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Abstract

Networks and temporal point processes serve as
fundamental building blocks for modeling com-
plex dynamic relational data in various domains.
We propose the latent space Hawkes (LSH) model,
a novel generative model for continuous-time net-
works of relational events, using a latent space rep-
resentation for nodes. We model relational events
between nodes using mutually exciting Hawkes
processes with baseline intensities dependent upon
the distances between the nodes in the latent space
and sender and receiver specific effects. We demon-
strate that our proposed LSH model can replicate
many features observed in real temporal networks
including reciprocity and transitivity, while also
achieving superior prediction accuracy and provid-
ing more interpretable fits than existing models.

1 INTRODUCTION

Dynamic networks are used to represent time-varying rela-
tionships (edges) between a set of nodes. They are useful in a
variety of application settings, including messages between
users on online social networks and transactions between
users on online marketplaces. In such settings, the network
typically evolves over time through a set of timestamped
relational events. Each event is a triplet (u, v, t) denoting
that node u initiated an interaction with node v (e.g. u sent
a message to v) at timestamp t. We refer to this type of
dynamic network as a continuous-time network because it
is continuously evolving through these relational events.

A topic of much recent interest is identifying latent repre-
sentations for nodes in networks. These latent representa-
tions are often referred to as node embeddings, and node
embedding-based approaches for common network analysis
tasks including link prediction have gained significant at-
tention in recent years [Grover and Leskovec, 2016, Goyal

and Ferrara, 2018, Cui et al., 2018]. Prior to this surge of
interest, latent space models have been used in statistics
and mathematical sociology for exploratory analysis of net-
works [Hoff et al., 2002, Hoff, 2005, 2007, Handcock et al.,
2007, Krivitsky et al., 2009]. Latent representations have
also been developed for dynamic networks evolving over
discrete time steps [Sewell and Chen, 2015] or in continuous
time [Nguyen et al., 2018].

Latent space representations can be combined with temporal
point processes (TPPs) to form a probabilistic generative
model for continuous-time networks, which we consider in
this paper. Augmenting the latent representation with a TPP
enables one to generate timestamps for the edges between
nodes. Yang et al. [2017] proposed the dual latent space
(DLS) generative model that combines two types of latent
spaces with bivariate Hawkes processes. They found that
using two types of latent spaces, one to capture homophily
and one to capture reciprocity, provides a richer model that
also leads to improved link prediction accuracy. However,
much of the interpretability of the latent space, which was
the original motivation of the latent space model of Hoff et al.
[2002], is lost by using multiple high-dimensional latent
spaces. Furthermore, the DLS model has issues with stability
of the generative process due to the multiple latent spaces.
It also uses only reciprocal excitation and not self excitation.
Self excitation is important in application settings such as
modeling text messages, where person u may send multiple
messages to v in rapid succession before v responds.

In this paper, we consider using a single latent space repre-
sentation to provide a more interpretable model. The single
latent space limits the flexibility of the model compared to
the DLS, so we increase flexibility by adding self excitation
and sender and receiver effects. We demonstrate that our
proposed latent space Hawkes (LSH) model is competitive
with other models in predictive and generative tasks on 4
real network datasets while providing more interpretable
and stable model fits. Furthermore, we apply our LSH model
to perform exploratory analysis on a dataset of militarized
disputes to reveal network structure between countries.
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2 BACKGROUND

2.1 HAWKES PROCESSES

The Hawkes process model was introduced for temporal
point processes by Hawkes [1971]. The defining character-
istic of a Hawkes process is that it is self exciting, meaning
that each event increases the rate of future events for some
period of time. Mutually exciting Hawkes processes allow
events from different processes to excite each other in addi-
tion to self excitation [Laub et al., 2021]. An m-dimensional
mutually exciting Hawkes process is characterized by a con-
ditional intensity function for each dimension i:

λ∗
i (t) = λi(t|Ht) = µi +

m∑
j=1

∑
k:tk<t

ϕij(t− tk), (1)

where Ht denotes the history of the process up to time t,
µi denotes the baseline rate of events in dimension i, and
ϕij(·) is a kernel function that describes how an event in
dimension j influences dimension i.

