
WONDERBREAD: A Benchmark for Evaluating
Multimodal Foundation Models on Business Process

Management Tasks

Michael Wornow Avanika Narayan
Ben Viggiano Ishan S. Khare Tathagat Verma

Tibor Thompson Miguel Angel Fuentes Hernandez Sudharsan Sundar
Chloe Trujillo Krrish Chawla Rongfei Lu Justin Shen

Divya Nagaraj Joshua Martinez Vardhan Agrawal Althea Hudson
Nigam H. Shah Christopher Ré

Stanford University

Abstract

Existing ML benchmarks lack the depth and diversity of annotations needed for
evaluating models on business process management (BPM) tasks. BPM is the prac-
tice of documenting, measuring, improving, and automating enterprise workflows.
However, research has focused almost exclusively on one task – full end-to-end
automation using agents based on multimodal foundation models (FMs) like GPT-4.
This focus on automation ignores the reality of how most BPM tools are applied
today – simply documenting the relevant workflow takes 60% of the time of the
typical process optimization project. To address this gap we present WONDER-
BREAD, the first benchmark for evaluating multimodal FMs on BPM tasks beyond
automation. Our contributions are: (1) a dataset containing 2928 documented work-
flow demonstrations; (2) 6 novel BPM tasks sourced from real-world applications
ranging from workflow documentation to knowledge transfer to process improve-
ment; and (3) an automated evaluation harness. Our benchmark shows that while
state-of-the-art FMs can automatically generate documentation (e.g. recalling 88%
of the steps taken in a video demonstration of a workflow), they struggle to re-apply
that knowledge towards finer-grained validation of workflow completion (F1 <
0.3). We hope WONDERBREAD encourages the development of more “human-
centered” AI tooling for enterprise applications and furthers the exploration of
multimodal FMs for the broader universe of BPM tasks. We publish our dataset and
experiments here: § https://github.com/HazyResearch/wonderbread.

1 Introduction
Multimodal foundation models (FMs) such as GPT-4 [43] have the potential to revolutionize busi-
ness process management (BPM), which is the discipline of measuring and improving enterprise
workflows – e.g. a physician submitting a medication order. Typical BPM projects progress in
four stages across the following BPM tasks: (1) Documentation – mapping the steps of an existing
workflow; (2) Knowledge Transfer – ensuring a shared understanding of the documented workflow;
(3) Improvement – identifying workflow inefficiencies and proposing fixes; and (4) Automation –
writing software to execute the workflow without human involvement [53, 57]. Please see Appendix
Section A.7 for a concrete example. FMs could be well-suited for these tasks due to their robust
reasoning [69, 61, 2] and visual [9, 58, 71] understanding skills.

However, existing ML benchmarks [73, 65, 18, 64] focus almost exclusively on one BPM task:
end-to-end workflow automation using agents based on multimodal FMs (see Table 1). This is

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

https://github.com/HazyResearch/wonderbread
https://github.com/HazyResearch/wonderbread

➁ ➂Benchmark Tasks Evaluation

Workflow 5

Workflow 1

Workflow 2

Workflow 3
Workflow 4

Demo 1

Demo 2

Demo 3

➀

{ }
Demo 3:

Screen Recording

“X”: 240,
“Y”: 503,
“width”: 600,
“height”: 1200,
“type”: “click”,
“action”: …

Action Trace SOP

Documentation

(){ }“X”: 240,
“Y”: 503,
“type”: “click”,
“action”: …,

Steps
1. Click X
2. Type Y
3. Scroll
 …
10. Done

Steps
1.Click X
2.Type Y
3.Scroll
 …
10.Done

● 2,928 demonstrations
● 598 workflows
● 162 rankings
● 4 websites

Dataset

Pairwise SOPs

Steps
1.Click X
2.Type Y
3.Scroll
 …

Gold SOP

Steps
1.Click X
2.Type A
3.Scroll
 …

New SOP
,() 1:1.

 2:X.
 3:3.
…

 1:1.
 2:X.
 3:3.
…

New to GoldGold to New

Line-by-line Analysis

Precision Recall

0.89 0.93

Rubric-Based

Steps
1.Click X
2.Type Y
3.Scroll
 … ,)(GPT4

RubricSOP Grades

Programmatic

Clustering CorrelationClassification

GPT4

Improvement
What is the top-1
best-selling product in
2022?

1. Click the "Reports"
button ...
2. Click on
"Bestsellers"...
3. Click on the arrow to
the right...
4. Click on the "Year"
option ...

What is the top-1
best-selling product in
2022?

1. Click the "Reports"
button ...
2. Click on
"Bestsellers"...
3. Click on the arrow to
the right...
4. Click on the "Year"
option ...

Steps
1.Click X
2.Type Y
3.Scroll

Gold SOP

or
1
2
3

RankingSOPs

Steps
1.Click X
2.Type Y
3.Scroll
 …
10.Done

Knowledge Transfer

Demo 1

Demo 2

Demo 3

,() or
Steps

1.Click X
2.Type Y
3.Scroll
 …
10.DoneIntent: “Find and report details of X”

Multimodal
FM

Multimodal
FM

Multimodal
FM

Figure 1: The three components of WONDERBREAD. (1) We curate 2928 human demonstrations
across 598 web navigation tasks. Each demonstration includes an intent, a full screen recording, an
action trace, and a written guide (SOP) describing the steps taken in the demonstration. (2) We create
6 BPM tasks that measure a model’s ability to generate accurate documentation, assist in knowledge
transfer, and improve workflows. (3) We provide automated evaluation pipelines for all tasks. See
Appendix Figure 8 for a detailed example of the data included with each demonstration.

despite the fact that simply defining the relevant workflow takes 60% of the time of the typical
BPM project [24], and the BPM market is 4x larger than that of automation tools [51, 52, 29, 30].

By ignoring the most time-consuming aspects of BPM projects, we overlook key opportunities to
provide near-term value to enterprises. Several case studies have applied multimodal FMs to these
broader BPM tasks and demonstrated better performance, easier set-up, and simpler maintenance
than traditional BPM tools such as process mining [21, 53, 19, 57, 10, 25, 42]. While promising,
however, these papers were largely anecdotal with small datasets (< 50 examples). This motivates
the creation of a large-scale benchmark and dataset specifically for BPM tasks.

Unfortunately, no such dataset exists, and current benchmarks designed around workflow au-
tomation cannot be readily repurposed due to several limitations. First, their datasets either lack
human demonstrations of workflows [73, 18] or do not contain sufficient annotation detail for BPM
tasks [65, 16, 38, 32] – e.g. evaluating a model’s ability to document a workflow requires reference
documentation. Second, their evaluations typically only measure end-to-end workflow completion
rates [73, 68, 18, 65] and thus do not consider the intermediate reasoning required for BPM tasks such
as identifying inefficiencies within a successfully completed workflow. Third, they do not model real-
world BPM use cases and instead focus on navigating websites or mobile apps – i.e. they are focused
on workflow execution rather than understanding [16, 48, 68, 17, 32, 73, 35, 18, 70, 65, 38, 32].

Motivated by the overlooked potential for using multimodal FMs on a broader suite of BPM tasks,
we thus introduce WONDERBREAD, a WOrkflow uNDERstanding BenchmaRk, EvAluation
harness, and Dataset. Our contributions are as follows:

1. Dataset: We publish 2928 human demonstrations across 598 previously unannotated
workflows sourced from the WebArena benchmark [73]. Each workflow has an average
of 4.9 independently collected demonstrations, and each demonstration contains a full
screen recording, event log of all clicks/keystrokes/scrolls, and a manually written standard
operating procedure (“SOP”) – i.e. a step-by-step written guide which reflects the annotator’s
reasoning at each step of the workflow. For a subset of 162 workflows, we also have
annotators rank all 5 demonstrations in order of perceived quality. On average, each
workflow takes 7.8 steps and 37.2 seconds. We provide a detailed example of the data in our
benchmark in Appendix Figure 8.

2. Tasks: Based on use cases drawn from the BPM literature around (1) Documentation, (2)
Knowledge Transfer, and (3) Improvement, we define 6 novel BPM tasks which require
reasoning over multimodal data.

(a) Documentation: Generate standard operating procedures (i.e. synthesize the steps of
a workflow in writing) to fulfill quality control and audit requirements [5, 63].

2

(b) Knowledge Transfer: Answer user queries about how workflows operate to simplify
onboarding and reduce the 5.3 hours per week that knowledge workers spend waiting
for information from colleagues.[46].

(c) Improvement: Analyze workflows to identify inefficiencies and correct execution
errors [20, 55].

3. Evaluation: We offer evaluation pipelines using automated metrics (e.g., F1, accuracy)
and LLM-based evaluators with high correlation to human raters (ρ > 0.8). By focusing
on intermediate workflow steps, these evaluations provide a more comprehensive and
transparent assessment of models than end-to-end workflow completion rates.

Results. We provide baseline results for three state-of-the-art multimodal FMs — GPT-4 [43], Claude
3 [4], and Gemini Pro [54]. Based on screen recordings, we find that models can generate accurate
written documentation (F1 of 0.82) and determine whether a demonstration successfully achieved its
desired goal (F1 of 0.90). While promising, increasing these numbers to enterprise-level accuracy
(i.e. 0.99+) remains an open research challenge. We also identify more significant performance gaps.
Models struggle with low-level error correction — for example, when prompted to classify whether a
demonstration exactly followed a specific sequence of steps, the peak F1 achieved is 0.27. Models
also score poorly when ranking multiple demonstrations of the same workflow on perceived quality
and efficiency. We identify long context reasoning, lower-level process understanding, and human
workflow preference alignment as key areas for future research.

Our dataset and code available at our Github repo: § https://github.com/HazyResearch/
wonderbread.

2 Background
We summarize traditional process mining approaches for BPM tasks, discuss recent work on applying
multimodal FMs, and compare WONDERBREAD to existing multimodal FM benchmarks.

2.1 Process Mining
Process mining is the de facto tool currently used for most BPM tasks, acting as an organizational “X-
Ray” [50] that enables large enterprises to identify, measure, and improve their workflows [56, 50, 6].
Techniques include statistical analysis of event logs, unsupervised machine learning, manual review
of screen recordings, and user interviews [36, 50]. While interviews can provide an accurate picture
of a workflow, they are costly and time-consuming; automated process mining tools are faster but
significantly less accurate [1, 36]. Bridging the “semantic gap” between machine and human workflow
understanding is an ongoing challenge [41, 36, 1] that WONDERBREAD aims to address.

2.2 Multimodal FMs
Foundation models (FMs) are large-scale ML models trained on vast datasets of unlabeled data which
can be applied to a broad range of tasks with minimal adaptation [12]. Multimodal FMs such as
GPT-4 combine natural language understanding with a vision model to process images and text
jointly [71]. These models have shown promise in navigating graphical user interfaces and executing
simple workflows [16, 67, 26, 27, 70, 64]. While the use of multimodal FMs for BPM tasks has been
advocated [53], it has not yet been implemented. A failure mode of text-only FMs is the lack of an
ability to “read between the lines” of human-generated textual summaries of workflows – e.g. when
creating a process model from text, GPT-4 misses half the steps that a human would include [34, 25].
This motivates having multimodal FMs directly observe workflows, as done in our benchmark.

2.3 Benchmarks
A number of multimodal datasets have been published for end-to-end automation of websites [73, 18],
mobile apps [48], and desktop applications [64, 65]. However, these datasets do not include step-by-
step written guides (SOPs), nor do they evaluate on BPM tasks such as documentation, knowledge
transfer, or process improvement [16, 48, 68, 17, 32, 73, 35, 18, 70, 65, 38, 32]. Several works have
applied large language models to BPM tasks [21, 53, 19, 57, 10, 25, 42], but they conduct limited case
studies (i.e. dozens of examples), rely on manual human evaluation, and do not consider multimodal
inputs like screen recordings. Please see Table 1 for a detailed comparison with prior benchmarks.

3

https://github.com/HazyResearch/wonderbread
https://github.com/HazyResearch/wonderbread
https://github.com/HazyResearch/wonderbread
https://github.com/HazyResearch/wonderbread

Table 1: Comparison of WONDERBREAD to existing benchmarks for workflows. For Workflows,
“Env” stands for environment – W is website, M is mobile, and D is desktop. For Evaluation,
“Auto” means the benchmark contains evaluations for end-to-end workflow automation, “Doc” for
documenting workflows, “KT” for knowledge transfer, and “Imp” for process improvement.

Benchmark Workflows Human Demonstrations Evaluation
Tasks # Envs Env Type Action Video SOP Ranking Demos/Task Auto Doc KT Imp

AITW [48] 30,378 357 M ✔ ✔ – – 23.5 ✔ – – –
Mind2Web [17] 2,350 137 W ✔ ✔ – – 1 ✔ – – –

MoTIF [14] 6,100 125 M ✔ ✔ – – 0.77 – – – –
WebArena [73] 812 4 W ✔ ✔ – – 0.22 ✔ – – –
OmniAct [32] 9,802 65 D + W ✔ – – – 1 ✔ – – –
WebShop [68] 12,087 1 W ✔ – – – 0.13 ✔ – – –

VWA [35] 910 3 W – – – – 0 ✔ – – –
WorkArena [18] 23,150 5 W – – – – 0 ✔ – – –
WebLINX [38] 2,337 155 W ✔ ✔ – – 1 ✔ – – –
OSWorld [65] 369 13 D + W ✔ ✔ – – 1 ✔ – – –

Wonderbread 598 4 W ✔ ✔ ✔ ✔ 4.9 ✔ ✔ ✔ ✔

Figure 2: The dataset collection process began by selecting 598 web navigation workflows from the
WebArena dataset [73]. Thirteen annotators then recorded themselves demonstrating roughly 300
workflows each. After multiple rounds of QA, annotators ranked demonstrations for 162 workflows
based on perceived quality. The final dataset contains 2928 demonstrations and 6 evaluation tasks.

3 Dataset

WONDERBREAD includes 2928 human demonstrations across 598 distinct workflows. Each
demonstration contains:

1. Intent – a short natural language description of the workflow’s goal

2. Recording – a full screen recording of the annotator performing the workflow

3. Action Trace – a log of all actions taken (clicks, keystrokes, scrolls) and webpage states
before/after each action

4. Key Frames – images taken from the Recording at each action’s timestamp

5. SOP – a written guide detailing all of the steps taken by the annotator

The full dataset collection process is illustrated in Figure 2. Each workflow has demonstrations from
at least 4 annotators to reflect the diversity of work habits present in an enterprise. For a detailed
example of each data type, please see Appendix Figure 8 and Appendix Section A.2 for several
example SOPs. Complete definitions for each demonstration component are provided in Table 2.

