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ABSTRACT

We present Fusing Visual and Textual Cues (FVTC); a novel technique for image
difference captioning that is able to benefit from additional visual and/or textual
inputs. FVTC is able to succinctly summarize multiple manipulations that were
applied to an image in a sequence. Optionally, it can take several intermediate
thumbnails of the image editing sequence as input, as well as coarse machine-
generated annotations of the individual manipulations. We demonstrate that the
presence of intermediate images and/or auxiliary textual information improves the
model’s captioning performance. To train FVTC, we introduce METS (Multiple
Edits and Textual Summaries) – a new open dataset of image editing sequences,
with textual machine annotations of each editorial step and human edit summa-
rization captions after the 5th, 10th and 15th manipulation. 1

1 INTRODUCTION

With recent advancements in Generative AI, image manipulation becomes increasingly easier to
perform and harder to notice, motivating new techniques for auditing the provenance and edits made
to an image. Often, multiple edits are applied in sequence by one or multiple editors, forming a
provenance graph containing multiple versions of the same image at different stages of the editing
process. To avoid the spread of misinformation, it is important to be able to communicate the history
of these changes to the end user succinctly to enable them to make informed trust decisions Gregory
(2019).

Image difference captioning (IDC) usually aims to generate a difference caption given two images,
the original and the edited one, regardless of the number of manipulations applied to the image. In
this work, we explore image difference captioning with multiple inputs (IDC-MI), assuming access
to multiple snapshots of the image editing sequence and/or auxiliary information about each individ-
ual edit. This commonly arises during a creative supply chain where multiple editors contribute to a
final image. For example, emerging metadata standards for media provenance, such as the Coalition
for Content Provenance and Authenticity (C2PA) Coalition for Content Provenance and Authentic-
ity (2023) collect rich information on this edit process as a provenance graph. This data structure
contains multiple versions (thumbnails) of the image at different stages of the editing process, and
optionally textual short descriptions of changes made. One use case for IDC-MI is aggregate this
multi-modal context and summarize it in a short textual description.

The first challenge in edit sequence captioning is the limited availability of training data. Most
datasets for image difference captioning focus on image pairs rather than longer sequences. While
the Magic Brush Zhang et al. (2024) dataset does provide multi-turn editing sequences, they are
limited to three steps at most. Furthermore, all of the edits are applied to different non-overlapping
objects, meaning that the final summary of all the manipulations could be constructed from a con-
catenation of the description of the individual steps. However, in real scenarios, the edits can be
applied to the same area, potentially in a destructive or mutually exclusive manner, and the final
summary should only describe the salient, still visible changes. For example, suppose the first ma-
nipulation changes the color of a bicycle, and the second one replaces the bicycle with a car. In that
case, the final summary should not mention the color change as it is irrelevant to the final result. The
second challenge lies in developing a methodology capable of handling interleaved multi-modal in-

1The METS dataset will be released for open access upon acceptance.
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A ranger miniature has been replaced 
with a noisy bird miniature.

Rangers miniatures are replaced with a pencil 
pot and birds have noise applied to them.

The miniatures are replaced with two noisy flamingos and a pencil cup.

Flamingo

Noise

Brightness

Pencil Cup
Noise Encoding Quality
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Figure 1: FVTC is capable of processing sequences of images, optionally accompanied by coarse
edit annotations, to produce a succinct and informative summary of the differences. We train it
with METS – a novel dataset of long image editing sequences paired with machine annotations and
human-written summaries at multiple steps. Optional image and text inputs are denoted with gray
arrows.

puts. Many existing image difference captioning architectures are designed with exactly two image
inputs in mind and would not be able to scale beyond that, either due to architectural constraints or
memory limitations. The contributions of this paper are twofold:

1. First, we introduce METS (Multiple Edits and Textual Summaries) – a dataset of image
editing sequences, with textual machine annotations of each editorial step and human edit
summarization captions after the 5th, 10th, and 15th manipulation.

2. We train FVTC (Fusing Visual and Textual Cues) – a multi-modal LLM with multiple
visual inputs and provide a comprehensive evaluation of the benefits of both additional
visual and textual inputs.

We demonstrate that the presence of intermediate images and/or auxiliary textual information im-
proves the model’s captioning performance. Additionally, we demonstrate that fine-tuning a model
trained on other synthetic data with METS helps to bridge the domain gap and improves zero-shot
performance on real-life images. The illustration of FVTC and METS is shown in Fig. 1.

2 RELATED WORK

Image difference captioning (IDC) is closely related to image captioning and visual question answer-
ing, both requiring a visual understanding system to model images and a language understanding
system capable of generating syntactically correct captions. The revolution of IDC in recent years
depends heavily on the advent of visual and text modeling approaches, together with cross-domain
learning techniques that bridge the representation gap between them.

Initial methodologies for modeling visual content involve incorporating overarching CNN features
such as VGG Donahue et al. (2015), and ResNet Rennie et al. (2017) into text generation mod-
els. This integration capitalizes on the dense and meaningful representations these models provide.
To enhance the representation of multiple objects and their interrelations, various techniques have
emerged. Some methods Lu et al. (2017); Gu et al. (2018); Anderson et al. (2018); Huang et al.
(2019), partition images into discrete patches, extracting CNN features from each. Conversely, cer-
tain methodologies opt to utilize the outputs from an early ResNet layer, effectively capturing spatial
attributes in a gridded format. In contrast, Cornia et al. (2020); Anderson et al. (2018); Huang et al.
(2019) employ Region Proposal Network (RPN) to extract features from potential object candi-
dates, thereby improving alignment with the semantic entities referenced in paired captions. Other
avenues of exploration include graph-based Yang et al. (2019) and tree-based networks Yao et al.
(2019), aiming to capture object relations across varying levels of granularity.

