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ABSTRACT

Artificial learning agents are mediating a larger and larger number of interactions
among humans, firms, and organizations, and the intersection between mechanism
design and machine learning has been heavily investigated in recent years. However,
mechanism design methods make strong assumptions on how participants behave
(e.g. rationality), or on the kind of knowledge designers have access to a priori
(e.g. access to strong baseline mechanisms). Here we introduce HCMD-zero, a
general purpose method to construct mechanism agents. HCMD-zero learns by
mediating interactions among participants, while remaining engaged in an electoral
contest with copies of itself, thereby accessing direct feedback from participants.
Our results on the Public Investment Game, a stylized resource allocation game
that highlights the tension between productivity, equality and the temptation to
free-ride, show that HCMD-zero produces competitive mechanism agents that are
consistently preferred by human participants over baseline alternatives, and does
so automatically, without requiring human knowledge, and by using human data
sparingly and effectively Our detailed analysis shows HCMD-zero elicits consistent
improvements over the course of training, and that it results in a mechanism with
an interpretable and intuitive policy.

1 INTRODUCTIO

Artificial learning agents are beginning to play a central role in our institutions. From social networks,
to investment management, and traffic routing, an ever growing number of interactions among
humans, firms and organizations are mediated by adaptive systems.

While the intersection between mechanism design and machine learning has been heavily investigated
in recent years, most methods make strong assumptions on either the behavior and preferences of
participants (e.g. rationality), or on the kinds of knowledge, baseline mechanisms, or data we have
access to before constructing a new mechanism agent for a given economic interaction.

Here we address these restrictive assumptions and present a general method to design a mechanism
agent that is able to mediate complex economics interactions among human participants, while
requiring no access to alternative mechanisms, human knowledge of the underlying interaction
dynamics, and making very few assumptions on the nature of participants’ preferences and strategies.

Our method builds on the pipeline outlined in Koster et al. (2022), but extends it to scenarios with
zero human knowledge. It works by letting an adaptive agent repeatedly mediate interactions among
participants, while remaining engaged in an electoral competition against a copy of itself. Letting the
agent compete for participants’ votes, rather than chasing proxy measures such as welfare or equality,
ensures that the mechanism remains aligned to the preferences of its constituents, even when these
preferences are hard to specify.

More specifically, we set out to construct a mechanism agent that is able to mediate economic
interactions among human participants, and that is preferred by humans over alternative mechanisms.

We test our method on a stylized investment game where human participants could earn real money
and which is known to stress the tensions between welfare, equality and the temptation to free ride.
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Our results show that the method presented here was able to construct a complex mechanism policy
based on a simple expression of preference; and that this policy is favored by novel participants over a
baseline that was previously established as strong in this task. Moreover, our detailed analysis shows
how the election-against-self curriculum pushes our agent towards interpretable mediation schemes
with more and more pronounced punish / reward regions.

The impact of AI on our institutions is growing rapidly; and as such the intersection of mechanism
design and machine learning is receiving considerable attention. Here we show that merging the most
basic democratic principle of “one person, one vote” with modern machine learning and game theory
insights leads to a general method for designing mechanisms that are aligned with the preferences of
their constituents, while requiring zero human knowledge.

2 RELATED WORK
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Figure 1: Public Investment Game (PIG): 4 players play
over 10 identical rounds. Each round players receive an
endowment (which remains the same for each player
across all rounds). On each round, players can decide
how much to keep private (directly contributing to their
monetary payout after the game) or contribute to the
public fund. The public fund sums all contributions and
multiplies them by 1.6. The public fund is redistributed
to the players on each round according to the policy of
the mechanism. The returns from the fund then are added
to each players monetary payout. Thus, the policy of the
mechanism can influence whether the game is a social
dilemma and how much initial inequality is redressed by
the payouts of the fund.

Value alignment and AI safety have been in-
tensely investigated in recent years both from a
normative perspective (Gabriel, 2020), and from
a technical one (Dafoe et al., 2020); and there
is a growing support for building participatory
systems for AI ethics and governance (Rahwan,
2017; Lee et al., 2019).

