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Abstract

Bayesian neural networks that incorporate data
augmentation implicitly use a “randomly perturbed
log-likelihood [which] does not have a clean inter-
pretation as a valid likelihood function” (Izmailov
et al. 2021). Here, we provide several approaches
to developing principled Bayesian neural networks
incorporating data augmentation. We introduce a
“finite orbit” setting which allows valid likelihoods
to be computed exactly, and for the more usual
“full orbit” setting we derive multi-sample bounds
tighter than those used previously. These models
cast light on the origin of the cold posterior effect.
In particular, we find that the cold posterior effect
persists even in these principled models incorporat-
ing data augmentation. This suggests that the cold
posterior effect cannot be dismissed as an artifact
of data augmentation using incorrect likelihoods.

1 INTRODUCTION

The cold posterior effect [CPE; Wenzel et al., 2020] is the
surprising observation that performance in neural networks
is not optimal when we use the usual Bayesian posterior
[Kolmogorov, 1950, Savage, 1954, Jaynes, 2003],

P (w|y,X) ∝ P (w) P (y|w,X) (1)

where w are the neural network weights, X is all inputs (typ-
ically images), and y is all outputs (typically class labels).
Instead, we get better performance when using a “cold” pos-
terior, i.e. the posterior taken to the power of 1/T where
T < 1,

Q(w) ∝ (P (w) P (y|w,X))
1/T

. (2)

∗ equal contribution
† equal contribution

The origin of the CPE is by now highly contentious, with
three leading potential explanations [Noci et al., 2021]. The
first hypothesis is that the process of data curation for popu-
lar datasets such as CIFAR-10 and ImageNet [Krizhevsky
et al., 2009, Deng et al., 2009] involves multiple annotators
agreeing upon the label for each image. In that case, there
are in effect multiple labels for each image, which inflates
the likelihood (but not the prior) term causing a “cooler”
posterior [Adlam et al., 2020, Aitchison, 2020]. Second, the
prior is always misspecified, and prior misspecification is
known to induce cold posterior-like effects in specific (non-
neural network) models [Grünwald, 2012, Grünwald et al.,
2017, Adlam et al., 2020], which might give an explanation
for the CPE in neural networks [Wenzel et al., 2020, For-
tuin et al., 2021b]. However, Fortuin et al. [2021b] showed
that better priors do not always reduce the size of the CPE,
but can actually increase it. In particular, they found that
incorporating spatial correlations in convolutional filters
improved the performance of a ResNet trained on CIFAR-
10, but also increased the magnitude of the CPE. The third
possible explanation is that the CPE is an artifact of data
augmentation [DA; Wenzel et al., 2020, Izmailov et al.,
2021], as DA gives a “randomly perturbed log-likelihood
[which] does not have a clean interpretation as a valid like-
lihood function” [Izmailov et al., 2021]. This is supported
by observations in which the CPE only exists with DA, and
disappears without DA [Wenzel et al., 2020, Fortuin et al.,
2021b, Izmailov et al., 2021]. Of course it is quite possible
that practical CPEs arise from a complex combination of
these causes [Aitchison, 2020, Noci et al., 2021].

In spite of this controversy, recent work on the CPE agrees
that it is important to investigate integrating DA with
Bayesian neural networks (BNNs), and to examine the inter-
action with the CPE. From Noci et al. [2021]: “It remains an
interesting open problem how to properly account for data
augmentation in a Bayesian sense.” And from Izmailov et al.
[2021]: “Data augmentation cannot be naively incorporated
in the Bayesian neural network model.” and “We leave in-
corporating data augmentation ... as an exciting direction of
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future work.”

Perhaps the most common understanding of the interaction
between the CPE and DA in BNNs is that DA increases
the effective dataset size. From Izmailov et al. [2021]: “in-
tuitively, data augmentation increases the amount of data
observed by the model, and should lead to higher posterior
contraction”. From Osawa et al. [2019]: “DA increases the
effective sample size”. From, Noci et al. [2021]: “while data
augmentation may increase the amount of data seen by the
model, that increase is certainly not equal to the number of
times each data point is augmented (after all, augmented
data is not independent from the original data).”

In this work, we seek to understand whether the commonly
used, but invalid DA likelihood can cause the CPE. Our
contributions are as follows.

1. We give a formal argument that the notion that DA
increases the effective dataset size is flawed (Sec. 3.1).

2. We motivate the need for multi-sample bounds, by
showing that previous single-sample bounds on the
likelihood are equivalent to averaging log-likelihoods,
which is known to be problematic (Eq. 20).