We start with WebArena, a benchmark containing 812 workflows that require an agent to navigate
open-source clones of an e-commerce, content management, forum, and developer tool website [73].
We filter this to 598 workflows by excluding workflows deemed impossible or inadequately specified.
Additional details are provided in Appendix A.3.

We recruited 13 annotators to record themselves completing each workflow using a custom Python
script. Existing workflow benchmarks often have low-quality demonstrations or inaccurate anno-
tations [62], thus a key contribution of WONDERBREAD is the high quality of demonstrations
achieved through several months of quality assurance. More details are provided in Appendix A.3.

4

Table 2: Key terms and definitions

Term Definition File Format

Task One of the 6 evaluation tasks in our benchmark, as detailed in Section 4. –
Workflow A sequence of actions taken to complete a specific business goal. Also referred to as a process. A

single workflow can have multiple demonstrations.
–

Demonstration A single execution of a workflow. Each demonstration contains an Intent, Recording, Action Trace,
Key Frames, and SOP.

Folder

Intent A brief natural language specification of a workflow’s goal, e.g. "Cancel my last order". .TXT

Recording A video containing a full recording of the user’s screen. .MP4
Action Trace A log of all click, keystroke, and scroll actions (including associated elements and coordinates). .JSON

Key Frames Images taken from a Recording that are synced to events in the Action Trace. .PNG(S)
SOP A “Standard Operating Procedure” detailing (in writing) all of the steps taken in a demonstration. .TXT

In addition to demonstrations, we also curated 120 free response question-answer pairs to simulate
inquiries that a BPM consultant might ask of a workflow. Examples are listed in Appendix A.5.

4 Benchmark

WONDERBREAD contains 6 tasks which cover three BPM applications not evaluated
in prior benchmarks: automatically generating documentation from workflow demonstrations
(Documentation), facilitating knowledge transfer (Knowledge Transfer), and identifying ways to
improve inefficient workflows (Improvement). We provide a summary of each task below. Further
details on the inputs, outputs, and evaluations are in Appendix B. Full prompts associated with each
task are included in Appendix F.

Figure 3: Expected inputs, outputs, and evaluation settings for Documentation tasks.

4.1 Documentation
Creating clear documentation of complex workflows is essential for operational continuity, com-
pliance, and accountability [63, 5]. This can be achieved through Standard Operating Procedures
(“SOP”), Process Definition Documents (“PDD”), or process maps. Our two documentation tasks –
SOP Generation and Demo Segmentation – evaluate a model’s ability to generate SOPs and accurately
distill video recordings into discrete workflows.

(A) SOP Generation. Evaluation involves using GPT-4 to compare the generated SOP to an annotator-
generated reference SOP, calculating precision (how many steps in the generated SOP are in the
reference) and recall (how many steps in the reference are in the generated SOP). Each SOP step is
evaluated atomically by GPT-4 for semantic equivalence. Details are in Appendix Section C.2.

(B) Demo Segmentation. We concatenate multiple workflow demonstrations into a single video and
provide it to the model, which identifies the start and end of each workflow. This tests the model’s
ability to distinguish between sequential workflows. For evaluation, we calculate the adjusted rand
index based on the model’s assignment of each video frame to a workflow.

4.2 Knowledge Transfer
The sharing of skills, know-how, and best practices within large organizations can be challenging
[46]. By learning from workflow demonstrations, FMs could serve as a query-able repository of

5

Figure 4: Expected inputs, outputs, and evaluation settings for Knowledge Transfer tasks.

organizational knowledge for existing employees, and accelerate on-boarding of new hires by more
quickly disseminating key information to trainees [23]. Our two Knowledge Transfer tasks – Question
Answering and Demo Validation – assess whether a model can perform higher-level reasoning about
the properties and correctness of a workflow.

(A) Question Answering. For questions about workflow demonstrations, the model generates a
natural language answer, assessing its understanding of workflow semantics. We use GPT-4 to
compare the generated answer to a reference answer for evaluation.

(B) Demo Validation. Given a demonstration, we predict whether (a) the workflow was successfully
completed, or (b) the workflow followed the SOP exactly, with individual steps matching precisely.
Since each demonstration in WONDERBREAD is “correct” by definition, we create synthetic
negative examples by truncating recordings and shuffling frames. These binary classification tasks
assess a model’s ability to self-monitor and error-correct.

Figure 5: Expected inputs, outputs, and evaluation settings for Improvement tasks.

4.3 Improvement
The ability to continuously refine and enhance the workflows of an organization is crucial for reducing
costs and staying ahead of competitors [20]. By focusing on the improvement of demonstrations
and SOPs, we highlight the role of iterative learning and optimization in driving the evolution of
workflows [55]. Our two Improvement tasks – SOP Ranking and SOP Improvement – evaluate
whether a model can identify workflow inefficiencies and improve inaccurate documentation.

(A) SOP Ranking. The same end goal can often be achieved via many different sequences of actions.
However, some sequences may be preferable to others as they are more efficient, robust, or avoid
intermediate steps that could have undesirable side effects. Given a set of SOPs written by different
annotators for the same workflow, this task requires the model to rank them in order of quality. This
assesses a model’s alignment with human perception of workflow quality. For evaluation, we measure
the Kendall τ correlation between the generated ranking and a human annotator’s ranking.

(B) SOP Improvement. Given a demonstration and a low-quality SOP, the model must generate an
improved SOP that better aligns with the demonstration. The model will iterate to refine the SOP to a
specified depth, assessing its ability to assist humans in documenting workflows. GPT-4 will evaluate
the generated SOPs against a reference “gold” SOP.

4.4 Evaluation
We use programmatic metrics and LLM-based raters for our evaluations. Tasks involving clustering,
classification, or ranking use metrics like adjusted rand index, F1, and correlation, respectively.

6

Natural language tasks are evaluated using GPT-4-as-a-judge to assess input quality [15, 72]. Please
see Appendix Table 6 for the specific metrics per task. Our LLM-based evaluations show high
correlation with human raters (ρ > 0.8) (see Appendix Tables 8and 9).

5 Results

Our initial results show that current multimodal FMs, including GPT-4, Gemini, and Claude, excel at
generating documentation which captures the higher-level characteristics of workflows but struggle
with finer-grained analyses such as question answering and workflow quality assessment. Our zero-
shot evaluations focus on the out-of-the-box capabilities of these models across 162 workflows with
rankings. Some models were excluded from specific tasks due to API budget and quota limitations.

5.1 Documentation

(A) SOP Generation. Description: A model must generate a SOP that summarizes all of the actions
taken in a video recording of a workflow. We ablate over different demonstration formats: only intent;
intent with key frame screenshots; and intent with key frames plus a textual action log of clicks
and keystrokes. Results: As shown in Table 3, GPT-4 performs best (F1-score of 0.82) with intent,
keyframes, and action trace. Most model-demonstration pairs have higher recall than precision (avg.
0.06 points), indicating a tendency to hallucinate workflow steps. Upon qualitative review, we found
that many hallucinated actions seemed reasonable but were not actually taken in the demonstration,
e.g. adding “Navigate to the shopping admin page” even though the demonstration started on that
page. Exact scores for each workflow and model are in Appendix Figure 10.

Table 3: SOP Generation: Accuracy of generated SOPs versus ground truth SOPs.

Model Intent Keyframes Trace Precision Recall F1 Avg. # of Steps

GPT-4 ✓ ✓ ✓ 0.80 0.88 0.82 10.26
GPT-4 ✓ ✓ 0.69 0.79 0.71 10.32
GPT-4 ✓ 0.48 0.59 0.49 13.10
Claude 3 Sonnet ✓ ✓ ✓ 0.72 0.85 0.76 10.94
Claude 3 Sonnet ✓ ✓ 0.67 0.78 0.70 11.35
Claude 3 Sonnet ✓ 0.53 0.54 0.50 11.34
Gemini Pro 1 ✓ ✓ ✓ 0.58 0.63 0.58 11.09
Gemini Pro 1 ✓ ✓ 0.48 0.51 0.46 11.28
Gemini Pro 1 ✓ 0.40 0.36 0.34 7.31

Ground Truth ✓ ✓ ✓ 1 1 1 8.40

(B) Demo Segmentation. Description: This task mimics what a video recording of a person’s
screen would capture during the typical workday, i.e. multiple workflows without clear boundaries.
Concretely, the model receives k concatenated demonstrations sampled from different workflows
from our dataset, and must determine which frames belong to the same workflow. We set k = 3
and choose workflows that utilize the same website. Results: As shown in Table 4, segmenting
a recording remains challenging. Providing additional information via an SOP and intent slightly
increases performance for GPT-4 yet decreases performance for Gemini Pro 1. On inspection, we find
that the frequency at which Gemini Pro 1 outputs blank state mappings (i.e. not assigning a keyframe
to any workflow, which under our evaluation framework gets penalized as an incorrect mapping)
increases with longer prompts, indicating a worse ability to follow the full context of the prompt.

Table 4: Demo Segmentation: Accuracy of clustering with k = 3 concatenated workflows.

Model Intent SOP Keyframes Adj. RI V-Measure

GPT-4 ✓ ✓ ✓ 0.85 0.88
GPT-4 ✓ ✓ 0.85 0.87
GPT-4 ✓ 0.80 0.86
Gemini Pro 1 ✓ ✓ ✓ 0.55 0.66
Gemini Pro 1 ✓ ✓ 0.53 0.65
Gemini Pro 1 ✓ 0.58 0.69

7

5.2 Knowledge Transfer

(A) Question Answering. Description: This task involves answering 120 free response questions
about workflows, such as “How would a user know the workflow is complete?” and “What is the
purpose of this workflow?”. These questions were drawn from the process mining literature [10, 21]
and are provided in Appendix A.5. We use GPT-4-as-a-judge to evaluate model-generated answers
by comparing to a reference answer from a human annotator. Following prior work [21], we have
GPT-4 output four scores on a scale of 1 (bad) to 3 (good): completeness, soundness, clarity, and
compactness. The Pearson correlation between GPT-4 and human raters was between 0.80 and 0.89
across all axes (see Appendix Table 8). Results: Results are shown in Figure 6. All models perform
well in “compactness” and “clarity” but score lower on “soundness” and “completeness.” The former
two are measures of the syntactic quality of writing, while the latter two are measures of the accuracy
of the answer. As “soundness” measures whether an answer avoids containing inaccurate details,
these lower scores can be explained by the tendency of LLMs to hallucinate and infer information
based on patterns learned from training data (i.e. includes content from websites like GitLab, Amazon,
etc.) that are not present in the specific demonstrations in WONDERBREAD [28]. Lower scores on
“completeness” may be due to the difficulty of fully attending to multimodal prompts with multiple
states and actions [37, 39], thus leading to occasional omissions of relevant details.

Figure 6: Knowledge Transfer: Scores
across four axes – soundness, completeness,
clarity, and compactness – across 120 free
response questions for evaluating workflow
understanding.

(B) Demo Validation. Description: We consider two
forms of validation: (a) workflow completion, where
a demonstration is “correct” if the workflow’s goal
is achieved; and (b) workflow trajectory, where it is
“correct” only if the goal is achieved and the steps
taken exactly follow a specific SOP. “Correct” exam-
ples are sampled from our dataset, while “incorrect”
examples are created by truncating, shuffling, or skip-
ping states. Results: As shown in Table 5, GPT-4
performs best. It can accurately determine whether a
workflow completed its overall goal (F1 of 0.90) but
struggles to validate that a demonstration followed
the specific steps of an SOP (F1 of 0.27).

Table 5: Demo Validation: Accuracy on binary classification of whether a workflow was completed
(Completion) or followed the exact steps outlined in the SOP (Trajectory).

Model Intent Keyframes SOP Precision Recall F1

Completion
GPT-4 ✓ ✓ ✓ 0.89 0.90 0.90
GPT-4 ✓ ✓ 0.84 0.77 0.81
Gemini Pro 1 ✓ ✓ ✓ 0.94 0.25 0.40
Gemini Pro 1 ✓ ✓ 0.94 0.26 0.41
Claude3 Sonnet ✓ ✓ ✓ 0.58 0.31 0.40
Claude3 Sonnet ✓ ✓ 0.85 0.50 0.63

Trajectory
GPT-4 ✓ ✓ ✓ 0.52 0.18 0.27
Gemini Pro 1 ✓ ✓ ✓ 0.94 0.14 0.25

5.3 Improvement

(A) SOP Ranking. Description: In this task, we provide a model with SOPs from various annotators
and have it rank them by quality. We then compare this ranking to a ground truth ranking by an
annotator and measure the correlation between the model’s and human’s judgments. Results: As
shown in Table 7a, current models struggle to rank SOPs based on perceived quality to human
raters. The best model achieves a mean Kendall correlation of 0.05 with a standard deviation of 0.47,
indicating essentially random rankings. Improving alignment between model and human judgment of
workflow quality remains an area for further research.

8

(B) SOP Improvement. Description. In this task we provide a model with a task recording and an
SOP. The model is then tasked with subsequently improving the SOP given and SOP rubric. Results.
As shown in Table 7b, current models are capable of improving the quality of their own SOPs (up to
1.4 points), conditioned upon a SOP rubric.

Model Spearman ρ Kendall τ

GPT-4 0.07 ± 0.58 0.06 ± 0.49
Claude3 Sonnet 0.06 ± 0.59 0.03 ± 0.50
Gemini Pro 1 0.03 ± 0.58 0.03 ± 0.49

(a) SOP Ranking: Corr. between model and human
rankings of demonstrations for the same workflow.

Model Original SOP Improved SOP

GPT-4 3.43 4.82
Claude3 Sonnet 3.43 4.26
Gemini Pro 1 3.43 3.65

(b) SOP Improvement: Scores from 1 (bad) to 5
(good) for SOPs before/after model improvement.

Figure 7: Results for the two Improvement benchmark tasks.

6 Discussion

We discuss next steps, limitations, and the broader impacts of WONDERBREAD below.

Improving Human-Model Alignment for BPM Tasks. We find that out-of-the-box human and
multimodal models alignment is low for SOP evaluation (see Section 5.3). Similar to how “human-
model” alignment can be achieved for tasks like question-answering and instruction-following
[59, 33], alignment also appears necessary for workflow understanding tasks. This might require
fine-tuning models via supervised learning [60] or reinforcement learning on preference data [44].

Expanding Multimodal Context Windows. Even a 1-minute workflow can generate dozens of
actions and key frames. Our results show that model accuracy on BPM tasks improves as more
information is provided in the prompt. This might not be possible with longer workflows, leading
to an incomplete representation for a workflow and lower downstream task performance. Longer
context windows can help solve this problem and are a focal point of study in the community [31, 66].

Low-Level Workflow Understanding. Our results show that while multimodal FMs excel in high-
level workflow analyses, they struggle with precise validation of individual steps (see Section 5.2).
Enhancing this lower-level understanding may require supervised fine-tuning on GUIs as in [27, 7].

