Under review as a conference paper at ICLR 2025

VERT: A SYSTEMVERILOG ASSERTION DATASET TO
IMPROVE HARDWARE VERIFICATION WITH LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Hardware verification is a critical step in the modern System-on-Chip (SoC) de-
sign cycle, consuming approximately 70% of development time. SystemVerilog
assertions are pivotal in the verification process, ensuring that designs function as
intended. However, existing industrial practices rely on manual assertion genera-
tion, which becomes increasingly untenable as hardware systems become com-
plex. Recent research has explored the potential of Large Language Models
(LLMs) to automate the hardware verification process, reducing human interven-
tion. Despite this, State-of-the-Art (SOTA) proprietary models, such as OpenAl’s
GPT-40, have shown limitations in generating accurate assertions and require
costly licenses and restricted usage. While smaller, open-source LLMs offer a
more accessible option, they require fine-tuning to handle the complexities of the
source code and generate accurate assertions. This highlights the need for a dataset
that enables these models to achieve superior performance compared to SOTA
LLMs. To this end, we present VERT, a dataset designed to improve the genera-
tion of SystemVerilog assertions using LLMs. Our dataset empowers researchers
and hardware corporations to fine-tune smaller, open-source LLMs, surpassing
larger proprietary models such as GPT-4 in accuracy and efficiency. Further-
more, VERT eliminates the need for expensive licenses and ensures data privacy
through local fine-tuning, providing a scalable, cost-effective solution for auto-
mated hardware verification. To curate the dataset, we systematically compile and
augment variables from open-source hardware description languages (HDL), gen-
erating conditions to create synthetic code snippets paired with corresponding as-
sertions. We show that smaller, open-source LLMs, such as Deepseek Coder 6.7B
and Llama 3.1 8B, when fine-tuned on VERT, outperform OpenAI’s GPT-40 in
assertion generation. The assertions generated by the fine-tuned models are evalu-
ated on industry-standard platforms, including OpenTitan, CVA6, and Pulpissimo
SoCs, demonstrating up to a 96.88% improvement in both functional and syntac-
tical correctness compared to the base models and up to 24.14% when compared
to GPT-40. This demonstrates the prowess of VERT in enabling researchers to
potentially reduce the overhead and human error associated with manual assertion
generation, offering a scalable solution for industry-grade hardware designs. The
dataset is available at https://anonymous.4open.science/r/VERT-4D6D/.

1 INTRODUCTION

In modern computing, System-on-Chip (SoC) designs have become dominant, offering extensive in-
tegration of various Intellectual Property (IP) cores into a single chip Miftah et al.|(2024). While this
approach significantly reduces production timelines and lowers costs, it also introduces critical chal-
lenges. One of the most pressing issues is the detection of functional bugs in these complex designs,
which can consume up to 70% of the overall development time Farahmandi et al.| (2020). Failure
to detect design bugs prior to chip fabrication can lead to significantly higher post-production costs.
This emphasizes the necessity of rigorous pre-manufacturing verification processes to identify and
resolve potential issues early. Early detection mitigates the need for costly redesigns and minimizes
production delays. Consequently, thorough hardware verification before fabrication is essential to
ensure the design operates as intended and meets performance requirements.

https://anonymous.4open.science/r/VERT-4D6D/

Under review as a conference paper at ICLR 2025

Hardware assertions play a crucial role in addressing these verification needs. Typically expressed
through SystemVerilog Assertions (SVA), they enable early bug detection by capturing critical sys-
tem properties. However, manually generating these assertions is a time-consuming process that
relies heavily on designers’ expertise, making it challenging to adapt to complex designs and prone
to human error Dessouky et al.[(2019); [Fang et al.| (2024)).

Large Language Models (LLMs) offer a solution by utilizing insights gleaned from textual data,
such as code, to address these limitations by automatically generating SVA. This process automates
the otherwise tedious manual task of assertion writing, ensuring a significant reduction in time and
human effort and leading to more efficient verification cycles. However, recent academic research
shows that proprietary and open-source LLMs struggle with generating high-quality Verilog code,
including assertions. Even models such as Open AI’s GPT-4 perform poorly in Verilog code gen-
eration due to a lack of high-quality, model-specific tuning data Zhao et al.| (2024)). This is further
substantiated by recent research, which showed that only 11% of the SVAs generated by GPT-4 on
the OpenTitan SoC were unique and correct Kande et al.| (2024).

Specifically, these LLMs often generate SVAs that are neither syntactically nor functionally correct,
necessitating human intervention. These issues are discussed in detail in Section[3} Conversely, em-
ploying a Verilog code dataset tailored to hardware design can significantly enhance the generation
capabilities of LLMs |Liu et al.[(2024)). Thus, curating open-source, high-quality, hardware-specific
datasets is crucial for utilizing LLMs to their full potential in hardware design and verification.

To this end, we introduce VERT, a large-scale, high-quality, open-source dataset explicitly designed
for formal and dynamic verification. Our dataset addresses the limitations of proprietary models such
as OpenAlI’s GPT-40, which require costly licenses and restrict usage. By empowering researchers
and hardware corporations to fine-tune smaller, open-source LLMs, we aim to enable models that
can outperform GPT-40 in generating System Verilog assertions. The key advantage of our dataset is
that it allows smaller, more efficient models to achieve higher accuracy and functionality than larger,
licensed LLMs without the associated costs or restrictions. By open-sourcing VERT, we not only
enable local fine-tuning to safeguard sensitive design data but also provide a solution that enhances
both performance and accessibility. Our ultimate goal is to demonstrate that with the right dataset,
even compact, open-source models can deliver superior results, offering a cost-effective and scalable
foundation for automated hardware verification.

Our work introduces several key contributions to hardware verification using LLMs,

* We introduce VERT, an open-source dataset specifically designed for SystemVerilog asser-
tion generation. This dataset addresses the limitations of existing proprietary models and
provides a valuable resource for advancing research in hardware verification.

* VERT addresses the challenges faced by LLMs in assertion generation by providing a care-
fully curated set of diverse cases—including standardized clock cycle interpretations, deeply
nested conditions, and long logical expressions, thereby enhancing its ability to generate
logically consistent assertions without oversimplifying or omitting critical conditions.

* VERT enables smaller, open-source LLMs such as DeepSeek Coder 6.7B and Llama 3.1
8B to surpass the performance of order of magnitude larger proprietary models like GPT-40
by up to 24.14% in generating accurate assertions.

* We perform an extensive evaluation of different LLMs fine-tuned with VERT on metrics
such as syntactical and functional correctness. In specific, the models can achieve up to
100% on both the correctness measure while tested on modules from industry-standard
SoCs, including OpenTitan, Pulpissimo, and CVA6, demonstrating the reliability and ef-
fectiveness of VERT to be used for real-world fine-tuning.

2 BACKGROUND AND RELATED WORKS

2.1 HARDWARE VERIFICATION

As modern hardware designs grow in complexity, ensuring their functional correctness has become
increasingly challenging [Ziegler et al.| (2017). Hardware verification plays a critical role in guar-
anteeing that these designs meet their specifications and remain error-free (Guptal (1992)) Two major

Under review as a conference paper at ICLR 2025

approaches are commonly used in hardware verification: formal and dynamic (or simulation-based)
verification. Each approach leverages either a golden reference model (GRM) or assertions. GRMs
are typically restricted to dynamic verification, which simulates hardware behavior to check against
expected outcomes. However, assertions offer greater flexibility, as they can be applied in formal
and dynamic/simulation-based verification environments Miftah et al.[(2024); |Zhang et al.| (2018]).

Assertions in formal verification mathematically prove whether design properties can be violated,
ensuring critical behaviors are maintained. In dynamic verification, assertions monitor execution
and flag violations, helping identify errors early and reducing the risk of critical failures. Despite
their importance, assertions are traditionally manually written by designers or verification engineers.
This manual process is both time-consuming and prone to human error, especially in large, complex
systems. The limited scalability of manually generated assertions contributes to longer develop-
ment cycles and increases the risk of incomplete verification coverage, highlighting the need for
automation in this domain.

2.2 LLMS FOR HARDWARE DESIGN

LLMs are a groundbreaking development in artificial intelligence, leveraging vast datasets to gener-
ate human-like text with remarkable accuracy. Popular models such as OpenAI’s GPT series have
demonstrated exceptional performance in tasks like language translation, summarization, and sen-
timent analysis, thanks to their contextual understanding enabled by attention mechanisms [Roume-
liotis & Tselikas| (2023); Devlin et al.| (2018)). Existing research has explored the use of LLMs for
hardware design and verification Krishnamurthy & Hsiao| (2020); Aditi & Hsiao| (2023)); |Wan et al.
(2024); Fang et al.| (2024); |Kande et al.|(2024)); Zhang et al.| (2023); |Orenes- Vera et al.[(2023)); Tarek
et al|(2024a)); [Srivastava et al|(2023); |Qayyum et al.| (2024)); Tarek et al.| (2024b)); Blocklove et al.
(2024). However, as noted by researchers, such models often make errors as they lack knowledge of
HDL languages and hardware assertion. A study by |Liu et al.[(2024) showed that this problem can
be solved by creating datasets that can provide LLMs with such knowledge. To this end, researchers
have generated Verilog datasets Thakur et al.| (2023); Zhang et al.| (2024). However, these datasets
primarily focus on hardware design and do not explicitly target assertion generation. VERT is in-
tended to fill this gap by specifically addressing hardware verification assertions, providing a more
targeted resource for training LLMs to understand and generate assertion-based verification code.

3 MOTIVATION

This section discusses challenges faced by state-of-the-art (SOTA) LLMs, like GPT-40, in generating
SystemVerilog assertions for hardware verification. This motivates the need for a carefully curated
dataset designed to improve the ability of the model to generate precise and reliable assertions.

Clock Cycle Misinterpretations: A common issue with models is their inability to capture clock-
cycle delays in assignment logic accurately. LLMs often generate assertions referencing incorrect or
future clock cycles, leading to faulty hardware verification. As illustrated in Textbox [3.1] the source
code is sensitive to the clock’s rising edge and the reset signal’s falling edge. When a reset signal is
received, assignments should occur within the same clock cycle. However, the generated assertions
use the “| =>" symbol, indicating that the assignment should be verified in the next clock cycle.
This suggests a model bias towards checking assignments in the cycle following the satisfaction of
the precondition. Therefore, it is necessary to fine-tune the model to enable accurate capturing of
the clock cycle delay from the source code. This can be inferred from the ‘always’-block type and
the sensitivity list. For example, the ‘always_comb’ block means everything under this block is
combinatorial and, therefore, instantaneous.

Miscapturing if Condition for else Branches: LLMs often overlook the previous iffelse if con-
ditions when generating assertions for the subsequent else or else if branches in conditional state-
ments. For instance, in Textbox@], the second assertion should verify that ‘monitor_enable’ is
FALSE and ‘monitor_enable_q’ is TRUE. Next, if ‘bus_release_cnt_load’ is TRUE, the
subsequent assignment check should occur.

Under review as a conference paper at ICLR 2025

3.1: Clock Cycle and Pre-condition Capturing in GPT-40 Outputs.

Generate a list of synchronous SystemVerilog assertion executing at (posedge clk_i)
from the following code:

| always @ (posedge clk_i or negedge rst_ni) begin
2 if ("rst_ni) begin

3 wr_state_g <= IDLE;

4 wr_cnt_g <= '0;

5 end else begin

wr_state_g <= wr_state_d;

wr_cnt_qg <= wr_cnt_d;

N

8 end
9 end
Response:
l so0
2 // Assertion to ensure that wr_state_g follows wr_state_d when rst_ni is high
3 assert property (@ (posedge clk_i) (rst_ni && (wr_state_d !== IDLE)) |=> (wr_state_qg ==
wr_state_d))
4 else $error ("State transition failure: wr_state_g did not follow wr_state_d.");
5
6 // Assertion to ensure that wr_cnt_q follows wr_cnt_d when rst_ni is high
7 assert property (Q(posedge clk_i) (rst_ni && (wr_cnt_d !== '0)) |=> (wr_cnt_qg == wr_cnt_d))
8 else $error ("Counter transition failure: wr_cnt_g did not follow wr_cnt_d.");
9
10 // Assertion to check that the state and count do not update during reset
Il assert property (@ (posedge clk_i) ("rst_ni) |=> (wr_state_qg == IDLE && wr_cnt_g == '0))
12 else S$error ("Reset condition not maintained: wr_state_g or wr_cnt_qg changed during reset.");

Nested If-Else Conditions: LLMs often struggle with generating assertions for deeply nested if-
else conditions (i.e., blocks nested beyond two levels), which are common in hardware design. In
Textbox [3.2] GPT-4o incorrectly represents the logic of a nested block. Specifically, it ignores the
if condition and creates an assertion using a ternary operator, where the inner if condition is used
as the test, the assignment as the true branch, and 1’ b1 for the false branch. This assertion has
two issues: first, SVA does not support ternary operators; second, the original code lacks an else
condition, meaning the value should remain unchanged when the condition is false.