The most commonly used kernel function is the exponential
kernel ϕ(t − tk) = αβe−β(t−tk) for α > 0 and β > 0.
With each event arrival, the conditional intensity jumps by
α. The influence of the arrival then exponentially decays
at rate β over time. In practice, both α and β are unknown
parameters that need to be estimated from data, which is
usually done using maximum likelihood estimation [Laub
et al., 2021]. However, estimators for the decay parameter
β are poorly behaved [Santos et al., 2021], and it is more
computationally efficient to choose a fixed β rather than
estimating it [Lemonnier and Vayatis, 2014].

An approach that is more general than fixing the value of β is
the sum of exponential kernels method [Lemonnier and Vay-
atis, 2014], which defines ϕ(t− tk) =

∑B
b αβbe

−βb(t−tk),
where B denotes the number of exponential kernels. This
method generalizes better as it handles different time scales,
which makes the modeling less sensitive to choice of β. We
use the sum of exponential kernels decay in this paper.

2.2 LATENT SPACE MODELS

The latent space model (LSM), first proposed by Hoff et al.
[2002] is a popular model-based approach for social network
analysis. Designed initially for a single static undirected net-
work, the LSM allows the probability of an edge between
two nodes to depend on their Euclidean distance in an unob-
served or latent space using a logistic regression model. Let
A denote the adjacency matrix of a network, with auv = 1
for node pairs (u, v) with an edge and auv = 0 otherwise.
By assuming conditional independence between node pairs,
the log-likelihood can be written as

logP (A|η) =
∑
u<v

[ηuvauv − log(1 + eηuv )] ,

where entry ηuv in the matrix η denotes the log odds of an
edge being formed between nodes (u, v). ηuv is parameter-
ized as follows: ηuv = ξ − ∥zu − zv∥2, where zu denotes
the latent position of node u in a d-dimensional latent space,
and ξ is an intercept term. Under this parameterization, two
nodes with closer latent positions have higher probability of
forming an edge.

The latent space model provides a visual and interpretable
model-based spatial representation of social relationships.
It has been extended by many researchers. Handcock et al.
[2007] developed a latent position cluster model to capture
transitivity, homophily, and community structure simulta-
neously. The latent space models were later extended to in-
clude node-specific random effects by Krivitsky et al. [2009].
Latent space models have also been extended for more
complex network based data structures, including multi-
ple networks [Gollini and Murphy, 2016, Salter-Townshend
and McCormick, 2017], discrete-time dynamic networks
[Sewell and Chen, 2015, 2016, Friel et al., 2016, Gracious
et al., 2021], and multimodal networks [Wang et al., 2019].
We use the latent space model as the building block for our
proposed continuous-time LSH model.

2.3 RELATED WORK

Dynamic Network Embeddings One line of related work
is focused on node embeddings for dynamic networks. Com-
pared to static network embedding methods, dynamic net-
work embedding methods assign nodes low-dimensional
representations that effectively preserve the temporal in-
formation. Nguyen et al. [2018] proposed continuous-time
dynamic network embeddings (CTDNE), a general frame-
work to learn a time-respecting embedding from continuous-
time dynamic networks. Their framework acts as a basis
for incorporating temporal dependencies into existing node
embedding and deep graph models based on random walks.
Other approaches for dynamic network embedding have
also been proposed [Chen et al., 2018, Sankar et al., 2018,
Goyal et al., 2020], many of which are discussed in a recent
survey on dynamic network embedding [Xie et al., 2020].

TPP-based Network Models TPP-based network models
are generative models for continuous-time dynamic net-
works that incorporate both a generative process for the
nodes (u, v) that form an edge and the time t at which an
edge is formed. These timestamped edges or events can be
viewed as triplets (u, v, t). Many TPP-based network mod-
els utilize a discrete latent variable representation for the
nodes [Blundell et al., 2012, DuBois et al., 2013, Miscouri-
dou et al., 2018, Junuthula et al., 2019, Arastuie et al., 2020,
Soliman et al., 2022], dividing them into different blocks or
communities.

The most closely related work to this paper is the dual latent
space (DLS) model [Yang et al., 2017], which also utilizes



a continuous latent variable representation inspired by the
latent space model. The DLS model uses bivariate Hawkes
processes to capture the homophily and reciprocity of dy-
namic networks. They observed that the latent dimensions
of users which affect link formation may be different from
the latent dimensions of users which affect reciprocity. We
discuss shortcomings of the DLS model and its relation to
our proposed model in Section 3.2.