Self-Improvement. Our findings suggest that multimodal FMs can improve their outputs (i.e., SOPs)
through multiple iterations of self-reflection (see Section 5.3). This highlights the potential of these
models to refine their outputs without human intervention [22, 3]. In the context of BPM tasks, this
capability can help systems adapt to workflows as they change over time.

Limitations. There are several limitations to our work. First, dataset construction was constrained by
our lack of access to real-world enterprise data due to privacy concerns. Second, the workflows in
our dataset are taken from a limited set of 4 websites [73], and it is unclear how our results generalize
to different environments with complex or longer workflows. Contemporaneous to our work, several
datasets have been released which could be re-annotated following the process described in our paper
[65, 38, 32], which we leave to future work. Third, our baseline results lack open-source models.
Matching the performance of state-of-the-art proprietary models on these benchmarks with open
source models remains an open research challenge.

Scaling. To our knowledge, WONDERBREAD is currently the largest dataset for BPM tasks. However,
it is still limited in its ability to capture the broad variety of real-world enterprise workflows. Scaling
the approach outlined in this paper represents an exciting future research direction. We propose
several ways to increase the size and diversity of data: (1) Synthetically generate demonstrations
using AI agents trained on existing workflow examples and reject invalid demonstrations, as detailed
in [8, 45]. (2) Crowdsource human demonstrations through platforms like Amazon Mechanical Turk.
(3) Collaborate with a large enterprise willing to deploy our recording script to collect real-world
workflows. (4) Scrape how-to videos and screen recordings of workflows from sites like Youtube.

Societal Impact. Our field’s collective focus on end-to-end automation contradicts recent advocacy
for more human-centered AI, which aims to augment rather than replace human labor [47, 49, 13, 11].
While we intend for WONDERBREAD to serve as a counterpoint to this focus, we acknowledge
that any AI tools aimed at improving productivity run the risk of replacing human labor.

9

7 Conclusion
We present WONDERBREAD, the first benchmark for evaluating multimodal models on common
process mining tasks. It includes 2928 human demonstrations across videos, images, and text, along
with step-by-step written guides (SOPs) and full action traces. We focus on applying these models to
three BPM tasks that have been overlooked by existing ML benchmarks for workflow automation
– documentation, knowledge transfer, and process improvement. WONDERBREAD features an
automated evaluation harness with programmatic metrics and LLM-based assessments, providing
baseline results for state-of-the-art multimodal models. Our work aims to inspire further efforts to
support workers by augmenting rather than replacing human labor.

Acknowledgments and Disclosure of Funding

MW is supported by the NSF Fellowship, a Stanford HAI Graduate Fellowship, and Stanford Health-
care. AN is supported by the Knight-Hennessy Fellowship and the NSF fellowship. We thank Neel
Guha, Dan Fu, Mayee Chen, Eric Nguyen, Jordan Juravsky, Jerry Liu, and Sabri Eyuboglu for
providing helpful feedback on this manuscript. We gratefully acknowledge the support of NIH under
No. U54EB020405 (Mobilize), NSF under Nos. CCF2247015 (Hardware-Aware), CCF1763315
(Beyond Sparsity), CCF1563078 (Volume to Velocity), and 1937301 (RTML); US DEVCOM ARL
under Nos. W911NF-23-2-0184 (Long-context) and W911NF-21-2-0251 (Interactive Human-AI
Teaming); ONR under Nos. N000142312633 (Deep Signal Processing), N000141712266 (Unifying
Weak Supervision), N000142012480 (Non-Euclidean Geometry), and N000142012275 (NEPTUNE);
Stanford HAI under No. 247183; NXP, Xilinx, LETI-CEA, Intel, IBM, Microsoft, NEC, Toshiba,
TSMC, ARM, Hitachi, BASF, Accenture, Ericsson, Qualcomm, Analog Devices, Google Cloud,
Salesforce, Total, the HAI-GCP Cloud Credits for Research program, the Stanford Data Science
Initiative (SDSI), and members of the Stanford DAWN project: Facebook, Google, and VMWare.
The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not necessarily reflect the views,
policies, or endorsements, either expressed or implied, of NIH, ONR, or the U.S. Government.

10

References
[1] Simone Agostinelli, Andrea Marrella, and Massimo Mecella. Towards intelligent robotic process automa-

tion for bpmers. arXiv preprint arXiv:2001.00804, 2020.

[2] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say: Grounding
language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

[3] Renat Aksitov, Sobhan Miryoosefi, Zonglin Li, Daliang Li, Sheila Babayan, Kavya Kopparapu, Zachary
Fisher, Ruiqi Guo, Sushant Prakash, Pranesh Srinivasan, et al. Rest meets react: Self-improvement for
multi-step reasoning llm agent. arXiv preprint arXiv:2312.10003, 2023.

[4] AI Anthropic. The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card, 2024.

[5] American Hospital Association. Assessing the regulatory burden on health systems, hospitals and post-acute
care providers, 2017.

[6] Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa, Fabrizio Maria Maggi, Andrea
Marrella, Massimo Mecella, and Allar Soo. Automated discovery of process models from event logs:
Review and benchmark. IEEE transactions on knowledge and data engineering, 31(4):686–705, 2018.

[7] Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir Zubach, Hassan Mansoor, Vincent Etter, Victor
Cărbune, Jason Lin, Jindong Chen, and Abhanshu Sharma. Screenai: A vision-language model for ui and
infographics understanding. arXiv preprint arXiv:2402.04615, 2024.

[8] Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
Training in-the-wild device-control agents with autonomous reinforcement learning. arXiv preprint
arXiv:2406.11896, 2024.

[9] Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, and
Sağnak Taşırlar. Introducing our multimodal models, 2023.

[10] Alessandro Berti and Mahnaz Sadat Qafari. Leveraging large language models (llms) for process mining
(technical report). arXiv preprint arXiv:2307.12701, 2023.

[11] Joseph R Biden. Executive order on the safe, secure, and trustworthy development and use of artificial
intelligence. 2023.

[12] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities and risks of
foundation models. arXiv preprint arXiv:2108.07258, 2021.

[13] Erik Brynjolfsson. The turing trap: The promise & peril of human-like artificial intelligence. Daedalus,
151(2):272–287, 2022.

[14] Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha Kumar, Kate Saenko, and Bryan A. Plummer. Mo-
bile app tasks with iterative feedback (motif): Addressing task feasibility in interactive visual environments,
2021.

[15] Cheng-Han Chiang and Hung-yi Lee. Can large language models be an alternative to human evaluations?
arXiv preprint arXiv:2305.01937, 2023.

[16] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web, 2023.

[17] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web, 2023.

[18] Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom Marty,
Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, Nicolas Chapados, and Alexandre Lacoste.
Workarena: How capable are web agents at solving common knowledge work tasks?, 2024.

[19] Marlon Dumas, Fabiana Fournier, Lior Limonad, Andrea Marrella, Marco Montali, Jana-Rebecca Rehse,
Rafael Accorsi, Diego Calvanese, Giuseppe De Giacomo, Dirk Fahland, et al. Ai-augmented business
process management systems: a research manifesto. ACM Transactions on Management Information
Systems, 14(1):1–19, 2023.

[20] Marlon Dumas, Marcello La Rosa, Jan Mendling, Hajo A Reijers, et al. Fundamentals of business process
management, volume 2. Springer, 2018.

[21] Dirk Fahland, Fabian Fournier, Lior Limonad, Inna Skarbovsky, and Ava JE Swevels. How well can large
language models explain business processes? arXiv preprint arXiv:2401.12846, 2024.

11

[22] Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied agents with
internet-scale knowledge. Advances in Neural Information Processing Systems, 35:18343–18362, 2022.

[23] Keith Ferrazzi. Technology can save onboarding from itself. Harvard Business Review, March 2015.
[24] Fabian Friedrich, Jan Mendling, and Frank Puhlmann. Process model generation from natural language

text. In Advanced Information Systems Engineering: 23rd International Conference, CAiSE 2011, London,
UK, June 20-24, 2011. Proceedings 23, pages 482–496. Springer, 2011.

[25] Michael Grohs, Luka Abb, Nourhan Elsayed, and Jana-Rebecca Rehse. Large language models can accom-
plish business process management tasks. In International Conference on Business Process Management,
pages 453–465. Springer, 2023.

[26] Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan, and
Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models, 2024.

[27] Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang,
Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents. arXiv preprint
arXiv:2312.08914, 2023.

[28] Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language models:
Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232, 2023.

[29] Mordor Intelligence. Business process management market - size, share and industry analysis, 2024.
[30] Mordor Intelligence. Robotic process automation market - size, share and industry analysis, 2024.
[31] Yixing Jiang, Jeremy Irvin, Ji Hun Wang, Muhammad Ahmed Chaudhry, Jonathan H Chen, and Andrew Y

Ng. Many-shot in-context learning in multimodal foundation models. arXiv preprint arXiv:2405.09798,
2024.

[32] Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem Alshikh, and
Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist autonomous
agents for desktop and web, 2024.

[33] Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. A survey of reinforcement learning
from human feedback. arXiv preprint arXiv:2312.14925, 2023.

[34] Nataliia Klievtsova, Janik-Vasily Benzin, Timotheus Kampik, Juergen Mangler, and Stefanie Rinderle-Ma.
Conversational process modeling: Can generative ai empower domain experts in creating and redesigning
process models?, 2024.

[35] Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating multimodal
agents on realistic visual web tasks, 2024.

[36] Volodymyr Leno, Artem Polyvyanyy, Marlon Dumas, Marcello La Rosa, and Fabrizio Maria Maggi.
Robotic process mining: vision and challenges. Business & Information Systems Engineering, 63:301–314,
2021.

[37] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. Lost in the middle: How language models use long contexts. corr abs/2307.03172 (2023). arXiv
preprint arXiv:2307.03172, 10, 2023.

[38] Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation with multi-turn
dialogue. arXiv preprint arXiv:2402.05930, 2024.

[39] Amy Maitland, Ross Fowkes, and Stuart Maitland. Can chatgpt pass the mrcp (uk) written examina-
tions? analysis of performance and errors using a clinical decision-reasoning framework. BMJ open,
14(3):e080558, 2024.

[40] Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke
Zettlemoyer, and Hannaneh Hajishirzi. FActScore: Fine-grained atomic evaluation of factual precision in
long form text generation. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pages 12076–12100, Singapore,
December 2023. Association for Computational Linguistics.

[41] Jorge Munoz-Gama, Niels Martin, Carlos Fernandez-Llatas, Owen A Johnson, Marcos Sepúlveda, Em-
manuel Helm, Victor Galvez-Yanjari, Eric Rojas, Antonio Martinez-Millana, Davide Aloini, et al. Process
mining for healthcare: Characteristics and challenges. Journal of Biomedical Informatics, 127:103994,
2022.

[42] Vinod Muthusamy, Yara Rizk, Kiran Kate, Praveen Venkateswaran, Vatche Isahagian, Ashu Gulati, and
Parijat Dube. Towards large language model-based personal agents in the enterprise: Current trends
and open problems. In Findings of the Association for Computational Linguistics: EMNLP 2023, pages
6909–6921, 2023.

12

[43] R OpenAI. Gpt-4 technical report. arXiv, pages 2303–08774, 2023.

[44] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. Advances in neural information processing systems, 35:27730–27744, 2022.

[45] Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents. arXiv preprint arXiv:2404.06474, 2024.

[46] Panopto. Workplace knowledge and productivity report, 2018.

[47] Lucia Rahilly, Melissa Valentine, Brooke Weddle, and Bryan Hancock. Human-centered ai: The power of
putting people first, Dec 2023.

[48] Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android in the wild:
A large-scale dataset for android device control, 2023.

[49] Hope Reese. A human-centered approach to the ai revolution, 2022.

[50] Lars Reinkemeyer. Process mining in action. Process Mining in Action Principles, Use Cases and Outlook,
2020.

[51] Grand View Research. Business process management (bpm) market size, share report 2030, 2024.

[52] Grand View Research. Robotic process automation market size, share report 2030, 2024.

[53] Yara Rizk, Praveen Venkateswaran, Vatche Isahagian, Austin Narcomey, and Vinod Muthusamy. A
case for business process-specific foundation models. In International Conference on Business Process
Management, pages 44–56. Springer, 2023.

[54] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[55] Wil Van Der Aalst and Wil van der Aalst. Data science in action. Springer, 2016.

[56] Wil MP Van der Aalst. Process mining in the large: a tutorial. Business Intelligence: Third European
Summer School, eBISS 2013, Dagstuhl Castle, Germany, July 7-12, 2013, Tutorial Lectures 3, pages 33–76,
2014.

[57] Maxim Vidgof, Stefan Bachhofner, and Jan Mendling. Large language models for business process
management: Opportunities and challenges. arXiv preprint arXiv:2304.04309, 2023.

[58] Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
Lei Zhao, Xixuan Song, et al. Cogvlm: Visual expert for pretrained language models. arXiv preprint
arXiv:2311.03079, 2023.

[59] Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xingshan Zeng, Wenyong Huang, Lifeng Shang,
Xin Jiang, and Qun Liu. Aligning large language models with human: A survey. arXiv preprint
arXiv:2307.12966, 2023.

[60] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M
Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652,
2021.

[61] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837, 2022.

[62] Michael Wornow, Avanika Narayan, Krista Opsahl-Ong, Quinn McIntyre, Nigam H Shah, and Christopher
Re. Automating the enterprise with foundation models. arXiv preprint arXiv:2405.03710, 2024.

[63] Danny TY Wu, Nikolas Smart, Elizabeth L Ciemins, Holly J Lanham, Curt Lindberg, and Kai Zheng.
Using ehr audit trail logs to analyze clinical workflow: a case study from community-based ambulatory
clinics. In AMIA Annual Symposium Proceedings, volume 2017, page 1820. American Medical Informatics
Association, 2017.

[64] Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao Yu, and
Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement. arXiv preprint
arXiv:2402.07456, 2024.

[65] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents for
open-ended tasks in real computer environments. arXiv preprint arXiv:2404.07972, 2024.

[66] Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Martin, Rashi
Rungta, Karthik Abinav Sankararaman, Barlas Oguz, et al. Effective long-context scaling of foundation
models. arXiv preprint arXiv:2309.16039, 2023.

13

[67] An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu Zhong,
Julian McAuley, Jianfeng Gao, et al. Gpt-4v in wonderland: Large multimodal models for zero-shot
smartphone gui navigation. arXiv preprint arXiv:2311.07562, 2023.

[68] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable real-world
web interaction with grounded language agents, 2023.

[69] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629, 2022.

[70] Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei
Lin, Saravan Rajmohan, et al. Ufo: A ui-focused agent for windows os interaction. arXiv preprint
arXiv:2402.07939, 2024.

