim
n→∞

P

(
Ts(ŷs) ≥ inf

y∈{0,1}
Ts(y) + 0.1

)
= lim

n→∞
P (ŷs = 0) ≥ lim

n→∞
P ( p̂1 > 1/2 and p̂2 < 1/2) = 1

which concludes the proof. Consistency of Algorithm 2 holds trivially, also from Corollary A.1.

E Auxiliary results

Lemma E.1 (Lipschitz continuity of Bregman divergences). Assume diam∥·∥(Y) = supy,y∈Y ∥y − y′∥ < ∞
and that ϕ is ν-smooth w.r.t. ∥·∥ and ∥∇ϕ(x)−∇ϕ(z)∥∗ ≤ M ∥x − z∥. Then Dϕ is Lipschitz continuous in
both of its arguments separately, that is, for all x, y, z we have

∣∣Dϕ(y, x)− Dϕ(z, x)
∣∣ ≤

(ν

2
+ M

)
diam∥·∥(Y) ∥y − z∥ ,

∣∣Dϕ(y, x)− Dϕ(y, z)
∣∣ ≤

(ν

2
+ M

)
diam∥·∥(Y) ∥x − z∥ .

Proof. This follows from the three-point identity: First,
∣∣Dϕ(y, x)− Dϕ(z, x)

∣∣ =
∣∣Dϕ(y, z)− ⟨y − z,∇ϕ(x)−∇ϕ(z)⟩

∣∣

≤ ν

2
∥y − z∥2 + ∥y − z∥ ∥∇ϕ(x)−∇ϕ(z)∥∗

≤ ν

2
∥y − z∥2 + 2M ∥y − z∥ ∥x − z∥

≤
(ν

2
+ M

)
diam∥·∥(Y) ∥y − z∥

and second, by the same argument,
∣∣Dϕ(y, x)− Dϕ(y, z)

∣∣ =
∣∣Dϕ(z, x)− ⟨y − z,∇ϕ(x)−∇ϕ(z)⟩

∣∣

≤ ν

2
∥z − x∥2 + ∥y − z∥ ∥∇ϕ(x)−∇ϕ(z)∥∗

≤ ν

2
∥z − x∥2 + 2M ∥y − z∥ ∥x − z∥

≤
(ν

2
+ M

)
diam∥·∥(Y) ∥x − z∥

which concludes the proof.

55



E.1 Concentration inequalities

Lemma E.2 (Consequence of McDiarmid’s inequality [41]). Let F be a function class of measurable functions
X → R that is B-bounded, supx∈X | f (x)| ≤ B for all f ∈ F , and X, X1, . . . , Xn be i.i.d. random elements in X .
Define

Z = sup
f∈F

∣∣∣∣∣
1
n

n

∑
i=1

f (Xi)− E [ f (X1)]

∣∣∣∣∣ .

Then it holds that

P

(
|Z − E [Z]| ≤ B

√
2 log(1/δ)

n

)
≥ 1 − 2δ.

The proof can be found, for instance, in [61, 54]. A significant improvement over Lemma E.2 is Talagrand’s
concentration inequality, stated next.

Lemma E.3 (Talagrand’s concentration inequality [58]). Let F be a countable function class of measurable
functions X → R that is B/2-bounded, supx∈X | f (x)| ≤ B/2 for all f ∈ F , and X1, . . . , Xn be i.i.d. random
elements in X . Define

Z = sup
f∈F

∣∣∣∣∣
1
n

n

∑
i=1

f (Xi)− E [ f (X1)]

∣∣∣∣∣ and σ2(F ) = sup
f∈F

E
[
( f (X1)− E [ f (X1)])

2
]
≤ B2.

Then it holds that

P

(
Z ≤ 2E [Z] +

√
2

√
σ2(F ) log(1/δ)

n
+ 3

B log(1/δ)

n

)
≥ 1 − δ.

E.2 Rademacher complexities

While there are multiple notions of Rademacher complexity for vector-valued functions [48], our choice
of Rademacher complexity in this work is motivated by the following contraction inequality, which is
used multiple times in our proofs.

Lemma E.4 (Vector contraction, Theorem 3 in [40] adapted for Rademacher complexities with absolute
values). Let H be a class of functions X → Y ⊂ Rq. Assume that ℓ : Y × Y → R is L-Lipschitz continuous in
its second argument with ℓ2-norm in Rq, that is,

∀y, y′, y′′ ∈ Y :
∣∣ℓ(y, y′)− ℓ(y, y′′)

∣∣ ≤ L
∥∥y′ − y′′

∥∥
2 .

