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Abstract

Environmental sustainability, particularly in relation to cli-
mate change, is a key concern for consumers, producers,
and policymakers. The carbon footprint, based on green-
house gas emissions, is a standard metric for quantifying the
contribution to climate change of activities and is often as-
sessed using life cycle assessment (LCA). However, conduct-
ing LCA is complex due to opaque and global supply chains,
as well as fragmented data. This paper presents a methodol-
ogy that combines advances in LCA and publicly available
databases with knowledge-augmented Al techniques, includ-
ing retrieval-augmented generation, to estimate cradle-to-gate
carbon footprints of food products. Our methodology is im-
plemented as a chatbot interface that allows users to inter-
actively explore the carbon impact of composite meals and
relate the results to familiar activities. A web demonstration
showcases our proof-of-concept system with user recipes and
follow-up questions, highlighting both the potential and lim-
itations —such as database uncertainties and Al misinterpre-
tations —of delivering LCA insights in an accessible format.

Demo — https://carbonfootprintwizard.labs.vu.nl

Code —
https://github.com/mkaanaslan/carbon-footprint-wizard

Introduction

As sustainability is high on the agenda for consumers, pro-
ducers, and policymakers, indicators of sustainable produc-
tion and consumption are key to present-day research and
consulting (Krajnc and Glavi¢ 2003). While sustainability
is a multidimensional concept (Purvis, Mao, and Robinson
2019), in the context of climate change, environmental con-
siderations take precedence over social and economic factors
(Yaifiez, Sinha, and Vasquez 2019). The most popular indi-
cator for quantifying the environmental impact to climate
change is the carbon footprint (CF), which aggregates green-
house gas (GHGs) emissions using global warming potential
(GWP) values (Cuéek, Klemes, and Kravanja 2012).!
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'In this work, we focus on the most recent GWP values from the
Intergovernmental Panel on Climate Change (IPCC), with a 100-
year time horizon.

Carbon footprints are typically measured across three
scopes (Hertwich and Wood 2018). Scope 1 covers the emis-
sions of GHGs directly from the activity itself, and Scope
2 includes the GHG emissions from the energy production
required to run the activity. Scope 3 includes non-energy-
related inputs from the whole supply chain, such as materi-
als and processes. Scope 3 is vital for food processes, where
it includes issues as diverse as methane emissions from rice
cultivation, CO5 emissions from fertilizer production, and
methane emissions from cattle breeding for the meat in-
dustry. If an analysis includes all three scopes, it takes the
form of a life cycle assessment (LCA) (Finkbeiner 2016).
Most food LCAs are cradle-to-gate (or, with a popular term,
farm-to-fork) (Schebesta, Bernaz, and Macchi 2020), stop-
ping short of including the end-of-life phase.

Conducting LCAs is complex due to the long, often global
supply chains. To facilitate this, databases such as ecoin-
vent (Wernet et al. 2016) and the U.S. Life Cycle Inven-
tory Database (Deru 2009) have emerged from early man-
ual studies (PET 2003; Frischknecht et al. 1994). These
databases offer data on either individual unit processes (e.g.,
operating a tractor), covering materials, transportation, en-
ergy, and products, or aggregated data (e.g., the CF of 1
kg of wheat). Meanwhile, it is typically more informative
for consumers to know the carbon footprint of a compound
meal, such as pasta with tomato sauce and parmesan cheese,
cooked for 10 minutes. As such data are typically not readily
available, producing them from the data for the meal com-
ponents requires the analyst to fill the gaps, including the
materials they are composed of, their quantities, and how
the preparation or assembly process works. An illustrative
example is an LCA study on pizzas (Cortesi et al. 2023).
Moreover, COz-equivalent values are not always intuitive.
For consumers, framing a carbon footprint in relatable terms
(e.g., “like driving 10 km”) is often more meaningful.

To make this data more accessible and user-friendly, we
explore using artificial intelligence (Al), particularly large
language models (LLMs), augmented with domain knowl-
edge. LLMs, such as the GPT and Claude series, provide
natural language interfaces that can process queries in nat-
ural language and be used in an interactive, dialogue form.
Since LLMs often lack information and may “hallucinate”
an answer, they can be enhanced with domain-specific doc-
uments (Lewis et al. 2020) or structured data (Edge et al.



2024) through retrieval-augmented generation (RAG) tech-
niques and scripted dialogues.

Recent studies have proposed integrating LLMs with
LCA (Cornago, Ramakrishna, and Low 2023; Preuss, Al-
shehri, and You 2024; Tu et al. 2024), often at a concep-
tual level. Applications are beginning to emerge, e.g., in hy-
drogen production (Chen et al. 2024), construction materi-
als (Turhan 2023), and bio-based materials (Turhan-Haskara
and Demirbilek 2024). In parallel, procedures for data re-
trieval in CF calculations (Luo et al. 2024; Wang et al. 2024),
fine-tuning LLMs with CF data (Li et al. 2025) have been
proposed, estimating food’s water footprint (Joshi, Ilievski,
and Pujara 2024), or emission factor recommendation (Bal-
aji et al. 2025). Still, we note a lack of methodologies that
effectively model the CF of full meals, reconcile data from
multiple overlapping databases, or provide analogs to intu-
itive processes.

In this paper, we investigate how the results of LCA stud-
ies and existing LCA databases can improve the perfor-
mance of LLMs in modeling the CF of cradle-to-gate food
processes. We develop a methodology that utilizes three
freely accessible databases with granular carbon footprint
information on food products and other items (De Rosa and
Weidema 2019; Colomb et al. 2015; CONCITO 2021). Fur-
thermore, we develop a chatbot interface that enables users
to explore the carbon footprint of meals interactively and
contextualize emission values with familiar activities (e.g.,
sending an email).