Another TPP-based network model using a continuous latent
space is proposed by Rastelli and Corneli [2021]. It assumes
that the latent positions of nodes may change at a set of
predefined change points rather than being fixed over time.

Other Continuous-time Network Models Earlier re-
search on continuous-time network models was proposed
by Wasserman [1980a,b], who modeled the evolution of
network data using continuous-time Markov chains. Later
on, Snijders [2005], Snijders et al. [2017] proposed a set of
network models that offers more flexibility to represent a
variety of network effects, such as transitivity, reciprocity,
etc. Fan and Shelton [2009] explored the inference for these
models and proposed a sampling-based learning algorithm
for continuous-time social network models.

3 PROPOSED MODEL

In our model, we employ a latent space to learn hidden
node attributes underlying the network and mutually excit-
ing Hawkes processes to capture the temporal dynamics of
communication. We model the communications between
each pair of nodes as realizations from a bivariate Hawkes
process whose conditional intensity function λuv(t|Ht) in-
cludes three components: a baseline rate, a self-exciting
term, and a reciprocal term.

Let zu and zv denote the latent positions for nodes u and v,
respectively. We model baseline rate µuv as a function of
Euclidean distances between zu and zv. Gollini and Mur-
phy [2016] showed that squared Euclidean distances are
computationally more efficient than Euclidean distances yet
resulted in similar latent positions. Thus, we use squared Eu-
clidean distances ||zu−zv||22 in the model for µuv , similar to
DLS [Yang et al., 2017]. We further add sender and receiver
node effect terms δu, γv to the model as in Hoff [2005],
Krivitsky et al. [2009], Wang et al. [2019] to capture the
degree heterogeneity, namely the tendency of some nodes
to send and receive events more than others, respectively.

A Hawkes process with exponential kernel has been found
to be a good model for conversation event sequences as well
as other relational temporal event data [Masuda et al., 2013].
We use a sum of B exponential kernels in our Hawkes
processes. We set β = (β1, β2, . . . , βB) as a set of fixed
known decays and C = (C1, C2, . . . , CB) as a set of scaling
parameters for the kernel with

∑B
i Ci = 1. The conditional

intensity function can be written as follows:

λ∗
uv(t) = µuv +

∑
tuv<t

B∑
b

Cbα1βbe
−βb(t−tuv)

+
∑
tvu<t

B∑
b

Cbα2βbe
−βb(t−tvu), ∀u ̸= v

(2)

where the baseline rate µuv is given by

µuv = e−θ1||zu−zv||22+θ2+δu+γv . (3)

3.1 MODEL PARAMETERS

The LSH model has parameters (Z, α1, α2, θ1, θ2 δ, γ).
Each node has a d-dimensional latent position zu, a sender
propensity parameter δu and a receiver propensity param-
eter γu. α1 and α2 are the jump size parameters for self-
excitation and reciprocal-excitation. Z is a n × d matrix
where each row is a latent position vector zu for a node,
and d is the latent dimension. Each of δ and γ is a vector
of size n. θ1 and θ2 are slope and intercept terms, respec-
tively, associated with the baseline rate and latent positions.
A positive slope θ1 provides node pairs closer together in
the latent space with a higher probability of forming edges,
while a negative slope does the reverse.

Identifiability There are two sets of identifiability prob-
lems that need to be discussed. From the observed event
times, the Hawkes process parameters µuv, α1, α2 can be
identified as shown by Ozaki [1979]. With the baseline in-
tensity parameter µuv correctly identified, we explore the
identifiability of the parameters in the model for µuv. The
identifiability of parameters in the latent space model has
been discussed by Ma et al. [2020] for a single network and
by Zhang et al. [2020] for multilayer networks.

Denote 1n to be the n dimensional vector and Jn = 1n1
T
n

to be the n × n matrix whose elements are all 1’s. We
first note that the magnitude of the parameter θ1 is not
identifiable since it enters the equation for µ as a product
with ∥zu − zv∥22. However, the sign of θ1 is identifiable
since ∥zu − zv∥22 is always positive. In the following, we
set θ1 = 1 and examine the conditions for identification of
other parameters. We have

log(µuv) = θ2 − ∥zu∥2 − ∥zv∥2 + zTu zv + δu + γv

= θ2 + zTu zv + δ̃u + γ̃v,

where δ̃u = δu − ∥zu∥2 and γ̃v = γv − ∥zv∥2. Now let δ̃
and γ̃ denote the n-dimensional vectors whose elements are
δ̃u and γ̃v, respectively. (All vectors are column vectors.)
Writing in matrix form, the above expression is

log(µ) = θ2Jn + ZZT + δ̃1Tn + 1nγ̃
T .