[71] Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks: A
survey, 2023.

[72] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena.
Advances in Neural Information Processing Systems, 36, 2024.

[73] Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Yonatan
Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building autonomous
agents. arXiv preprint arXiv:2307.13854, 2023.

14

A Dataset

A.1 License & Availability

We license our code and dataset under the Apache 2.0 license. The authors bear all responsibility
in case of violation of rights. Our code and data are available here: § https://github.com/
HazyResearch/wonderbread.

Our dataset is based on the WebArena benchmark [73], which also has an Apache 2.0 license and is
available here: https://github.com/web-arena-x/webarena

A.2 Example Standard Operating Procedures (SOPs)

In this section, we include 3 example SOPs from our dataset.

Below is an SOP describing how to accomplish Task #1 ("What is the top-1 best-selling brand in
Quarter 1 2022?") taken from demonstration "1 @ 2023-12-25-17-08-00".

1. On the left bar, click on the "Reports" button.
2. Under the "Products" header, click on "Bestsellers".
3. Click in the box next to the "From" field.
4. Enter the first date of Quarter 1 2022, which is 01/01/2022.
5. Click in the box next to the "To" field.
6. Enter the last date of Quarter 1 2022, which is 03/31/2022.
7. Click on the "Show Report" button on the top right side of the page.
8. From the table shown, report the top-1 best-selling brand in Quarter 1 2022.

The SOP below was also written for Task #1, but by a different annotator for demonstration "1 @
2023-12-25-15-44-04".

1. Click on the "Reports" button on the far lefthand sidebar. It has an icon
which looks like a chart. It should be located directly above the "Stores"
button and below the "Content" button.

2. In the popup menu that appears, click on the "Bestsellers" link to go to
the "Bestsellers Report" page. The link should be located under the
"Products" section.

3. Click on the "From" textbox to focus it. It should be located directly
underneath the "Period" field.

4. Type in the first day of our desired time period, which in this case
is "01/01/2022"

5. Click on the "To" textbox to focus it. It should be located directly
underneath the "From" field.

6. Type in the last day of our desired time period, which in this case
is "03/31/2022"

7. Click on the orange "Show Report" button, which can be found on the
top right of the page, in order to generate our best-selling product report.

8. The best-selling products will appear in a table at the bottom of the
page. Scroll down through each row of the report until you reach the bottom
of the page. While scrolling, keep track of which brand has the sold the
greatest quantity. The quantity for each product is found in the "Order
Quantity" column of the bestsellers table, on the right hand side of the page.
The name of the product, containing information on the brand of the item, is
found in the Product column of the Bestsellers table.

9. The product brand that has the greatest total order quantity is the best
selling product brand in quarter 1 2022.

Below is an SOP for a different task – Task #494 ("Notify Alex Thomas in their most recent pending
order with message ’Yo, your order will be shipped soon!’.") – which was written for demonstration
"494 @ 2023-12-30-23-48-17".

1. Click on the "SALES" option in the left side bar under the "DASHBOARD" option.
2. Click on the "Orders" option in the "Sales" menu that appeared.
3. Type "Alex Thomas" in the "Search by keyword" search bar.
4. Click on the magnifying glass in the "Search by keyword" search bar.

15

https://github.com/HazyResearch/wonderbread
https://github.com/HazyResearch/wonderbread
https://github.com/HazyResearch/wonderbread
https://github.com/HazyResearch/wonderbread
https://github.com/web-arena-x/webarena

5. Click on the blue "View" link under the column "Action" corresponding
to the "000000304" order.

6. Scroll down until you see the brown "Submit Comment" button in the "Order
Total" section.

7. Type "Yo, your order will be shipped soon!" in the "Comment" text box under
the "Status" dropdown menu.

8. Click on the "Notify Customer by Email" checkbox under the "Comment" text box.
9. Click on the brown "Submit Comment" button under at the bottom left of the

screen.

A.3 Dataset Curation

1. Workflow Selection. We begin with the WebArena [73] benchmark, which is a collection of 812
workflows instantiated from 187 workflow intents. For example, the template "Search for (term)"
could have instantiations "Search for jacket" and "Search for coat". These 812 tasks require an
agent to navigate fully functional open source clones of popular websites. In this dataset we use the
e-commerce, content management system (Adobe Magneto), forum (PostMill), and developer tool
(GitLab) sites provided by WebArena. We find that many workflows in WebArena are designed to
be impossible, are de facto impossible, are underspecified, or have incorrect evaluations, and we
purposely exclude these workflows from our dataset.

First, several workflows in WebArena are designed to be impossible. These are the workflows
that have a correct answer marked as "N/A". For example, one workflow has the intent “What are
the main criticisms of this product?” and marks the correct answer as "N/A" since there are no
criticisms. We remove all of these workflows. An example of a de facto impossible workflow is
“Assign the issue regarding flash alerts to myself and primer.” Though there is a non-N/A answer for
this workflow, upon manual inspection we found that the Gitlab interface does not actually allow
issues to be assigned to more than one user, and thus we removed it from our dataset. Underspecified
workflows are those whose answer we found arbitrary upon manual inspection. For example, an
intent such as “Show me the email address of the customer who is the most unhappy with Circe
fleece” is underspecified as the phrase “most unhappy” is unquantifiable when there are multiple
one-star reviews. We remove all of these underspecified workflows. Finally, we exclude workflows
that have valid intents but whose expected answers were deemed incorrect upon manual inspection.
Example workflows from the Webarena dataset with these mistakes include “the number of commits
of the contributor who has the most commits to branch main” in Gitlab being stated incorrectly or
that “the amount spent on home decoration shopping during 1/29/2023” being calculated incorrectly
are also excluded. Finally, we ignore the 23 workflows in WebArena that include multiple websites.
We do this for simplicity as our recording script could only handle one website at a time. This left us
with a final total of 598 workflows.

2. Annotator Recruitment and Training. We enlisted 13 human annotators from a pool of ap-
proximately 60 applicants (all students at Stanford University) to participate in our data collection
process. All selected annotators, who are undergraduate or graduate students at Stanford University
with proficient computer literacy skills, were fully informed and consented to the publication of their
complete demonstrations. They were also given the opportunity to review the entire codebase, experi-
ments, and manuscript prior to submission. Annotators were aware that their full screen recordings
would be made public and were advised to remove any personally identifiable information before
recording. Prior to applying, they were informed that there would be no monetary compensation, as
their participation would be on a voluntary basis for a research project.

An important distinction from the demonstrations contained in our dataset versus prior work is that
our annotators were explicitly instructed not to perform “zero-shot" recordings, meaning annotators
were told to rehearse each task before recording to ensure that the collected demonstrations were free
of mistakes. More specifically, annotators were told to follow these principles:

• We are simulating expert users of the interface.
◦ Do the optimal (i.e. most direct) way to complete each task.
◦ Ensure that your demonstration contains no wasted clicks / typing.
◦ Ensure that your demonstratoin has no mistakes – If you make a mistake while per-

forming the demonstration, stop recording and re-record from scratch.
• We want a clean dataset

16

◦ When you record, ensure that the selected interface within Google Chrome is visible.

◦ Ensure you do not show any other applications.

◦ Ensure you do not show personal information.

Therefore, the final dataset has a 100% task completion rate. In contrast, in the original WebArena
benchmark [73], untrained human annotators could only complete 78% of tasks.

3. Data Collection. Each annotator utilized a custom Python script to record demonstrations of
approximately 300 unique tasks. This script operated in the background while the annotator completed
the demonstration, capturing and outputting four primary types of data: (1) a JSON trace detailing
all user actions (clicks, keystrokes, and scrolls), including the precise HTML state of the website at
the time of each action and attributes of the elements interacted with; (2) a video of the full screen
recording of the annotator’s computer; (3) a collection of screenshots corresponding to each recorded
action; and (4) an initially blank Standard Operating Procedure (SOP) file.

Once the recording was complete, each annotator filled out the SOP file, creating a detailed, step-
by-step list of the actions they performed. Annotators were directed to explain these steps with
the simplicity and clarity necessary for a five-year-old to follow. The annotators were instructed to
provide the level of detail that a 5-year-old would need to complete the task. Finally, annotators
assessed the difficulty of each task, classifying them as Easy, Medium, or Hard. On average, each
annotator dedicated approximately 30 hours to this process, amounting to a collective total of nearly
300 man-hours of labeling over several months.

4. Demonstration Ranking. After completing the dataset collection process, we chose a subset of
162 tasks (all derived from different task templates) to form our collection of “Gold Workflows". Each
annotator was then tasked with watching the demonstrations of approximately 15 “Gold Workflows",
relatively ranking the demonstrations of the same task from 1 (best) to 5 (worst). The annotators then
developed a more thorough SOP we call a "Gold SOP" based on the demonstration that received
the top ranking. This process resulted in 162 tasks in our dataset containing demonstrations of
ranked relatively quality, along with high quality “Gold SOPs" we use as the highest quality SOP
representation of the “Gold Task"’s demonstrations. More details about this ranking procedure are
included in Appendix A.6.

5. Quality Assurance. A key contribution of WONDERBREAD is high quality human task demon-
strations. A review of existing benchmarks for web navigation tasks found consistently low quality
demonstrations that have inaccurate annotations (e.g. misplaced bounding boxes for HTML elements)
[62]. This made quality assurance a key concern while curating WONDERBREAD. We performed
three rounds of quality assurance checks over the course of two months using a combination of
automated scripts, manual review, and cross-referencing demonstrations across annotators. We had
annotators redo any tasks that were of insufficient quality, and discarded any tasks that had less than
4 successful demonstrations. Additional details are available in the Appendix A.4.

6. Workflow Understanding Questions. To enable deeper evaluations of a model’s workflow
understanding, we also created a set of 11 free responses question templates, which are listed in
Appendix A.5. These questions attempted to simulate actual inquiries that a BPM consultant might
ask. Examples include “Explain what the most common failure modes might be for a user performing
this task” and “Why does the user click the “Commits” button in step #5?". We created 10 instances
of all question templates, and an additional 10 instances for question template #2. This gives a total
of 120 questions. We then had had a set of annotators write brief free-form answers based on the
corresponding task.

A.4 Quality Assurance

We ran a series of automated scripts to flag systematic errors, and had our annotators redo any
tasks that were flagged. For example, we verify that all actions occur within Google Chrome and
that major disagreements between annotators on each task are resolved. For example, we cross-
reference task demonstrations across annotators and redo tasks where someone marked it as infeasible
while someone else marked it as feasible. We also conduct manual review of all demonstrations
corresponding to the 179 Gold workflows, as well as a random sampling of 300 other demonstrations
across all tasks.

17

A.5 Question Answering Dataset Questions

Listed below are the free response questions templates that we created for our Question Answering
task, largely inspired by prior work in the process mining literature [21, 10].

1. Explain what the most common failure modes might be for a user performing this task.

2. How would a user completing the task know that the workflow is completed?

3. What is the purpose of doing this workflow?

4. What if instead of X we wanted to do Y. How would you change this workflow to accomplish
that?

5. Why does the user click the button X in step #Z?

6. Why does the user click the button X in screenshot #Y?

7. Why does the user type the string X in step #Z?

8. Why does the user type the string X in screenshot #Y?

9. How would a user completing the task know that the workflow is completed?

10. Here are two workflows. Please identify the key differences between them.

11. Here are two demonstrations, one of which is more efficient than the other. Please describe
ways to improve the less optimal workflow.

Question templates #1-9 only involve reasoning over a single demonstration, but #10-11 require
reasoning over multiple demonstrations.

After creating these question templates based on our review of question types asked in prior work on
process mining [10] [21], we then transformed them into concrete questions instantiated with specific
demonstration(s) from our dataset. In other words, turning “Why does the user click the button X
in step #Z?” into “Why does the user click on ""Not Approved"" in step #4?” for demonstration 79
@ 2023-12-27-22-50-34. This was accomplished in three steps. First, for each question template
we first came up with a list of characteristics that a linked demonstration would need. For example,
a workflow with no button clicks would not be a viable candidate for the question template “Why
does the user click the button X in step #Z?.” Next, we randomly sampled demonstrations without
replacement from our set of Gold demonstrations until we came up with 10 instantiations of each
question (20 for question template #11). Finally, we conducted two rounds of manual review to write
“ground truth” answers and ensure each question was instantiated correctly.

A.6 Factors for Quality of Gold SOPs

Listed below is the information given to annotators to aid them with writing high-quality Gold SOPs.

1. Coverage of edge cases – help the user complete the task by making note of ways in which
the interface might change, and how to adapt:

◦ e.g. If a task involves looking through a table of shipping orders to find a specific order,
and your specific order just happens to be the first one, you should still make a note that
the user might have to scroll / paginate through the results until they find the correct
shipping order.

◦ e.g. If you need to click a button at the bottom of a page, you should not assume that
the user’s browser window has the same size as yours, so you should let them know
that they might need to scroll down if they can’t see the button.

◦ Example: Instead of “Click on the toggle labeled ‘Enable Product”’, you “should
write “Look for the toggle labeled “Enable Product” which should be directly below
the “Quantity” field. If the toggle is currently green, that means the product is currently
enabled, which means you should click the toggle in order to disable the product. The
toggle should change to a grey color to indicate the product is disabled. However, if
the toggle is already greyed out, then do nothing since the product had already been
disabled.”

2. Detailed localization of UI elements – let the user know exactly where to find the element

18

◦ e.g. “Click the ‘Go to Result’ button” is not sufficient. You must be extremely
detailed in your specification of each element, i.e. its relative position on the screen, its
proximity to other landmark elements, its color, what type of element it is, etc.

◦ Example: Instead of “Click the ‘Edit’ link”, you should write “Click on the blue “Edit”
link at the far righthand side of the row corresponding to the “Configurable Product”
we previously found."

3. Generalizability – the instructions should be written so that they could apply to any
instantiation of the Intent Template corresponding to the task
◦ e.g. The instructions should be written generally, providing task-specific information

as asides.
◦ Example: Instead of “Type “Out of Office" in the “What’s your status?” input box.”,

you should write “Type the desired Gitlab status in the “What’s your status?” input box.
In this case, we should type “Out of Office””

4. Explanations of each action – briefly explain why we take each step (in the context of the
next action, or the larger task)
◦ e.g. What is the point of each individual action?
◦ Example: Instead of “Click the “From” text field”, you should write “Click the “From”

text field to focus it.”
◦ Example: Instead of “Click on the toggle labeled ’Enable Product”’, you should write

“Click on the toggle labeled ’Enable Product’ to disable the product.”