Our solution is implemented as a public demo, supported
by open-source code. While still a proof of concept, our
method and its implementation demonstrate how Al can help
translate complex LCA data into user-friendly, actionable in-
sights, acknowledging that uncertainties remain in both the
underlying data and Al interpretation.

Methodology

Our proposed methodology implements an integrated
pipeline to generate environmental impact assessments from
free-form recipe inputs, designed to overcome key chal-
lenges in food sustainability analysis. As illustrated in Fig-
ure 1, the methodology consists of four stages:

1. Ingredient processing, which uses an LLM to extract
structured ingredient data from textual descriptions;

2. Product matching, which uses vector embeddings to
match ingredients with database entries for products de-
spite naming variations, followed by user verification;

3. CF querying, which retrieves CF values from the corre-
sponding databases;

4. Interactive exploration, which synthesizes data from
multiple LCA databases into comprehensive impact re-
ports and visualizations, and enables the user to continue
to chat with the large language model.

Existing LCA approaches often fail to serve non-expert
users as they lack readily available data for compound meals
and require specialized skills to assemble carbon footprints
from individual ingredients. Our system addresses these lim-
itations by leveraging Al techniques to interpret natural lan-

Database BONSAI Agribalyse Big Climate DB

# Products 411 2,616 540
# Categories - 11 13
Geo Focus Global France Europe (5)

Table 1: Number of food products and categories, and geo-
graphical focus of the three data sources in our framework.

guage queries and match them with LCA data, while main-
taining human oversight at critical decision points. This hy-
brid approach combines Al and humans, making complex
LCA data accessible to laypeople while ensuring high qual-
ity through human validation of crucial mapping decisions.
We describe our procedure in this section, whereas the exact
prompts for the LLMs are provided in the Appendix.

LCA Databases

Our system leverages environmental impact data from three
key LCA databases: BONSAI (De Rosa and Weidema
2019), Agribalyse (Colomb et al. 2015), and Big Climate
Database (CONCITO 2021). These databases were chosen
primarily for their open-source availability, which ensures
transparency and accessibility, while also providing robust,
high-quality data critical for evaluating the carbon footprints
of food products. Each brings distinct advantages that en-
hance the accuracy, granularity, and contextual relevance of
our environmental impact assessments.

BONSAIL BONSAI is a global open-source database that
provides multiregional input-output data, allowing detailed
assessments of food product emissions in diverse geograph-
ical regions. Its hierarchical structure links products, activi-
ties, and recipes, offering a fine-grained view of supply chain
emissions, from raw material extraction to market delivery.
Inclusion of recipe-specific data further allows for precise
tracking of inputs and CO; equivalent outputs in agricultural
and manufacturing processes, making it an invaluable tool
for complex analysis. Still, its coverage of regions and prod-
ucts remains incomplete, with full development expected by
June 2025.

Agribalyse. Agribalyse is an open-source database tai-
lored to the French food sector, providing comprehensive
life cycle inventory (LCI) and impact data for more than
2,600 food products. It excels in covering the entire lifecy-
cle—agriculture, processing, packaging, transportation, re-
tail, and consumption—using a standardized LCA method-
ology that ensures consistency and reliability. A notable fea-
ture is its data quality rating for each entry, which gives
confidence in the results and supports informed decision-
making. However, its focus on French consumption patterns
may limit its applicability elsewhere without adaptation.

Big Climate Database. It provides open-source, region-
specific environmental impact data for 540 food products
in five European countries: Denmark, the United Kingdom,
France, Spain, and the Netherlands. Its standout feature is
the incorporation of indirect impacts of land use change
(iLUC), offering a broader perspective on the environmental
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Figure 1: Overview of our four-step methodology. Each step is represented by one color: ingredient processing in purple,
product matching in orange, CF querying in black, and iterative exploration in green. The blue container shows the three
databases. Arrows indicate data flow. The robot icons indicate LLMs. The person icons indicate input from humans.

consequences of food production. Detailed emission break-
downs across the lifecycle stages—agriculture, processing,
packaging, transport, and retail—further enhance their util-
ity for targeted analysis. Although its product scope is nar-
rower than Agribalyse’s, its regional precision compensates
for this limitation.

Ingredient Processing

Given a user input, the first step is converting unstructured
recipe inputs into a standardized format suitable for database
matching and impact calculation. The accuracy of this ini-
tial extraction step is crucial, as errors or omissions at this
stage can spread throughout the entire pipeline, potentially
leading to significant inaccuracies in the final impact assess-
ment. Natural language recipe descriptions present several
challenges. Ingredients may be described with varying lev-
els of detail (e.g., “minced beef” versus “beef”), quantities
can be specified in various units (cups, tablespoons, pieces),
and key information might be embedded within cooking in-
structions or casual language (e.g., ”a handful of spinach”).

To address these challenges, we opt for an LLM agent
with a carefully engineered prompt that guides the extraction
process. Specifically, we utilize an LLM through a function-
calling interface that enforces structured output. The LLM
is prompted with explicit instructions to identify ingredient
names and quantities, with the requirement to convert all
measurements to grams using standard culinary conversions
(e.g., 1 tablespoon of oil = 15g). The model returns a JSON
object containing an array of ingredient objects, each with
name and quantity fields. The resulting ingredient names
and their corresponding amounts in grams are then stored
and serve as input for the subsequent semantic search phase.