3. We derive a set of multi-sample lower bounds on the
log-likelihood of a BNN incorporating DA (Sec. 3.2).
These bounds are tighter than existing single-sample
estimators for BNNs [e.g. Wenzel et al., 2020] and
can be applied to a broad class of likelihood functions
[unlike Van der Wilk et al., 2018].

4. We introduce a “finite orbit”1 setting with a small num-
ber of admissible augmentations which allows us to
compute exact log-likelihoods (Sec. 3.3).

5. We empirically evaluate the performance of the multi-
sample bounds in both SGD training and BNN infer-
ence for image classification tasks (Sec. 4). In the latter
case we explore the impact of both the bounds and the
exact finite orbit likelihood on the CPE.

6. We find that the CPE persists even when using these
principled DA likelihood bounds. This falsifies the
hypothesis that the CPE is an artifact of loose bounds
on the log-likelihood given by previous single-sample
estimators.

We finish with some discussion summarising our findings
and their reflection on the CPE (Sec. 6). Our conclusion in
this work is that the CPE is not an artifact resulting from
DA giving “randomly perturbed log-likelihood”s [Izmailov
et al., 2021].

Note that in the remainder of the paper, we will follow Iz-
mailov et al. [2021] in regarding models with loose, single-

1We employ the term “orbit” from group theory and function
invariance [Kondor, 2008], even though our augmentations do
not always form groups. In this work, it refers to the support of
augmentation distribution P(x′|x).

sample bounds as “unprincipled” (from Izmailov et al.
[2021], the “randomly perturbed log-likelihood does not
have a clean interpretation as a valid likelihood function”).
In contrast, we term models using our exact log-likelihoods
or our multi-sample bounds as being “principled”.

2 BACKGROUND

2.1 DATA AUGMENTATION

In supervised learning, we are interested in learning some
unknown functional relationship from example input-output
pairs (xi, yi), i = 1, . . . , N . Often, we have information
about some form of invariance, i.e. the knowledge that the
function does not change its output for certain transforma-
tions of the input. These might occasionally be true invari-
ances, such as the identity of a molecule being invariant to
rotations. But in most settings, these are so-called “soft” in-
variances or “insensitivities” [van der Wilk et al., 2018]. For
instance, the class label for an image should not change due
to small translations/crops of that image (but might change
if we radically alter the image). The most basic form of
DA takes advantage of this information by transforming, or
augmenting, the inputs and copying the output value, to cre-
ate additional input-output pairs which are then included in
training. Often, the amount of additional “augmented data”
can be unbounded, for example when allowable transforma-
tions are specified in a continuous range, e.g. rotations. This
simple procedure has been very successful in improving
performance in a wide variety of machine learning methods
[Loosli et al., 2007, Krizhevsky et al., 2012, Bishop, 2006],
and recent work has analysed the effect of data augmenta-
tion on invariances in the learned functions [Dao et al., 2019,
Chen et al., 2020, Lyle et al., 2020].

2.2 BAYESIAN INFERENCE

Bayesian inference allows us to infer a distribution over
neural network weights, which incorporates uncertainty in-
duced by having finite data. Bayes prescribes a strict proced-
ure for updating beliefs about unknown quantities in light
of observed data. The model is specified by a prior on the
weights P(w) and a log-likelihood,

∑N
i=1 Li(yi;w). Thus,

the log-posterior is given by

log P (w|X,y) = log P (w) +

N∑
i=1

Li(w) + const . (3)

We define the no augmentation log-likelihood as

Li
noaug(yi;w) = log P (yi|g(xi;w)) . (4)

where g(·;w) is the neural network.



3 METHODS

3.1 DOES DA INCREASE DATASET SIZE?

Many authors have claimed that DA increases the effective
dataset size [Noci et al., 2021, Osawa et al., 2019, Izmailov
et al., 2021]. Here we argue that this view leads to problems
within the framework of probabilistic modelling. We can
see this in the form of the resulting log-likelihood. For K
augmented inputs, x′i;k, we can write the log-likelihood for
a single underlying image as,

Li
add(yi;w) =

K∑
k=1

log P
(
yi
∣∣g(x′i;k;w)

)
. (5)

For continuous transformations such as rotations, there are
an infinite number of possible augmentations, K =∞, so
Ladd would result in the prior being ignored during infer-
ence. While this result seems strange, if the outputs for all
augmentations x′i;k were independently labelled (or if all the
labels were correct) we would indeed have an infinitely large
(conditionally) IID dataset and ignoring the prior would be
the right answer. However, in practice, the unaugmented
input xi is labelled by an annotator who sometimes makes
mistakes [Peterson et al., 2019], the result yi is assumed to
apply to all augmentations x′i;k. As such, the labels for dif-
ferent augmentations of the same input are not independent,
and an approach (such as this one) which assumes they are
cannot be valid.