A.7 Example Hypothetical BPM Project

For clarity, we provide the following as an example of what a hypothetical BPM project might
entail. Let’s say a hospital wants to accelerate the workflow by which admitted patients have their
insurance verified. Today, the process is done completely manually by a team of billing specialists.
The workflow involves copying the patient’s demographic information into several databases and
visiting an insurer’s web portal to verify that the patient’s insurance coverage is accurate and up-
to-date. A hypothetical BPM project for accelerating this workflow might progress as follows: (1)
Documentation: First, a business development (BD) analyst interviews all of the billing specialists
on the team, conducts shadowing sessions over Zoom, and watches screen recordings collected
by the team in order to create written documentation of the insurance verification workflow. (2)
Knowledge Transfer: After creating a draft of the workflow, the BD analyst hosts a series of in-
person brainstorming sessions with the team; the BD analyst identifies several gaps in her current
understanding of the workflow, and they collaboratively arrive at a shared consensus of all steps
involved in the end-to-end workflow. (3) Improvement: From these conversations, the BD analyst
identifies several bottlenecks and inefficiencies; for example, entering the patient’s demographic
information into multiple databases that could instead be automatically synced, or waiting for the
approval of another department that has a turnaround of one week but isn’t strictly necessary. The
BD analyst then draws a new, more streamlined workflow diagram and shares her findings with the
billing team to implement. (4) Automation: Based on these observations, the billing team believes
that several of the subtasks within this new workflow might be automatable. They enlist the help
of the hospital’s IT department to build an integration between their two database applications to
automate this data entry. They also work on developing a robotic process automation (RPA) bot that
can navigate multiple screens to automatically submit forms to insurers.

19

Figure 8: Data collected for each demonstration in WONDERBREAD. The example shown here
contains the first 3 keyframes and 2 actions from demonstration "0 @ 2023-12-25-15-10-58" for
solving Task #0 ("What is the top-1 best-selling product in 2022?")

20

B Benchmark Tasks

For clarity, we define the following notation: Our dataset contains a set of workflow demonstrations
D. Each demonstration d ∈ D is defined as d = (I, SOP, (s1, a1, s2, a2, ..., an−1, sn)) where I is the
"Intent" or the natural language description of the workflow being done, SOP is a manually written
step-by-step guide describing the steps taken in the demonstration, si is the ith state of the webpage,
and ai is the action taken at state si (i.e. a ’click’, ’keystroke’, or ’scroll’ event extracted from the
trace). We represent each state si as a .png image which contains a single frame extracted from the
screen recording of the demonstration. We select these frames by first logging the timestamp of every
action ai taken during the demonstration, then iterating through every frame of the screen recording
video and extracting the frames corresponding to those action timestamps. We refer to these as "key
frames.". There are multiple demonstrations d for each workflow, so I is not unique. However, SOP
and (s1, a1, s2, a2, ..., an−1, sn)) are unique across different demonstrations.

Table 6: Tasks in WONDERBREAD. Here, "Demo" can include some combination of an intent (I),
a SOP, screenshot key frames of states (s1, ..., sn), and/or a trace of actions (a1, ..., an−1) for that
demonstration.

Task Input Output Eval Multi-
modal

Multiple
Demos

Documentation
SOP Generation 1 Demo SOP LLM ✔ –
Demo Segmentation 2+ Demos Clustering ARI ✔ ✔

Knowledge Transfer
Question Answering Question & 1+ Demos Free text LLM ✔ ✔
Demo Validation 1 Demo with SOP Binary label F1 ✔ –

Improvement
Demo Ranking 3+ Demos Ranking Kendall τ ✔ ✔
SOP Improvement 1 Demo & SOP SOP LLM ✔ –

B.1 Documentation

These subtasks assess a model’s ability to generate documentation for existing workflows.

1. SOP Generation Description: Given specified components of a workflow demonstration,
the model is tasked with generating a new SOP that documents the steps of that workflow.
This evaluates a model’s ability to generate written documentation.

Input: Given a demonstration d = (I, SOP, (s1, a1, s2, a2, ..., an−1, sn)), we provide
the model with either (I), (I, (s1, ..., sn)), or (I, (s1, a1, ..., an−1, sn)). In our Results
Table 3, these correspond to rows with one checkmark under the "Intent" column, two
checkmarks under the "Intent" and "Keyframes" columns, and three checkmarks under
the "Intent", "Keyframes", and "Trace" columns, respectively.
Output: An new SOP denoted as s′ describing the steps of demonstration d.
Evaluation: Pairwise per-line comparison between s and s′ that determines the preci-
sion and recall as described in Appendix Section C.2

2. Demonstration Segmentation Given multiple demonstrations from separate workflows
concatenated into a single sequence, identify when each demonstration starts and ends. This
evaluates the model’s ability to disambiguate between different workflows occurring in
sequence.

Input: A concatenated sequence of k demonstrations {di}ki=1, represented as either
(s11, ..., s

1
n||...||sk1 , ..., skn) or (s11, a

1
1, ..., a

1
n−1, s

1
n||...||sk1 , ak1 , ..., akn−1, s

k
n).

Output: For each frame s in the provided input, assign each of the frames to one of the
k demonstrations. This generates a clustering that maps frames to demonstrations. For
example, given 20 frames from three demonstrations (A,B,C), an output assignment
clustering might map frames 1-5 to demonstration A, frames 6-10 to demonstration C,
and frames 11-20 to demonstration B.
Evaluation: Given the k clusters of frames, measure the adjusted rand score.

21

B.2 Knowledge Transfer

These subtasks assess a model’s ability to apply knowledge of workflows in practical scenarios.

1. Question Answering - Given a question about one or more workflow demonstrations,
generate a natural language answer.

Input: A brief question (instantiated from one of the templates in Appendix A.5), and
one or two demonstrations, where each demonstration is represented as either (SOP)
or (s1, a1, ..., an−1, sn).
Output: A natural language answer to the question.
Evaluation: Using GPT-4-as-a-judge, compare a human-written reference answer to
the generated answer and determine a score for specified criteria on a scale from 1
(bad) to 3 (good). Specified criterion include completeness (the response fully answers
the question), soundness (the response is logically consistent), clarity (the response is
unambiguous), and compactness (the response is concise).

2. Demonstration Validation - Given a demonstration and SOP, determine whether (a) the
workflow was successfully completed; and (b) whether the demonstration exactly followed
the steps of the SOP. For (b), it is not sufficient to merely complete the workflow, but the
steps taken to complete it must align with its corresponding SOP.

Input: For (a) we create "positive" examples by sampling full sequences of
(s1, a1, ..., an−1, sn) from our dataset, and create "negatives" by truncating some
sequences by a random number of frames to get (s1, a1, ..., sk−1, sk) where k < n.
Given this sequence, we prompt the model to provide a binary assessment of whether
the workflow was completed or not. For (b), we create "positives" by sampling full
sequences (s1, a1, ..., an−1, sn) from our dataset, then and either (a) randomly shuffle
or (b) randomly delete frames from this sequence to generate "negative" examples.
We prompt the model with this sequence and the SOP, and have it output a binary
assessment of whether the sequence exactly followed the SOP.
Output: For (a), a binary assessment of whether the given sequence was truncated.
For (b), a binary assessment of whether the given sequence exactly followed the steps
of its associated SOP.
Evaluation: Binary classification metrics (ie. Accuracy, F1-Score).

B.3 Improvement

These subtasks evaluate a model’s capacity to improve a given workflow’s efficiency.

1. SOP Ranking - Given a set of SOPs written by different human annotators for the same
workflow, rank the SOPs in order of quality.

Input: A set of k SOPS {SOPi}ki=1 written by different annotators for the same
workflow.
Output: A ranking of the quality of the SOPs from 1...k, where 1 is best and k is
worst.
Evaluation: Given a provided ground truth ranking, determine the Spearman correla-
tion and Kendall’s Tau between the predicted ranking and the ground truth.

2. SOP Improvement - Given a demonstration and low-quality SOP, and a rubric, generate an
improved SOP that better captures what is shown in the demonstration.

Input: One demonstration d1, a low quality SOP1 generated by a human and an SOP
generation rubric r.
Output: An improved SOP1

′
that better aligns with the provided rubric.

Evaluation: LLM-based evaluation, where the model generates a rating of 1.0 - 5.0
conditioned upon a rubric.

22

C Evaluation

C.1 Compute

We rely on the publicly available APIs for each of the multimodal FMs we benchmark in this report:
GPT-4, Claude3 Sonnet, and Gemini Pro. Thus, we did not require any GPUs to run our benchmark.
In terms of cost, the Gemini Pro 1 API was free to use, the Claude 3 API cost roughly $400 in credits,
and the GPT-4 API cost roughly $1,000 in credits.

C.2 LLM-Based Evaluation

SOP Generation
The automated evaluation for the SOP Generation task utilized a pairwise per-step comparison
operating over the generated new SOP and the reference high quality SOP. Through a series of
iterative prompts, GPT-4 was tasked to identify if the intention of a step in the new SOP was
encapsulated in any step of the reference SOP and vice versa. The record of which steps were not
included in the alternative SOP were then utilized to calculate the per-step precision, recall, and
F1-score.

The precision (P), recall (R), and F1-score (F1) are calculated as follows:

P =
TP

TP + FP

R =
TP

TP + FN

F1 = 2× P ×R

P +R

Where:

• TP (True Positives) is the number of steps in the new SOP that correctly map steps in the
reference SOP.

• FP (False Positives) is the number of steps in the new SOP that do not map to any step in
the reference SOP.

• FN (False Negatives) is the number of steps in the reference SOP that do not map to any
step in the new SOP.

For the SOP Generation task, we found that our LLM-based evaluator was able to achieve high
correlation out of the box with human raters as shown in Appendix Table 9. We hypothesize that
this is because the SOP Generation evaluation task is set up to only require the model to make a
binary decision over an atomic fact, rather than assess the quality of an open-ended question as in the
Question Answering task, as seen in other works on LLM-based evaluations [40].

Question Answering
We rate each answer on a scale from 1 (bad) to 3 (good) on the following four criteria: completeness
(the response fully answers the question), soundness (the response is logically consistent), clarity
(the response is unambiguous), and compactness (the response is concise). Our original LLM-based
evaluators had low correlation with human raters – an average Pearson correlation of 0.56 for scoring
free reponses questions on a scale of 1 (low quality) to 3 (high) across the four axes of soundness,
completeness, clarity, and compactness. We noticed that GPT-4 tended to be overly generous in its
ratings. Adding a 3-shot example to our evaluation prompt (one for each possible score) and refining
the prompt to "score harsher" helped increase the average correlation with human raters by 54% (to
0.86), as shown in Appendix Table 8.

23

Figure 9: Demo Segmentation: Results from GPT-4 evaluated on k = 3 concatenated workflows
when provided the workflow intent, SOP, and keyframes. (Outset) Each row represents a concatenated
sequence of frames from 4 demonstrations. Green line segments are frames that were classified as
belonging to the correct task. Red segments are incorrectly classified frames. Black markers indicate
a transition between tasks in the ground truth sequence. (Inset) The distribution of distances between
each incorrect frame prediction and its closest transition point. Its heavy right skew indicates that
the transitions between workflows are where most errors occur, but that GPT-4 is typically able to
recover within 3 frames into a workflow.

D Additional Results

Table 7: Knowledge Transfer: Average scores across all 4 evaluation axes for question answering.
Model Completeness Soundness Clarity Compactness Average Score

Claude3 Sonnet 1.56 1.83 2.18 2.61 2.05
Gemini Pro 1 1.81 2.15 2.83 2.95 2.44
GPT-4 2.20 2.51 2.96 2.85 2.63

Human 3.00 3.00 2.64 2.88 2.88

Table 8: Knowledge Transfer: Correlation between GPT-4 and human-based evaluation based on 60
randomly sampled question-answer pairs.

Criteria Pearson Corr. Pearson p-value Spearman Corr. Spearman p-value

Completeness 0.84 5.38e-09 0.86 1.12e-09
Soundness 0.92 1.51e-12 0.88 2.34e-10
Clarity 0.80 1.01e-07 0.80 1.01e-07
Compactness 0.89 2.07e-13 0.89 7.41e-11

Table 9: SOP Generation: Correlation between GPT-4 and human-based evaluation of the preci-
sion/recall of generated SOPs based on 30 randomly sampled examples.

Criteria Pearson Corr. Pearson p-value Spearman Corr. Spearman p-value

Precision 0.84 4.63e-09 0.85 2.80e-09
Recall 0.88 1.63e-10 0.82 3.97e-08

24

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.2

0.4

0.6

0.8

1.0
R

ec
al

l

Claude3 - TD
Claude3 - TD+KF
Claude3 - TD+KF+ACT
GPT4 - TD
GPT4 - TD+KF
GPT4 - TD+KF+ACT
GeminiPro - TD
GeminiPro - TD+KF
GeminiPro - TD+KF+ACT

Figure 10: SOP Generation: Each point is an individual SOP. Higher and to the right is better.
GPT-4 tends to excel at identifying all steps in a demonstration (i.e. higher recall) but hallucinates
inaccurate or superfluous steps (i.e. lower precision).

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Kendall Correlation

0

20

40

60

80

100

120

140

Fr
eq

ue
nc

y

Figure 11: SOP Ranking: Ranking demos based solely on SOPs is essentially random

25

(a) In the examples above, both models (middle columns) generate an almost entirely correct SOP (far right
column) for the given workflow (far left column). Minor mistakes are marked in red. GPT4 incorrectly mentions
to click on "Bestsellers" under the "Sales" category, but this tab is actually under the "Product" category. Claude3
mentions to “Navigate to the generic e-commerce admin based on Adobe Magneto”, which is incorrect since the
workflow starts with the user already on this webpage, and thus there is no need to do any navigation. This was a
common failure mode noted for models – while including this step is not deleterious, it is not strictly correct.
Otherwise, both models generate a correct SOP.

(b) In the examples above, both models (middle columns) make significant mistakes in generating SOPs relative
to the ground truth (far right column). GPT4 provides extra information on how to mark the todo items as
complete and recommends navigating away from the page, which is not a part of the workflow as demonstrated
by the user. Claude3 misinterprets the task and assumes that the user wants to mark todo items as complete and
gives instructions for that, which is incorrect. Claude3 also provides an incorrect instruction to navigate to the
todo list.

Figure 12: Qualitative Analysis of SOP Generation Task: Above, we provide success (top) and
failure cases (bottom) for GPT4 and Claude3 on the SOP generation task where the model is provided
with the task description, key frames, and action trace.

26

(a) In the examples above, both models (middle columns) are able to successfully answer a question (far left
column) about modifying a demonstration to achieve a slightly different goal. The models are provided key
frame screenshots of the demonstration as well as an action trace. The ground truth answer is shown in the far
right column.

(b) In the examples above, neither model (middle columns) answers the question (far left column) as expected in
the ground truth answer (far right column). The models are expected to answer the most common error modes,
however, both models give error modes that are relatively unlikely to happen for a human, as the UI elements are
easy to find and less likely to be the cause for error than making a higher-level reasoning error as in the ground
truth answer.