3.2: Relation Representation for Nested Conditional Blocks in GPT-40 Outputs.

Generate a list of asynchronous SystemVerilog Assertion from the following code

if (!rst_ni) begin
bus_release_cnt <= '0;
end else if (monitor_enable &&!monitor_enable_qg) begin
if (multi_controller_enable_i) begin
bus_release_cnt <= 30’ (bus_inactive_timeout_i);

[T RF NV SR

end
end else if (bus_release_cnt_load) begin
8 bus_release_cnt <= bus_release_cnt_sel;
9 end else if (bus_release_cnt_dec && (bus_release_cnt!= ’0)) begin
10 bus_release_cnt <= bus_release_cnt - 1’bl;
Il end

N

Response

// Synchronous assertion for monitor enable signal transition

assert property (@ (posedge clk) disable iff (!rst_ni)
(monitor_enable && !monitor_enable_qg) |-> (multi_controller_enable_i ?
(bus_release_cnt == bus_inactive_timeout_i) : 1’bl)

) else $fatal ("Bus release count should be set to bus_inactive_timeout_i when monitor_enable
rises and multi_controller_enable_i is high.");

N AW =

8 // Synchronous assertion for bus_release_cnt_load condition
9 assert property (Q(posedge clk) disable iff (!rst_ni)

10 (bus_release_cnt_load) |-> (bus_release_cnt == bus_release_cnt_sel)

11) else $fatal ("Bus release count should be loaded with bus_release_cnt_sel when

bus_release_cnt_load is asserted.");

Handling Long Conditions: Another challenge with LLMs is their difficulty capturing long con-
ditions involving multiple logical operators and variables. These complex conditions often result in
overly simplistic or incorrect assertions. For instance, in Textbox [3.3] the source code requires any

Under review as a conference paper at ICLR 2025

one of six conditions to be met before raising the ‘mr_err’ flag. However, the generated output cre-
ates three assertions for one flag change, neglecting the other three conditions. This not only leads to
redundant assertions but also causes overhead in the number of assertions. Furthermore, LLMs may
mix assignment checks with preconditions, producing incorrect assertions. The assertions provided
in the response in Textbox [3.3]are incorrect because they are structured with a logical flaw in how the
conditional checks and error-handling mechanisms are designed. Specifically, the assertions only
trigger an error when both the condition (e.g., key_full_sel o != mr_key_full_sel[i])
and the error flag (mr_err == 1’bl) are true. This leads to an issue where the check fails to
capture all error conditions properly. Ideally, the assertion should report an error when any of the
conditions provided fails.

3.3: Handling Long Conditions in GPT-40 Outputs.
Generate a list of asynchronous systemverilog assertion from the following code
1 if (state_sel_o != mr_state_sel[i] (i
2 add_rk_sel_o !'= mr_add_rk_sel[i] Il
3 key_full_sel_o != mr_key_ full_sel[i] ||
4 key_dec_sel_o !'= mr_key_dec_sel[i] |
5 key_words_sel_o != mr_key_words_sel[i] ||
6 round_key_sel_o != mr_round_key_sel[i]) begin
7 mr_err = 1'bl;
8 end
Response
1 oo
2 // Asynchronous assertion to check key_ full sel o against mr_key_full_se
3 assert property ((key_full _sel o != mr_key_full _sel[i]) |-> (mr_err == 1'bl))
4 else $error ("Asynchronous check failure: key_full_sel_o does not match mr_key_full_sel[%0d]
and mr_err is not asserted.", i);
5
6 // Asynchronous assertion to check key_dec_sel_o against mr_key_dec_sel[i]
7 assert property ((key_dec_sel_o != mr_key_dec_sel[i]) |-> (mr_err == 1’'bl))
8 else $error ("Asynchronous check failure: key_dec_sel_o does not match mr_key dec_sel[%0d] and
mr_err is not asserted.", 1i);
9
10 // Asynchronous assertion to check key_words_sel_o against mr_key_words_sel[i]
Il assert property ((key_words_sel_o != mr_key_words_sel[i]) |-> (mr_err == 1’bl))
12 else $error ("Asynchronous check failure: key words_sel_o does not match mr_key_ words_sel [%$0d]
and mr_err is not asserted.", 1i);
13

Therefore, addressing these challenges through a structured dataset is essential to improving the
LLM’s ability to generate accurate SystemVerilog assertions, ensuring better alignment with the
underlying hardware design logic. Examples of our approach to addressing these challenges are
presented in the Appendix [A.5.1]

4 PROPOSED VERT DATASET

Our proposed dataset VERT, is a curated collection of Verilog/SystemVerilog code snippets paired
with SystemVerilog assertions, designed to fine-tune LLMs for generating syntactically and func-
tionally correct assertions for hardware verification. By addressing the biases and errors with exist-
ing LLM-generated assertions (as mentioned in Section [3), we aim to improve the LLM’s handling
of complex SystemVerilog assertions and enhance the overall reliability of its outputs.

4.1 INTUITION IN DATASET FORMULATION

Clock Cycle Misinterpretations: To resolve clock cycle misinterpretation, we standardized our
format by using the overlapping implication symbol (]— >) with a specified delay count, replacing
the non-overlapping symbol (| =>). This approach directs the LLMs’ focus solely on identifying
delays, simplifying their task. Moreover, VERT includes delayed assertion checks, facilitating the
accurate extraction of clock cycle information from the source code.

Miscapturing if Condition for else Branches: VERT addresses the common omission of condi-
tions in the else/else-if branches of if-else statements by exposing the model to diverse conditional
structures, ensuring it accurately captures prior conditions when generating assertions. By incor-

Under review as a conference paper at ICLR 2025

porating examples where each else or else-if branch accounts for all preceding if conditions, the
dataset trains LLMs to recognize the logical flow between branches. This enhances the model’s
ability to maintain logical consistency, leading to more accurate and complete assertion generation
for conditional logic.

Nested If-Else Conditions: To address the challenge of LLMs struggling with deeply nested if-
else statements, we expanded our dataset to include complex, multi-level conditional structures.
These examples focused specifically on scenarios where decision logic is nested beyond two levels,
which is common in hardware designs but difficult for LLMs to handle. By providing a diverse set
of deeply nested if-else conditions, we aim to enhance the LLM’s ability to better recognize how
each layer of decision-making is dependent on the preceding conditions. This approach ensures that
the LLM generates assertions for each nested block without oversimplifying the logic or missing
critical conditions in the inner branches. Furthermore, we refined the dataset to ensure that the LLM
learns to correctly generate assertions even when the code lacks an explicit else branch, preserving
the intended behavior of the original code. This ensures that if the condition is false, no action is
required, and the state remains unchanged. However, LLMs can struggle with this distinction, often
generating incorrect assertions by either assuming an implicit else branch or failing to account for
the absence of any action when the condition evaluates to false. This process helps the model handle
nested structures more effectively, producing accurate and logically consistent assertions for even
the most complex hardware designs.

Handling Long Conditions: To address the challenge of generating accurate assertions for long
and complex conditions, we expanded the dataset to include a variety of cases where multiple condi-
tions and operators must be evaluated simultaneously. These conditions often involve a combination
of AND, OR, and NOT operators across several variables, making it essential for the model to handle
intricate logical relationships. By exposing the LLM to examples that require the correct ordering
and evaluation of these operators, VERT helps it learn to generate assertions that accurately reflect
the complexity of the source code. This approach ensures that all logical paths are captured in
the assertions, avoiding the common pitfall of oversimplifying or omitting important parts of the
condition. The result is a more precise handling of extended logic chains, leading to fewer errors in
assertion generation for complex hardware designs.

4.2 DATASET COMPOSITION

VERT comprises 20,000 samples, categorized based on the structural elements of SystemVerilog
code and the nature of the assertions generated. We carefully divide VERT among various cat-
egories to ensure comprehensive coverage of the conditions encountered in hardware verification
while addressing the weaknesses of current SOTA LLMs in generating assertions.

Data Source and Cleanup: We compile a comprehensive list of variable names for VERT by
extracting variables from hardware modules in various open-source Hardware Description Language
(HDL) projects. As shown in Figure [Ta] these variables are sourced from a diverse set of projects,
including BOOM-core [Zhao et al.| (2020), rocket-chip Lee et al.|(2016), and XiangShan Xu et al.
(2022), each contributing over 150 variables to the dataset. BOOM-core leads with approximately
500 variables, while rocket-chip and XiangShan contribute around 450 variables each. By drawing
from a diverse range of open-source modules, we ensure the model is exposed to various real-world
scenarios. Many System-on-Chip (SoC) designs frequently reuse IP blocks from the same vendors,
resulting in overlapping variable names. Similar IP blocks, such as various implementations of AES
encryption, often perform identical operations, further contributing to naming redundancies. This
reuse of IP, prevalent in both open-source and commercial SoCs, creates a degree of homogeneity in
the design landscape, making it challenging to differentiate between components. To mitigate this
issue and prevent overfitting to specific naming conventions or operations, we introduce randomly
generated variables into the dataset, ensuring greater diversity and robustness in handling various
designs. Once the variable list is compiled, it is cleaned up by removing duplicates, resolving
inconsistencies, and verifying syntactic correctness. This ensures the model is exposed to various
real-world hardware design scenarios while avoiding overfitting.

Under review as a conference paper at ICLR 2025

I If datapoints

B Case datapoints

B Combined datapoints
Syncronous if datapoints

Variables Extracted

Asyncronous if datapoints
Syncronous case datapoints
Asyncronous case datapoints

Syncronous combined datapoints
Asyncronous combined datapoints

Open Source Projects Used

(a) Distribution of variables extracted from
open-source HDL projects. (b) Composition of our dataset.

Figure 1: Dataset source distribution and composition.

Rationale Behind Data Composition: As illustrated in Figure [Tb] the largest portion of the
dataset, comprising 52%, consists of if-else statements. This focus stems from the challenges LLMs
like GPT-40 often face in generating accurate assertions for nested if structures, as discussed in Sec-
tion[3] Building upon the intuition presented in Section [d.1} we structured the dataset to prioritize
complex conditional scenarios. The complexity and layering of conditions in nested if statements
frequently lead to errors, making them more problematic than other conditional structures. To ad-
dress these issues, we emphasize if-else statements in our dataset. In contrast, case statements make
up 28% of the dataset. Although commonly used to represent signals in hardware design, we en-
counter fewer difficulties when generating assertions for case-based logic, which accounts for their
smaller proportion. Furthermore, 20% of the dataset includes combined statements, where if and
case statements are intertwined to form more complex conditions. These mixed scenarios are in-
cluded due to the added complexity, which presents challenges for LLMs when generating accurate
assertions. We also include an even distribution of asynchronous and synchronous assertions in our
dataset. This is crucial because for LLMs to capture clock cycle delays accurately, they must cor-
rectly interpret which signals in if-else or case statements are clock-sensitive. By providing a mix
of both types of assertions, we ensure that the models learn to differentiate between immediate and
clocked responses, enabling more accurate assertion generation in clock-sensitive hardware designs.

Completeness: To build upon the analysis from Figure [Tb] where we emphasized the inclusion
of various conditional structures in the dataset, it is important to highlight how these structures are
integral to formulating assertions. When an assertion is formulated, the conditional structure of
the function is required. These structures are constructed using if-else blocks, case, and ternary
operators. The sensitivity (i.e., when to check values for assertions) is taken from the always block.
For instance, always @ (posedge clk_i) denotes that the values should be checked at the
rising edge of the c1k_1i signal. Our dataset contains all types of always blocks used in hardware
design codes (i.e., always, always_ff, always_comb). Other code components like for loops
do not contribute to the formulation of assertions.