Then it holds for ℓ ◦ H := {(x, y) 7→ ℓ(y, h(x)) : h ∈ H} that

Rn(ℓ ◦ H) ≤ 2
√

2LRn (H) ≤ 3LRn (H) ,

where Rn denotes the coordinate-wise Rademacher complexity.

This contraction inequality crucially relies on the ℓ2-Lipschitz continuity. If the loss exhibits more
favorable Lipschitz continuity, e.g., with respect to an ℓp-norm with p > 2, then our results can readily be
adapted to use other contraction inequalities [23].

We now state two more well-known results from learning theory appearing throughout the manuscript,
solely for convenience purposes.

Lemma E.5 (Symmetrization in expectation, e.g., Theorem 4.10 in [61]). Let F be a class of functions X → R

and n ∈ N. Let X1, . . . , Xn be i.i.d. samples in X . Then

E

[
sup
f∈F

∣∣∣∣∣
1
n

n

∑
i=1

f (Xi)− E [ f (X1)]

∣∣∣∣∣

]
≤ 2Rn (F ) .
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Lemma E.6 (VC Bounds, [9, 8]). Suppose that H consists of functions X → {0, 1} and that H has VC
dimension dH ∈ N. Then there exists a constant C > 0 so that the Rademacher complexity of H with respect to
any distribution on X is bounded as

Rn (H) ≤ min

{√
2dH log(en/dH)

n
, C

√
dH
n

}
.

If H consists of functions X → [−B, B] and has VC-subgraph dimension (a.k.a. pseudo-dimension) dH ∈ N, then
there exists a constant C > 0 such that the Rademacher complexity of H with respect to any distribution on X is
bounded as

Rn (H) ≤ min

{
2B

√
2dH log(en/dH)

n
, CB

√
dH
n

}
.

Moreover, for the L2-norm ball of functions with the same distribution µ as the Rademacher complexity, B ={
f ∈ L2(µ) : ∥ f ∥L2(µ ≤ 1

}
, let ρ := inf

{
r > 0 : r2 ≥ Rn(H)

}
. Then there exists a constant C > 0 so that

ρ2 ≤ C
dH
n

.
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F Table of Notations

Table 2: Notation

Symbol Definition

ℓk, Dϕ loss / Bregman divergence: Y × Y → R

Rk( f ) risk: E[ℓk(Yk, f (Xk))]

R̂k( f ) empirical risk: 1
nk

∑nk
i=1 ℓk(Yk

i , f (Xk
i ))

Ek( f ) excess risk: Rk( f )− inf f∈Fall
Rk( f )

Ts( f ) s-trade-off: s(E1( f ), . . . , EK( f ))

— excess s-trade-off: Ts( f )− infg∈G Ts(g)

dk( f ; h) risk discrepancy: E[ℓk(h(Xk), f (Xk))]

d̂k( f ; h) empirical risk discrepancy: 1
Nk

∑Nk
i=1 ℓk(h(X̃k

i ), f (X̃k
i ))

ds( f ; h) scalarized discrepancy: s(d1( f ; h1), . . . , dK( f ; hK))

d̂s( f ; h) empirical scalarized discrepancy: s(d̂1( f ; h1), . . . , d̂K( f ; hK))

f ⋆ = ( f ⋆k )k∈[K] Bayes-optimal models: f ⋆k = arg min f∈Fall
Rk( f )

ĥ = (ĥk)k∈[K] ERMs in Hk: ĥk = arg minh∈Hk
R̂k(h)

gs Pareto set in G: arg ming∈G ds(g; f ⋆)

g′s helper Pareto set in G: arg ming∈G ds(g; ĥ)

ĝs our estimator: arg ming∈G d̂s(g; ĥ)

slin
λ linear scalarization: ∑K

k=1 λkvk

smax
λ Tchebycheff scalarization: maxk∈[K] λkvk

Bd
1 ℓ1-ball: {v ∈ Rd : ∥v∥1 ≤ 1}

Bd
2 ℓ2-ball: {v ∈ Rd : ∥v∥2 ≤ 1}

Bd
∞ ℓ∞-ball: {v ∈ Rd : ∥v∥∞ ≤ 1}

diam∥·∥(A) diameter of the set A ⊂ Rd: sup {∥x − y∥ : x, y ∈ A}
Rk

n Rademacher complexity w.r.t. distribution k and n samples

lk, uk critial radii from Eq. (13)
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