Figure 13: Qualitative Analysis of Question Answering Task: Above, we provide success (top)
and failure cases (bottom) for GPT4 and Claude3 on the Question Answering task.

27

D.1 Overall Dataset Stats

Figure 14: Distribution of task difficulty across websites.

28

Figure 15: Number of demonstrations per task

29

Figure 16: Number of steps in SOP per demonstration

Figure 17: Length of video recording (in seconds) per demonstration

30

Figure 18: Number of clicks per demonstration

Figure 19: Number of scrolls per demonstration

31

Figure 20: Number of keystrokes per demonstration

32

D.2 Dataset Stats, Split By Difficulty

Figure 21: Number of steps per SOP per demonstration, split by task difficulty

Figure 22: Number of tokens per SOP per demonstration, split by task difficulty

33

Figure 23: Length of video recording (in seconds) per demonstration, split by task difficulty

Figure 24: Length of video recording (in seconds) per demonstration, split by task difficulty

34

Figure 25: Number of actions per demonstration, split by task difficulty

Difficulty Min Median Max

Medium 1 7 82
Hard 2 10 48
Easy 1 5 14

Table 10: Number of steps per SOP, split by task difficulty

Difficulty Min Median Max

Medium 12 154 1631
Hard 62 240 976
Easy 18 114 382

Table 11: Number of tokens per SOP, split by task difficulty

35

D.3 Dataset Stats, Split By Website

Website Min Median Max

shopping_admin 30 163 704
gitlab 12 151 870
shopping 18 121 1631
reddit 43 148 382

Table 12: Number of tokens per SOP, split by website

Website Min Median Max

shopping_admin 0 6 29
gitlab 0 6 44
shopping 1 4 47
reddit 2 6 23

Table 13: Number of mouseups per demonstration, split by website

Website Min Median Max

shopping_admin 0 1 8
gitlab 0 1 7
shopping 0 0 7
reddit 0 1 8

Table 14: Number of keystrokes per demonstration, split by website

Website Min Median Max

shopping_admin 0 0 6
gitlab 0 0 7
shopping 0 0 3
reddit 0 0 1

Table 15: Number of keypresses per demonstration, split by website

Website Min Median Max

shopping_admin 0 1 13
gitlab 0 0 9
shopping 0 1 28
reddit 0 0 5

Table 16: Number of scrolls per demonstration, split by website

36

E Instructions for Annotators

The figures below contain the instructions and other training provided to the annotators.

Figure 26: This is the initial onboarding email that asks annotators to set up an online meeting for
training.

Figure 27: This email provides annotators instructions about how to re-record demonstrations after
quality checks. Additionally, there are instructions to write Gold SOPs.

37

Figure 28: This screenshot provides instructions on how to get the environment and technology setup
before recording demonstrations.

38

Figure 29: This screenshot provides instructions on the different websites and how to record.

39

Figure 30: This screenshot explains how to write a SOP.

40

Figure 31: This screenshot is the first part of instructions on how to write a gold SOP.

41

Figure 32: This screenshot is the second part of instructions on how to write a gold SOP.

42

F Prompts

In this section, we delineate the various prompts used in WONDERBREAD for generating model
outputs and conducting LLM-based evaluations.

F.1 Documentation Task Prompts

Prompts utilized in the two Documentation related tasks introduced in Section 4.1.

F.1.1 Demo Segmentation

In this section, we have provided the prompts utilized in the demonstration segmentation task. The
full prompt is broken up into two parts, the second of which has two variations depending one what
the user wants to model to return. These prompts are available in our Github repo at the following
location: § https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/
benchmark/tasks/documentation/demo_segmentation/prompts.py.

prompt__intro: str = lambda n_tasks , task_descriptions: f"""# Task
You are a process mining automation tool. Your are given a recording of a worker doing multiple

workflows (potentially overlapping).
Your job is to segment this recording into discrete workflows -- i.e. identify which actions correspond

to which workflow.
Workflow segmentation is important for process mining because it allows us to analyze the performance

of each workflow separately.

Workflow

The {n_tasks} workflows being executed in the recording are as follows:
{task_descriptions}

Workflow Demonstration

You are given the following recording of the worker completing these {n_tasks} workflows over the
course of this recording.

The recording is presented in chronological order.
The workflows are executed in sequence , but may be present in any order. You can assume that the worker

always finishes a workflow before starting the next one.
The recording may include both screenshots and the actions taken to transition between screenshots.

Each screenshot and action is labeled with a unique identifier ("UUID"). We will use these UUIDs to
refer to specific screenshots and actions in the recording when segmenting the recording into the
{n_tasks} workflows.

Here is the overall recording:"""

Prompt 1: Introduction part of the prompt for the demonstration segmentation task. This introduction
precedes the collection screens

prompt__close_uuid: str = lambda n_tasks , task_descriptions , sops : f"""
Instructions

Given what you observe in the previous recording , please classify each UUID as belonging to one of the
{n_tasks} workflows.

As a reminder , the workflows are as follows. Each workflow is assigned a classification letter:
{task_descriptions}

The workflows may be present in the recording in any order. You can assume that the worker always
finishes a workflow before starting the next one , so there are no overlapping workflows.

{sops if sops else ""}

Provide your answer as a JSON dictionary with the following format:
{{

"UUID_1 ": <workflow classification >,
"UUID_2 ": <workflow classification >,
...

}}

Please write your JSON below:
"""

Prompt 2: A variation of the second part of the segmentation task prompt that asks the model to
predict the start and end screenshots/actions for each workflow demonstration. As shown in the
prompt, the model is asked to structure it’s output in the form of a JSON dictionary with specific
keys.

43

https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/documentation/demo_segmentation/prompts.py
https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/documentation/demo_segmentation/prompts.py
https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/documentation/demo_segmentation/prompts.py
https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/documentation/demo_segmentation/prompts.py

prompt__close_start_end: str = lambda n_tasks , task_descriptions , sops : f"""
Instructions

Given what you observe in the previous recording , please tell me the start and end UUIDs for each of
the {n_tasks} workflows.

As a reminder , the workflows are as follows. Each workflow is assigned a classification letter:
{task_descriptions}

The workflows may be present in the recording in any order. You can assume that the worker always
finishes a workflow before starting the next one , so there are no overlapping workflows.

{sops if sops else ""}

Provide your answer as a JSON dictionary with the following format:
{{

"A": {{
"start": <start UUID for workflow A>,
"end": <end UUID for workflow B>

}},
"B": {{

"start": <start UUID for workflow A>,
"end": <end UUID for workflow B>

}},
...

}}

You must respond with valid JSON. Please write your JSON below:
"""

Prompt 3: A variation of the second part of the segmentation task prompt that asks the model to
classify each individual screenshot and action.

F.1.2 SOP Generation

Here we have included the prompts utilized in the SOP Generation task. The full prompt is broken
apart into multiple partial prompts with slight variations depending on the ablation setting (what
information is being provided to the model). These prompts are available in our codebase at the follow-
ing link: § https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/
benchmark/tasks/documentation/sop_generation/prompts.py

prompt__start: str = lambda task_descrip , ui_name : f"""# Task
Your job is to write a standard operating procedure (SOP) for a workflow.

Workflow

The workflow is: "{ task_descrip if task_descrip else ’Some unspecified digital task ’}"

User Interface

The workflow will be executed within a web application. The web application is called: "{ ui_name }"
"""

Prompt 4: Introduction partial prompt for the SOP generation task. This text preceeds the following
"Final Part" of the SOP Generation prompt as well as any representation of the demonstration
included.

44

https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/documentation/sop_generation/prompts.py
https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/documentation/sop_generation/prompts.py
https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/documentation/sop_generation/prompts.py
https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/documentation/sop_generation/prompts.py

prompt__end: str = lambda : f""" Here is a sample format for what your SOP should look like:
‘‘‘
1. Type the name of the repository in the search bar at the top left of the screen. The placeholder

text in the search bar is "Find a repository ...", and it is located directly to the right of the
site logo.

2. A list of repositories will appear on the next page. Scroll down until you see a repository with the
desired name. The name of the repository will be on the lefthand side of the row in bold font.

Stop when you find the name of the repository.
3. Click on the relevant repository to go to the repository ’s main page.
‘‘‘

Note , the above SOP is just an example. Use the same format , but the actions will be different for your
workflow.

Be as detailed as possible. Each step should be a discrete action that reflects what you see in the
corresponding step. Don’t skip steps.

Please write your SOP below:"""

Prompt 5: Final part of the partial prompt for the SOP Generation task. This text is preceded by both
the introduction (above) and any other included representations of the demonstration (depending on
the ablation setting).

prompt__td_intro: str = lambda task_descrip , ui_name: f"""{prompt__start(task_descrip , ui_name)}"""

prompt__td_close: str = lambda : f"""
Instructions

Write an SOP for completing this workflow on this website. The SOP should simply contain an enumerated
list of actions taken by the user to complete the given workflow.

In your SOP , list all of the actions taken (i.e., buttons clicked , fields entered , mouse scrolls etc.).
Be descriptive about elements (i.e., ’the subheading located under the "General" section ’).

{prompt__end ()}"""

prompt__td_kf_intro: str = lambda task_descrip , ui_name: f"""{prompt__start(task_descrip , ui_name)}

Workflow Demonstration

You are given the following sequence of screenshots which were sourced from a demonstration of the
workflow.

The screenshots are presented in chronological order.

Here are the screenshots of the workflow:"""

prompt__td_kf_close: str = lambda : f"""
Instructions

Given what you observe in the screenshots , write an SOP for completing the workflow on this website.
The SOP should simply contain an enumerated list of actions taken by the user to complete the
given workflow.

In your SOP , list all of the actions taken (i.e., buttons clicked , fields entered , mouse scrolls etc.).
Be descriptive about elements (i.e., ’the subheading located under the "General" section ’). Use

the location of the mouse to identify which exact elements were clicked.

{prompt__end ()}"""

prompt__td_act_intro: str = lambda task_descrip , ui_name: f"""{prompt__start(task_descrip , ui_name)}

Workflow Demonstration

You are given the following sequence of actions which were sourced from a demonstration of the workflow
.

The actions are presented in chronological order.
Note that the action is written in a simplified DSL (domain -specific language) that we use to describe

actions taken by users. You will need to translate this into a natural language description of the
action and add more details about what was happening , why , and what elements were interacted with

.

Here are the actions of the workflow:"""

prompt__td_act_close: str = lambda : f"""
Instructions

Given what you observe in the sequence of DSL actions , write an SOP for completing the workflow on this
website. The SOP should simply contain an enumerated list of actions taken by the user to

complete the given workflow.
In your SOP , list all of the actions taken (i.e., buttons clicked , fields entered , mouse scrolls etc.).

Be descriptive about elements (i.e., ’the subheading located under the "General" section ’). Use
the location of the mouse to identify which exact elements were clicked.

{prompt__end ()}"""

prompt__td_kf_act_intro: str = lambda task_descrip , ui_name: f"""{prompt__start(task_descrip , ui_name)}

Workflow Demonstration

You are given the following sequence of screenshots which were sourced from a demonstration of the
workflow.

The screenshots are presented in chronological order.

45

Between each screenshot , you are also provided the action that was taken to transition between
screenshots.

However , the action is written in a simplified DSL (domain -specific language) that we use to describe
actions taken by users. You will need to translate this into a natural language description of the
action and add more details about what was happening , why , and what elements were interacted with

.

Here are the screenshots and actions of the workflow:"""

prompt__td_kf_act_close: str = lambda : f"""
Instructions

Given what you observe in the previous sequence of screenshots and DSL actions , write an SOP for
completing the workflow for this specific interface. The SOP should simply contain an enumerated
list of actions taken by the user to complete the given workflow.

In your SOP , list all of the actions taken (i.e., buttons clicked , fields entered , mouse scrolls etc.).
Be descriptive about elements (i.e., ’the subheading located under the "General" section ’). Use

the location of the mouse to identify which exact elements were clicked.

{prompt__end ()}
"""

Prompt 6: Multiple variations of the full SOP Generation prompt. The various generations correspond
to different ablation settings, ie. which representations of the demonstration are shown to the model.

We also created alternative forms of the SOP Generation task’s prompts that task the model to build
the SOP by examining each step of the workflow independently. These variations are included below:

prompt__start__pairwise: str = lambda task_descrip , ui_name : f"""# Task
Your job is to determine the single action that was taken between these screenshots were taken.

User Interface

The web application where the screenshots are taken from is called: "{ ui_name }"
"""

prompt__end__pairwise: str = lambda : f""" Here is a sample format for what your output should look like
:

‘‘‘
1. Click on the searchbar at the top left of the screen to focus it. The placeholder text in the search

bar is "Find a repository ...", and it is located directly to the right of the site logo.
2. Type the name of the repository into the searchbar.
‘‘‘

Note , the above output is just an example. Use the same format , but the action might be different for
your screenshots.

You might have only one item in your output , or you might have multiple items. It depends on the action
that took place between the screenshots.

Be as detailed as possible. Each step should be a discrete action that reflects what you see in the
screenshots. Don’t skip steps.

Only include the action that took place between the screenshots , and do not make any assumptions about
what happened before or after the screenshots were taken.

Please write your output below:"""

prompt__td_kf_intro__pairwise: str = lambda task_descrip , ui_name: f"""{prompt__start__pairwise(
task_descrip , ui_name)}

Workflow Demonstration

You are given the following two screenshots which were sourced from a demonstration of the workflow.
The screenshots are presented in chronological order.
The first one was taken directly before the action was taken , and the second one was taken directly

after the action was executed.
Note that these screenshots could have been taken at any step of the workflow.

Here are the screenshots of this specific step from the larger workflow:"""

prompt__td_kf_close__pairwise: str = lambda : f"""
Instructions

Given what you observe in the screenshots , write the step(s) corresponding to this action that would go
into a larger SOP for completing the workflow on this website.

Make sure to list all of the actions taken to go from one screenshot to the other (i.e., buttons
clicked , fields entered , mouse scrolls etc.). Be descriptive about elements (i.e., ’the subheading
located under the "General" section ’). Use the location of the mouse to identify which exact

elements were clicked.

{prompt__end__pairwise ()}
"""

prompt__td_kf_act_intro__pairwise: str = lambda task_descrip , ui_name: f"""{prompt__start__pairwise(
task_descrip , ui_name)}

Workflow Demonstration

46

You are given the following two screenshots which were sourced from a demonstration of the workflow.
The screenshots are presented in chronological order.
The first one was taken directly before the action was taken , and the second one was taken directly

after the action was executed.
Note that these screenshots could have been taken at any step of the workflow.

Between each screenshot , you are also provided the action that was taken to transition between
screenshots.