Theorem 3.1. Under the following assumptions:



1. The latent positions are centered, i.e., HZ = Z, where
H = I − 1

n11
T , and

2. The total nodal effects sum to 0, i.e., 1Tn δ̃ = 0 and
γ̃T 1n = 0,

if two sets of parameters θ2, Z, γ, δ and θ′2, Z
′, γ′, δ′ lead

to the same log(µ), then

θ2 = θ′2, δ = δ′, γ = γ′ and Z = Z ′O,

where O is a d× d orthogonal matrix.

The proof is provided in Appendix A.1. Thus, under the con-
straints that the true latent positions Z are centered and total
nodal sender and receiver effects sum to 0, the parameters
θ2, δ, γ and the vector distances ZZT are exactly identified,
while Z is identified up to an orthogonal matrix O.

3.2 RELATION TO DLS MODEL

The most similar model to ours is the dual latent space
(DLS) model [Yang et al., 2017]. It uses the following form
for the conditional intensity function1:

λ∗
uv(t) = e−||zu−zv||22+θ2

+
∑
tvu<t

B∑
b

α2e
−||x(b)

u −x(b)
v ||22βbe

−βb(t−tvu), ∀u ̸= v

(4)

By comparing the form of the conditional intensity func-
tion for DLS (4) with that of our proposed LSH model (2),
we identify 3 key differences, each addressing a concern
regarding the DLS model:

1. The DLS utilizes reciprocal latent spaces X(b) to al-
low different rates of reciprocity between node pairs.
This increase in flexibility of the model comes with
a key drawback: the estimated latent positions for a
node pair (u, v) and kernel b may result in the jump
size α2e

−||x(b)
u −x(b)

v ||22 > 1, which leads to an unstable
process. We were unable to simulate new networks
from the DLS model fits to real networks due to the
instability as we discuss in Section 5.2.2. In contrast,
we use just a single jump size α2 for all node pairs in
our LSH model. While this may be less flexible, it does
not lead to instability like the reciprocal latent space.

2. The DLS does not have a self excitation component,
unlike our proposed LSH (second term in (2)). The
lack of self excitation prevents the DLS from modeling
repeated edges from node u to v with no response from
v back to u. For example, this setting occurs frequently
in militarized conflicts between countries, where one
country repeatedly threatens or takes action against
another country that does not retaliate.

1They include also a periodic kernel in addition to the expo-
nential kernels, which we exclude for ease of comparison.

3. The DLS does not have nodal effects parameters (δu
and γv in (2)). This limits its ability to model nodes
with different rates of sending or receiving events.

Furthermore, a primary motivation of the latent space model
is to embed the network into a single Euclidean space that
can be easily visualized and interpreted. By using a single
latent space, our proposed LSH is able to provide a much
more interpretable model fit compared to DLS.

4 ESTIMATION PROCEDURE

Our model consists of mutually exciting bivariate Hawkes
processes over all pairs of nodes. Using the likelihood the-
orem of Daley and Vere-Jones [2003], we can write the
log-likelihood as

logL =
∑
u̸=v

{
k∑

i=1

log(λ∗
uv(ti))−

∫ tk

0

λ∗
uv(t)dt

}
, (5)

where k denotes the total number of events and λ∗
uv(t) takes

on the form in (2). We simplify the log-likelihood and im-
prove the efficiency of the estimation by deriving a recur-
sive form as in Ozaki [1979]. More details and the full
log-likelihood derivation for our LSH model are provided
in Appendix A.2, resulting in the simplified expression in
(A.4).

Latent space models typically assume that the probability
of forming an edge between two nodes is inversely propor-
tional to the distances between the node positions in the
latent space. Thus, the observation of an edge between two
nodes typically pulls them closer together in the latent space.
The presence of the slope parameter θ1 in the baseline rate
µuv for our LSH model (3) allows us to either pull node
pairs with events closer together by constraining θ1 > 0
or push them further apart by constraining θ1 < 0. Or, we
could leave θ1 unconstrained—we find that this usually re-
sults in the estimate θ̂1 > 0.