Product Matching

Establishing accurate correspondences between user-
provided ingredients and database entries presents a
significant challenge due to variations in naming con-
ventions across different LCA databases. Direct string
matching fails to capture critical semantic relationships
- for instance, “minced beef” and “ground beef” refer to
the same product but would be considered distinct under

exact matching. Semantic search techniques address this
limitation by matching ingredients based on their meaning
rather than their exact textual representation. Semantic
search leverages vector space representations that capture
the contextual relationships between different food items,
enabling the system to identify relevant products even when
their names differ significantly from the user’s input.

We use an embedding model to generate vector embed-
dings for both ingredient names and database entries. These
embeddings capture semantic relationships between food
items based on their contextual usage patterns in large text
corpora. We maintain a pre-computed index for each prod-
uct name in the database (BONSAI, Agribalyse, and Big
Climate Database), storing normalized embeddings for all
product names. The ingredient names are transformed into
vectors when processing a user query using the same model
and normalization process. The system then performs effi-
cient similarity searches using these indices to retrieve the
top 3 most similar products from each database, employing
cosine similarity as the distance metric. This approach en-
sures that semantically related products are matched appro-
priately while maintaining computational efficiency through
optimized nearest neighbor search algorithms.

Although semantic search provides a robust method for
identifying potential product matches, the inherent com-
plexity of food products and variations in naming conven-
tions require human oversight in the final selection pro-
cess. Our method includes an interactive product selection
interface, where users are presented with up to three can-
didate products from each database for each ingredient in
their recipe. For each ingredient, the system displays the
ingredient name, quantity, and a list of semantically simi-
lar products identified from BONSAI, Agribalyse, and the
Big Climate Database, using checkboxes. For instance, both
“ground beef” from BONSAI and “minced beef” from the
Big Climate Database might be displayed when searching
for a “beef” ingredient. Users can select multiple products
for each ingredient to account for cases where different
databases use different names for the same product or when
a combination of products better represents the intended in-
gredient. If the user cannot find a suitable match, no re-



sults are provided for that ingredient. The selected products
are assigned to their corresponding database identifiers and
passed to the next stage for impact calculation. If a user se-
lects a product for which data is not available for the tar-
get country, we calculate an average impact value using the
available data from other countries. This human-in-the-loop
approach strikes a balance between automation and accu-
racy, ensuring that the final environmental impact assess-
ment is based on correctly matched products while main-
taining an efficient and user-friendly workflow.

Carbon Footprint Querying

From BONSALI, we extract both production-level emissions
data and market-based emissions that account for regional
production shares. Specifically, when querying BONSAI for
a selected product, the system retrieves direct production
emissions, where available, followed by a comprehensive
breakdown of market composition that shows percentage
contributions from different geographic origins. Each mar-
ket share entry includes the region name, percentage value,
and associated emissions data, preserving the multi-tiered
data model essential for understanding global supply chains.
From Agribalyse, we gather total impact values expressed
in kg CO,-equivalent, along with their data quality ratings
and detailed lifecycle stage breakdowns that partition im-
pacts into six distinct phases: agriculture, processing, pack-
aging, transportation, retail, and consumption. The Agribal-
yse query process preserves both the absolute values and the
proportional contribution of each lifecycle stage. From the
Big Climate Database, we retrieve region-specific total im-
pact values and their detailed breakdowns across production
phases, with a particular focus on their unique components,
such as indirect land-use change impacts, which are not cap-
tured in other databases. The Big Climate Database query
also includes identifying regional variations when data for
the target country is unavailable.

The system structures this information into a standardized
results text as input for the LLM’s analysis. It creates a sec-
tion for each ingredient, starting with its name and quan-
tity, followed by results from each available database. When
BONSALI data are available, we first list any direct produc-
tion emissions, followed by a detailed breakdown of market
shares and their associated emissions for different regions.
For Agribalyse matches, we include the total impact value,
data quality rating, and percentage contributions from each
stage of the lifecycle. Similarly, for Big Climate Database
matches, we present the total impact and phase-specific con-
tributions, including unique indirect land-use change im-
pacts. All impact values are consistently expressed in kilo-
grams of CO, equivalent per specified ingredient quantity,
enabling straightforward comparison and aggregation dur-
ing the analysis step.

Interactive Exploration

The last phase of the system uses an LLM to integrate struc-
tured environmental impact data from various databases into
a cohesive evaluation and presentation of a recipe’s CF. This
process is systematically executed through a series of well-
defined steps that ensure accuracy, consistency, and trans-

parency in the analysis. The LLM interprets structured data
extracted from multiple environmental databases using a
carefully crafted prompt that provides explicit instructions
for parsing data formats unique to each source. For example,
the prompt enables the LLM to calculate market-based to-
tal impact values from BONSAL, lifecycle-based aggregated
values from Agribalyse, and region-specific values from the
Big Climate Database, using the extracted data. The prompt
also specifies protocols for reconciling data from multiple
sources, such as calculating minimum and maximum impact
ranges and derived average values. In addition, it includes
guidelines for estimating cooking-related impacts when rel-
evant, ensuring that LLM can unify heterogeneous data into
a consistent analytical output.

The recipe’s environmental impact computation follows
predefined rules in the LLM’s prompt. Per ingredient, the
LLM determines a range of impact values (minimum to
maximum) when multiple values are available, or adopts a
single value when data are sourced from a single database.
When the recipe implies cooking processes (e.g., baking,
boiling), the LLM estimates supplementary impacts based
on standard energy consumption metrics associated with the
cooking method, duration, and temperature. The total en-
vironmental impact is then calculated by aggregating the
impacts of all ingredients and any associated cooking pro-
cesses, resulting in both a range and an average value. To
enhance transparency, the system flags deviations from the
user-specified target country, ensuring that the analysis re-
mains contextually relevant.