Mechanism design is a sub-field of economics
that studies how to design the rules and incen-
tives of multi-agent interactions, so that self-
interested participants will prefer certain strate-
gies, often trading off their own welfare for
that of the group. The field has a long his-
tory to which it is near impossible to do justice,
see (Maskin, 2008) for a review. More recently
mechanism design has been studied from an al-
gorithmic point of view (Conitzer & Sandholm,
2002; Nisan & Ronen, 2001), as well as a ma-
chine learning one (Dütting et al., 2017; Man-
isha et al., 2018; Tacchetti et al., 2019; Koster
et al., 2022). Finally, researchers have recently
turned their attention to the role that mecha-
nism design can play in our pursuit of social
good (Abebe & Goldner, 2018).

Agent based models (ABMs), where a computer
simulation predicts how autonomous agents will
adapt to certain environment interventions, has
been a tool used by policy makers to design new mechanisms since its inception. ABMs have received
renewed attention after the 2008 Economic Crisis (Farmer & Foley, 2009; Hamill & Gilbert, 2015).

The problem of building artificial agents that coordinate with human participants starting from “zero
knowledge” had been investigated both in the computer game setting (Strouse et al., 2021), and in a
simulated economy environment (Zheng et al., 2020). Similarly, self-play and no-human-knowledge
methods have been successfully applied to challenging constant-sum two-player games in recent
past (Silver et al., 2016; 2017; Vinyals et al., 2019).

The method we present here builds heavily on the pipeline outlined in Koster et al. (2022): Human
Centered Mechanism Design (HCMD), which uses a similar approach to train a mechanism agent on
the same stylized economic game we consider, and with the same goal of producing mechanisms that
are preferred by human participants over baseline alternatives. Here we provide a detailed comparison
and highlight the substantial differences between HCMD and our contributions: First, HCMD does
not rely on self-play, and rather trains mechanism agents using knowledge of the baseline mechanisms
it needs to be preferred over, which need to be known a priori. Second, HCMD is not an iterative
method, and it assumes that participants behavior and strategies do not depend on the mechanism
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they interact with, and can thus be modeled once and for all. The method presented here, on the other
hand, works iteratively and thus takes into account how human participants react to changes in the
mechanism agent. Finally, HCMD uses ad-hoc knowledge about the underlying interaction dynamics
to construct predictive models of participants’ voting behavior; our method does not. In summary,
HCMD is not a zero-knowledge method: it requires access to alternative mechanism policies for
the specific interaction it sets out to mediate, it relies on knowledge of the voting dynamics to
construct voting models, and finally it assumes that humans strategies are unaffected by changes
in the mechanism policy, which is at best something that needs to be verified empirically for each
interaction.

3 METHODS
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Figure 2: Evaluation of HCMD-zero after convergence against Liberal Egalitarian. Top panel: contribution
of head and tail players across rounds, as a function of endowment, for each mechanism. Bottom left panel:
votes in favour of HCMD-zero against Liberal Egalitarian, as a function of tail endowment. Bottom-right panel:
Scatter plot of total reward (sum of log-rewards) against reward inequality (gini coefficient), for each mechanism.
Each dot corresponds to one group, aggregated across all endowments.

We begin this section describing the Public Investment Game (PIG) we used for our experiments, and
then proceed to introduce our methods in detail. We highlight here that while we report results on the
PIG, and we use it to ground our exposition, our methods are applicable in very general settings.

3.1 PUBLIC INVESTMENT GAME FOR PARTICIPANTS AND MECHANISMS

From the point of view of the participants, the PIG is a general-sum 4 player game that unfolds over
10 identical rounds. At the beginning of each round, each participant receives an endowment of ei,t
“coins”, with i = 1, . . . , 4, and t = 1, . . . , 10, and decides what fraction of coins ρi,t they would
like to invest in a public fund that grows with a fixed multiplier of 1.6. A mechanism agent then
observes ei,t and ρi,t, and determines 4 redistribution weights wi,t ≥ 0, with

∑
i wi,t = 1, according

to which the fund is returned in its entirety: each participant receives wi,t(1.6 ×
∑

i ρi,tei,t), and
the game moves on to the next round. In our experiments with human participants, at the end
of the 10 rounds, each participant collected a monetary reward proportional to the funds they
received from the public investment fund, and the endowments they decided not to contribute
Ri =

∑
t ri,t =

∑
t wi,t(1.6×

∑
i ρi,tei,t)+(1−ρi,t)ei,t. From the point of view of the participants,

the redistribution decisions of the mechanism agent are folded in the game transition kernel.
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Figure 3: Monitoring performance of player model and mechanism across training iterations. Left panel:
contribution and vote cross-entropy (ratio normalized by the diagonal) of player models ps across datasets
Ds. Player models made better predictions on datasets acquired in earlier iterations. Right panel: payoff
matrix from the meta-game, where pairs of mechanisms compete for votes in simulation. Later iterations obtain
monotonically increasing votes against earlier versions, with convergence after iteration 7. The initial iteration
(random mechanism) is denoted with i.