A method which avoids having to specify the augmented
dataset size is to average the log-likelihood over the aug-
mentation distribution P(x′i|xi)

Li
loss (yi;w) = E [log P (yi|g(x′i;w))] . (6)

Indeed, most implementations which use DA when training
BNNs target this log-likelihood, at least implicitly. They do
so by taking a pre-existing inference algorithm and repla-
cing the original input, xi, with a random augmentation, x′i.
This approach is convenient, as a single sample from the
augmentation distribution can provide an unbiased estim-
ate L̂loss = log P (yi|g(x′i;w)). Importantly though, a valid
likelihood should arise from a valid distribution over labels,
and should therefore normalize if we sum over labels. For
instance, without augmentation,

1 =
∑Y

yi=1 exp
(
Li

noaug(yi;w)
)
. (7)

However, if we try to interpret Li
loss (yi;w) as a log-

likelihood we find that it does not normalize to 1,

1 6=
Y∑

yi=1

exp
(
Li

loss (yi;w)
)
. (8)

and therefore Li
loss (yi;w) cannot be the log of a valid prob-

ability distribution. Note that we might try to get a valid

likelihood by including a normalizer. The problem is that
this normalizer would need to depend on w, and thus would
need to be included in the log-likelihood, and of course no
normalizer terms appear in the loss (Eq. 6). While we could
renormalize Li

loss/LogSumExpY
(
Li

loss

)
to ensure validity,

we will see in the next section that the form of Li
loss con-

stitutes an unnecessarily slack bound on a principled log-
likelihood, which we can tighten significantly.

3.2 TIGHTER LOWER BOUNDS ON THE
LOG-LIKELIHOOD OF PRINCIPLED DA
MODELS

To incorporate DA into BNN likelihoods, we define the
probabilities for each class as being averages over augment-
ations. We can choose to either average logits (equal to the
neural network outputs, f(·;w)) or predictive probabilities
(softmax f(·;w)),

pinv(xi;w) = E [softmax f(x′i;w)] , (9)
finv(xi;w) = E [f(x′i;w)] . (10)

where we take expectations over P(x′i|xi). Remember that
f(x′i;w) is the (vector-valued) neural network output for an
augmented input, which is used as the logits in classification,
so finv(xi;w) is the outputs averaged over all augmentations
of the same underlying image. Likewise, pinv(xi;w) is the
vector of probabilities given by averaging the predicted
probabilities over augmentations. These are denoted “inv”
for invariant, because averaging over augmentations can
give invariances in finv(xi;w) and pinv(xi;w) that are not
present in the underlying neural network, f(xi;w). The
resulting (usually intractable) log-likelihoods are

Li
prob (yi;w) = log Pprob (yi|xi,w)

= logE [softmaxyi
f(x′i;w)] , (11)

Li
logits (yi;w) = log Plogits (yi|xi,w)

= log softmaxyi
E [f(x′i;w)] . (12)

These likelihoods were originally proposed in [Wenzel et al.,
2020] for averaging probabilities and [van der Wilk et al.,
2018] for averaging logits. However, they are intractable,
as it is not (usually) possible to evaluate the expectation
under all data augmentations. Instead, we need to choose an
estimator or bound on these quantities. [Wenzel et al., 2020]
suggested a loose single sample bound for averaging probab-
ilities, and [van der Wilk et al., 2018] suggested an unbiased
estimator that is restricted to quadratic log-likelihoods. In
contrast, we show that we can get tight, intuitive and easy to
evaluate, multi-sample bounds analogous to those in [Burda



et al., 2015],

L̂i
prob,K (yi;w) = log

(
1
K

∑K
k=1 softmaxyi f(x

′
i;k;w)

)
,

L̂i
logits,K (yi;w) = log softmaxyi

(
1
K

∑K
k=1f(x

′
i;k;w)

)
.