4.3 SYNTHETIC GENERATION OF ASSERTIONS

The dataset was synthetically generated to address the variability in how different repositories and
projects formulate assertions. Many open-source repositories employ custom or project-specific
assertion structures, leading to inconsistencies across sources. This lack of standardization makes it
challenging to compile a cohesive dataset using only real-world examples. Moreover, relying solely
on real-world data would not provide a sufficient number of consistent assertion structures for an
LLM to effectively learn how to generate assertions from source code. Therefore, synthetic data is
essential to create a comprehensive and uniform dataset suitable for training.

Generating the synthetic data involves creating a comprehensive set of conditions based on the
cleaned variable list. These conditions serve as the foundation for creating structured code blocks,
along with their corresponding assertions. By dynamically generating these conditions, we can
ensure that the model is exposed to a wide array of patterns, preventing it from overly relying on
specific naming conventions or design features commonly encountered in SoC components.

Under review as a conference paper at ICLR 2025

Figure [2] showcases the generation of synthetic case statements and their corresponding assertions.
The process operates by extracting select lines from a dataset of variables and conditions, and for
each line, it constructs a Verilog-style case block. It selects unique conditions and populates as-
signment operations. Since the conditional statements and assignment operation are known during
dataset generation, the assertions can be constructed based on these conditions, ensuring consis-
tency. In this process, the assertions are triggered on the rising edge of the clock (as indicated by the
@posedge clk-i in the source code), ensuring that the logic is evaluated synchronously. The se-
lected case checks the assigned condition, while subsequent cases ensure the appropriate actions for
other input values. The default clause handles situations where none of the specified cases are met.
Each case condition is followed by a delay to account for signal propagation and verify that the ex-
pected logic occurs at the correct time. Assertions for unselected cases confirm that invalid branches
are not mistakenly triggered, ensuring the default behavior is correctly executed when applicable.
Further examples of synthetic assertions are provided in appendix [AT]

always @(posedge clk_i) begin Clock Cycles after the precondition to
case (lOgiCNLZME) check the assignment
vall: A=B; property propNamel; @(posedge clk_i) logicName==vall |-> #<delay> A== B; endproperty
val2: ...
vat3—= :
default: property propName2; (logicName !=vall) || (logicName !=val2) |-> ...
endcase |

end

Figure 2: Generation of assertions from Case Statements.

Figure 3| demonstrates how a hierarchy of asynchronous if-else conditions are systematically trans-
formed into assertions that verify the correctness of combinational logic. Since there is a combinato-
rial block (always_comb) in the source code, the assertion created is asynchronous, hence devoid
of a clock signal. The initial condition checks the first case, while nested conditions introduce addi-
tional layers of complexity. The else-if and else clauses account for alternative scenarios when the
previous conditions are unsatisfied. In this logical flow, nested conditions are connected using an
AND relation, requiring all specified conditions to be true for their corresponding assertions to acti-
vate. For the else-if and else branches, previous conditions are negated, ensuring the new condition
only holds when prior conditions are false. This comprehensive approach effectively tests both if
and else branches within the if-else block, providing thorough coverage of all possible logical states.

. " " :______>_____T_'_________:__‘I
always comb be gin 1\.10‘ @posed‘ge/negedge as| © Nested 'Conqmons' are put in]
. Py . it is a combinatorial block | | AND' relation)
if (condl) begin U R

C==D: property propNamelYcond! |-> C== D; endproperty
if (cond 1.1 Lo Yoo
1 (COH .) property propName2; condl && condl.l\|-> ...; endproperty
ed
. N i _ . cODer
else if (cond2) property propName3; :gqgc_l{. && cond? |-> ..., endproperty
else ... property propNamed; lcond |[Icond2:|-> ...; endproperty
end P Y .
¢ "else if" means "if" condition | "else" means all the previous |
. mustbeunsatisfied ' conditions must be unsatisfied. ;
Figure 3: Generation of assertions from If statements.
5 RESULTS

5.1 EXPERIMENTAL SETUP

We evaluate VERT through a two-phase methodology. In the first phase, we fine-tune Llama 3.1 8B
and DeepSeek Coder 6.7B and assess the syntactic and functional correctness of the assertions gen-
erated by these models. In the second phase, we evaluate whether the generated assertions accurately

Under review as a conference paper at ICLR 2025

describe the design’s functionality and the coverage they achieve. The accuracy of representing the
functionalities is tested using mutation testing, where multiple design variants with altered function-
alities (mutants) are created to assess whether the assertions accurately capture design behavior by
triggering appropriately in these mutants|{Iman et al|(2024). For coverage analysis, we employ Com-
plete Path Coverage (CPC) as the metric, ensuring all independent paths in the design automaton are
traversed [Tong et al.| (2010). Formal verification tools such as|Cadence JasperGold| and simulation
tools like[Xilinx Vivado|are utilized throughout both phases to validate correctness, representational
accuracy, and achieving up to 100% coverage.

Furthermore, since we cannot fine-tune GPT-40 due to it being a proprietary model, we compare
the open-source fine-tuned models to GPT-40 to highlight the effectiveness of VERT. To assess
their ability to generate code across diverse coding conventions and design principles, we test them
on three open-source SoC designs—OpenTitan |ope| (2024)), CVA6 [Zaruba & Benini| (2019), and
Pulpissimo Schiavone et al.[(2018)).

The evaluation focuses on three primary metrics: the total number of generated assertions, the per-
centage of syntactically correct assertions, and the percentage of functionally correct assertions.
Syntactic correctness refers to adherence to hardware description language standards, while func-
tional correctness indicates that the assertions accurately reflect the intended hardware behavior
(further elaborated in Appendix [A.4). Through this comprehensive evaluation, we ensure that the
generated assertions not only meet syntactical and functional criteria but also enhance the quality of
verification for hardware IPs.

5.2 EVALUATION RESULTS

Table 1: Performance Comparison of base and fine-tuned models on assertion generation across
various hardware IP benchmarks.

Models Benchmark/ Generated Assertions Syntactically Correct Assertions (%) | Functionally Correct Assertions (%)
Hardware IP Base Model ‘ Fine-Tuned Model | Base Model | Fine-Tuned Model Base Model | Fine-Tuned Model

OpenTitan/AES 212 125 35.84 88.70 8.02 83.48
OpenTitan/I2C 149 126 29.53 83.33 9.39 83.33
OpenTitan/LC CTRL 26 19 23.07 89.47 7.69 89.47
OpenTitan/ADC CTRL 63 32 17.46 100.00 9.52 100.00
CVAG6/Frontend 17 13 41.18 92.31 11.76 92.31

Llama 3.1 CVA6/Decode&lIssue 31 34 22.58 100.00 6.45 100.00
CVAG6/Execute 110 105 25.55 91.43 5.45 91.43
CVA6/Commit 70 79 38.57 89.87 10 89.87
CVAG6/Controller&Top 73 68 34.24 95.59 5.48 95.59
Pulpissimo/APB 15 19 53.33 89.47 53.33 89.47
Pulpissimo/RISCV 19 15 21.05 93.33 21.05 93.33
Pulpissimo/debug _unit 6 11 16.67 100.00 16.67 100.00
OpenTitan/AES 148 157 10.81 94.90 6.08 93.63
OpenTitan/I2C 132 124 12.12 97.58 833 97.58
OpenTitan/LC CTRL 21 19 14.25 100.00 9.52 100.00
OpenTitan/ADC CTRL 32 32 6.25 100.00 0 96.88
CVAG6/Frontend 16 14 56.25 92.86 375 92.86

DeepSeek Coder CVA6/Decode&lIssue 37 32 18.92 100.00 13.51 100.00
CVAG6/Execute 91 99 26.37 97.98 20.88 97.98
CVA6/Commit 97 93 21.65 89.25 17.53 89.25
CVAG6/Controller& Top 82 76 21.95 89.47 15.85 89.47
Pulpissimo/APB 25 19 24.00 100.00 24.00 100.00
Pulpissimo/RISCV 13 15 23.08 100.00 23.08 100.00
Pulpissimo/debug_unit 11 11 15.38 100.00 15.38 100.00

Table [I] compares the performance of the base and fine-tuned versions of the Llama 3.1 and
DeepSeek Coder 6.7B models across various hardware IP benchmarks. The first column of the table
lists the benchmark name, such as OpenTitan/AES, where the SoC name (OpenTitan) is followed
by the specific IP name (AES). The subsequent columns display the number of assertions generated
and the percentage of those assertions that are both syntactically and functionally correct for both
base and fine-tuned models. The table is organized by model type, with performance metrics broken

Under review as a conference paper at ICLR 2025

down for each hardware IP block. Examples that highlight the improvements in the accuracy of
assertion generation after fine-tuning the models are provided in appendix [A.3]

Both the Llama 3.1 and DeepSeek Coder models demonstrated significant improvements over the
base models following fine-tuning, with some benchmarks showing drastic gains. For Llama 3.1,
syntactic correctness saw a maximum improvement of up to 83.33%. Similarly, the functional cor-
rectness showed a maximum increase of 93.55%.

The DeepSeek Coder model exhibited similarly substantial improvements. For instance, syntactic
correctness improved as much as 93.75% (from 6.25% to 100%), and functional correctness in-
creased up to 96.88% (from 0% to 96.88%). These results highlight the effectiveness of fine-tuning
in improving the models’ ability to generate accurate hardware assertions.

[GPT40 3 Fine-tuned Deepseek Coder [GPT40 3 Fine-tuned Deepseek Coder
3 [Fine-tuned LLama3.1 3 [Fine-tuned LLama3.1
S S
~ 100 ~ 100
2 2
o 80 o 80
5 60 5 60
"] "]
& 40 & 4o
I I
v 20 v 20
[[
= =
= 0 0
S 5 < g N > @ @ Q ~\ N S 2 g N @ @] Q0 ~\ N
e TS TS ELS v TS TS ES
F LT E S F T E S
N) > \ ISR\ \s & RS O N & > \ IR\ o \s & R
@ N \sl ~\ & o N 2 ~\ ~\ - 3
& R ‘?}\4\\ & & & O C b\(9 QQ\Q Q\Q\% . \@0 & KX é\& & & & S b\oo Q\>\Q Q\Q\r, \@o
& & T & & &£ R < &
S N R C AN
Benchmark/Hardware IP Benchmark/Hardware IP

(a) Comparison of GPT-40 and Fine-tuned model in (b) Comparison of GPT-40 and Fine-tuned model in
Syntactically correct assertions. Functionally correct assertions.

Figure 4: Comparison of GPT-40 and Fine-Tuned Model Performance.

To illustrate VERT’s effectiveness, we compare fine-tuned versions of the DeepSeek Coder 6.7B
and Llama 3.1 8B model with GPT-40. Figure #a and Figure 4B show the syntactic and functional
correctness of assertions generated by GPT-40 and the Fine-Tuned Llama 3.1 and Deepseek Coder
models across various hardware benchmarks. The X-axis represents the benchmark SoC with its cor-
responding IP, such as OpenTitan AES, OpenTitan I2C, OpenTitan LC CTRL, and CVA6/Frontend,
where assertions are evaluated. The Y-axis displays the percentage of correct assertions, indicating
how reliably each model generated the assertions for each benchmark.

Figure[a|shows that Fine-tuned Llama 3.1 and Fine-tuned Deepseek Coder models significantly out-
perform GPT-40 by up to 20.69% in generating syntactically correct assertions. In Figure b] both
Llama 3.1 and Deepseek Coder again outperformed GPT-40 by as much as 24.14% and 21.02% re-
spectively, with functionally correct assertion in modules such as CVA6/Decode&Issue and Pulpissi-
mo/Debug unit. These results emphasize that LLMs fine-tuned on VERT enhance not only syntactic
correctness but also the functional reliability of the generated hardware assertions.