In our human experiments, we let the same cohort of players face two mechanism agents in inde-
pendent instances of the PIG played in sequence. We then asked each participant to cast a vote on
which mechanism they would like to re-experience in a third follow up game in which the mechanism
would be decided by majority vote. It is worth noting that participants collected monetary rewards
in all three games (two initial, and one follow up), and thus had “skin in the game” when reporting
which mechanism they preferred.

From the point of view of the mechanism agent, the PIG is a 2 player constant-sum game. First,
the two candidate mechanisms face independent sequential decision making problems with states
coinciding with endowments, contributions, and redistribution histories, and actions coinciding with
redistribution weights. Second, the two mechanisms collect a reward based on the number of votes
cast in their favor. Similarly to what happens with participants, the transition kernel implements the
PIG game dynamics, as well as the participants contributing and voting behaviors.

3.2 SELF-PLAY LOOP OVERVIEW

Iteration s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7

Groups 73 45 51 101 53 49 42
Contrib. Linear size 8 8 8 32 32 32 32
Contrib. LSTM size 4 4 4 8 8 8 8

Table 1: Amount of data collected and modeling hyper-parameters for each iteration.

Here we introduce HCMD-zero, a method to construct a mechanism agent that is able to mediate
economic interactions among human participants, and that is preferred by humans over alternative
mechanisms.

We build on the recent successes of self-play to train competitive agents in challenging 2-player
constant sum games (Silver et al., 2016; 2017; Vinyals et al., 2019), and let our mechanism agent
update its redistribution policy so as to win against a copy of itself in the PIG election game we
outlined above (i.e. the two mechanism agents faced by participants in the two initial games were in
fact copies of one another, this fact was not disclosed to participants).

Notably, we did not train our mechanism agent directly on experience acquired while interacting with
human participants (this would require access to a prohibitive amount of data). Instead we constructed
“virtual participants” by training neural network models to closely imitate human contributing and
voting behavior in the PIG, and let our mechanism agents interact with these instead.

The method we outline is thus composed of 3 phases, which are repeated in order over several
iterations: 1) Acquire: collect behavioral data (contributions and voting) by letting participants
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interact with a mechanism agent in two sequential instances of the PIG, 2) Model: construct accurate
models of participants’ voting and contributing behaviors, 3) Optimize: construct a simulated election
game environment using “virtual participants” and optimize the mechanism agent’s redistribution
policy in pursuit of participants preferences. As stated above, the 3 phases Acquire, Model, and
Optimize are repeated in order within each iteration. In particular, in each Acquire phase, we collect
behavioral trajectories of human participants interacting with the mechanism agent produced by the
most recent Optimize phase (we use a random mechanism on the first iteration). The Model phase
trains participants’ models using data from all previous iterations, and finally the Optimize phase
relies on the most recent virtual participants models to construct the mechanism agent’s training
environment.

3.3 Acquire STEP: DATA ACQUISITION

We used a crowd-sourcing platform to acquire contributing and voting behavior data from human
participants (n = 1656). All participants gave informed consent to participate in the experiment. In
particular, during the Acquire step of each iteration s, groups of 4 human participants completed
two episodes of the PIG game interacting with a mechanism agent endowed with the most recent
parameters (see Sec. 3.5 for details on the mechanism agent), and voted for the episode they preferred.
We denote this data-set as Ds. Since the mechanism and the conditions (e.g. the endowment) are
identical in both episodes, the only difference between them is driven by the randomness in human
behavior.

3.4 Model STEP: MODEL PARTICIPANTS

During the Model step for iteration s, we trained independent models to predict human contributions
and votes (we jointly refer to these models as “virtual participants”) from all data-sets D1, . . . , Ds

collected thus far.

The contribution model is a neural network similar to that in (Koster et al., 2022), which takes as input
each players normalized endowments and contributions: ei,t/10 and ci,t/10, as well as each players
fractional contribution ρi,t = ci,t/ei,t, and outputs the log-likelihood of contributing 0, 1, . . . , 10
coins (10 coins being the maximum endowment). The network was applied independently for each
participant and composed of an input linear layer, a LSTM and an output linear layer. The contribution
model was trained to minimize group-wise cross-entropy between predicted and actual contributions.