The LLM generates a structured output comprising a
natural language summary and accompanying visualization
data. The summary ranks the recipe’s ingredients by car-
bon footprint and presents the total impact range and av-
erage. Moreover, it contextualizes these findings with re-
latable comparisons to everyday activities (e.g., number of
emails that cause a similar footprint), calibrated against ref-
erence values manually extracted from the book “How Bad
Are Bananas?” (Berners-Lee 2020). The visualization data
supports the creation of graphical representations, including
a horizontal bar chart and a pie chart. These visuals delineate
the proportional contributions of each ingredient and cook-
ing process to the overall carbon footprint, ensuring that the
results are presented in a clear and standardized manner that
supports user comprehension.

In its initial response, the system presents only the most
critical information: ingredient impacts ordered by magni-
tude, cooking considerations, total recipe impact, and relat-
able comparisons. However, the LLM maintains access to
all detailed data, including regional market shares, lifecycle
stage breakdowns, and granular emissions data across dif-
ferent stages of production and distribution. This selective
presentation approach prevents information overload while
allowing for iterative, in-depth exploration through follow-
up questions. Users can ask for specific aspects, such as
market share distributions, regional variations, or lifecycle
patterns, and the LLM draws upon the complete dataset to
provide detailed responses. This creates an interactive expe-
rience where users can progressively explore the complex
aspects of their recipe’s environmental impact through natu-



ral dialogue.

Implementation Details

The methodological pipeline is implemented as our Carbon
Footprint Wizard tool, which utilizes a combination of Al
tools to enable efficient processing, matching, and analysis
of recipe data. Ingredient processing leverages Open Al’s
GPT-40-mini (Hurst et al. 2024), configured with a tem-
perature parameter of zero for deterministic outputs, to ex-
tract structured ingredient lists from natural language inputs
via a function-calling interface that enforces JSON format-
ting. For semantic search, the all-MiniLM-L6-v2 Sentence
Transformer model generates vector embeddings for ingre-
dient names and database entries, capturing semantic rela-
tionships.? The resulting embeddings are then indexed and
queried efficiently using an FAISS index (Douze et al. 2024)
to retrieve the most similar products based on cosine simi-
larity. Database querying and result synthesis are facilitated
by custom functions that interface with BONSAI, Agribal-
yse, and Big Climate Database. The chatbot interface uses
GPT-40-mini to process structured impact data and generate
natural language responses and visualization data with zero
temperature setting, integrated into a Gradio-based (Abid
et al. 2019) web interface for user interaction. For real-
world equivalence scaling, we extracted eight entries from
daily life activities in “How bad are bananas?” (Berners-Lee
2020), such as sending an email (0.004 kg CO;-eq), driving
1 mile in a Fiat 500 (0.35 kg CO,-eq), and hand washing
dishes (8.0 kg CO,-eq), specifically chosen to help users
better understand and contextualize the CF of the recipe
through relatable comparisons. Visualization of the CF, pre-
sented as a horizontal bar chart and a pie chart, is imple-
mented using the Matplotlib library (Hunter 2007), which
allows for intuitive and standardized graphical representa-
tions of ingredient impacts.

Case Study Analysis

We show the effectiveness of our methodology and the cor-
responding Carbon Footprint Wizard tool through a step-by-
step analysis using a vegetarian pizza recipe. We do not per-
form a quantitative evaluation because there are no ground-
truth values for the CF of the meals. We outline the step-by-
step workflow with the outputs of our system, highlighting
its ability to provide detailed environmental impact assess-
ments from natural language recipe descriptions.

Figure 2 illustrates the initial ingredient processing stage
of our interface, where the user submits a recipe description
in natural language: ”Could you estimate the environmental
impact of my veggie pizza? Ingredients: 200g of pizza dough,
100g of tomato sauce, a handful of shredded mozzarella,
half a red onion, a few olives, and a sprinkle of oregano.”
The user selects the Netherlands as the target country for
the analysis. The Carbon Footprint Wizard’s LLM success-
fully extracts and standardizes the ingredients, converting
qualitative descriptions into quantified amounts: pizza dough
(200g), tomato sauce (100g), shredded mozzarella (75g), red

Zhttps://huggingface.co/sentence-transformers/all-MiniLM-
L6-v2. Accessed: 2025-04-17.