However , the action is written in a simplified DSL (domain -specific language) that we use to describe
actions taken by users. You will need to translate this into a natural language description of the
action and add more details about what was happening , why , and what elements were interacted with

.

Here are the screenshots and action of this specific step from the larger workflow:"""

prompt__td_kf_act_close__pairwise: str = lambda : f"""
Instructions

Given what you observe in the screenshots and DSL action , write the step(s) corresponding to this
action that would go into a larger SOP for completing the workflow on this website.

Make sure to list all of the actions taken to go from one screenshot to the other (i.e., buttons
clicked , fields entered , mouse scrolls etc.). Be descriptive about elements (i.e., ’the subheading
located under the "General" section ’). Use the location of the mouse to identify which exact

elements were clicked.

{prompt__end__pairwise ()}
"""

prompt__join_pairwise: str = lambda sop , separator : f"""
Your job is to create a standard operating procedure (SOP) for a workflow that outlines each step taken

to complete the workflow.

Previously , you were given subsets of consecutive screenshots taken from a longer sequence of
screenshots of a workers doing the workflow. You were asked to write the step(s) taken between
each screenshot. Our goal is to compile these smaller sets of steps into a larger SOP for
completing the entire workflow.

I’ve copied your responses for this previous pairwise screenshot analysis below. Each pair of
screenshots is separated by {separator }.

‘‘‘
{sop}
‘‘‘

Your job now is to combine these steps into a single , coherent SOP for completing the entire workflow.
The steps are ordered chronologically , so you do not need to worry about the ordering of the

steps. Instead , you should remove any duplicate steps and ensure that the steps flow logically
from one to the next.

Please write your unified SOP below:
"""

Prompt 7: Alternative variations of the SOP Generation Prompts that build the SOP by independently
examining each step of the workflow.

47

F.2 Knowledge Transfer Prompts

Prompts utilized in the two Knowledge Transfer related tasks introduced in Section 4.2.

F.2.1 Demo Validation

This section contains prompts utilized in the Demonstration Validation Task, in which
the model is asked to characterize if the workflow successfully completed or if the cor-
rect overall trajectory was followed. These prompts are available in the following file
in our Github repo: § https://github.com/HazyResearch/wonderbread/blob/main/
wonderbread/benchmark/tasks/knowledge_transfer/demo_validation/prompts.py
prompt__validate_task_completion__intro: str = lambda task_descrip , sop: f"""# Task
Your job is to decide whether the workflow was successfully completed , as depicted by the following

sequence of screenshots.

Workflow

The workflow is: "{ task_descrip if task_descrip else ’Unknown ’}"

User Interface

The workflow was executed within the web application shown in the screenshots.

{section__sop(sop) if sop is not None else ’’}

Workflow Demonstration

You are given the following sequence of screenshots which were sourced from a demonstration of the
workflow.

The screenshots are presented in chronological order.

Between each screenshot , you are also provided the action that was taken to transition between
screenshots.

Here are the screenshots and actions of the workflow:"""

prompt__validate_task_completion__close: str = lambda : f"""
Instructions

Given what you observe in the previous sequence of screenshots and actions , was the workflow
successfully completed?

If the workflow is asking a question , consider it completed successfully if you could deduce the answer
to the question by viewing the screenshots.

If the workflow was completed successfully , then set ‘was_completed ‘ to ‘true ‘

Provide your answer as a JSON dictionary with the following format:
{{

"thinking ": <think step by step what the answer should be>,
"was_completed ": <true/false >

}}

Please write your JSON below:
"""

Prompt 8: The two parts of the prompt utilized to evaluate task ’completion’, ie. whether the workflow
was successfully completed. As shown in the prompt, the model is asked to structure it’s output in
the form of a JSON dictionary with specific keys.

48

https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/knowledge_transfer/demo_validation/prompts.py
https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/knowledge_transfer/demo_validation/prompts.py
https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/knowledge_transfer/demo_validation/prompts.py
https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/knowledge_transfer/demo_validation/prompts.py

prompt__validate_task_trajectory__intro: str = lambda task_descrip: f"""# Task
Your job is to decide whether the workflow that is demonstrated in the following sequence of

screenshots ACCURATELY FOLLOWED the Step -by -Step Guide.

Workflow

The workflow is: "{ task_descrip if task_descrip else ’Unknown ’}"

User Interface

The workflow was executed within the web application shown in the screenshots.

Workflow Demonstration

You are given the following sequence of screenshots which were sourced from a demonstration of the
workflow.

The screenshots are presented in chronological order.

Between each screenshot , you are also provided the action that was taken to transition between
screenshots.

Here are the screenshots and actions of the workflow:"""

prompt__validate_task_trajectory__close: str = lambda sop : f"""

{section__sop(sop) if sop is not None else ’’}

NOTE: The screenshots may not map 1-to -1 to the steps in the Step -by-Step Guide. i.e. screenshot #3 may
correspond to step #2 (or multiple steps) in the Step -by-Step Guide.

However , as long as the general flow of the workflow is the same , then the workflow is considered to
have accurately followed the Step -by-Step Guide.

Also note that elements may be interchangeably referred to as buttons or links (the distinction is not
important).

Instructions

Given what you observed in the previous sequence of screenshots and actions , was the Step -by -Step Guide
accurately followed? If any of the steps are missing , or if any of the steps were performed out

of order , then the Step -by-Step Guide was not accurately followed and ‘was_accurate ‘ should be ‘
false ‘.

Provide your answer as a JSON dictionary with the following format:
{{

"thinking ": <think step by step what the answer should be>,
"inaccurate_steps ": <optional list of steps that were inaccurate >
"was_accurate ": <true/false >

}}

Please write your JSON below:
"""

Prompt 9: The two parts of the prompt utilized to evaluate task ’trajectory’, ie. whether the step-
by-step guide was accurately followed. As shown in the prompt, the model is asked to structure it’s
output in the form of a JSON dictionary with specific keys.

section__sop: str = lambda sop: f"""# Step -by -Step Guide

Here are the sequence of steps that were supposed to be followed to complete this workflow:
{sop}
"""

Prompt 10: Helper function utilized in building the Task Trajectory Prompts. Allows the user to
quickly interject a formatted representation of the Step-by-Step Guide (SOP) for the demonstration.

49

F.2.2 Question Answering

In this section, we list the prompts used for our GPT4-based scoring of the "completeness",
"soundness", "clarity" and "compactness" of model-generated answers for the Question Answer-
ing task. Note that in these prompts, a score of 1 corresponds to "good" and 3 corresponds
to "bad." To obtain Figure 6 in the main results, however, these scores were flipped for clar-
ity (i.e. in the radar plot, a score of 1 is "bad." The prompts listed below are also avail-
able at § https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/
benchmark/tasks/knowledge_transfer/question_answering/prompts.py
prompt__completeness_score: str = lambda question , human_label , response: f"""# Task
Your job is to evaluate the completeness of the response to a given question.
You are also provided with the human label for the question , which is the ideal response.

The question provided is related to analyzing a workflow demonstration in a web application.
You won’t be provided with information about the web application , but only the question , human label ,

and response.
You should evaluate the response based on the information provided in the response itself.

For evaluating the completeness of the response , you should consider the following:
- Whether the response fully answers the question
- Whether the response is complete in covering relevant information
- Whether the response encompasses all aspects and outcomes related to the question

Please rate the completeness of the response on a scale of 1-3, where:
1. The response is complete and fully answers the question
2. The response is mostly complete but is missing some key information
3. The response is incomplete and does not fully answer the question

Here is a sample question , human label and response for your reference:
Question: How would a user completing the task know that the workflow is completed?
Human Label: When the user reaches a page whose title is "Customers" and it has a table showing

customer information like name , phone number , etc.
Response: A user would know that the workflow is completed by successfully navigating to the "Customers

" page , where they can view the list of all customers , as shown in the final screenshot. This
indicates that the user has reached the intended section of the web application to manage or
review customer information.

Score: 2
Explanation: The response is mostly complete but is missing some key information. The response should

also mention that the page should have a table showing customer information like name , phone
number , etc , as per the human label.

Also , provided are two other examples for your reference:
Question: Explain what the most common failure modes might be for a user performing this task.
Human Label: A common failure mode could be replying to an existing comment instead of posting a new

comment.
Response: The most common failure modes for a user performing this task might include entering an

incorrect or inappropriate comment , failing to click the ’Post’ button after typing the comment ,
or experiencing a technical issue such as a browser error or a problem with the website ’s server
that prevents the comment from being posted successfully.

Score: 2

Question: Why does the user click the Commits button in step #5?
Human Label: To find the total number of commits Eric made , the "commits" button must be clicked.
Response: The user clicks the "Commits" button in step #5 to view the list of all commits made in the

desired repository , specifically to find commits that occurred on a particular date.
Score: 3

Here are the details for the question you need to evaluate:

Question
{question}

Human Label
{human_label}

Response to evaluate
{response}

Return only the number corresponding to the rating , nothing else.
"""

Prompt 11: Prompt for evaluating "completeness" scores in the question answering task. The model
is tasked to only return a number corresponding to the ranking and nothing else.

50

https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/knowledge_transfer/question_answering/prompts.py
https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/knowledge_transfer/question_answering/prompts.py
https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/knowledge_transfer/question_answering/prompts.py
https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/knowledge_transfer/question_answering/prompts.py

prompt__soundness_score: str = lambda question , human_label , response: f"""# Task
Your job is to evaluate the soundness of the response to a given question.
You are also provided with the human label for the question , which is the ideal response.

The question provided is related to analyzing a workflow demonstration in a web application.
You won’t be provided with information about the web application , but only the question , human label ,

and response.
You should evaluate the response based on the information provided in the response itself.

For evaluating the soundness of the response , you should consider the following:
- Whether the response accurately answers the question
- Whether the response avoids assumptions not backed by data or evidence
- Whether the response is logical and reasonable based on the context provided

Please rate the soundness of the response on a scale of 1-3, where:
1. The response is completely sound and logical without making extra assumptions
2. The response is mostly sound but may contain some minor logical flaws or assumptions
3. The response is unsound and contains major logical flaws or assumptions

Here is a sample question , human label and response for your reference:
Question: How would a user completing the task know that the workflow is completed?
Human Label: When the user reaches a page whose title is "Customers" and it has a table showing

customer information like name , phone number , etc.
Response: When the user sees the list of customers after just clicking on the "Customers" tab.
Score: 2
Explanation: The response is partially sound but incorrectly says that the user should just click on

the "Customers" tab , which is not accurate as the user would have to perform more actions to reach
the final page.

Also , provided are two other examples for your reference:
Question: Explain what the most common failure modes might be for a user performing this task.
Human Label: A common failure mode could be replying to an existing comment instead of posting a new

comment.
Response: The most common failure modes for a user performing this task might include entering an

incorrect or inappropriate comment , failing to click the ’Post’ button after typing the comment ,
or experiencing a technical issue such as a browser error or a problem with the website ’s server
that prevents the comment from being posted successfully.

Score: 1

Question: Why does the user click the Commits button in step #5?
Human Label: To find the total number of commits Eric made , the "commits" button must be clicked.
Response: The user clicks the "Commits" button in step #5 to view the list of all commits made in the

desired repository , specifically to find commits that occurred on a particular date.
Score: 1

Here are the details for the question you need to evaluate:

Question
{question}

Human Label
{human_label}

Response to evaluate
{response}

Return only the number corresponding to the rating , nothing else.
"""

Prompt 12: Prompt for evaluating "soundness" scores in the question answering task. The model is
tasked to only return a number corresponding to the ranking and nothing else.

51

prompt__clarity_score: str = lambda question , response: f"""# Task
Your job is to evaluate the clarity of the response to a given question.

The question provided is related to analyzing a workflow demonstration in a web application.
You won’t be provided with information about the web application , but only the question , human label ,

and response.
You should evaluate the response based on the information provided in the response itself.

For evaluating the clarity of the response , you should consider the following:
- Whether the response is presented in an unambiguous and straightforward manner
- Whether the response needs any clarification or additional information to be easily understood
- Whether the response can have only one interpretation

Please rate the clarity of the response on a scale of 1-3, where:
1. The response is clear , unambiguous , and easily understood
2. The response is somewhat clear but may require some additional information or clarification
3. The response is unclear , ambiguous , or can have multiple interpretations

Here is a sample question and response for your reference:
Question: How would a user completing the task know that the workflow is completed?
Response: When the user sees the list of customers after just clicking on the "Customers" tab.
Score: 2
Explanation: The response is somewhat clear but could be more specific about the final outcome.

Here is another sample question and response for your reference:
Question: Explain what the most common failure modes might be for a user performing this task.
Response: Not scrolling down through all the posts.
Score: 3
Explanation: The response is unclear and lacks details on why not scrolling down through all the posts

can lead to failure modes.

Also , provided is another example for your reference:
Question: Explain what the most common failure modes might be for a user performing this task.
Human Label: A common failure mode could be replying to an existing comment instead of posting a new

comment.
Response: The most common failure modes for a user performing this task might include entering an

incorrect or inappropriate comment , failing to click the ’Post’ button after typing the comment ,
or experiencing a technical issue such as a browser error or a problem with the website ’s server
that prevents the comment from being posted successfully.

Score: 1

Here are the details for the question you need to evaluate:

Question
{question}

Response to evaluate
{response}

Return only the number corresponding to the rating , nothing else.
"""

Prompt 13: Prompt for evaluating "clarity" scores in the question answering task. The model is tasked
to only return a number corresponding to the ranking and nothing else.

52

prompt__compactness_score: str = lambda question , response: f"""# Task
Your job is to evaluate the compactness of the response to a given question.

The question provided is related to analyzing a workflow demonstration in a web application.
You won’t be provided with information about the web application , but only the question , human label ,

and response.
You should evaluate the response based on the information provided in the response itself.

For evaluating the compactness of the response , you should consider the following:
- Whether the response is short and to the point
- Whether the response is concise and does not contain unnecessary information

Please rate the compactness of the response on a scale of 1-3, where:
1. The response is concise , to the point , and does not contain any unnecessary information
2. The response is somewhat compact but may contain some unnecessary information
3. The response is verbose and contains a lot of unnecessary information

Here is a sample question and response for your reference:
Question: Explain what the most common failure modes might be for a user performing this task.
Response: The most common failure modes for a user performing this task could include not being able to

locate the "Forums" button due to changes in the website layout or updates , difficulty in finding
the "news" section if the alphabetical sorting changes or if the user overlooks it, and

potentially missing the "down arrow" to dislike submissions if the interface is not intuitive or
if the symbols used for liking and disliking are not clear. Additionally , users might struggle to
identify posts by "Hrekires" if there are many submissions or if the username display is not
prominent.

Score: 2
Explanation: The response is somewhat compact but contains unnecessary information about the specific

failure modes. It could be more concise and focus on the general failure modes.