(13)

To prove the lower bound for averaging probabilities, we
first rewrite the expectation inside the logarithm of (Eq. 11)
as the expectation of its average, over K identically dis-
tributed random variables, x′i;k. We then take an approach
familiar from variational inference [Jordan et al., 1999]
by applying Jensen’s inequality to the (concave) logarithm
function.

Li
prob (yi;w) = logE

[
1
K

∑K
k=1 softmaxyi f(x

′
i;k;w)

]
≥ E

[
log 1

K

∑K
k=1 softmaxyi f(x

′
i;k;w)

]
= E

[
L̂i

prob,K (yi;w)
]
. (14)

For averaging logits, we follow a similar method, noting that
log softmaxyi

is a concave function [Boyd et al., 2004] tak-
ing a vector of logits and returning a scalar log-probability
for class yi. As such, we can again apply Jensen’s inequality,

Li
logits (yi;w) = log softmaxyi E

[
1
K

∑K
k=1f(x

′
i;k;w)

]
≥ E

[
log softmaxyi

1
K

∑K
k=1f(x

′
i;k;w)

]
= E

[
L̂i

logits,K (yi;w)
]
. (15)

Finally, note that these objectives naturally correspond to
the notions of averaging logits or averaging probabilities,
which could be motivated using non-probabilistic consider-
ations. Importantly, we do not claim the notion of averaging
probabilities or averaging logits for different augmentations
as a contribution in itself. We only claim as a contribu-
tion the notion that averaging probabilities or logits provide
lower-bounds on principled log-likelihoods including DA,
implying they can be used in a principled Bayesian setting,
and they are not ruled out despite having some degree of
stochasticity.

Increasing K reduces the variance and tightens the bounds
which eventually become exact as K → ∞ [Burda et al.,
2015].

E
[
L̂i

logits,K (yi;w)
]
≤ E

[
L̂i

logits,K+1 (yi;w)
]

(16)

Li
logits (yi;w) = lim

K→∞
L̂i

logits,K (yi;w) (17)

E
[
L̂i

prob,K (yi;w)
]
≤ E

[
L̂i

prob,K+1 (yi;w)
]

(18)

Li
prob (yi;w) = lim

K→∞
L̂i

prob,K (yi;w) (19)

However, larger K introduces greater computational cost.
We therefore consider what value of K is likely to be sens-
ible, by plotting the bound against K. We indeed found that
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Figure 1: The effect of Ktest on the log-likelihood bound
for a test batch (size 512) of CIFAR-10. Values shown for
ResNet20 BNN trained and tested with L̂prob,K (Ktrain =
8 and T = 0.001). Error bars cover two standard errors
above/below mean for DA sampling with different seeds.
Sixty seeds used for Ktest = {1, 2}, thirty for Ktest = 4 and
five for all other Ktest.

the bound increases with K up to around 10, when it satur-
ates (Fig. 1). While these differences might seem small when
evaluated purely at test-time, they seem to cause much larger
differences when integrated into training (Figs. 2 and 4). In
contrast, in VI, practitioners frequently use a single-sample
bound. However, VI incorporates a highly effective variance
reduction strategy that is absent in our setting: an optim-
ized variational approximate posterior (see Appendix B).
In principle, similar variance reduction strategies exist in
our setting, but would involve learning a separate variance-
reducing augmentation distribution for each image, which is
clearly impractical. Indeed, in our setting, K = 1 represents
such a crude approximation that it collapses the differences
between averaging probabilities, logits, and losses,

L̂i
logits;1 (yi;w) = L̂i

prob;1 (yi;w) = L̂i
loss (yi;w) (20)

which are all equal to log softmaxyi
f(x′i;1;w).

3.3 FINITE ORBIT

Finally, all of the above is for the usual “full orbit” setting,
where there is a distribution over a very large, or even infinite
number of possible augmentations. The full orbit setting
necessitates the use of the bound in (Eq. 13), and allows us
to use different numbers of samples at test and training time,
Ktest and Ktrain respectively. Remarkably, if we consider an
alternative “finite orbit” by restricting the augmentations to
a small subset, we can exactly evaluate the log-likelihood.
In the finite orbit setting, the distribution over augmented
images, x′i, conditioned on the underlying unaugmented
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Figure 2: Comparison of averaging logits and probabilities for different values of Ktrain, and using Ktest = 10 vs. using no
test-time augmentations. Here, we use ResNet18 with SGD (i.e. no Bayesian inference). We use only full orbit to decouple
Ktrain from Ktest.

image, xi, can be written as,

P (x′i|xi) =
1
K

∑K
k=1δ (x

′
i − ak(xi)) , (21)

where δ is the Dirac-delta, and ak is a function that applies
the kth fixed augmentation. In this setting, it is possible to
exactly computeLi

logits(yi;w) andLi
prob(yi;w) by summing

over the K augmentations. This allows us to empirically
explore how exact log-likelihood computation influences
the CPE, comparing it with the bounds in the full-orbit
setting (Eq. 13) in Sec. 4.2. When implementing finite or-
bit augmentation in practice, we choose the K fixed aug-
mentations by sampling them before training. The finite
orbit setting uses the same augmentations, and therefore
the same number of augmentations, at test and train time:
Ktrain = Ktest = K.