The votes model is a simple linear layer, which we apply independently for each participant, that takes
in the flattened observations from a single episode (10 rounds × 3 endowment/contribution/payout ×
4 participants) and produces a single output, which can be interpreted as the log-likelihood of voting
for the current episode. The same linear layer is applied to both episodes, and a softmax normalization
produces the final probabilities. We train this network to minimize group-wise cross-entropy between
predicted and actual votes, with an additional l2 regularization loss of the linear layer parameters.

Since the amount of data available increases with every iteration, hyper-parameters must be adjusted
each time. In our experiments, we tuned the l2 regularization and network size using cross validation
with a random 70%-30% train/eval split. We reconstituted the original data-set for training (see Tab. 1
for details).

3.5 Optimize STEP: TRAIN MECHANISM AGENT

Similarly to HCMD, we parameterize the mechanism policy with a Graph Network (Battaglia
et al., 2018) policy function π, with no memory and parameters θ, which takes as input the current
endowment and contribution from each player (as nodes of a fully connected graph) and outputs
deterministic redistribution weights of each player wi,t.

During the Optimize step, we update the redistribution policy parameters θs−1 → θs by letting our
mechanism agent interact with the most current “virtual participant” models ps.

Specifically, we trained the mechanism by approximating the mechanism agent’s policy gradient
through a bespoke low variance estimator based on Stochastic Computation Graphs (Schulman
et al., 2016) that exploits the differentiable structure of the PIG while accounting for the stochastic
nature of the player model’s contributions (similar to (Koster et al., 2022)). We note that while this
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choice is suitable for our set up, the learning rule can be replaced by any Reinforcement Learning
technique that fits the problem at hand. During training, we used batches of 1000 games equally split
among the endowment condition we considered: [10, 2, 2, 2], [10, 4, 4, 4], [10, 6, 6, 6], [10, 8, 8, 8] and
[10, 10, 10, 10]. The mechanism’s policy was trained using an ADAM optimizer with learning rate
4e − 5. Finally, we fixed the number of gradient updates to 2000 for intermediate iterations and
10000 for the final one. This choice warrants a brief discussion: there is a trade off between how
aggressively we require our participants model ps to extrapolate beyond its training distribution
(recall that training data was collected using mechanism parameters θ0 . . . θs−1), and how many total
iterations (and thus data collection steps) we prescribe.

Related to the choice of training updates within an iteration’s Optimize step, our method requires
determining how many iterations, i.e. repetitions of our Acquire, Model and Optimize pipeline,
we should complete. Our proposed approach is to construct a meta-game, that is, recording the
results of a round-robin election tournament among the mechanism agents produced at each iteration,
constructed using the most recent “virtual participants” models (see Fig. 3). More precisely we
constructed a meta-game as a two-player game defined by a payoff matrix of size s× s with entry
i, j corresponding to the proportion of votes collected by mechanisms playing with parameters θi
and θj over 100 games. Once the actions corresponding to later checkpoints no longer constitute a
dominant strategy in the meta-game, or when their advantage becomes negligible, we can conclude
that HCMD-zero has converged, since it no longer produces meaningful improvements1.

4 RESULTS

In this section we show the results of applying our method in the Public Investment Game. We
first show the performance against baselines after 7 iterations of training with HCMD-zero. Then,
we explore in more detail the learning dynamics of the model of human participants, as well as
the convergence of the mechanism. Finally, we provide an analysis of the mechanism’s behavior
throughout training.

4.1 PERFORMANCE OF HCMD-zero AT EVALUATION

In order to validate our approach, we trained a mechanism in the Public Investment Game (PIG).
Similar to Koster et al. (2022), we divided participants into one “Head” player that always received
an endowment ehead,t = 10 and three “tail” players that received a “tail” endowment etail,t ∈
{2, 4, 6, 8, 10}. The tail endowment was consistent within a group, across tail payers and for all
mechanisms they interacted with. We evaluated the mechanism θ7 by collecting new data specifically
for this purpose. Humans interacted with the trained mechanism and with a baseline alternative in
two subsequent games (in counterbalanced order). Our choice of baseline was Liberal Egalitarian
mechanism, a redistribution scheme that disburses the public fund according to the proportion of
endowment contributed by each participant, as baseline. Koster et al. (2022) show that Liberal
Egalitarian is a strong baseline that is preferred by humans over the Strict Egalitarian, which divides
the fund in equal parts.