6 CONCLUSION

In this paper, we introduce VERT, a novel open-source dataset tailored to automate the generation
of SystemVerilog assertions, enabling a more scalable and efficient hardware verification process
using LLMs. By systematically fine-tuning popular models such as DeepSeek Coder and LLaMA
3.1 on our dataset, we achieved substantial improvements in both syntactical accuracy and func-
tional correctness of generated assertions across real-world SoCs, including OpenTitan, CVA6, and
Pulpissimo. Our evaluation demonstrated the adaptability of these LLMs, fine-tuned with VERT,
furnishing up to a 96.88% improvement in both functional and syntactical correctness over base
models and up to 24.14% over GPT-40. This work is the first to demonstrate the potential of com-
bining domain-specific datasets with advanced LLMs to address the enhanced challenges of modern
hardware verification. In the future, we will focus on expanding the dataset to cover more intri-
cate design patterns and hardware architectures, as well as improving model performance in han-
dling asynchronous and synchronous conditions. Moreover, we aim to integrate our approach with
industry-standard functional verification tools to streamline the hardware verification process.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Lowrisc opentitan, Mar 2024. URL https://github.com/l1owRISC/opentitan/tree/
master.

FNU Aditi and Michael S. Hsiao. Validatable generation of system verilog assertions from natural
language specifications. In 2023 Fifth International Conference on Transdisciplinary Al (Tran-
sAI), pp. 102-109, 2023. doi: 10.1109/TransA160598.2023.00026.

Jason Blocklove, Siddharth Garg, Ramesh Karri, and Hammond Pearce. Evaluating llms for hard-
ware design and test. arXiv preprint arXiv:2405.02326, 2024.

Cadence JasperGold. Cadence jaspergold. URL |https://www.cadence.
com/en_US/home/tools/system—design—-and-verification/
formal-and-static-verification/jasper—gold-verification-platform.
htmll

Ghada Dessouky, David Gens, Patrick Haney, Garrett Persyn, Arun Kanuparthi, Hareesh Khattri,
Jason M Fung, Ahmad-Reza Sadeghi, and Jeyavijayan Rajendran. {HardFails}: Insights into
{Software-Exploitable } hardware bugs. In 28th USENIX Security Symposium (USENIX Security
19), pp. 213-230, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Wenji Fang, Mengming Li, Min Li, Zhiyuan Yan, Shang Liu, Hongce Zhang, and Zhiyao Xie.
Assertllm: Generating and evaluating hardware verification assertions from design specifications
via multi-llms. arXiv preprint arXiv:2402.00386, 2024.

Farimah Farahmandi, Yuanwen Huang, and Prabhat Mishra. System-on-chip security. Springer,
2020.

Aarti Gupta. Formal hardware verification methods: A survey. Formal Methods in System Design,
1:151-238, 1992.

Mohammad Reza Heidari Iman, Gert Jervan, and Tara Ghasempouri. Artmine: Automatic associ-
ation rule mining with temporal behavior for hardware verification. In 2024 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pp. 1-6. IEEE, 2024.

Rahul Kande, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Shailja Thakur, Ramesh
Karri, and Jeyavijayan Rajendran. (security) assertions by large language models. IEEE Trans-
actions on Information Forensics and Security, 2024.

Rahul Krishnamurthy and Michael S. Hsiao. Transforming natural language specifications to log-
ical forms for hardware verification. In 2020 IEEE 38th International Conference on Computer
Design (ICCD), pp. 393-396, 2020. doi: 10.1109/ICCD50377.2020.00072.

Yunsup Lee, Andrew Waterman, Henry Cook, Brian Zimmer, Ben Keller, Alberto Puggelli, Jachwa
Kwak, Ruzica Jevtic, Stevo Bailey, Milovan Blagojevic, et al. An agile approach to building risc-v
microprocessors. ieee Micro, 36(2):8-20, 2016.

Mingjie Liu, Teodor-Dumitru Ene, Robert Kirby, Chris Cheng, Nathaniel Pinckney, Rongjian Liang,
Jonah Alben, Himyanshu Anand, Sanmitra Banerjee, Ismet Bayraktaroglu, Bonita Bhaskaran,
Bryan Catanzaro, Arjun Chaudhuri, Sharon Clay, Bill Dally, Laura Dang, Parikshit Deshpande,
Siddhanth Dhodhi, Sameer Halepete, Eric Hill, Jiashang Hu, Sumit Jain, Ankit Jindal, Brucek
Khailany, George Kokai, Kishor Kunal, Xiaowei Li, Charley Lind, Hao Liu, Stuart Oberman,
Sujeet Omar, Ghasem Pasandi, Sreedhar Pratty, Jonathan Raiman, Ambar Sarkar, Zhengjiang
Shao, Hanfei Sun, Pratik P Suthar, Varun Tej, Walker Turner, Kaizhe Xu, and Haoxing Ren.
Chipnemo: Domain-adapted 1lms for chip design, 2024.

Samit S Miftah, Kshitij Raj, Xingyu Meng, Sandip Ray, and Kanad Basu. System-on-chip informa-
tion flow validation under asynchronous resets. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2024.

11

https://github.com/lowRISC/opentitan/tree/master
https://github.com/lowRISC/opentitan/tree/master
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html

Under review as a conference paper at ICLR 2025

Marcelo Orenes-Vera, Margaret Martonosi, and David Wentzlaff. Using llms to facilitate formal
verification of rtl, 2023.

Khushboo Qayyum, Muhammad Hassan, Sallar Ahmadi-Pour, Chandan Kumar Jha, and Rolf
Drechsler. Late breaking results: Llm-assisted automated incremental proof generation for hard-
ware verification. 2024.

Konstantinos I Roumeliotis and Nikolaos D Tselikas. Chatgpt and open-ai models: A preliminary
review. Future Internet, 15(6):192, 2023.

Pasquale Davide Schiavone, Davide Rossi, Antonio Pullini, Alfio Di Mauro, Francesco Conti, and
Luca Benini. Quentin: an ultra-low-power pulpissimo soc in 22nm fdx. In 2018 IEEE SOI-
3D-Subthreshold Microelectronics Technology Unified Conference (S3S), pp. 1-3, 2018. doi:
10.1109/S3S.2018.8640145.

Amisha Srivastava, Sanjay Das, Navnil Choudhury, Rafail Psiakis, Pedro Henrique Silva, Debjit Pal,
and Kanad Basu. Scar: Power side-channel analysis at rtl-level. arXiv preprint arXiv:2310.06257,
2023.

Shams Tarek, Dipayan Saha, Sujan Kumar Saha, Mark Tehranipoor, and Farimah Farahmandi. So-
CureLLM: An LLM-driven approach for large-scale system-on-chip security verification and pol-
icy generation. Cryptology ePrint Archive, Paper 2024/983, 2024a. URL https://eprint.
iacr.orqg/2024/983. https://eprint.iacr.org/2024/983.

Shams Tarek, Dipayan Saha, Sujan Kumar Saha, Mark Tehranipoor, and Farimah Farahmandi. So-
curellm: An Illm-driven approach for large-scale system-on-chip security verification and policy
generation. Cryptology ePrint Archive, 2024b.

Shailja Thakur et al. Verigen: A large language model for verilog code generation. arXiv preprint
arXiv:2308.00708, 2023.

Jason G Tong, Marc Boulé, and Zeljko Zilic. Defining and providing coverage for assertion-based
dynamic verification. Journal of Electronic Testing, 26:211-225, 2010.

Lily Jiaxin Wan, Yingbing Huang, Yuhong Li, Hanchen Ye, Jinghua Wang, Xiaofan Zhang, and
Deming Chen. Invited paper: Software/hardware co-design for 1lm and its application for design
verification. In 2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC), pp.
435-441, 2024. doi: 10.1109/ASP-DAC58780.2024.10473893.

Xilinx Vivado. Xilinx vivado. URL https://www.xilinx.com/support/documents/

sw_manuals/xi11inx2022_2/ug904-vivado-implementation.pdf. Accessed:
05/19/2024.

Yinan Xu, Zihao Yu, Dan Tang, Guokai Chen, Lu Chen, Lingrui Gou, Yue Jin, Qianruo Li, Xin
Li, Zuojun Li, Jiawei Lin, Tong Liu, Zhigang Liu, Jiazhan Tan, Huaqiang Wang, Huizhe Wang,
Kaifan Wang, Chuangi Zhang, Fawang Zhang, Linjuan Zhang, Zifei Zhang, Yangyang Zhao,
Yaoyang Zhou, Yike Zhou, Jiangrui Zou, Ye Cai, Dandan Huan, Zusong Li, Jiye Zhao, Zihao
Chen, Wei He, Qiyuan Quan, Xingwu Liu, Sa Wang, Kan Shi, Ninghui Sun, and Yungang Bao.
Towards Developing High Performance RISC-V Processors Using Agile Methodology. In 2022
55th IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 1178-1199, 2022.
doi: 10.1109/MICR0O56248.2022.00080.

F. Zaruba and L. Benini. The cost of application-class processing: Energy and performance analysis
of a linux-ready 1.7-ghz 64-bit risc-v core in 22-nm fdsoi technology. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 27(11):2629-2640, Nov 2019. ISSN 1557-9999. doi:
10.1109/TVLSI.2019.29261 14.

Rui Zhang, Calvin Deutschbein, Peng Huang, and Cynthia Sturton. End-to-end automated exploit
generation for validating the security of processor designs. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 815-827. IEEE, 2018.

Yongan Zhang, Zhongzhi Yu, Yonggan Fu, Cheng Wan, et al. Mg-verilog: Multi-grained dataset
towards enhanced 1lm-assisted verilog generation. arXiv preprint arXiv:2407.01910, 2024.

12

https://eprint.iacr.org/2024/983
https://eprint.iacr.org/2024/983
https://eprint.iacr.org/2024/983
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_2/ug904-vivado-implementation.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_2/ug904-vivado-implementation.pdf

Under review as a conference paper at ICLR 2025

Zixi Zhang, Greg Chadwick, Hugo McNally, Yiren Zhao, and Robert Mullins. Lim4dv: Using large
language models for hardware test stimuli generation. arXiv preprint arXiv:2310.04535, 2023.

Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. Sonicboom: The 3rd generation
berkeley out-of-order machine. May 2020.

Yang Zhao, Di Huang, Chongxiao Li, Pengwei Jin, Ziyuan Nan, Tianyun Ma, Lei Qi, Yansong
Pan, Zhenxing Zhang, Rui Zhang, et al. Codev: Empowering llms for verilog generation through
multi-level summarization. arXiv preprint arXiv:2407.10424, 2024.

M. M. Ziegler, R. Bertran, A. Buyuktosunoglu, and P. Bose. Machine learning techniques for taming
the complexity of modern hardware design. IBM Journal of Research and Development, 61(4/5):
13:1-13:14, 2017. doi: 10.1147/JRD.2017.2721699.

13

Under review as a conference paper at ICLR 2025

CONTENTS

A, Appendix| 14
A.1. Dataset Examples| 14
A.2. Fine-Tuning| e 14
A.3. Examples comparing Fine-tuned model to Base model| 15
A.4. Difference between functional and syntactical assertions| 20
A.5. Examples of LLMs Fine-tuned on VERT Addressing GPI-40 Issues and Compari- |

| son With Human Experts| 21
A.6. Ablation Study with Uncleaned Variable Names| 25
A.7. Evaluating Impact of Contamination on Assertion Generation|. 26
A.8. Assessing Functional Correctness and Relevance of Assertions through Mutation |

| Testing|. e e 27
IA.9. Coverage Measurement| 27

A APPENDIX

A.1 DATASET EXAMPLES

Figure[5]presents synthetic SystemVerilog code snippets and their formal assertions from our dataset.
The left column shows representative code blocks with conditional and case-based logic. The top-
left snippet is from the “if-else” dataset, where the assertion checks that when ! cfg_7 is true and
hw_13 && reg-14 || core_17 holds, chip_9 mustequal £sm_18. This ensures correct sig-
nal assignment following the logic during simulation or formal verification.