We use the L-BFGS-B algorithm [Byrd et al., 1995] to mini-
mize the negative log-likelihood (NLL). The gradients of the
log-likelihood can be carried out using the Autograd pack-
age [Maclaurin et al., 2015] for automatic differentiation of
standard Python functions. We consider also an alternating
minimization approach that alternates between estimating
the latent space and the model parameters, which we show
in Appendix A.3. Our alternating minimization approach
is partly inspired by the projected gradient method of Ma
et al. [2020], which also alternates between estimating the
latent space and the model parameters in a static latent space
model. We find that the alternating minimization approach
generally converges more slowly than L-BFGS-B, so the
results we present in this paper use L-BFGS-B.

We use a multidimensional scaling algorithm as an ini-
tialization for the latent space positions Z as in the orig-
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Figure 1: Comparison of (a) actual latent space and (b) estimated latent space (with Procrustes transformation) on a 20 node
simulated network with duration T = 100. The recovered latent node positions are close to the actual positions. (c) The
RMSE over 30 simulated networks (± 2 standard errors) decreases as the duration T increases.

inal latent space model proposed by Hoff et al. [2002].
We set random values to initialize all other parameters
Θ = (α1, α2, θ1, θ2, δ, γ).

5 EXPERIMENTS

In this section, we perform evaluation tasks for our proposed
model on simulated networks and real networks2. We use a
sum of B = 3 exponential kernels and utilize decays with
time scales of an hour, a day, and a week, which is the same
as Yang et al. [2017] did in their DLS model. We also fix
C = (1/3, 1/3, 1/3) for simplicity3.

5.1 SIMULATED NETWORKS

We first test our L-BFGS-B estimation procedure on net-
works simulated from our latent space Hawkes (LSH) model.
We simulate networks of 20 nodes in a 2-D latent space
using parameters θ1 = 1, θ2 = −3.2, α1 = 0.01, and
α2 = 0.02. Each dimension of the latent positions as
well as sender and receiver effects for nodes are sam-
pled independently from a standard Normal distribution:
zu, δu, γu ∼ N (0, 1). We increase the time duration T from
50 to 3, 000 and evaluate the estimation accuracy for the
latent positions and other parameters. Additional details
on the simulation process is provided in Appendix B.1. A
comparison of the actual and estimated latent positions for
a simulated network is shown in Figure 1 along with the
root mean squared error (RMSE) for estimated latent po-
sitions over 30 simulated networks. As expected, the error
decreases for increasing time duration T . The error for the
other parameters decreases also, as we show in Figure B.1
in Appendix B.1. Thus, L-BFGS-B appears to accurately
estimate latent positions and model parameters.

2Python code to reproduce our results is available at https:
//github.com/IdeasLabUT/Latent-Space-Hawkes

3We also experimented with estimating C but did not find
much difference in the results.

Table 1: Summary statistics of real network datasets

Dataset Nodes Events Time Duration

Reality 65 2, 150 8 months
Enron 155 9, 646 15 months
MID 145 5, 088 23 years

FB-forum 899 33, 720 5.5 months

5.2 REAL NETWORKS

We perform experiments on several real network datasets:
Reality Mining [Eagle and Pentland, 2006], Enron emails
[Klimt and Yang, 2004], Militarized Interstate Disputes
(MID) [Palmer et al., 2021], and Facebook-forum [Rossi
and Ahmed, 2015]. Summary statistics for the datasets are
shown in Table 1, and additional details are provided in Ap-
pendix B.2. Each dataset consists of a set of relational events,
each denoted by a sender, a receiver, and a timestamp.

Baselines for Comparisons We compare against three
other Hawkes process-based continuous-time network mod-
els. The dual latent space (DLS) model [Yang et al., 2017]
is the most similar to ours, and we provide a detailed com-
parison of the DLS model with our proposed LSH model
in Section 3.2. We also compare against two recently pro-
posed Hawkes process-based block models: the community
Hawkes independent pairs (CHIP) model [Arastuie et al.,
2020] and the block Hawkes model (BHM) [Junuthula et al.,
2019]. Finally, we compare also against the non-generative
continuous-time dynamic network embeddings (CTDNE)
[Nguyen et al., 2018] approach. Additional information on
these models for comparison along with implementation
details are provided in Appendix B.3.