onion (70g), olives (30g), and oregano (5g). This demon-
strates the system’s ability to interpret ambiguous quantities
(e.g., a handful,” "half,” ”a few,” “a sprinkle”) and convert
them into standardized weight measurements in grams.
After ingredient extraction, the system performs ingredi-
ent matching. For this purpose, the tool’s semantic search
retrieves and presents multiple potential product matches
for each ingredient to the user through the product selec-
tion interface, as shown in Figure 4 in the Appendix. For
example, “pizza dough” returns seven distinct matches in-
cluding “bread,” “mixes and doughs,” “’pastry,” “’pizza base,
cooked,” ”pizza base, raw,” ”pizza dough”, and “pizza with
tomato and cheese, ready meals”. Similarly, for "shredded
mozzarella”, options include “cheese from skimmed cow
milk”, ”cheese, semihard, mozzarella, 30% fdm”, ’moz-
zarella cheese, from cow’s milk”, and “processed cheese, in
slices”. The interface reveals the complexity of ingredient
classification across databases: “red onion (70g)” yields nu-
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merous options including “garlic”, ”onion, cooked”, “onion,
dried”, ”onion, raw”, “onions, dry”, and “red onion”, with
only the exact match red onion” selected by the user as the
most adequate one. For "olives”, the system provides spe-
cialized options like “olives, black, without stones, in brine”
alongside generic “olives”, with both selected to capture
comprehensive data. The interface also demonstrates the
breadth of alternative product classes that could be seman-
tically related but conceptually distinct, such as “tapenade”
as an option for "olives” and “cream sauce with herbs” as
an option for “oregano”. This deliberate selection process
addresses the challenge of varying terminology across dif-
ferent databases while allowing users to match ingredients
based on their specific recipe knowledge. The asterisk no-
tation indicates products without country-specific data, in-
forming users that estimates from other countries will be
used in such cases. This human-in-the-loop approach en-
sures accuracy in product matching while maintaining an
intuitive user experience. Using the selection from the user,
the CF querying step is performed in the background.
Following user selection and database querying for CF
values, the LLM performs a comprehensive CF analysis
and visualization in the interactive exploration phase. The
natural language report shown in Figure 3 presents the in-
gredients ranked by their environmental impact, with moz-
zarella cheese identified as the highest contributor, followed
by pizza base, olives, red onion, tomato sauce, and oregano
in descending order. For each ingredient, the system notes
when the numbers are estimated based on data from coun-
tries other than the user-selected target country (the Nether-
lands), enhancing transparency in data provenance. While
the system should typically estimate cooking impacts even
when not explicitly mentioned in the recipe, in this specific
case, it incorrectly reports no cooking impact (0 kg CO,-
eq) for the pizza preparation, thus violating common sense.
The analysis provides both a total recipe impact range (0.14-
0.84 kg CO,-eq) and calculates an average impact value of
0.49 kg CO;,-eq as the final carbon footprint estimate, which
represents only the ingredients without cooking emissions.
To contextualize these values, the system translates the car-
bon footprint into equivalent everyday activities: sending ap-



The Carbon Footprint Wizard °°

Recipe Input Product Selection Chat with Assistant

1) Enter Your Recipe

Enter your recipe with ingredients and their quantities. You can specify quantities in

grams, tablespoons, or other measurements.

¥ Ingredients successfully extracted!

Could you estimate the environmental impact of my veggie pizza? Ingredients: 200g of

pizza dough, 100g of tomato sauce, a handful of shredded mozzarella, half a red

onion, a few olives, and a sprinkle of oregano.

Select Target Country

Netherlands

Submit Recipe

Ingredient Amount (grams)

Pizza dough 200
Tomato sauce 100
Shredded mozzarella 50
Red onion 5
Olives 30

Oregano 1

Continue to Product Selection

Figure 2: Recipe input interface with ingredient processing from natural language (shown on the left) to standardized quantities

(organized as a two-column table on the right).

proximately 122 emails, watching TV for about 2 hours, or
driving 1.4 miles in a Fiat 500. This comparison helps users
conceptualize the environmental impact in relatable terms.
Additionally, the system suggests potential follow-up ques-
tions to promote further exploration of the results.

The visual representation of the carbon footprint analysis
in Figure 5 features a horizontal bar chart and a pie chart.
These visualizations provide a clear breakdown of each in-
gredient’s contribution to the total environmental impact, al-
lowing users to quickly identify which recipe components
have the largest carbon footprints. The charts reveal that
mozzarella cheese (49%) and pizza base (26%) are the dom-
inant contributors to the carbon footprint. At the same time,
tomato sauce contributes only 3% despite making up a sub-
stantial portion of the recipe by weight.

Figure 6 demonstrates the interactive capabilities of the
system, showing a follow-up inquiry on the market shares
of ingredients. In response, the system provides detailed in-
formation on the geographical origins of each ingredient.
Although market share data are unavailable for most ingre-
dients, olive data reveal market share from various coun-
tries, including Italy, Germany, and Portugal. This interac-
tion showcases the system’s ability to provide granular de-
tails from the underlying databases not included in the ini-
tial summary, demonstrating the depth of information avail-
able through the conversational interface. On the flip side, it
shows the importance of having high-quality LCA databases
that fuel the tool in the background.

Discussion

The Carbon Footprint Wizard effectively bridges the gap be-
tween complex environmental impact databases and user-
friendly insights. By combining natural language process-
ing for ingredient processing, user-assisted semantic search
for product matching, and a conversational interface for in-
teractive result exploration, the system makes LCA data ac-
cessible to non-expert users. At the same time, our analysis
reveals three key challenges with missing data, inconsisten-
cies between the databases, and violations of common sense
by the LLM.

First, the Carbon Footprint Wizard reveals challenges re-
garding data availability. The three databases used (BON-
SAI, Agribalyse, and Big Climate Database) exhibit no-
table gaps in country-specific product coverage, which ne-
cessitates relying on data from other regions in many cases.
This geographical mismatch is evident in the user interface,
where asterisks denote products that lack data for the se-
lected country. In our pizza example, several ingredients
showed data from France instead of the requested data from
the Netherlands, potentially reducing the accuracy of region-
specific assessments.