The middle-left snippet, from the “case” dataset, assigns chip_12 to tx_10 if
flag.register_18 equals 5'b10011. The corresponding assertion ensures that this
assignment occurs correctly. The bottom-left snippet showcases a case statement where if
flag_register_18is 7' h26 and the compound condition (rx_6 || rx_.1 || hw_7)holds,
cfg-20 and reg_3 are assigned the expected values, formalized by an assertion.

f] R
S i : ...
; if (!cfg_7) begin) property name;
>4 ;]..se if (hw_ 13 && reg_l4 || core_17) ’ ; (!Cfg_7) &6 (hu_13 && reg 14 || core_17)
) 4 |-=> chip_9 == fsm_18;
- begin 5 endproperty
5 chip_9 = fsm_18; 6
6 e e
-)
(R
| ...
2 case (flag_register_18) 2 property name;
3 5'b10011 : begin 3 (flag_register_18) == (5’b10011)
4 chip_12 = tx_10; ’ 4 |-> chip_12 == tx_10 ;
5 end 5 endproperty
6 6 ...
- J
-
... ...
2 case (flag_register_18) 2 property name;
3 7"h26 : begin 3 (flag_register_18) == (7'h26) &&
4 ... 4 (rx_6 || rx_1 || hw_7) [|->
5 if (rx_6 || rx_1 || hw_7) begin ’ 5 cfg_20 == err_20 &&
6 cfg_20 = err_20; 6 reg_3 == rst_15 ;
7 reg_3 = rst_15; 7 endproperty
8 8 ...

Figure 5: Examples of code blocks (left) and their corresponding assertions (right) in our dataset.

A.2 FINE-TUNING

We utilized the hyperparameters detailed in Table [2} leveraging the Low-Rank Adapter (LoRA)
technique with a rank and alpha of 256 to optimize the model for hardware verification tasks
with minimal computational overhead. This configuration allowed for efficient low-rank up-
dates, preserving the core model’s behavior while integrating task-specific adjustments. A max-

14

Under review as a conference paper at ICLR 2025

imum sequence length of 4096 tokens was employed to accommodate longer logic and condi-
tion sequences in assertion generation, with training constrained to 3 epochs to avoid overfitting.

Hyperparameter | Value
We selected a batch size of 64 and a learning rate | Lora RANK 256
of 1.00e~%* for computational efficiency and stable | {ora alpha 256

convergence, with Bfl6 precision enhancing training

speed without compromising accuracy. By targeting the Maximum sequence length 4096

Query, Key, Value, Output, and Gate layers, we ef- | Epochs 3
fectively adapted the model while updating only 4-6% of | Batch 64
its parameters, thus optimizing performance while con- | Learning_rate 1.00e~94

trolling computational costs. Training Presicion Bfl6

Table 2: Training Hyperparameters
A.3 EXAMPLES
COMPARING FINE-TUNED MODEL TO BASE MODEL

A.3.1 OPENTITAN ASSERTION EXAMPLES

DeepSeek Coder input prompt

Instruction: Generate a list of synchronous SystemVerilog assertions executing at
posedge clk_i from the following code:

1 if (!rst_ni) begin

2 edn_req _hold_g <= ’0;
end else begin
4 edn_req_hold_g <= edn_reqg_hold_d;
5 end
Response:

DeepSeek Coder base model response

The given code is a synchronous systemverilog code for a flip-flop. It is a simple register
that holds its value on the rising edge of the clock signal ‘clk_i’. The reset signal ‘rst_ni’ is
used to clear the register.
The synchronous systemverilog assertion executing at posedge clk_i would be:

| assert property (

2 @ (posedge clk_i) disable iff ("rst_ni)

3 (edn_reg hold_g == $past (edn_req hold_d, 1))

45
This assertion checks that the value of ‘edn_req_hold_q’ is equal to the value of
‘edn_req-hold_d’ at the previous clock cycle. The ‘$past’ function is used to access the
value of ‘edn_req-hold_d’ from the previous cycle. The ‘disable iff (rst_ni)’ part ensures that
the assertion is not checked when ‘rst_ni’ is low.

In the base-model generated assertions, the chain of events depends on the reset signal, however,
the assertion disables the ‘rst_ni’ signal. Moreover, the generated checking statement does not
reflect the correct chain of events. ‘edn_reqg_hold_g’ should be assigned the current value of
‘edn_reqg_hold.d’, not the value it had in the previous clock cycle.

DeepSeek Coder fine-tuned model response

Here is the requested property

| property ResetSynceotid; @ (posedge clk_i) (!rst_ni)|[-> edn_req hold_g == ’'0; endproperty
2 property SyncRegeotid; @ (posedge clk_i) (rst_ni) |->edn_req _hold_g==edn_req_hold_d; endproperty

When generated by the same model fine-tuned on VERT, it generates the assertions with ‘rst_ni’
under consideration, and it gets the correct clock cycle.

15

Under review as a conference paper at ICLR 2025

Llama 3.1 input prompt

< leot_id| >< |start_header_id| > user < |end_header_id| > Generate a list of syn-
chronous systemverilog assertion executing at posedge clk_i from the following code:

1 if (!rst_ni) begin

2 lc_state_valid_g <= 1’Db0;

end else begin
4 lc_state_valid_g <= lc_state_valid_d;
5 end

< |eot_id| >< |start_header_id| > assistant < |end_header_id| >

Llama 3.1 base model response

Here is the SystemVerilog property that corresponds to the given code:

property lc_state_valid_g_posedge;

Q@ (posedge clk_i) ($rose(!rst_ni) |->1lc_state_valid _g===1'Db0) |->1lc_state_valid_g===
lc_state_valid_d;

3 endproperty

1

This property states that when the clock edge occurs, if the reset signal is asserted (i.e.,
‘Irst_ni’ is true), then ‘Ic_state_valid_q’ should be 0. If the reset signal is not asserted, then
‘Ic_state_valid_q’ should be equal to ‘Ic_state_valid_d’.

Note that the ‘rose’ function is used to check if the reset signal is asserted (i.e., goes from 0
to 1) at the current clock edge.

Here, the base-model generated assertion does not get the chain of events right. The if-else block
describes that if there is a reset invoked, ‘1c_state_valid_q’ is assigned 0. Otherwise, it should
be assigned the current value of ‘1c_state_valid_d.” However, the generated assertion asserts
thatif ‘! rst_ni’isrisen, ‘lc_state_valid_qg’ should be assigned 0, and in the next clock cycle,
it should be assigned ‘1c_state_valid.-d’

Llama 3.1 fine-tuned model response

Here is the requested property

| property ResetSyncl;Q (posedge clk_i) (!rst_ni) |->1lc_state_valid_g==1'b0; endproperty
2 property ResetSync2; @ (posedge clk_i) (rst_ni)|->lc_state_valid_g==1lc_state_valid_d; endproperty

A.3.2 CVAG6 ASSERTION EXAMPLES

DeepSeek Coder input prompt

Instruction:Generate a list of asynchronous systemverilog assertion from the following
code

| if (CVA6Cfg.RVH) begin

2 if (CVA6Cfg.IS_XLEN64) begin : gen_vsstatus_64read
3 assign vsstatus_extended = vsstatus_q[CVA6Cfg.XLEN-1:0];
4 end else begin : gen_vsstatus_32read
5 assign vsstatus_extended = {vsstatus_g.sd, vsstatus_q.wpri3[7:0], vsstatus_qg[22:0]};
6 end
7 end else begin
8 assign vsstatus_extended = '0;
9 end
Response:

16

Under review as a conference paper at ICLR 2025

DeepSeek Coder base model response

The code you provided is a System Verilog assertion. However, it does not contain any asyn-
chronous assertions. Asynchronous assertions are used to check the conditions at different
times. In your code, there are no conditions that would be checked asynchronously.

If you want to create an asynchronous assertion, you would need to use the ‘Srose’ or
‘Sfell’ functions to check for changes in the signal. However, this is not applicable in
your code as there are no changes in the signal that you are checking.

Here is an example of an asynchronous assertion:

| always @ (posedge clk or posedge reset) begin
2 if (reset) begin
3 // reset condition
4 end
5 else begin
6 // check condition
7 if (Srose(condition)) begin
8 // do something
9 end
10 end
Il end

In this example, ‘Srose(condition)’ checks if ‘condition’ rose (changed from 0 to 1) at the
next clock edge.

In this case, the base model generated an always block that does not assert anything.

DeepSeek Coder fine-tuned model response

Here is the requested property
1
2 property ValidSynceotid; (CVA6Cfg.RVH) |-> (CVA6Cfg.IS_XLEN64) |-> vsstatus_extended ==
vsstatus_g[CVA6Cfg.XLEN-1:0] ;endproperty

4 property ValidSynceotid; (CVA6Cfg.RVH) |-> (CVA6Cfg.IS_XLEN64) |-> vsstatus_extended == {

vsstatus_qg.sd, vsstatus_qg.wpri3[7:0], vsstatus_q[22:0]} ; endproperty
5
6 property SafeReseteotid; (CVA6Cfg.RVH) |-> vsstatus_extended == ’'0; endproperty

Llama 3.1 input prompt

< |start_header_id| > user < |end_-header_id| > Generate a list of asynchronous sys-
temverilog assertion from the following code
1 if (CVA6Cfg.RVS) begin

2 satp = satp_g;
3 end

< |eot_id| >< |start_header_id| > assistant < |end_header_id| >

Llama 3.1 base model response

Property: satp is updated when CVA6Cfg.RVS is asserted
systemverilog
property p_satp_updated;

@ (posedge clk) ($rose(CVA6Cfg.RVS) |=> satp === satp_qg);
3 endproperty

1
5

In this case, while the base model generated a syntactically correct property, it mistook the check
condition as an edge-triggered event instead of a level-triggered event. Furthermore, it also got the
clock cycle wrong. Instead of defining the property for the current clock cycle, it used the next clock
cycle.

17

Under review as a conference paper at ICLR 2025

Llama 3.1 fine-tuned model response

| property SyncRegeotid; (CVA6Cfg.RVS) |-> satp == satp_g ;endproperty

A.3.3 PULPISSIMO ASSERTION EXAMPLES

DeepSeek Coder input prompt

Instruction:Generate a list of asynchronous systemverilog assertion from the following

code
1 case (rdata_sel_q)
2 RD_CSR: debug_rdata_o = csr_rdata_i;
3 RD_GPR: debug_rdata_o = regfile_rdata_i;
| RD_DBGA: debug_rdata_o = dbg_rdata;
5 RD_DBGS: debug_rdata_o = dbg_rdata;
6 endcase
Response:

DeepSeek Coder base model response

The code you provided is a SystemVerilog case statement. It seems like you want to generate
a list of asynchronous assertions for this code. However, SystemVerilog does not support as-
sertions in the same way as other languages (like C, Java, etc.). Assertions in SystemVerilog
are used to check the design during compile time or run time.
If you want to generate asynchronous assertions, you would typically use the
‘Sassertion_off,’ ‘Sassertion_on, ‘$Sassume, ‘Scover, or ‘S$fell,
‘Srose’ constructs.
However, without more context, it’s hard to provide a more specific answer. If you could
provide more information about the expected behavior or the conditions you want to check,
I could give a more precise answer.
For example, if you want to ensure that ‘rdata_sel_q’ is always valid (i.e., it’s either
‘RD_CSR,” ‘RD_GPR; ‘RD_DBGA, or ‘RD_DBGS’), you could use an assertion like this:

I always @(*) begin

2 $assert_on;

3 assert (rdata_sel_g inside {RD_CSR, RD_GPR, RD_DBGA, RD_DBGS}) else $error ("Invalid

rdata_sel_g value");
4 end

Here, the base model only checks whether the value of ‘rdata_sel_qg’ is within the defined pa-
rameters but not the operations.

DeepSeek Coder fine-tuned model response

Here is the requested property

| property DataSynceotid; (rdata_sel_qg)==(RD_DBGS) |->debug_rdata_o==dbg_rdata; endproperty

2 property ValidRdeotid; (rdata_sel_qg)==(RD_CSR) |->debug_rdata_o==csr_rdata_i; endproperty

3 property ValidRdeotid; (rdata_sel_qg)==(RD_GPR) |->debug_rdata_o==regfile_rdata_i; endproperty
4 property ValidRdeotid; (rdata_sel_g)==(RD_DBGA) |->debug_rdata_o==dbg_rdata; endproperty

18

Under review as a conference paper at ICLR 2025

Llama 3.1 input prompt

< leot_id| >< |start_header_id| > user < |end_header_id| > Generate a list of syn-
chronous systemverilog assertion executing at posedge HCLK from the following code:

if ("THRESETn)

W N —

begin
r_status <= 'hO0;
4 end
5 else
6 begin
7 if (s_rise_int
8 begin
9 r_status <= r_status | s_is_int_all;
10 end
11 else if (PSEL && PENABLE &&!PWRITE && (s_apb_addr == ‘REG_INTSTATUS))
12 begin
13 r_status <= ’'h0;
14 end
15 end

16 end

< |eot_id| >< |start_header_id| > assistant < |end_header_id| >

Llama 3.1 base model response

Here is the list of synchronous SystemVerilog assertions that can be generated from the given
code, executing at posedge HCLK:

| property p_reset_default_value;
2 @ (posedge HCLK) disable iff ("HRESETn) S$rose(r_status) == 1;
3 endproperty

property p_int_status_set;
@ (posedge HCLK) disable iff ("HRESETn) (s_rise_int) |=> (r_status | s_is_int_all);

endproperty

property p_apb_reset_int_status;
@ (posedge HCLK) disable iff ("HRESETn) (PSEL && PENABLE &&!PWRITE && (s_apb_addr ==

‘REG_INTSTATUS)) |=> (r_status == ’'h0);
endproperty
Note: The ‘disable iff* keyword is used to disable the property when the condition is false.
The ‘rose‘ function is used to check if the value of ‘r_status‘ has risen (i.e., changed from
0 to 1) at the current clock edge. The ‘—=;° operator is used to specify the implication
relationship between the antecedent and the consequent.