4 RESULTS

4.1 PRINCIPLED DA IN NON-BAYESIAN
NETWORKS

We begin by comparing averaging logits and averaging prob-
abilities in a non-Bayesian setting: SGD. Critically, higher
values of Ktrain imply a larger computational cost per epoch,
as each image is replicated and augmented Ktrain times be-
fore going through the network. When assessing the benefit
of averaging probabilities/logits over standard DA for SGD
training, we must therefore control for computational cost.
We do this by training for 200/Ktrain epochs. Note that
Ktrain = 1 with no test-time augmentation (i.e. green and
blue in Fig. 2) corresponds to the standard DA approach for
both averaging logits and averaging probabilities (Eq. 20).
In this experiment, we consider only full orbit, which unlike
finite orbit allows us to decouple Ktrain and Ktest.

We trained ResNet182 on CIFAR-10, CIFAR-100 [Kr-
izhevsky et al., 2009]3 and FashionMNIST [Xiao et al.,
2017]4 with a learning rate of 0.1, decayed to 0.01 three
quarters of the way through training. We apply the same
two augmentation transformations as Wenzel et al. [2020],
Fortuin et al. [2021b], Noci et al. [2021]: 1. a random crop
with padding of four pixels on all borders and 2. a random
horizontal flip with probability 0.5. The training runs took
around 12 GPU-days on Nvidia 2080s.5

In agreement with past work [Lyle et al., 2020], we found
that averaging over augmentations at test-time (red and or-
ange) is better than using the test image without augmenta-
tion (green and blue), with Ktrain = 1 corresponding to the
standard DA procedure. In addition, we show that improved
performance with multiple test-time augmentations contin-
ues to hold for larger values of Ktrain. Thus, if sufficient
compute is available at test-time, averaging across augment-
ations gives an easy method to improve the performance of
a pre-trained network.

Importantly, we see some performance gains with higher
values of Ktrain if we focus on the case with test augment-
ations, though they are somewhat inconsistent across data-
sets. We see strong improvements for the hardest dataset
(CIFAR-100), and smaller improvements that saturate at
Ktrain = 2 for CIFAR-10. For FashionMNIST, the picture
is more mixed. We suspect this is because we used a DA
strategy tuned for CIFAR-10 and CIFAR-100, rather than
FashionMNIST.

2github.com/kuangliu/pytorch-cifar; MIT Li-
censed

3cs.toronto.edu/~kriz/cifar.html
4github.com/zalandoresearch/

fashion-mnist; MIT Licensed
5Code available: anonymous.4open.science/r/

Augmentations-1E35/

https://github.com/kuangliu/pytorch-cifar
https://cs.toronto.edu/~kriz/cifar.html
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://anonymous.4open.science/r/Augmentations-1E35/
https://anonymous.4open.science/r/Augmentations-1E35/


In addition, averaging probabilities seems to give somewhat
better performance than averaging logits: compare aver-
aging probabilities vs. logits both with test-time augment-
ation (red vs. orange) and without test-time augmentation
(green vs. blue). The performance differences are consist-
ent in both comparisons, though smaller when test-time
augmentation is applied.

Indeed, performance falls quite dramatically as Ktrain in-
creases for averaging logits without test-time augmentation
(blue). This is an indication that averaging probabilities and
logits might actually behave quite differently. To understand
how these differences might arise, consider the effect of
averaging on the NN function itself. Both schemes can be
justified by using averaging to increase invariance to the
augmentation transformations (Sec. 3.2). Averaging probab-
ilities, however, also forces the NN function itself to become
invariant. If different augmentations produce different pre-
dictions, then the resulting averaged class probabilities will
be more uncertain, which is penalized by the likelihood on
the training points. This effect is much weaker when aver-
aging logits. Consider an extreme example, as illustrated
in Fig. 3. It is a two-class classification problem with two
augmentations, x′1 and x′2, of the same image with logits,
f(x′1) = (10,−10) and f(x′2) = (−1, 1). Averaging logits
gives us E [f(x′)] = (4.5,−4.5), and applying the softmax,
we very confidently predict the first class. In contrast, if we
use averaging probabilities, then the first augmentation al-
most certainly predicts the first class p(x′1) ≈ (1, 0) and the
second augmentation almost certainly predicts the second
class, p(x′2) ≈ (0, 1), so when we average them we obtain
E [p(x′)] ≈ (0.5, 0.5), which indicates a high degree of
uncertainty.