Second, inconsistencies between the footprints reported
in the databases result in considerable impact ranges rather
than precise values, as evidenced by the wide min-max in-
tervals (0.13-0.84 kg CO;-eq) presented in the results. This
variability is partly due to inherent differences in how each
database handles lifecycle phases and system boundaries.
Another aspect of data consistency concerns the lack of stan-
dardized vocabulary used in the different databases. The se-
mantic matching process, while generally effective, occa-



Main ingredients by impact:

Pizza base, cooked (200g): 0.0391-0.0391 kg CO2-eq (data from France)

Pizza base, raw (200g): 0.0391-0.0391 kg CO2-eq (data from France)

Tomato sauce for pizza base (100g): 0.0159-0.0159 kg CO2-eq (data from France)

Mozzarella cheese, from cow's milk (50g): 0.0225-0.324 kg CO2-eq (data from France and Netherlands)

Red onion (75g): 0.0568-0.0568 kg CO2-eq (data from Netherlands)

Olives (30g): 0.056-0.0595 kg CO2-eq (data from Netherlands and market data)

Oregano, dried (1g): 0.000464-0.000464 kg CO2-eq (data from France)

Cooking impact:

Baking (15 mins at 220°C): 0.1-0.2 kg CO2-eq (estimated)

Total recipe impact: 0.272-0.272 kg CO2-eq
Average impact: 0.272 kg CO2-eq

Your meal's carbon footprint is equivalent to:
Sending approximately 68 emails
Watching TV for about 1.13 hours

Driving 0.78 miles in a Fiat 500

This analysis is based on data from Agribalyse and BigClimate databases, with a range provided for ingredients with multiple

data sources. The cooking impact is estimated based on typical baking practices.

You might want to know more about:

How does the carbon footprint of pizza dough compare to other types of bread?

What are the differences in environmental impact for mozzarella cheese produced in different countries?

Are there any significant lifecycle stages that contribute to the carbon footprint of tomato sauce?

Figure 3: Initial analysis showing ranked ingredients, impact range, and real-world equivalents as a natural language summary.

sionally suggests irrelevant products (such as “tapenade” for
olives or “cream sauce with herbs” for oregano), reflecting
the inherent challenges of grounding natural language ingre-
dient descriptions into standardized database terminology.
While our current methodology employs a human-in-the-
loop approach to mitigate this issue (by allowing users to se-
lect appropriate matches), it introduces dependency on user
expertise and judgment, creating another potential source of
variability in the final assessment results.

Finally, the system also demonstrates limitations in han-
dling complex analytical tasks using a single LLM. For
instance, the cooking impact estimation occasionally fails
to detect implied cooking requirements, as demonstrated by
the veggie pizza example, where the system incorrectly indi-
cated ”no cooking required” despite pizza preparation typi-
cally involving baking. Such commonsense violations can
potentially lead to a significant underestimation of the to-
tal environmental impact of the recipe, as cooking can con-
tribute substantially to the CF of a meal. Similarly, the gener-
ation of follow-up questions sometimes falls short of identi-
fying the most relevant aspects for further exploration, fo-
cusing on generic queries rather than insights specific to
the analyzed recipe’s unique characteristics. These issues
stem from the ambitious scope of responsibilities assigned
to a relatively small language model (GPT-40-mini), includ-
ing ingredient extraction, impact calculation, cooking esti-

mation, visualization, data preparation, scaling real-world
equivalence, and follow-up question generation. The model
must simultaneously interpret heterogeneous data formats
from multiple databases, perform mathematical operations,
generate natural language explanations, and create struc-
tured visualization data, all within a single inference pass.
This overextension of the model’s capabilities could be ad-
dressed in future iterations by agentic Al, which can de-
compose these tasks into separate, specialized LLM calls
that focus on distinct aspects of the analytical pipeline. This
approach may involve employing larger and more capable
models for the most complex reasoning tasks.

Conclusions

This paper introduced an interdisciplinary methodology that
bridges state-of-the-art LCA frameworks and databases with
the current generation of knowledge-augmented AI. The
methodology’s four steps leveraged LLMs for seamless user
interaction, fueled by LCA databases with contextual knowl-
edge about food products. The methodology was designed
to involve users in the ingredient selection step and to al-
low users to explore the data further after the summarized
report was presented. The methodology is implemented in
the publicly available Carbon Footprint Wizard web inter-
face. The initial analysis of the tool’s functionality show-
cased the power of connecting LCA insights with LLMs,



providing an intuitive entry point to complex information for
lay users. At the same time, the analysis revealed challenges
with missing data, inconsistencies between the databases,
and violations of common sense by the LLM. These chal-
lenges point to substantial interdisciplinary obstacles that
can be fruitfully explored in the future: the engineering
and representation of LCA knowledge, the development of
LCA data quality frameworks, and ensuring consistency in
LLM behavior. Agentic Al frameworks and advanced en-
tity resolution approaches can be employed to address these
limitations. Future work should address two limitations of
our approach. First, the lack of quantitative validation of
our method necessitates benchmarking against expert LCAs,
conducting sensitivity/error analyses, and conducting user
studies to demonstrate accuracy, robustness, and usability
at scale. Second, our three databases differ in geographical
scope, system boundaries, and category definitions, leading
to wide impact ranges and limited comparability. Thus, fu-
ture work should revise the selection of LCA databases to
account for their differences in coverage and focus.
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Prompts Used in the System

Ingredient Extraction Prompt

Extract the ingredients and their quantities from the fol-
lowing user message.

If the quantities are provided in units other than grams
(such as tablespoons, cups, or pieces), convert them to
a reasonable weight in grams based on typical measure-
ments.

You can directly change milliliters to grams.

Provide the ingredients and quantities in the format re-
quired by the function *process_ingredients’.