Here, the assertions miss the correct clock cycle for the assertions. Furthermore, it missed the nested
conditional blocks under ‘HRESETn, which should have put the nested condition in an “AND”

relation with ‘HRESETn.

Llama 3.1 fine-tuned model response

Here is the requested property

| property ResetSyncl; @ (posedge clk_i) (!rst_ni)|->lc_state_valid_g==1'b0; endproperty
2 property ResetSync2; @ (posedge clk_i) (rst_ni)|->lc_state_valid_g==lc_state_valid_d; endproperty

19

Under review as a conference paper at ICLR 2025

A.4 DIFFERENCE BETWEEN FUNCTIONAL AND SYNTACTICAL ASSERTIONS

Syntactical and Functional Errors in Assertions.

Design Source Code:

always_ff (@ (posedge clk_aon_i or negedge rst_aon_ni) begin

1

2 if (!rst_aon_ni) begin

3 wakeup_timer_cnt_g <= "'0;

4 end

5 else if (wakeup_timer_cnt_clr || cfg_fsm rst_i || trigger_h2l) begin
6 wakeup_timer_cnt_qg <= ’0;

7 end else begin

8 wakeup_timer_cnt_qg <= wakeup_timer_cnt_d;

9 end

10 end

Here is the requested property

| property Reset
2 // A syntactic
3 // He t
4 property ResetTimer2;
5 Q@ (posedge clk_aon_i) (wakeup_timer_cnt_clr||cfg_fsm rst_i||trigger_h21l) |->wakeup_timer_cnt_g=='0;
6 endproperty

inctionally inco

Timerl; @ (posedge clk_aon_i) (!rst_aon_ni) |->wakeup_timer_cnt_g=1'b0; endproperty
ally inc ss
e, instead of

rrect assert

‘=" was used

ct assertion

, the generated assertion is missed capturing the ‘if’ condition.

Since formal tools like (Cadence JasperGold|assume that asynchronous reset signals remain inactive
during execution Miftah et al.| (2024), we use simulation in Xilinx Vivado| to verify assertions in-
volving asynchronous resets and ensure the asserted properties can be covered. Next, we validate
the functional correctness of the assertions by performing formal and simulation verification runs,
validating that the assertions can be triggered and observed during testing. This two-stage process
ensures that only syntactically correct and functionally valid assertions are retained in the design.
Textbox [A.4]illustrates the difference between syntactical and functional errors in assertions within
a hardware design context. It presents two issues that can arise when writing assertions to verify
system behavior.

Design Source Code: The provided SystemVerilog code shows an always_ff block, triggered
by either the rising edge of clk_aon_i or the falling edge of rst_aon_ni. The block resets or
updates the value of wakeup_timer_cnt_g based on certain conditions:

1. If rst_aon_ni is low (reset active), the counter is set to zero.
2. If wakeup_timer_cnt_clr or certain other signals are asserted, the counter is reset.

3. Otherwise, the counter is updated with a new value from wakeup_timer_cnt _d.

Assertions: Two properties are presented, each demonstrating a different type of error:

* Syntactical Error:
In property ResetTimerl, the assertion attempts to check if the counter is reset
when rst_aon_ni is low. However, it contains a syntactical error: instead of using the
comparison operator == to check if wakeup_t imer_cnt_qg equals zero, the assignment
operator = is mistakenly used. This would result in a syntax error during compilation.

* Functional Error:
Inproperty ResetTimer2, while the syntax is correct, the assertion misses an essen-
tial condition. It checks whether the counter is reset when the clear signal or related signals
are asserted. However, it fails to include the reset condition (i.e., if (!rst_aon._ni)),
resulting in a functional error because the assertion does not fully capture the intended be-
havior of the design, specifically missing the i f condition from the original source code.

Key Point: We highlight how both types of errors (syntactical and functional) can undermine the
correctness of assertions, either by preventing successful compilation (in the case of syntax errors)
or by failing to accurately verify the design’s intended behavior (in the case of functional errors).

20

Under review as a conference paper at ICLR 2025

A.5 EXAMPLES OF LLMS FINE-TUNED ON VERT ADDRESSING GPT-40 ISSUES AND
COMPARISON WITH HUMAN EXPERTS

In this section, we show how the intuition in dataset formulation, as discussed in Section 4.1 of our
paper, translates into the effectiveness of the assertions generated by LLMs fine-tuned on VERT.
Furthermore, we also provide a comparison of these models with human experts. These scenarios
include (1) clock cycle and pre-condition capturing, (2) relation representation for nested condi-
tional blocks, and (3) handling long conditions. Each section begins with the relevant code snippet,
followed by the assertions generated by each approach.

A.1: Clock Cycle and Pre-condition Capturing in GPT-40 VS Vs LLMs fine tuned on VERT.

Generate a list of synchronous SystemVerilog assertion executing at (posedge clk_i)
from the following code:

10 always (@ (posedge clk_i or negedge rst_ni) begin
11 if ("rst_ni) begin

12 wr_state_g <= IDLE;

13 wr_cnt_q <= 70;

14 end else begin

15 wr_state_g <= wr_state_d;

16 wr_cnt_qg <= wr_cnt_d;

17 end

18 end

GP4o0 Response:

1

2 // Assertion to ensure that wr_state_qg follows wr_state_d when rst_ni is high

3 assert property (@ (posedge clk_i) (rst_ni && (wr_state_d !== IDLE)) |=> (wr_state_g ==
wr_state_d))

4 else $error ("State transition failure: wr_state_g did not follow wr_state_d.");

3

6 // Assertion to ensure that wr_cnt_g follows wr_cnt_d when rst_ni is high

7 assert property (Q(posedge clk_i) (rst_ni && (wr_cnt_d !== ’'0)) |=> (wr_cnt_g == wr_cnt_d))

8 else $error ("Counter transition failure: wr_cnt_g did not follow wr_cnt_d.");

10 // Assertion to check that the state and count do not update during reset
Il assert property (@ (posedge clk_i) ("rst_ni) |=> (wr_state_q == IDLE && wr_cnt_g == '0))
12 else S$error ("Reset condition not maintained: wr_state_g or wr_cnt_qg changed during reset.");

VERT Llama 3 Response:

2 property ResetSynceotid; @ (posedge clk_i) (“rst_ni) |-> wr_state_g == IDLE && wr_cnt_qg == ‘0 ;
endproperty

4 property ResetSynceotid; @ (posedge clk_i) (rst_ni) |-> wr_state_q == wr_state_d && wr_cnt_g

== wr_cnt_d; endproperty
VERT DeepSeek Response:

| property ResetSynceotid; @ (posedge clk_i) ("rst_ni) |-> wr_state_qg == IDLE && wr_cnt_q == '0 ;
endproperty

5

3 property ResetSynceotid; @ (posedge clk_i) (rst_ni) |-> wr_state_q == wr_state_d && wr_cnt_g

== wr_cnt_d; endproperty

A.5.1 LLMs FINE-TUNED ON VERT vs. GPT-40:

Clock Cycle Misinterpretations: We observe that LLMs often get confused between using the
overlapping implication symbol (|— >) and the non-overlapping symbol (| =>). To resolve clock
cycle misinterpretation by LLMs, we standardized our format by using the overlapping implication
symbol with a specified delay count and replacing the non-overlapping symbol. As shown in text
box [AT]below, GPT-4o incorrectly uses the non-overlapping symbol, but both LLMs fine-tuned on
VERT address this issue by correctly interpreting the clock cycle by using the overlapping implica-
tion symbol.

Miscapturing if Condition for else Branches: LLMs often overlook the previous if/else if condi-
tions when generating assertions for the subsequent else or else if branches in conditional statements.
VERT addresses the common omission of conditions in the else/else-if branches of if-else statements
by exposing the model to diverse conditional structures. As shown in text box [A-2]below, GPT-40, in
its second assertion, misses that the second assertion should verify that monitor_enable is FALSE

21

Under review as a conference paper at ICLR 2025

and monitor_enable_q is TRUE. However, both LLMs fine-tuned on VERT correctly identify these
conditions and include them in the fourth generated assertion.

A.2: Relation Representation for Nested Conditional Blocks in GPT-40 VS Vs LLMs fine
tuned on VERT.

Generate a list of asynchronous SystemVerilog Assertion from the following code

I if (!rst_ni) begin

2 bus_release_cnt <= '0;

3 end else if (monitor_enable &&!monitor_enable_g) begin
4 if (multi_controller_enable_i) begin

5 bus_release_cnt <= 30’ (bus_inactive_timeout_i);
6 end

7 end else if (bus_release_cnt_load) begin

8 bus_release_cnt <= bus_release_cnt_sel;

9 end else if (bus_release_cnt_dec && (bus_release_cnt!= ’0)) begin
10 bus_release_cnt <= bus_release_cnt - 1’bl;

Il end

GPT-40 Response:

l coo

2 // Synchronous assertion for monitor enable signal transition
3 assert property (@ (posedge clk) disable iff (!rst_ni)
4

(monitor_enable && !monitor_enable_g) |-> (multi_controller_enable_i ?
5 (bus_release_cnt == bus_inactive_timeout_i) : 1’bl)
6) else $fatal ("Bus release count should be set to bus_inactive_timeout_i when monitor_enable

rises and multi_controller_enable_i is high.");

8 // Synchronous assertion for bus_release_cnt_load condition

9 assert property (@ (posedge clk) disable Iff ('rst_ni)

10 (bus_release_cnt_load) |-> (bus_release_cnt == bus_release_cnt_sel)
11) else $fatal ("Bus release count should be loaded with bus_release_cnt_sel when
bus_release_cnt_load is asserted.");

VERT Llama 3 Response:

| property ResetSynceotid; (!rst_ni) |-> bus_release_cnt == ’'0 ;endproperty

2

3 property ResetSynceotid; (rst_ni) && (!monitor_enable || monitor_enable_q) |->
bus_release_cnt == '0 ;endproperty

5 property ResetSynceotid; (rst_ni) && (monitor_enable && !monitor_enable_g) && (

multi_controller_enable_i) |-> bus_release_cnt == 30’ (bus_inactive_timeout_i) ;endproperty

6

7 property ResetSynceotid; (rst_ni) && (!monitor_enable || monitor_enable_g) && (
bus_release_cnt_load) |-> bus_release_cnt == bus_release_cnt_sel ;endproperty

8

9 property ResetSynceotid; (rst_ni) && (!monitor_enable || monitor_enable_ g) && (!
bus_release_cnt_load) && (bus_release_cnt_dec && (bus_release_cnt != '0)) |->
bus_release_cnt == (bus_release_cnt - 1’bl) ;endproperty

VERT DeepSeek Response:

| property ResetSynceotid; (!rst_ni) |-> bus_release_cnt == ’'0 ;endproperty

2

3 property ResetSynceotid; (rst_ni) && (!monitor_enable || monitor_enable_gq) |->
bus_release_cnt == ’0 ;endproperty

5 property ResetSynceotid; (rst_ni) && (monitor_enable && !monitor_enable_qg) && (
multi_controller_enable_i) |—> bus_release_cnt == 30’ (bus_inactive_timeout_i) ;endproperty

7 property ResetSynceotid; (rst_ni) && (!monitor_enable || monitor_enable_qg) && (
bus_release_cnt_load) |-> bus_release_cnt == bus_release_cnt_sel ;endproperty

8

9 property ResetSynceotid; (rst_ni) && (!'monitor_enable || monitor_enable_g) && (
bus_release_cnt_load) && (bus_release_cnt_dec && (bus_release_cnt != '0)) |->
bus_release_cnt == (bus_release_cnt - 1’bl) ;endproperty

Nested If-Else Conditions: LLMs often struggle with generating assertions for deeply nested if-
else conditions (i.e., blocks nested beyond two levels), which are common in hardware design. To
address the challenge of LLMs struggling with deeply nested if-else statements, we expanded VERT
to include complex, multi-level conditional structures. As illustrated by text box @ below, GPT-40
incorrectly represents the logic of a nested block. Specifically, it ignores the if condition and creates
an assertion using a ternary operator, where the inner if condition is used as the test, the assignment
is the TRUE branch, and 1°b1 is the TRUE branch. However, both LLMs fine-tuned on VERT to
correctly identify the correct nested statement and their conditions.