4.2 BAYESIAN NEURAL NETWORKS AND THE
COLD POSTERIOR EFFECT

Next, we ask a very different question: how is the CPE
influenced when DA is incorporated into the model in a
principled way? To this end, we use a different experimental
setup. In particular, we take the code6 and networks from
Fortuin et al. [2021b,a] and mirror their experimental setup
for CIFAR-10 and MNIST as closely as possible. This code
combines a cyclical learning rate schedule [Zhang et al.,
2019], a gradient-guided Monte Carlo (GGMC) scheme
[Garriga-Alonso and Fortuin, 2021], and the precondition-
ing and convergence diagnostics from Wenzel et al. [2020].
The CIFAR-10 DA transformations are the same as those
described in Sec. 4.1 and for MNIST we apply random crop-
ping with a padding of two pixels, then random rotation by
an angle sampled uniformly over (−π/6, π/6). Following
Fortuin et al. [2021b], we ran 60 cycles with 50 epochs in
each cycle. We recorded one sample at the end of each of

6github.com/ratschlab/bnn_priors; MIT Li-
censed
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Figure 3: Example effect of averaging logits against aver-
aging probabilities. x′1 and x′2 are two augmentations of the
same image, f(x′1) and f(x′2) are logits outputted by a NN,
and p(x′1) and p(x′2) are the probabilities corresponding to
these logits. The prediction derived from the averaged lo-
gits is much more certain than the average of the individual
probabilities.

the last five epochs of a cycle, giving 300 samples total.

Importantly, to allow for running many sampling epochs in
these experiments, we follow Fortuin et al. [2021b] in using
the ResNet20 architecture from Wenzel et al. [2020] for
CIFAR-10, which has far fewer channels than the ResNet18
used in Sec. 4.1 (i.e. 32 channels for the first block up to
128 in the last block compared to 64 channels up to 512 [He
et al., 2016a]). As such, SGD with this network performs
poorly compared with that in Sec. 4.1 (ResNet20, CIFAR-
10 accuracy ∼ 92% [Wenzel et al., 2020] vs. ResNet18,
CIFAR-10 accuracy∼ 95% [He et al., 2016b]). For MNIST,
we use the three-layer fully connected network (FCNN)
used by Fortuin et al. [2021b]. The experiments took around
90 GPU-days on Nvidia RTX6000s7.

The results are presented in Fig. 4. We replicate the finding
that the CPE is largely absent without DA (dashed black
line), and is present in the standard setup with DA at training
time (Ktrain = 1) but without augmentation at test time
(solid black). Further, we show that the CPE persists with
principled DA likelihoods: averaging logits with full orbit
(purple, first and third rows), and averaging probabilities
with finite and full orbits (green).

For CIFAR-10, the best method overall appears to be aver-
aging probabilities with a full orbit (dark green line, third
row) at T = 0.001, though at T = 1 averaging logits (dark
purple lines) outperforms the other methods. For the MNIST
experiments, logit averaging over a full orbit (purple line,

7Code available: https://github.com/
sethnabarro/bnn-data-aug/

https://github.com/ratschlab/bnn_priors
https://github.com/sethnabarro/bnn-data-aug/
https://github.com/sethnabarro/bnn-data-aug/
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Figure 4: The cold posterior effect for different DA setups with GGMC inference [Garriga-Alonso and Fortuin, 2021].
Without DA, there is a minimal CPE. Most other configurations show significant improvement for T < 1, with the exception
of averaging the logits over a finite orbit. Averages computed with Ktrain = 8 and Ktest = 8.

top row) performs best at all temperatures, though has a
similar accuracy to averaging probabilities (green line, top
row) at T = 0.001. Interestingly, the CPE for averaging
probabilities (green) is stronger than that for both logit aver-
aging (dark purple) and standard DA (solid black), across
all MNIST experiments.