Also , provided are two other examples for your reference:
Question: Explain what the most common failure modes might be for a user performing this task.
Human Label: A common failure mode could be replying to an existing comment instead of posting a new

comment.
Response: The most common failure modes for a user performing this task might include entering an

incorrect or inappropriate comment , failing to click the ’Post’ button after typing the comment ,
or experiencing a technical issue such as a browser error or a problem with the website ’s server
that prevents the comment from being posted successfully.

Score: 3

Question: Why does the user click the Commits button in step #5?
Human Label: To find the total number of commits Eric made , the "commits" button must be clicked.
Response: The user clicks the "Commits" button in step #5 to view the list of all commits made in the

desired repository , specifically to find commits that occurred on a particular date.
Score: 2

Here are the details for the question you need to evaluate:

Question
{question}

Response to evaluate
{response}

Return only the number corresponding to the rating , nothing else.
"""

Prompt 14: Prompt for evaluating "compactness" scores in the question answering task. The model is
tasked to only return a number corresponding to the ranking and nothing else.

F.3 Improvement Task Prompts

Prompts utilized in the two Improvement tasks related tasks introduced in Section 4.3.

F.3.1 SOP Improvement

In this section, we enumerate the three variations of SOP Improvements task. These prompts are avail-
able in our Github at the following link: § https://github.com/HazyResearch/wonderbread/
blob/main/wonderbread/benchmark/tasks/improvement/sop_improvement/prompts.
py

53

https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/improvement/sop_improvement/prompts.py
https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/improvement/sop_improvement/prompts.py
https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/improvement/sop_improvement/prompts.py
https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/improvement/sop_improvement/prompts.py
https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/improvement/sop_improvement/prompts.py
https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/improvement/sop_improvement/prompts.py

prompt__rewrite_sop__intro: str = (
lambda task_descrip: f"""# Task

Your job is to improve upon the Standard Operating Procedure (SOP) for the workflow that is
demonstrated in the following sequence of screenshots and actions.

SOP Rubric
- Element Specification: Each element referenced in the SOP has a descriptive name and location (i.e.,

"Accounting tab under the Finances Section ")
- Action Type: The only actions referenced in the SOP should be one of the following: Press , Delete ,

Click , Type , Scroll.
- Edge Case Coverage: the SOP describes any edge cases that the user might encounter , and how to solve

them (i.e., "if you don’t see button , scroll down")
- Discrete Action: The SOP only contains one discrete action per step (i.e., the action "click on the

text bar and type "hello"" should be converted to two separate steps: (1) click on the text bar
and (2) type "hello")

- Action Relevance: Each action should be true to the task (i.e., if the task is to find the "grey t-
shirt" clothing item , then an action which instructs the user to type text in the search bar
should type the text "grey t-shirt ")

- Generality: The steps of the SOP should reflect how to do this task in general and not overfit to the
specific window size or screen of the demonstration (i.e., "Scroll until you find the row with

your order" rather than "Scroll 130 pixels down")

Workflow

The workflow is: "{ task_descrip if task_descrip else ’unspecified ’}"

User Interface

The workflow was executed within the web application shown in the screenshots.

Workflow Demonstration

You are given the following sequence of screenshots which were sourced from a demonstration of the
workflow.

The screenshots are presented in chronological order.

Between each screenshot , you are also provided the action that was taken to transition between
screenshots.

Here are the screenshots and actions of the workflow:"""
)

prompt__rewrite_sop__close: str = (
lambda sop: f"""

Standard Operating Procedure

Here are the sequence of steps that you should have followed to complete this workflow:

{sop}

NOTE: The screenshots may not map 1-to -1 to the steps in the Standard Operating Procedure. i.e.
screenshot #3 may correspond to step #2 (or multiple steps) in the Standard Operating Procedure.

However , as long as the general flow of the workflow is the same , then the workflow is considered to
have accurately followed the Standard Operating Procedure.

Also note that elements may be interchangeably referred to as buttons or links (the distinction is not
important).

Instructions

Given what you observed in the previous sequence of screenshots and actions , rewrite the Standard
Operating Procedure to increase clarity and accuracy. If any of the steps are missing , or if any
of the steps were performed out of order , then the Standard Operating Procedure should be updated
to correct these mistakes.

Provide your answer as a numbered list with the following format:
1. The first action to be taken goes here
2. The second action to be taken goes here
3. The third action goes here ...

Please write the new updated Standard Operating Procedure below using the guidelines from the SOP
Rubric above:

"""
)

Prompt 15: The introduction and closing parts of the prompt for basic form of the SOP Improvement
task where only the SOP is given to the model. The model is asked to output it’s response in the form
of a SOP given an example structure.

54

prompt__rewrite_sop__intro_kf: str = (
lambda task_descrip: f"""# Task

Your job is to improve upon the Standard Operating Procedure (SOP) for the workflow that is
demonstrated in the following sequence of screenshots and actions.

SOP Rubric
- Element Specification: Each element referenced in the SOP has a descriptive name and location (i.e.,

"Accounting tab under the Finances Section ")
- Action Type: The only actions referenced in the SOP should be one of the following: Press , Delete ,

Click , Type , Scroll.
- Edge Case Coverage: the SOP describes any edge cases that the user might encounter , and how to solve

them (i.e., "if you don’t see button , scroll down")
- Discrete Action: The SOP only contains one discrete action per step (i.e., the action "click on the

text bar and type "hello"" should be converted to two separate steps: (1) click on the text bar
and (2) type "hello")

- Action Relevance: Each action should be true to the task (i.e., if the task is to find the "grey t-
shirt" clothing item , then an action which instructs the user to type text in the search bar
should type the text "grey t-shirt ")

- Generality: The steps of the SOP should reflect how to do this task in general and not overfit to the
specific window size or screen of the demonstration (i.e., "Scroll until you find the row with

your order" rather than "Scroll 130 pixels down")

Workflow

The workflow is: "{ task_descrip if task_descrip else ’unspecified ’}"

User Interface

The workflow was executed within the web application shown in the screenshots.

Workflow Demonstration

You are given the following sequence of screenshots which were sourced from a demonstration of the
workflow.

The screenshots are presented in chronological order.

Here are the screenshots of the workflow:"""
)

prompt__rewrite_sop__close_kf: str = (
lambda sop: f"""

Standard Operating Procedure

Here are the sequence of steps that you should have followed to complete this workflow:

{sop}

NOTE: The screenshots may not map 1-to -1 to the steps in the Standard Operating Procedure. i.e.
screenshot #3 may correspond to step #2 (or multiple steps) in the Standard Operating Procedure.

However , as long as the general flow of the workflow is the same , then the workflow is considered to
have accurately followed the Standard Operating Procedure.

Also note that elements may be interchangeably referred to as buttons or links (the distinction is not
important).

Instructions

Given what you observed in the previous sequence of screenshots , rewrite the Standard Operating
Procedure to increase clarity and accuracy. If any of the steps are missing , or if any of the
steps were performed out of order , then the Standard Operating Procedure should be updated to
correct these mistakes.

Provide your answer as a numbered list with the following format:
1. The first action to be taken goes here
2. The second action to be taken goes here
3. The third action goes here ...

Please write the new updated Standard Operating Procedure below using the guidelines from the SOP
Rubric above:

"""
)

Prompt 16: The introduction and closing parts of the prompt for the version of the SOP Improvement
task where the key frames are provided to the model in addition to the SOP. The model is asked to
output it’s response in the form of a SOP given an example structure.

prompt__rewrite_sop__intro_act: str = (
lambda task_descrip: f"""# Task

Your job is to improve upon the Standard Operating Procedure (SOP) for the workflow that is
demonstrated in the following sequence of screenshots and actions.

SOP Rubric
- Element Specification: Each element referenced in the SOP has a descriptive name and location (i.e.,

"Accounting tab under the Finances Section ")
- Action Type: The only actions referenced in the SOP should be one of the following: Press , Delete ,

Click , Type , Scroll.
- Edge Case Coverage: the SOP describes any edge cases that the user might encounter , and how to solve

them (i.e., "if you don’t see button , scroll down")

55

- Discrete Action: The SOP only contains one discrete action per step (i.e., the action "click on the
text bar and type "hello"" should be converted to two separate steps: (1) click on the text bar
and (2) type "hello")

- Action Relevance: Each action should be true to the task (i.e., if the task is to find the "grey t-
shirt" clothing item , then an action which instructs the user to type text in the search bar
should type the text "grey t-shirt ")

- Generality: The steps of the SOP should reflect how to do this task in general and not overfit to the
specific window size or screen of the demonstration (i.e., "Scroll until you find the row with

your order" rather than "Scroll 130 pixels down")

Workflow

The workflow is: "{ task_descrip if task_descrip else ’unspecified ’}"

Workflow Demonstration

You are given the following sequence of actions which were sourced from a demonstration of the workflow
.

The actions are presented in chronological order.

Here are the actions of the workflow:"""
)

prompt__rewrite_sop__close_act: str = (
lambda sop: f"""

Standard Operating Procedure

Here are the sequence of steps that you should have followed to complete this workflow:

{sop}

NOTE: The actions may not map 1-to -1 to the steps in the Standard Operating Procedure. i.e. action #3
may correspond to step #2 (or multiple steps) in the Standard Operating Procedure.

However , as long as the general flow of the workflow is the same , then the workflow is considered to
have accurately followed the Standard Operating Procedure.

Also note that elements may be interchangeably referred to as buttons or links (the distinction is not
important).

Instructions

Given what you observed in the previous sequence of actions , rewrite the Standard Operating Procedure
to increase clarity and accuracy. If any of the steps are missing , or if any of the steps were
performed out of order , then the Standard Operating Procedure should be updated to correct these
mistakes.

Provide your answer as a numbered list with the following format:
1. The first action to be taken goes here
2. The second action to be taken goes here
3. The third action goes here ...

Please write the new updated Standard Operating Procedure below using the guidelines from the SOP
Rubric above:

"""
)

Prompt 17: The introduction and closing parts of the prompt for the version of the SOP Improvement
where the action trace is provided to the model in addition to the SOP. The model is asked to output
it’s response in the form of a SOP given an example structure.

F.3.2 SOP Ranking

This section contains the prompt utilized for the SOP ranking task. This prompt is also included
in our codebase in the following file: § https://github.com/HazyResearch/wonderbread/
blob/main/wonderbread/benchmark/tasks/improvement/sop_ranking/prompts.py.

prompt__rank_sop: str = lambda task_descrip , section__sops: f"""# Task
You are a business process management consultant whose job is to evaluate the effeciency of different

versions of a standard operating procedure (SOP) for the same workflow.

You are given several SOPs , and your job is rank them based on their quality.

Workflow

The workflow you are evaluating is: "{ task_descrip }"

SOPs

Here are the SOPs you are evaluating. Each SOP is given a distinct ID (i.e. "#1", "#2", etc.), and the
content of the SOP is enclosed in triple backticks (i.e. "‘‘‘"). Note that the SOPs are not
necessarily listed in order of quality , and their IDs are 1-indexed.

{section__sops}

Question

56

https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/improvement/sop_ranking/prompts.py
https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/improvement/sop_ranking/prompts.py
https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/improvement/sop_ranking/prompts.py
https://github.com/HazyResearch/wonderbread/blob/main/wonderbread/benchmark/tasks/improvement/sop_ranking/prompts.py

Given the SOPs , rank them based on their relative quality. Consider the efficiency of their steps , as
well as whether or not they achieve the desired workflow.

Answer

Answer in the following valid JSON format:

{{
"thinking ": "<think step -by -step about the correct SOP ranking; DO NOT use quote marks in your
response >",

"pred_ranking ": "A list that ranks SOPs by their ID. The first ID in the list corresponds to the
best SOP , and the last ID corresponds to the worst SOP (i.e., if there are two SOPs and #2 is
better than #1, then you would return [2, 1])"

}}

Answer:"""

Prompt 18: The prompt utilized for the SOP ranking task. As shown in the prompt, the model is
asked to structure it’s output in the form of a JSON dictionary with specific keys.

57

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] Please see the three main contributions we outline in
the Introduction, which we extensively detail in Sections 3, Section 4, and Section
5 respectively.

(b) Did you describe the limitations of your work? [Yes] Please see Section 6
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Please

see Section 6
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] Yes, we have read the ethics review guidelines and have had our paper
conform to them.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] Please see
our Github repo for code, data, and instructions to reproduce our results: §

https://github.com/HazyResearch/wonderbread
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] Please see our Github repo for code, data, and instructions to
reproduce our results: § https://github.com/HazyResearch/wonderbread

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We report standard deviations where possible, but for
most experiments the cost of rerunning multiple times was prohibitive.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Please see Appendix Section C.1

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the
WebArena benchmark [73] our paper, and also see Appendix Section A.1

(b) Did you mention the license of the assets? [Yes] Please see Appendix Section A.1
(c) Did you include any new assets either in the supplemental material or as a URL?

[Yes] Please see Appendix Section A.1. We provide assets at the URL: § https:
//github.com/HazyResearch/wonderbread

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] Please see Appendix Section A.3

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Please see Appendix Section A.3

58

https://github.com/HazyResearch/wonderbread
https://github.com/HazyResearch/wonderbread
https://github.com/HazyResearch/wonderbread
https://github.com/HazyResearch/wonderbread
https://github.com/HazyResearch/wonderbread
https://github.com/HazyResearch/wonderbread
https://github.com/HazyResearch/wonderbread
https://github.com/HazyResearch/wonderbread
https://github.com/HazyResearch/wonderbread

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes] Please see Appendix Section E
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [Yes] This research was not deemed to be human
subjects research, and all co-authors who participated in data annotation were aware of
the participant risks.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes] Please see Appendix Section A.3

59

	Introduction
	Background
	Process Mining
	Multimodal FMs
	Benchmarks

	Dataset
	Benchmark
	Documentation
	Knowledge Transfer
	Improvement
	Evaluation

	Results
	Documentation
	Knowledge Transfer
	Improvement

	Discussion
	Conclusion
	Dataset
	License & Availability
	Example Standard Operating Procedures (SOPs)
	Dataset Curation
	Quality Assurance
	Question Answering Dataset Questions
	Factors for Quality of Gold SOPs
	Example Hypothetical BPM Project

	Benchmark Tasks
	Documentation
	Knowledge Transfer
	Improvement

	Evaluation
	Compute
	LLM-Based Evaluation

	Additional Results
	Overall Dataset Stats
	Dataset Stats, Split By Difficulty
	Dataset Stats, Split By Website

	Instructions for Annotators
	Prompts
	Documentation Task Prompts
	Demo Segmentation
	SOP Generation

	Knowledge Transfer Prompts
	Demo Validation
	Question Answering

	Improvement Task Prompts
	SOP Improvement
	SOP Ranking