User Message: {user_message}

Result Generation Prompt

3. After impacts, calculate equivalent activities:

- Use total average (Z kg CO2-eq) with these references:
¢ Sending an email = 0.004 kg CO2-eq

* Web search on a laptop = 0.0007 kg CO2-eq

» Watching TV 42-inch plasma = 0.24 kg CO2-eq
* Driving 1 mile Fiat 500 = 0.35 kg CO2-eq

* 3-minute shower = 0.09 kg CO2-eq

* Charging phone daily = 0.003 kg CO2-eq

* Using laptop 1 hour = 0.05 kg CO2-eq

* Hand washing dishes = 8.0 kg CO2-eq

- Present 2-3 scaled comparisons

4. List some follow up questions:

- Generate 3-4 most relevant follow-up questions based
on:

» Market share of ingredients

* Notable data variations between countries

* Interesting lifecycle patterns

* Potential impact reduction opportunities

You will receive two inputs:

 user_message: Original recipe query

« results_text: Impact data from databases

DATA FORMAT OVERVIEW:

* BONSAI: Shows market/production data with country
shares. Use market total impact value.

 Agribalyse: French data with lifecycle stages. Use total
impact value.

» BigClimate: Country-specific data with indirect land
use. Use total impact value.

CALCULATION RULES:

1. Per ingredient:

- Multiple databases: Use min-max range and
(min+max)/2 average

- Single database: Use value for both

- Note if data isn’t from target country

- Use market data from BONSAI when available

2. Recipe total:

- Range: sum(min) to sum(max)

- Average: sum(individual averages)

- Cooking analysis:

 Determine if the recipe requires any form of cooking for
preparation

« If cooking is required:

- Estimate cooking impact range (min-max)

- Add cooking range to total recipe range

- Add cooking average to total average

- Include cooking in visualization data

* If no cooking required: state ”No cooking required (0 kg
CO2-eq)”

OUTPUT FORMAT:

- Main ingredients by impact:

- [Ingredient] ([amount]g): [X-Y kg CO2-eq] (note if data
is from a different country)

- Cooking impact:

- [Method] ([time] mins at [temp]°C): [X-Y kg CO2-eq]

- Total recipe impact: [X-Y kg CO2-eq]

- Average impact: [Z kg CO2-eq]

Your meal’s carbon footprint is equivalent to:
- [Scaled comparisons]

[Brief paragraph: data sources, range explanation, cook-
ing estimate]

You might want to know more about:
- [List the follow-up questions]

CRITICAL: You must return TWO components in your
response as the defined “’process_impact_results’:

1. answer_user: Follow the output format above

2. visualization_data: Must include these exact fields:

- ingredients: Array of ingredient names from the user
recipe (including cooking if applicable)

- impacts: Array of corresponding impact values in kg
CO2-eq (use average when range exists)

- DO NOT include total recipe impact on visualization!

After the initial response, user will continue chatting with
you. Do not use function format after initial response,
answer directly.

Here is user message:
{user_message}

Here is the information from our sources:
{results_text}




Example Outputs from Each Step Product Matching

Below are the example outputs from each step of the en-
vironmental impact analysis process for a vegetarian pizza

Matching Products

Bread, Mixes and doughs, Pas-
try, Pizza base, cooked *, Pizza
base, raw *, Pizza dough, Pizza
with meat, tomato and cheese,
ready meals, Pizza with tomato
and cheese, ready meals, Pizza,
cheese and mushrooms *

recipe.
Ingredient
Pizza dough
Tomato sauce
User Recipe Input

Chili sauce, Cream sauce *, Juice
of tomatoes, Soya sauce, Tomato
sauce for pizza base *, Tomato
sauce, with onions, prepacked
*, Tomatoes, fresh, Tomatojuice,

canned

Shredded mozzarella

Could you estimate the environmental impact of my veg-
gie pizza? Ingredients: 200g of pizza dough, 100g of
tomato sauce, a handful of shredded mozzarella, half a red
onion, a few olives, and a sprinkle of oregano.

Cheese from skimmed cow milk *,
Cheese, semihard, mozzarella, 30
% fidm., Mozzarella cheese, from
cow’s milk *, Plant-based cheese,
without  soybean, prepacked,
shredded *, Processed cheese,
Processed cheese, in slices *,
Tomato, peeled, canned, Vegan
cheese, grated or sliced, Whey
cheese

Red onion

Garlic, Onion, cooked *, Onion,
dried *, Onion, raw, Onions,
chopped and deepfried, Onions,
dry, Onions, shallots (green), Red
onion

Olives

Ingredient Extraction

Oil of olives, virgin, Olive oil,
Olive oil, extra virgin *, Olives,
Olives, black, without stones,
in brine, Olives, green, pickled,
canned, Pizza, onion anchovy and
black olives *, Tapenade (a puree
of capers, pitted black olives,
anchovy and herbs, with olive oil
and lemon juice) *

Oregano

Cream sauce with herbs *, Gar-
lic, Garlic, raw, Ginger, Olive oil,
Oregano, dried *, Rosemary, dried
*, Soya paste, Sunflower oil

Ingredient Amount (grams)
Pizza dough 200
Tomato sauce 100
Shredded mozzarella 75
Red onion 70
Olives 30

shown in Figure 4.