22

Under review as a conference paper at ICLR 2025

A.3: Handling Long Conditions in GPT-40 Vs LLMs fine tuned on VERT.

Generate a list of asynchronous systemverilog assertion from the following code

if (state_sel_o mr_state_sel[i]

1
2 add_rk_sel_o

= Il
!'= mr_add_rk_sel[i] Il
3 key_full _sel o != mr_key_full sel[i] |
4 key_dec_sel_o != mr_key_dec_sel[i] Il
5 key_words_sel o != mr_key_words_sel[i] ||
6 round_key_sel_o != mr_round_key_sel[i]) begin
7 mr_err = 1’bl;
8 end
GPT -40 Response:
1 soo
2 // Asynchronous assertion to check key full_sel_o against mr_key_full_sel[i]
3 assert property ((key_full_sel o != mr_key_ full sel[i]) |-> (mr_err == 1'bl))
4 else $error ("Asynchronous check failure: key_full_sel_o does not match mr_key_full_sel[%0d]
and mr_err is not asserted.", 1i);
5
6 // Asynchronous assertion to check key_dec_sel_o against mr_key_dec_sel[i]
7 assert property ((key_dec_sel_o != mr_key dec_sel[i]) |-> (mr_err == 1'bl))
8 else $error ("Asynchronous check failure: key_dec_sel_o does not match mr_key_dec_sel[%$0d] and
mr_err is not asserted.", 1i);

10 // Asynchronous assertion to check key_words_sel o against mr_key words_sel[i]

Il assert property ((key_words_sel_o != mr_key_words_sel[i]) |-> (mr_err == 1’bl))
12 else $error ("Asynchronous check failure: key words_sel_o does not match mr_key words_sel[%0d]
and mr_err is not asserted.", 1i);

VERT Llama 3 Response:

1

2 property SyncErreotid; (state_sel o != mr_state_sel[i] Il

3 add_rk_sel_o !'= mr_add_rk_sel[i] Il

4 key_full_sel_o != mr_key_full_sel[i] |

5 key_dec_sel_o != mr_key_dec_sel[i] ||

6 key_words_sel_o!= mr_key_words_sel[i] ||

7 round_key_sel_o!= mr_round_key_sel[i]) |-> mr_err = 1’bl ;endproperty
VERT DeepSeek Response:

1 property SyncErreotid; (state_sel_o != mr_state_sel[i]) ||

2 (add_rk_sel_o != mr_add_rk_sel[i]) ||

3 (key_full_sel o != mr_key_full_sel[i]) ||

4 (key_dec_sel_o != mr_key_dec_sel[i]) ||

5 (key_words_sel_o != mr_key_words_sel[i]) ||

6 (round_key_sel_o != mr_round_key_sel[i]) |-> mr_err == 1’bl ;

7 endproperty

Handling Long Conditions: To address the challenge of generating accurate assertions for long
and complex conditions, we expanded VERT to include a variety of cases where multiple conditions
and operators must be evaluated simultaneously. As shown in text box [A.3] below, the source code
requires any one of six conditions to be met before raising the mr_err flag. However, the generated
output by GPT- 4o creates three assertions for one flag change, each neglecting the other three
conditions. This not only leads to incorrect assertions but also causes overhead in the number of
assertions. However, both LLMs fine-tuned on VERT correctly generate a singular assertion that
describes all the conditions and their relationships within the if-statement.

A.5.2 LLMs FINE-TUNED ON VERT vs. HUMAN EXPERT:

Human experts and LLMs fine-tuned on VERT generate assertions differently. Experts often create
simpler, more readable assertions, reflecting a preference for human-friendly formats. LLMs, on the
other hand, produce more standardized logical expressions. This difference highlights style prefer-
ences rather than superiority. Notably, despite these stylistic differences, LLMs fine-tuned on VERT
achieve assertion generation performance comparable to that of human experts. This is illustrated in
the textbox[A.4] For instance, in example 1, when verifying whether the bus_release_cnt signal
has been reset, the LLM-generated assertion takes the form bus_release_cnt == ’0’, while
the human expert expresses the same operation as ! (|bus_release_cnt). The latter format, of-
ten favored by experts, is typically chosen for its ease of writing and brevity. Similarly, in example
2, since mr_err is a one-bit flag, the human expert chooses to verify whether the flag was raised by
writing mr_err for the check, while the LLMs use the full expression, mr_err == 1’bl.

23

Under review as a conference paper at ICLR 2025

A.4: Examples comparing LLMs Fine-tuned on VERT to Human Experts

Example 1
Source Code:

if (!rst_ni) begin

1

2 bus_release_cnt <= '0;

3 end else if (monitor_enable &&!monitor_enable_g) begin

4 if (multi_controller_enable_i) begin

5 bus_release_cnt <= 30’ (bus_inactive_timeout_1i);
6 end

7 end else if (bus_release_cnt_load) begin

8 bus_release_cnt <= bus_release_cnt_sel;

9 end else if (bus_release_cnt_dec && (bus_release_cnt!= ’0)) begin
10 bus_release_cnt <= bus_release_cnt - 1'bl;

Il end

VERT Llama 3 Response:

I property ResetSynceotid;
2 (!'rst_ni) |-> bus_release_cnt == '0 ;

3 endproperty
4 property ResetSynceotid;
5 (rst_ni) && (!monitor_enable || monitor_enable_g) |-> bus_release_cnt == '0 ;

6 endproperty

7 property ResetSynceotid;

8 (rst_ni) && (monitor_enable && !monitor_enable_g) && (multi_controller_enable_i) |->
bus_release_cnt == 30’ (bus_inactive_timeout_1i);

9 endproperty

10 property ResetSynceotid;

11 (rst_ni) && (!monitor_enable || monitor_enable_g) && (bus_release_cnt_load) |[—>
bus_release_cnt == bus_release_cnt_sel ;

12 endproperty

13 property ResetSynceotid;

14 (rst_ni) && (!monitor_enable || monitor_enable_g) && (!'bus_release_cnt_load) && (
bus_release_cnt_dec && (bus_release_cnt != ’0)) |-> bus_release_cnt == (bus_release_cnt -
1'bl) ;

15 endproperty

VERT DeepSeek Response:

| property ResetSynceotid;

2 (!'rst_ni) |-> bus_release_cnt == '0;

3 endproperty

4 property ResetSynceotid;

5 (rst_ni) && (!monitor_enable || monitor_enable_gq) |-> bus_release_cnt == '0;

6 endproperty

7 property ResetSynceotid;

8 (rst_ni) && (monitor_enable && !monitor_enable_g) && (multi_controller_enable_i) |->

bus_release_cnt == 30’ (bus_inactive_timeout_1i) ;

9 endproperty

10 property ResetSynceotid;

11 (rst_ni) && (!monitor_enable || monitor_enable_g) && (bus_release_cnt_load) |—>
bus_release_cnt == bus_release_cnt_sel ;

12 endproperty

13 property ResetSynceotid;

14 (rst_ni) && (!monitor_enable || monitor_enable_g) && (!bus_release_cnt_load) && (
bus_release_cnt_dec && (bus_release_cnt != ’0)) |-> bus_release_cnt == (bus_release_cnt -

1'bl) ;
15 endproperty

Human Expert:

| property bus_release_cnt_change_reset;

2 !rst_ni |-> ! (|bus_release_cnt);

3 endproperty

| property bus_release_cnt_change;

5 rst_ni && monitor_enable && !monitor_enable_g |-> multi_controller_enable_i |->
bus_release_cnt == 30’ (bus_inactive_timeout_1i);

6 endproperty

7 property bus_release_cnt_change_load;

8 rst_ni && bus_release_cnt_load |-> bus_release_cnt == bus_release_cnt_sel;

9 endproperty

10 property bus_release_cnt_change_dec;

11 rst_ni && bus_release_cnt_dec && (|bus_release_cnt)
1;

12 endproperty

|-> bus_release_cnt == bus_release_cnt -

Example 2
Source Code:

if (state_sel_o !'= mr_state_sel[i] (H
add_rk_sel_o != mr_add_rk_sel[i] (H

key_full_sel_o = mr_key_full_sel[i] Il
key_dec_sel_o = mr_key_dec_sel[i] Il
key_words_sel_o != mr_key_words_sel[i] ||

[T RV SR

24

Under review as a conference paper at ICLR 2025

6 round_key_sel_o != mr_round_key_sel[i]) begin

7 mr_err = 1'bl;

8 end

VERT Llama 3 Response:

| property SyncErreotid;

2 (state_sel_o != mr_state_sel[i] (

3 add_rk_sel_o !'= mr_add_rk_sel[i] |1

4 key_full_sel_o != mr_key_full_sel[i] Il

5 key_dec_sel_o != mr_key_dec_sel[i] Il

6 key_words_sel_o!= mr_key_words_sel[i] ||

7 round_key_sel_o!= mr_round_key_sel[i]) |-> mr_err = 1’Dbl;

8 endproperty

VERT DeepSeek Response:

| property SyncErreotid;

2 (state_sel_o != mr_state_sel([i]) ||

3 (add_rk_sel_o != mr_add_rk_sel[i]) ||

4 (key_full_sel_o != mr_key_full sel[i]) ||

5 (key_dec_sel_o != mr_key_dec_sel[i]) ||

6 (key_words_sel_o != mr_key_words_sel[i]) ||

7 (round_key_sel_o != mr_round key_sel[i]) |-> mr_err == 1'bl ;

8 endproperty

Human Expert:

| property state_sel_cond;

2 (state_sel_o != mr_state_sel[i]) || (add_rk_sel o !'= mr_add_rk_sel[i]) || (key_full_sel o !=
mr_key_full _sel[i]) || (key_dec_sel o != mr_key dec_sel[i]) || (key_words_sel o !=
mr_key_words_sel[i]) || (round key_sel o != mr_round_key_sel[i]) |-> mr_err;

3 endproperty

A.6 ABLATION STUDY WITH UNCLEANED VARIABLE NAMES

Table [3] an ablation study with uncleaned variable names, presented below, to highlight the impact
of cleaning variable names. The Table is split into two halves, containing Syntactically Correct
Assertions and Functionally Correct Assertions. Columns 3 and 8 refer to the assertions generated
by the base model. Columns 4 and 9 refer to assertions generated by a model fine-tuned on a dataset
that contains syntactically incorrect variables (which refer to special characters not allowed in HDL
languages); columns 5 and 10 refer to duplicate variables that may skew the model’s learning and
introduce ambiguity, and columns 6 and 11 refer to inconsistent variables such as conflicting variable
names. Finally, columns 7 and 12 refer to the cleaned variables we eventually use to build VERT. The
results provided in the table below demonstrate that failing to address syntactically incorrect variable
names was the most critical, leading to lower performance in fine-tuned LLLMs compared to even
the base models. This is because the fine-tuned LLMs generate syntactically incorrect assertions
stemming from erroneous variable names.