5.2.1 Predictive Accuracy

We first evaluate the predictive ability of our proposed LSH
model. We split each dataset into a training set containing

https://github.com/IdeasLabUT/Latent-Space-Hawkes
https://github.com/IdeasLabUT/Latent-Space-Hawkes


Table 2: Evaluation metrics for predictive accuracy on real
network datasets. Bold entry denotes highest accuracy for
each metric on a dataset. Test log-lik. shows the mean test set
log-likelihood per event and the number of latent dimensions
d or blocks K that maximize it. The AUC column shows
the mean (standard deviation) of the AUC across 100 time
points for dynamic link prediction. DLS does not scale to
the FB-forum data. CTDNE is not generative so test log-
likelihood is not applicable.

Dataset Model Test log-lik. AUC

Reality

LSH −3.71 (d = 4) 0.945(0.028)
DLS −5.64 (d = 300) 0.940(0.034)
BHM −5.31 (K = 50) 0.957(0.022)
CHIP −4.70 (K = 1) 0.937(0.028)

CTDNE 0.936(0.033)

Enron

LSH −4.87 (d = 4) 0.946(0.024)
DLS −5.29 (d = 100) 0.947(0.017)
BHM −6.35 (K = 14) 0.839(0.035)
CHIP −5.34 (K = 4) 0.895(0.053)

CTDNE 0.912(0.035)

MID

LSH −3.38 (d = 3) 0.988(0.018)
DLS −4.52 (d = 100) 0.977(0.007)
BHM −4.97 (K = 95) 0.971(0.031)
CHIP −3.63 (K = 2) 0.958(0.035)

CTDNE 0.953(0.018)

FB-forum

LSH −7.21 (d = 8) 0.932(0.009)
BHM −11.16 (K = 57) 0.839(0.017)
CHIP −7.65 (K = 2) 0.919(0.011)

CTDNE 0.788(0.028)

the first 80% of events and a test set containing the remain-
ing 20% of events. We estimate model parameters on the
training set and evaluate prediction accuracy on the test set.
We choose the number of latent dimensions d (for LSH and
DLS) and the number of blocks K (for BHM and CHIP)
that maximizes the log-likelihood evaluated on the test set.

Test Log-likelihood We use the mean log-likelihood per
event on the test set, also used by DuBois et al. [2013] and
Arastuie et al. [2020], as an evaluation metric for the model’s
predictive ability on future data. As shown in Table 2, our
Latent Space Hawkes (LSH) significantly outperforms the
other models on all datasets. The test log-likelihood is max-
imized for the LSH at relatively small latent dimensions d
compared to the DLS model. The low-dimensional latent
representation using a single latent space makes the LSH
fit more interpretable than the high-dimensional DLS repre-
sentation using multiple latent spaces. Furthermore, these
results suggest that the addition of nodal effects and self
excitation in the LSH significantly affects the predictive
ability compared to DLS.

Dynamic Link Prediction We further explore the perfor-
mance of the learned model in a dynamic link prediction
task. We use the same experiment set-up as Yang et al.
[2017]. We randomly sample 100 time points ti during the
test period. We then compute the probability of a link ap-
pearing between each pair of nodes in the [ti, ti + δ] time
window. We set δ to be two weeks for the Reality, Enron,
and FB-forum datasets and two months for the MID data,
which takes place over a longer period of time. For each of
these δ intervals, we obtain the Receiver Operating Char-
acteristics (ROC) curve and compute the Area Under the
Curve (AUC) measured across all pairs of nodes according
to the predicted probabilities given by the model.

The mean AUC values are shown in Table 2 with the value
inside the parentheses indicating the standard deviation over
these 100 time intervals. The ROC curves and box plots for
the corresponding AUC values are presented in Appendix
B.4. Our proposed LSH model is competitive at the dynamic
link prediction task, achieving highest mean AUC on FB-
forum and MID and second highest on Reality and Enron.

5.2.2 Generative Accuracy

To evaluate generative accuracy of our proposed LSH model,
we simulate networks with our fitted parameters and perform
posterior predictive checks (PPCs) using network statistics
such as reciprocity and transitivity. While our LSH model
has no issues simulating networks, the DLS is problematic
due to its model formulation. The jump size for reciprocal
excitation depends on distances between nodes in a recipro-
cal latent space and is further scaled by the parameter α2 in
(4). Since the maximum jump size is not constrained, this re-
sults in some node pairs having unstable Hawkes processes
so that the simulation does not terminate. To enable us to
make comparisons with the DLS model, we stabilize it by
fixing the scaling parameter for the jump size α2 = 1.