Oregano 5 A screenshot of the matching step in our interface is




Carbon Footprint Data

The results text is a structured compilation of environ-
mental impact data for each selected product from the
databases (e.g., AgriBalyse, BigClimateDatabase, BON-
SAI). It includes sections for each ingredient, with de-
tailed data such as total impact and contributions from var-
ious lifecycle stages. Below is an excerpt for the ’pizza
dough’ ingredient:

Results for selected most similar items to ’pizza
dough’:

Agribalyse database results for ’Pizza base, raw’
(DATA FROM FRANCE):

- Impact for 200 grams: 0.0391 kg CO2-eq

- Data quality rating: 2.3277205962237506

- Agriculture impact for 200 grams: 0.00267 kg CO»-eq,
Percentage: 6.8%

- Processing impact for 200 grams: 0.00128 kg CO2-eq,
Percentage: 3.3%

- Packaging impact for 200 grams: 0.00121 kg CO2-eq,
Percentage: 3.1%

- Transportation impact for 200 grams: 0.000711 kg
CO2-eq, Percentage: 1.8%

- Retail impact for 200 grams: 0.000381 kg CO2-eq,
Percentage: 1.0%

- Consumption impact for 200 grams: 0.0014 kg CO2-eq,
Percentage: 3.6%

BigClimateDatabase results for ’Pizza dough’ in
Netherlands:

- Impact for 200 grams: 0.241 kg CO2-eq

- Agriculture impact for 200 grams: 0.174 kg CO2-eq,
Percentage: 72.2%

- Indirect Land Use Change impact for 200 grams: 0.011
kg CO2-eq, Percentage: 4.6%

- Food processing impact for 200 grams: 0.00465 kg
CO2-eq, Percentage: 1.9%

- Packaging impact for 200 grams: 0.0354 kg CO2-eq,
Percentage: 14.7%

- Transport impact for 200 grams: 0.0155 kg CO2-eq,
Percentage: 6.4%

- Retail impact for 200 grams: 0.000312 kg CO2-eq,
Percentage: 0.1%

Similar data is provided for all ingredients (tomato sauce,
shredded mozzarella, red onion, olives, oregano) in the
recipe, detailing impacts from relevant databases.

A visual summary of the analysis results provided by our
interface is shown in Figure 5.

Natural Language Report

An example report in our interface is shown in Figure 3. An
example of a follow-up user query and a system response is
shown in Figure 6.

Main ingredients by impact:

- Pizza base (200g): 0.0331-0.241 kg CO2-eq (note: data
from France and Netherlands)

- Tomato sauce (100g): 0.0159 kg CO2-eq (note: data
from France)

- Mozzarella cheese (75g): 0.0338-0.486 kg CO2-eq
(note: data from France and Netherlands)

- Red onion (70g): 0.053 kg CO2-eq (note: data from
Netherlands)

- Olives (30g): 0.056-0.0595 kg CO2-eq (note: data from
France)

- Oregano (5g): 0.00232 kg CO2-eq (note: data from
France)

Cooking impact:
- No cooking required (0 kg CO2-eq)

Total recipe impact: 0.13942-0.84032 kg CO2-eq
Average impact: 0.48987 kg CO2-eq

Your meal’s carbon footprint is equivalent to:

- Sending approximately 122 emails

- Watching TV for about 2 hours

- Driving 1 mile in a Fiat 500 approximately 1.4 times

The data sources include AgriBalyse and BigClimate
databases, with a range calculated from the minimum
and maximum impacts of the ingredients. No cooking is
required for this recipe, so the total impact reflects only
the ingredients.

You might want to know more about:

- What are the market shares of the ingredients used in
this recipe?

- How do the impacts of these ingredients vary between
different countries?

- Are there any lifecycle patterns that stand out for the
ingredients?

- What are some potential opportunities to reduce the
carbon footprint of this recipe?




The Carbon Footprint Wizard "

Recipe Input P C on Chat with Assistant

2) Select Your Products
Select the most similar products for each ingredient listed. If multiple options are relevant, please choose all that apply to ensure accuracy.

Note: Items marked with an asterisk (*) don't have data specific to the selected country and will use estimates from other countries.
Pizza dough (200g)
Bread Mixes and doughs Pastry ® Pizza base, cooked * ® Pizza base, raw * Pizza dough

Pizza with meat, tomato and cheese, ready meals Pizza with tomato and cheese, ready meals Pizza, cheese and mushrooms *

Tomato sauce (100g)

Chili sauce Cream sauce * Juice of tomatoes Soya sauce B Tomato sauce for pizza base *

Tomato sauce, with onions, prepacked * Tomatoes, fresh Tomatojuice, canned

Shredded mozzarella (50g)

Cheese from skimmed cow milk * . Cheese, semihard, mozzarella, 30 % fidm. . Mozzarella cheese, from cow's milk *
Plant-based cheese, without soybean, prepacked, shredded * Processed cheese Processed cheese, in slices *

Tomato, peeled, canned Vegan cheese, grated or sliced Whey cheese

Figure 4: The product selection showing multiple database matches for each ingredient, resulting from the semantic search in
the product matching phase.
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Figure 5: Carbon footprint visualization through bar and pie charts showing ingredient impacts.



Can you show me the market shares for the available products?

Here are the market shares for the available products based on the data from the BONSAI database:
1. Olives (30g):
Market share for various countries:

Bulgaria: 0.000202 tonnes

Italy: 0.434 tonnes

Germany: 0.282 tonnes

Portugal: 0.117 tonnes

Belgium: 0.0453 tonnes

Greece: 0.0837 tonnes

Spain: 0.0312 tonnes

France: 0.00391 tonnes

United Kingdom: 0.00337 tonnes

For the other ingredients like pizza base, tomato sauce, mozzarella cheese, red onion, and oregano, the market share data is
not available in the provided databases. Therefore, | can only provide market share information for olives. If you need

information on specific ingredients or alternative data sources, please let me know!

Figure 6: Follow-up conversation revealing detailed market share data for ingredients.