Table 3: Ablation Study with Uncleaned Variable Names

Models Benchmark/ Syntactically Correct Assertions (%) Functionally Correct Assertions(%)
Hardware [P Base Model | VU SYMRCUCSY | (o cate Variables | With Inconsistent Variables | Cleaned Variables | Base Model | " SYPOCtCY |\ et Variables | With Inconsistent Variables | Cleaned Variabies
Incorrect Variables Incorrect Variables
OpenTitan/AES 3584 3520 7280 86.40 8870 802 720 68.80 8240 83.48
OpenTitan/i2C 2953 2857 6667 8333 333 939 9.52 66.67 80.16 8333
OpenfTitan/LC CTRL 2307 2105 7368 8421 89.47 7.69 526 7368 8421 89.47
OpenTita/ADC CTRL | 17.46 1875 8125 9063 100.00 952 9.38 8125 9688 100.00
CVAG/Frontend ans 3846 7692 9231 9231 1176 1538 76.92 84.62 9231
CVAG/Decodedlssue 2258 2353 8235 94.12 100.00 645 588 5235 97.06 100.00
Liama 3.1 CVAGExecute 2555 2476 7429 8571 9143 545 571 7429 86.67 9143
CVAG/Commit 3857 3544 7342 8861 89.87 10.00 1013 7342 59.87 89.87
CVAG/Controller&Top | 34.24 3235 7941 95.59 95.59 548 588 7941 8971 95,59
Pulpissimo/APB 5333 5263 7368 89.47 89.47 5333 5263 7368 89.47 8947
Pulpissimo/RISCV 2105 2000 80.00 9333 9333 2105 2000 7333 86.67 93.33
Pulpissimo/debug_unit 1667 18.18 8182 9091 100.00 16.67 18.18 8182 9091 100.00
Average 2092 20.08 7636 8955 9279 1373 1376 7547 88.22 9236
OpenTita/AES 1081 10.19 7580 89.17 9490 6.08 637 7580 9236 93.63
OpenTitan/12C 1212 129 9.03 95.16 97.58 833 806 79.03 95.16 97.58
OpenTitan/L.C CTRL, 1425 1579 8421 9474 100.00 952 1053 8421 9474 100.00
OpenTitaADC CTRL | 625 625 78.13 9688 10000 0.00 000 7813 9375 96.88
CVAG/Frontend 5625 ST.14 7857 9286 9286 3750 3571 7857 8571 9286
CVAG/Decodedlssue 1892 1875 8438 96.88 100.00 1351 1250 8438 9375 100.00
DeepSeck Coder | CVAG/Exceute 2637 2525 778 97.98 97.98 2088 2020 778 9293 97.98
CVAG/Commit 2165 2043 7527 8280 8925 1753 17.20 7527 8172 8925
CVAG/Controller&Top | 2195 2105 75.00 86.84 89.47 1585 1447 75.00 8553 89.47
Pulpissimo/APB 24 2632 7895 9474 10000 2400 2632 7895 100.00 100.00
Pulpissimo/RISCV 2308 2000 50.00 100.00 100.00 2308 2000 5000 9333 100.00
Pulpissimoldebug unit | 1538 18.18 8182 10000 10000 1538 18.18 8152 9091 100.00
Average 2092 2089 79.08 9400 9684 1597 1580 79.08 9166 96.47

25

Under review as a conference paper at ICLR 2025

Subsequently, LLMs fine-tuned with the cleaned variable list (VERT) performed up to 17.76% and
17.39% in syntactical and functional correctness, respectively, compared to the LLMs fine-tuned
on a dataset that preserved duplicate variable names. This improvement is attributed to eliminating
duplicates within the same assertion, which likely reduced ambiguity and enhanced the fine-tuned
LLMs’ ability to generate accurate results. Finally, addressing inconsistent variable names resulted
in the smallest observed change, with the LLMs fine-tuned on the cleaned variable list increasing
by up to 3.24% and 4.81%, in syntactical and functional correctness, respectively, compared to
the LLMs fine-tuned on a dataset that maintained inconsistent variable names. This outcome is
likely because such inconsistencies comprised a relatively minor portion of the overall variable list
compared to the duplicates and syntactically incorrect variables.

A.7 EVALUATING IMPACT OF CONTAMINATION ON ASSERTION GENERATION

Regarding potential data contamination, from our experiments, we observed that certain HDL com-
ponents negatively impact the generation of syntactically and functionally correct assertions. No-
tably, module instantiations and “ifdef” commands challenge assertion generation. Specifically,
the models used to evaluate VERT rarely generate assertions from module instantiations, leading
to syntactically and functionally incorrect results. Moreover, these smaller models tend to misin-
terpret “ifdef” commands as conventional if-else statements. While this misclassification occurs
infrequently, it reduces the percentage of correctly generated assertions. Assertions derived from
these commands are often both syntactically incorrect—since “ifdef” commands do not adhere to
standard if-else syntax and lack the necessary information for typical branching—and functionally
incorrect, as they do not contribute meaningfully to functional branching. In contrast, GPT-40 ap-
pears unaffected by these HDL components in its assertion generation. Table 1 illustrates the effect
of increasing contamination in design files on assertion generation. Here, “contamination” refers to
adding “ifdef” commands and module instantiations. For example, “+10 contamination” indicates
that 10 additional instances of each of these elements (on top of the already existing instances) were
introduced into the design files. The results show that as the level of contamination increases, the
number of incorrectly generated assertions also rises. It should be noted that typically, in the hard-
ware design, the number of “ifdef” commands is limited to at most five. Therefore, the scenarios
used here to evaluate the contamination effect are unrealistic and to study the effect of contamination
on the models.

Table [] illustrates the effect of increasing contamination in design files on assertion generation.
Column 1, “Models,” specifies the LLM being tested, while Column 2, “Benchmark/Hardware IP,”
lists the specific test benchmark used. Columns 3, 4, and 5, under “Generated Assertions,” indicate
the total number of assertions generated with no contamination, an additional 10 contamination,
and an additional 20 contamination in the input dataset, respectively. Columns 6, 7, and 8, under
“Syntactically Correct (%),” measure the percentage of assertions that are syntactically valid for each
contamination level. Finally, Columns 9, 10, and 11, under “Functionally Correct (%),” represent

Table 4: Effect of increasing contamination in design files on assertion generation

Modés Benchmark/Hardware IP Generated Assertions Syntactically Correct (%) Functionally Correct (%)
No C ination | +10 C inati ‘ +20 C ination | No Ce inati ‘ +10 C inati ‘ +20 C ination | No Ce inati ‘ +10 C ination | +20 Ce
OpenTitan/AES 125 129 132 0.89 0.86 0.84 0.83 0.1 0.79
OpenTitan/12C 126 130 132 0.83 081 0.8 0.83 0.1 0.8
OpenTitan/LC CTRL 19 21 2 0.89 0.1 0.77 0.89 0.1 0.77
OpenTitan/ADC CTRL 32 34 36 1.00 0.94 0.89 1.00 0.94 0.89
CVAG/Frontend 13 14 17 0.92 0.86 071 0.92 0.86 071
Liama 3.1 CVAG6/Decode&lssue 34 37 39 1.00 0.92 0.87 1.00 0.92 0.87
CVAG6/Execute 105 109 11 091 0.88 0.86 091 0.88 0.86
CVAG6/Commit 79 82 84 0.90 0.87 0.85 0.90 0.87 0.85
CVA6/Controller&Top 68 71 7 0.96 0.92 0.89 0.96 0.92 0.89
Pulpissimo/APB 19 21 23 0.89 081 0.74 0.89 081 0.74
Pulpissimo/RISCY 15 17 18 0.93 0.82 0.78 0.93 0.82 078
Pulpissimo/debug unit 1 14 14 1.00 0.79 0.79 1.00 0.79 0.79
OpenTitan/AES 157 161 164 0.95 0.93 091 0.94 091 0.9
OpenTitan/I2C 124 129 131 0.98 0.94 0.92 0.98 0.94 0.92
OpenTitan/LC CTRL. 19 22 23 1.00 0.86 0.83 1.00 0.86 0.83
OpenTitan/ADC CTRL 32 35 35 1.00 091 091 0.97 0.89 0.89
CVAG/Frontend 14 16 18 0.93 0.1 0.72 0.93 0.1 0.72
DeepSeek Coder | CVAODecodedssue 32 34 35 1.00 0.94 091 1.00 0.94 091
CVAG6/Execute 99 102 104 0.98 0.95 0.93 0.98 0.95 0.93
CVAG6/Commit 93 95 96 0.89 0.87 0.86 0.89 0.87 0.86
CVA6/Controller&Top 76 81 81 0.89 0.84 0.84 0.89 0.84 0.84
Pulpissimo/APB 19 22 2 1.00 0.86 0.86 1.00 0.86 0.86
Pulpissimo/RISCY 15 18 19 1.00 0.83 079 1.00 0.83 0.79
Pulpissimo/debug_unit 1 13 15 1.00 0.85 0.73 1.00 0.85 0.73

26

Under review as a conference paper at ICLR 2025

the percentage of assertions that are logically accurate and align with the intended functionality
under the same contamination conditions. Here, “contamination” refers to the addition of “ifdef”
commands and module instantiations. A contamination level lower than 10 was found to have a
negligible impact on the results, while levels exceeding 20 were impractical due to exceeding the
context size limitations of our models. The results show that as the level of contamination increases,
the number of incorrectly generated assertions also rises. This results in a 3% drop in accuracy. It
should be noted that typically, in the hardware design, the number of “ifdef” commands is limited to
at most five. Therefore, the scenarios used here to evaluate the contamination effect are unrealistic
and for the purpose of studying the effect of contamination on the models.

A.8 ASSESSING FUNCTIONAL CORRECTNESS AND RELEVANCE OF ASSERTIONS THROUGH
MUTATION TESTING

The functional correctness of the generated assertions, as presented in Table[I} was evaluated using
mutation testing, consistent with the methodology outlined in [1]. This approach involved intro-
ducing intentional, small code modifications (mutants) that deviated from the expected assertion
logic. By detecting these mutants, we demonstrated the effectiveness of the generated assertions
in identifying logical inconsistencies and validating their utility. Unlike trivial or redundant asser-
tions (e.g., “assert True”), these assertions were intricately aligned with the critical components of
the hardware design, ensuring their relevance and impact. Our findings revealed that the generated
assertions achieved up to 100% functional correctness or ability to detect mutations across various
benchmarks, underscoring their robustness and effectiveness. The same mutation testing methodol-
ogy from [1] was also applied to verify the importance of the generated assertions, further affirm-
ing their significance. This comprehensive evaluation highlighted the non-redundant nature of the
benchmarks and the potential of LLMs fine-tuned on VERT for hardware verification. Furthermore,
the method ensured complete coverage of conditional branches and critical logic paths within the
hardware design. The LLM-generated assertions were specifically crafted to validate every logical
path, leaving no branch or condition unchecked, thereby reinforcing their role in achieving thorough
hardware verification.

A.9 COVERAGE MEASUREMENT

Complete Path Coverage (CPC) refers to covering all possible independent paths within an automa-
ton. A path begins at the initial node, traverses through the graph’s edges, and ends at a final node.
While CPC provides a thorough examination of the system, it becomes infeasible for graphs con-
taining cycles, as these can result in infinite path lengths.

In our approach, we use complete path coverage as our primary coverage metric. This ensures a
comprehensive evaluation of the system’s behavior by accounting for all potential paths. To validate
our coverage, we employed both formal and simulation-based verification tools, including
[JasperGold|and[Xilinx Vivado. These tools allowed us to rigorously analyze the generated assertions
and ensure that they comprehensively cover all the functions defined within the system.

By leveraging our method to extract properties from every possible conditional branch, we achieve
up to 100% coverage. This robust verification strategy confirms the correctness and reliability of the
automaton’s functionality across all defined behaviors.

27

	Introduction
	Background and Related works
	Hardware Verification
	LLMs for hardware design

	Motivation
	Proposed VERT Dataset
	Intuition in Dataset Formulation
	Dataset Composition
	Synthetic Generation Of assertions

	Results
	Experimental Setup
	Evaluation Results

	Conclusion
	Appendix
	Dataset Examples
	Fine-Tuning
	Examples comparing Fine-tuned model to Base model
	Difference between functional and syntactical assertions
	Examples of LLMs Fine-tuned on VERT Addressing GPT-4o Issues and Comparison With Human Experts
	Ablation Study with Uncleaned Variable Names
	Evaluating Impact of Contamination on Assertion Generation
	Assessing Functional Correctness and Relevance of Assertions through Mutation Testing
	Coverage Measurement