Results are shown in Fig. 2. HCMD-zero was voted more often than Liberal Egalitarian, achieving an
average of 54.3% of the votes (p < 0.06 with a non-parametric analysis that corrects for in-group
correlations). More specifically, HCMD-zero achieved at least half of the votes against Liberal
Egalitarian (see bottom-left panel), whilst matching the contributions from players (top panel). At
the group level, HCMD-zero matched the performance of Liberal Egalitarian in trading off the
productivity of the group (incentivizing the head player to contribute more) and the inequality of the
group (redistributing to the tail players; bottom-right panel).

4.2 PARTICIPANT MODELS DISPLAY EQUILIBRIUM EFFECTS

1This assumes that there are no Condorcet cycles among the mechanisms, an assumption which is true in
practice (see Fig. 3), and already “baked in” the choice of self-play (see (Balduzzi et al., 2019)). Should such
cycles become apparent when constructing the meta-game, one could turn to standard methods to address them
(e.g. Fictitious Play or Double Oracle).
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We turned to look at the predictive power of the “virtual participants” model ps across iterations.
Our iterative method addresses the fact that human contribution and voting behavior depends on the
mechanism. Fig. 3 (left two panels) shows that this effect is observed in practice. We construct a
contribution and vote cross-validation matrix by reporting in entry i, j the cross-entropy loss achieved
by each model pi (rows) on each data-set Dj (columns); recall that model pi is trained using data-sets
D1, . . . , Di (matrix entries are normalized per-column by the corresponding diagonal entry). The
figure clearly shows that the predictive performance of each model degrades progressively for each
subsequent data-set indicating that participants contributing and voting behavior has changed.

4.3 MECHANISM IMPROVEMENT AND CONVERGENCE
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Figure 4: Illustration of the learnt mechanism pol-
icy across training iterations. Each heat-map illus-
trates a mechanism (rows) under a given tail endowment
(columns). The rows correspond to mechanism θ0 fol-
lowed by iterations θs. The last row corresponds to the
competing mechanism used in evaluation. Heat-maps
illustrate the fraction of payout distributed to the head
(yellow) or tail players (blue) as a function of the contri-
butions provided by the head (y-axis, bottom to top) and
tail players (x-axis, left to right).

On every iteration s we constructed a meta-
game as described in the methods above, where
each row and column corresponds to the mech-
anisms θ0, . . . , θs and each cell corresponds to
the number of votes obtained in simulation with
the “virtual participants” model ps. This can be
found for iteration 7 on the right panel in Fig. 3.
With HCMD-zero, the optimization of the mech-
anism showed consistent improvements on ev-
ery iteration, with diminishing returns until con-
vergence on iteration 7.

4.4 ANALYSIS OF MECHANISM BEHAVIOR

We analyze the learnt mechanism policy across
iterations in Fig. 4. For each tail endowment
(columns) and across iterations (rows), we illus-
trate the mechanism’s policy on a grid contain-
ing the contributions of the head (y-axis) and
tail players (x-axis, averaged across the 3 tail
players). Then, for each possible contribution
pair, we computed the average redistribution
weight across episodes and players. These are
plotted with yellow favouring redistribution to
the head player (high endowment) and blue to
the tail players (low endowment). Our mecha-
nism player effectively learns a policy similar
to the Liberal Egalitarian mechanism (see addi-
tional row at the bottom): straight lines fanning
out from left to right and bottom to top; but
which punishes harshly Head players that do not
contribute enough: pinching at the bottom left.

5 DISCUSSION

We have introduced HCMD-zero, a general pur-
pose method to construct mechanisms that are
preferred by human participants. Our methods
require no baseline or alternative mechanisms, and no knowledge of the environment dynamics. Our
methods use participant modeling and self-play to minimize the amount of data that is required to
train a mechanism, and they iteratively address the challenges posed by equilibrium effects, where
the participants behavior changes in response to updates in the mechanism policy. Our results show
that HCMD-zero produces a competent mechanism agent in the challenging Public Investment Game.
Our detailed analysis shows that our mechanism policy is consistently improved across iterations,
and provides an interpretation of its final policy.
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Artificial learning agents are becoming a centerpiece of our institutions, and as such methods to
ensure that mechanisms are aligned to the values of their constituents are being heavily investigated.
The ideas and results presented here indicate that integrating the most basic democratic principle of
one person one vote, with modern machine learning techniques is a viable and fruitful path forward.
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