We simulate 15 networks from the fitted model on each real
dataset, with the exception of DLS, which does not scale to
the FB-forum data. We then perform PPCs on the number
of events generated, average run length, and 4 static net-
work statistics: transitivity (global clustering coefficient),
reciprocity, average local clustering coefficient (LCC), and
average degree. The run length is the number of consec-
utive events in the same direction, e.g. in the sequence
(u, v), (v, u), (v, u), (v, u), (v, u), (u, v), the run length for
(v, u) is 4 because it appears 4 times consecutively before
the reciprocal event (u, v) appears.

A comparison between the actual statistics and mean simu-
lated statistics is shown in Table 3. We compare LSH and
DLS since they are both based on the latent space model.
The DLS model generates significantly more events than ex-
ist in the actual network, ranging from roughly a 4x increase
(Reality) to an 80x increase (MID). We believe that this is



Table 3: Comparison of generative accuracy between models
using mean statistic over 15 simulated networks. Bold entry
denotes the simulated statistic closest to the actual statistic.
While both LSH and DLS can replicate the static network
statistics from the actual networks, DLS generates way too
many events compared to the actual networks.

Dataset Statistic Actual LSH DLS

Reality

# of events 2,148 2,190 9,493
Avg. run length 2.49 2.62 1.91

Transitivity 0.29 0.34 0.32
Reciprocity 0.80 0.86 0.52
Avg. LCC 0.25 0.19 0.21

Avg. degree 4.86 4.45 7.50

Enron

# of events 9,646 11,010 675,621
Avg. run length 2.44 2.63 1.87

Transitivity 0.31 0.39 0.30
Reciprocity 0.65 0.65 0.65
Avg. LCC 0.40 0.51 0.36

Avg. degree 18.46 25.86 18.43

MID

# of events 5,088 3,996 412,890
Avg. run length 2.88 2.71 1.89

Transitivity 0.13 0.24 0.20
Reciprocity 0.64 0.57 0.52
Avg. coef 0.25 0.29 0.29

Avg. degree 6.80 7.05 9.57

due to the reciprocal latent space used in the DLS model.
Even though we stabilized the model by setting α2 = 1,
some nodes are likely still extremely close in the reciprocal
latent space, causing too many events to be generated.

We also find that the lack of self-excitation in DLS prevents
it from replicating the run length of directed event sequences.
Since DLS only has reciprocal excitation, its generated net-
works have the average run length of about 2 regardless of
the average run length in the actual network. On the other
hand, the DLS model performs quite well at replicating the
static network statistics, and in many cases, even better than
our proposed LSH. We believe that this is partially due to
the much higher latent dimension d that maximizes the test
log-likelihood for DLS. The LSH could potentially achieve
better generative accuracy using higher d as well. Additional
results on generative accuracy, including plots comparing
the actual statistics with the distribution of the simulated
statistics, are provided in Appendix B.5.

6 CASE STUDY

We now present a case study demonstrating our proposed
LSH model being used for exploratory analysis on a real
continuous-time network: the Militarized Interstate Disputes
(MID) incident network. Timestamped edges in this network

correspond to individual incidents within disputes between
countries. Incidents include threats, displays, and uses of
force initiated by one country towards another.

Incidents in the MID network are indicative of negative
relationships between countries. As a result, one might ex-
pect the network to be disassortative. On the other hand,
incidents frequently occur between countries that are ge-
ographically close, particularly if they share a boundary,
which suggests that the network may also have an assorta-
tive structure. Thus, we conduct exploratory analysis of this
network using two different parameterizations of our model.
We fix the latent dimension to be d = 2 in both models so
that we can visualize the latent positions of the countries.

We first consider a positive slope model by constraining
θ1 > 0 in (3) so that two countries with lots of incidents
between them are pulled closer together in the latent space,
as is typically the case for assortative networks. In this
parameterization, countries that engage in lots of incidents
are likely to appear centrally in the latent space. We next
consider a negative slope model by constraining θ1 < 0
in (3) so that two countries with lots of incidents between
them are pushed further apart in the latent space. Under this
parameterization, countries that engage in lots of incidents
are likely to appear on the periphery of the latent space.