For both datasets, the CPE is near absent in one particu-
lar setting: averaging logits with a finite orbit (purple line,
second and fourth rows). However, the relevance of this is
unclear, as for CIFAR-10 it is clearly the worst performing
of all DA approaches, and for MNIST it is outperformed
by standard DA. Indeed, remember that the arguments for
the optimality of Bayesian inference apply only in the case
that the model is well-specified [Kolmogorov, 1950, Savage,
1954, Jaynes, 2003]. However, the comparatively poor per-
formance of averaging logits with a finite orbit indicates that
it is likely to be the wrong model, while other settings are
likely to be closer to the true model. In that case, the pres-
ence or absence of the CPE in the wrong model (averaging
logits with a finite orbit) is immaterial to our understanding
of the CPE in the right model. Note that this argument could
not be made if there was a model without the CPE with
performance equal to or better than the other models (see

Sec. 6 for further discussion).

The CPE was originally discovered in Wenzel et al. [2020]
when assessing test accuracy and log-likelihood — they
did not consider other measures of distribution calibration
like expected calibration error (ECE). Indeed, later work
on the CPE found that measures such as ECE are far more
complex and usually do not agree with test accuracy and
log-likelihood [Fortuin et al., 2021a]. It is therefore difficult
to interpret the differences between test log-likelihod and
ECE, especially if we remember that test log-likelihood is
itself a proper scoring rule [Gneiting and Raftery, 2007],
and therefore captures one possible notion of calibration.
In particular, test log-likelihood heavily penalizes an event
assessed as low probability actually happening, e.g. if our
classifier predicts a probability of 0.001%, while the actually
happens even 0.1% of the time. In contrast, ECE considers
the absolute difference in probability, so it far more heavily
penalises e.g. a predicted probability of 40% while the event
actually happens 60% of the time. Needless to say, the most
appropriate measure of calibration will depend heavily on
the domain, with log-likelihood being more appropriate
for low-probability but high risk events. In our CIFAR-10
experiments, averaging probabilities (green) achieves the



greatest log-likelihood scores, standard DA (solid black)
achieves the lowest ECE. This is contrasted with MNIST, for
which averaging logits (purple) has highest log-likelihood
and no DA (dashed black) has lowest ECE.

The usefulness of our results is contingent on understand-
ing whether we are indeed accurately approximating the
posterior. To check this, we computed the kinetic temperat-
ure [Leimkuhler and Matthews, 2015], which estimates the
temperature of a given parameter in the Langevin dynamics
simulation from the norm of its momentum. In expectation,
the kinetic temperature estimator should be equal to the
desired temperature, T . The results (Appendix C) indicate
that all the samplers run at their desired temperature, a result
that is consistent with accurate posterior sampling.

As discussed in Sec. 3, increasing K tightens our log-
likelihood bounds, but incurs greater computational cost.
It is natural to question which value of K is a good trade-
off. We explore how the log-likelihood of test data under
a trained model varies with Ktest. As expected, the results
(Fig. 1) show the log-likelihood increases with Ktest, with
even K = 2 being a significant improvement over K = 1
(standard DA). However, the curve plateaus, suggesting that
for CIFAR-10, there is little benefit of using K > 8.

5 RELATED WORK

Past work introduced noisy-input generative models which
average probabilities [Wenzel et al., 2020]. However, this
work did not consider the tighter multi-sample bounds de-
veloped here, or the finite orbit setting which allows us to
evaluate the exact likelihood. This left open the possibility
raised by Izmailov et al. [2021] that the CPE was an artifact
of standard DA resulting in an invalid likelihood. In contrast,
we considered exact likelihoods in the finite orbit setting,
and tighter multi-sample lower bounds in the full orbit set-
ting. Further, the invariant function perspective allowed us
to derive a log-likelihood bound for averaging logits, not
considered by Wenzel et al. [2020]. As the CPE persists
when using our principled DA models, we can exclude the
possibility that the CPE is an artifact of DA giving a “ran-
domly perturbed log-likelihood”. Other work has introduced
a log-likelihood estimator for averaging GP logits using the
invariance principle [van der Wilk et al., 2018]. However,
the method only works for a quadratic log-likelihood and
thus necessitates Pólya-Gamma approximations for classi-
fication. Further, the work did not consider BNNs or the
connection to the CPE.