Findings and Discussion We show the 2-D latent space
plot with both positive and negative slope terms in Figure
2. We first consider the latent positions from the positive
slope model. Notice that the most active nodes tend to appear
centrally, and the node pairs with the most frequent incidents
tend to be placed close together. For example, Israel (ISR)
and Lebanon (LEB) have latent positions very close together,
which makes sense given that they have the most incidents in
the data set: 588 total incidents. Additionally, countries that
are geographically close do mostly appear close together
in the latent space. This can be seen from Figure 3, where
nodes are colored by continent. The estimated parameters
are θ1 = 1.2, θ2 = −9.3, α1 = 0.77, α2 = 0.13. The high
value for α1 compared to α2 indicates the importance of
self excitation in addition to reciprocal excitation.

Next, we consider the negative slope model. From exam-
ining the latent positions, we find that most active nodes
tend to appear on the periphery of the latent space, which
is reasonable because the model attempts to push nodes
with many incidents far apart. For example, Israel and
Lebanon are on opposite sides of the latent space. The es-
timated parameters for this model are θ1 = −0.008, θ2 =
−1.24, α1 = 0.83, α2 = 0.15. While the parameters used
for modeling the baseline intensity have changed signifi-
cantly, the α parameters modeling self and reciprocal exci-
tation are very similar to the positive slope model.

Additional results are presented in Appendix C. We note that
this case study is intended to be exploratory rather than con-
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(a) Estimated latent positions from model with positive slope
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(b) Estimated latent positions from model with negative slope

Figure 2: 2-D latent space plots for LSH model fit to MID data. Edges are shown for the 10 most frequently occurring
incidents. The most active countries that initiate and receive the 5 most incidents are shown in blue and green, respectively.
Pakistan (PAK) is among the top 5 initiators and receivers and is shown in red. (a) The model with positive slope places
countries with lots of conflicts close together. The most active countries tend to appear centrally in this latent space. A
zoomed in version of the center of the latent space is shown in Figure C.1 in Appendix C. (b) The model with negative slope
places countries with lots of conflicts far apart. The most active countries tend to appear on the periphery of this latent space.
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Figure 3: 2-D latent space plot for MID data with positive slope and countries colored by continent. A zoomed in version of
the center of the latent space is shown in Figure C.2 in Appendix C.

firmatory. We caution readers from jumping to conclusions
about countries from our results.

7 CONCLUSION

We proposed the latent space Hawkes (LSH) model for
continuous-time networks of relational events, which mod-
els interactions between each pair of nodes as realizations
from a mutually exciting Hawkes processes whose intensity
functions include a baseline rate along with both self and
reciprocal excitation terms. The LSH model makes use of
a single latent space along with sender and receiver effects
to provide a more interpretable fit while remaining compet-
itive in accuracy compared to the dual latent space (DLS)
model. We performed an exploratory analysis of militarized
disputes between countries using the LSH, where the latent
space was quite informative of the dispute network structure.
We also found that self excitation was stronger than recipro-
cal excitation in this network, demonstrating the importance
of self excitation, which is not present in the DLS model.
We hope this paper inspires future work combining continu-
ous latent space representations with TPPs, which have not
gotten as much attention as block model-based TPPs.

Limitations While our proposed model shows superior
empirical performance and interpretability, there are also
several limitations. We use a single reciprocal jump size
α2 for all node pairs, which results in a less flexible model

compared to the DLS, but it is more stable. While our es-
timation procedure scales to networks with about 1, 000
nodes, it does not scale to extremely large networks with
> 10, 000 nodes, unlike the the CHIP [Arastuie et al., 2020]
and MULCH [Soliman et al., 2022] latent block models.
Additionally, the latent positions of nodes in our LSH model
are fixed over time, just like in the DLS. If there are sig-
nificant changes in the network structure over time, a more
flexible model that allows latent positions to change over
time, such as the model of Rastelli and Corneli [2021],
may be a better fit. Finally, one could model more complex
dependencies among the nodes that goes beyond self and
reciprocal excitation using a multivariate Hawkes process,
as in the MULCH latent block model [Soliman et al., 2022],
instead of a bivariate Hawkes process.
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