There is a small but growing body of work that considers av-
eraging over multiple augmentations at training time [Hoffer
et al., 2019, Berman et al., 2019, Choi et al., 2019, Benton
et al., 2020, Lyle et al., 2020, Touvron et al., 2021, Fort et al.,
2021]. However, this work was not done within a Bayesian
framework (e.g. by using stochastic gradient Langevin dy-

namics (SGLD) or a similar inference algorithm), did not
show that averaging across multiple training augmentations
gives a multi-sample bound on the log-likelihood of a prin-
cipled model, did not consider the finite-orbit setting where
the log-likelihood can be computed exactly, and did not
consider the interaction with the CPE. In addition, much of
this work uses averaging losses [Hoffer et al., 2019, Berman
et al., 2019, Choi et al., 2019, Benton et al., 2020, Touvron
et al., 2021, Fort et al., 2021] which is equivalent to using
a loose single-sample bound on the log-likelihoods. While
Lyle et al. [2020] show that feature averaging during train-
ing can improve generalization, our work is, to the best of
our knowledge, the first to average predicted probabilities
at training time. Finally, the idea of averaging at test-time
is more common and has been practiced for longer [e.g.
Krizhevsky et al., 2012, Simonyan and Zisserman, 2014, He
et al., 2015, Szegedy et al., 2015, Foster et al., 2020].

A considerable body of past work on BNNs uses DA, both
with variational inference [Blundell et al., 2015, Zhang et al.,
2018, Osawa et al., 2019, Ober and Aitchison, 2020, Unlu
and Aitchison, 2021], Laplace approximations [Immer et al.,
2021] and SGLD [e.g. Zhang et al., 2019, Fortuin et al.,
2021b, Wang and Aitchison, 2021]. However, as discussed
in Sec. 2 (Background), these methods simply substitute
non-augmented for augmented data and thus do not use a
valid log-likelihood. In contrast, we incorporated DA into
the probabilistic generative model, and thus are able to give
valid log-likelihoods based on averaging logits or averaging
probabilities in the classification case.

6 CONCLUSION

We have shown how DA can be properly incorporated into
a generative model suitable for BNN inference, by deriving
a lower-bound on the log-likelihood of the augmentation-
averaged network output. Empirically, we have seen that the
CPE persists even when using our principled DA formula-
tion, and in agreement with past work [Wenzel et al., 2020,
Fortuin et al., 2021b, Izmailov et al., 2021], we show that
the CPE disappears without DA.

What do these results imply for the origin of the CPE? Our
models in principle have a clean log-likelihood which can
be evaluated exactly in the finite orbit setting, or which we
estimate using tightened multi-sample bounds in the full
orbit setting. This falsifies the hypothesis, that the CPE is
an artifact arising from DA giving a “randomly perturbed
log-likelihood [which] does not have a clean interpretation
as a valid likelihood function”.

Indeed, it is worth stepping back and considering the ori-
ginal motivation for studying the CPE, namely that if we
have the correct model, then Bayesian inference with T = 1
should give optimal performance [Kolmogorov, 1950, Sav-
age, 1954, Jaynes, 2003, Wenzel et al., 2020]. Critically, we



need the right model for us to expect optimal performance
at T = 1. We now have two classes of model, with DA and
without DA, so which is right(er)? Given the significant and
widely recognised performance benefits of DA, it seems
very likely that the “right” model would include some form
of DA. If the model with DA is right(er), and that model
displays the CPE, then the CPE still demands an explana-
tion, and the presence or absence of the CPE in the wrong
model without DA is immaterial. As such, the presence of
the CPE in models with DA remains an important problem,
and is likely to be caused by one of the two other explana-
tions discussed in Sec. 1 (Introduction): either data curation
[Aitchison, 2020] or prior misspecification [Wenzel et al.,
2020, Fortuin et al., 2021b]. Indeed, we would tentatively
suggest the opposite of Izmailov et al. [2021]: that it is in
reality the lack of a CPE without DA that is an artifact of
using the wrong model (i.e. without DA).

Finally, note that the CPE is not always observed, e.g. in
language classification [Izmailov et al., 2021]. This is abso-
lutely expected as the data-curation explanation of Aitchison
[2020] only implies CPE in fairly restricted settings; i.e. only
in the case of reasonably accurate approximate posterior in-
ference, such as SGLD, in a BNN where the data has been
curated by excluding datapoints with an ambiguous class-
label. Thus, Aitchison [2020] does not lead us to expect the
CPE e.g. in latent variable models, in regression settings
(where you typically do not curate data), or in hybrid mod-
els where we perform Bayesian inference over only a small
subset of parameters.
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