Traditionally, RNN/LSTM architectures Graves & Graves (2012) have dominated text modeling
owing to their intrinsic sequential nature. Variants like single-layer RNN Vinyals et al. (2015);
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Mao et al. (2015) or double-layer LSTM Donahue et al. (2015); Anderson et al. (2018); Yao et al.
(2019) are commonly utilized, often coupled with diverse methods to embed image features more
deeply into the recurrent process, such as additive attention Stefanini et al. (2022). During inference,
captions are generated in a step-by-step manner, where the prediction of each word depends on
all preceding words. Although this enhances linguistic coherence, RNN/LSTM-based approaches
face challenges in modeling lengthy captions. Recent transformer-based methodologies, like those
employing a full-attention mechanism Luo et al. (2021); Wang et al. (2021); Cornia et al. (2020),
have alleviated this issue. Advanced transformer-based models such as BERT Devlin et al. (2018),
GPT Brown et al. (2020), and LLaMA Touvron et al. (2023a) have demonstrated success across
diverse visual-language tasks Hu et al. (2022); Mokady et al. (2021); Gao et al. (2023); Zhang et al.
(2021); Li et al. (2020).

Inpainting

Propmpt: Background Blueberry muffin with rainbow sprinkles Banana

Property Change Replacement

Figure 2: Illustration of the different types of manipulations performed using Firefly Generative
Fill. (left) Inpainting is done by using the word background as the prompt. (middle) property
change is done by prompting GPT3.5 to output a likely change in color, material, texture or other
applicable property of the object. (right) replacement is done by prompting GPT3.5 to output a
likely replacement candidate object that would be a close match to the shape of the original, but
different semantically.

The objective of visual language modeling is to establish connections between image/video and text
representations, catering to specific tasks like joint embedding (e.g., CLIP Radford et al. (2021) and
LIMoE Mustafa et al. (2022) for cross-domain retrieval), text-to-image tasks (e.g., Stable Diffusion
Rombach et al. (2022) for text-based image generation, InstructPix2Pix Brooks et al. (2022) for
image editing), and image-to-text tasks (e.g., visual question answering Alayrac et al. (2022); Wang
et al. (2021), visual instructions Gao et al. (2023); Driess et al. (2023)). In the realm of image
captioning, strategies for mapping images to text can be classified into two main approaches. The
first approach involves the early fusion of image and text features to enhance alignment between
image objects and textual descriptions Tsimpoukelli et al. (2021); Mokady et al. (2021); Wang et al.
(2021); Li et al. (2020). These methods employ BERT-like training strategies, where a pair of
images and a masked caption are inputted, replacing the masked words during inference with either
a start token or a prefixed phrase like ’A picture of’. The second approach centers on learning a
direct conversion from image to text embedding. Initial CNN-based methods incorporate image
features as the hidden states of LSTM text modules Donahue et al. (2015); Vinyals et al. (2015);
Yao et al. (2019); Karpathy & Fei-Fei (2015); Rennie et al. (2017), whereas later transformer-based
techniques favor cross-attention mechanisms Luo et al. (2021); Cornia et al. (2020). Notably, recent
trends in both approaches involve harnessing powerful pretrained large language and vision models
to establish a straightforward mapping between the two domains Merullo et al. (2022); Eichenberg
et al. (2021); Li et al. (2023); Tsimpoukelli et al. (2021); Mokady et al. (2021); Chen et al. (2023).

Image difference captioning represents a specialized form of image captioning, aiming to disregard
common objects across images and instead accentuate subtle alterations between them. Pioneering
this domain, Spot-the-Diff Jhamtani & Berg-Kirkpatrick (2018) introduces potential change clusters,
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employing an LSTM-based network to model them. However, their approach relies on pixel-level
differences between input images, rendering it sensitive to noise and geometric transformations. In
contrast, DUDA Park et al. (2019) computes image differences at the semantic level using CNNs, en-
hancing robustness against minor global alterations. Several approaches extend the foundation laid
by DUDA. For example, SRDRL+AVS Tu et al. (2021b) initially assesses the correlation between
the subtracted difference and image pairs to ascertain the occurrence of the change. Subsequently,
it incorporates part-of-speech information to dynamically leverage visual data. M-VAM Shi et al.
(2020) and VACC Kim et al. (2021) propose a viewpoint encoder to mitigate viewpoint disparities,
while VARD Tu et al. (2023a) suggests a viewpoint invariant representation network to explicitly
capture changes. Additionally, Sun et al. (2022) integrates bidirectional encoding to refine change
localization, and NCT Tu et al. (2023b) utilizes a transformer to aggregate neighboring features.
These methodologies concentrate on the image modality, exploiting benchmark-specific characteris-
tics such as nearly identical views in Spot-the-Diff Jhamtani & Berg-Kirkpatrick (2018) or synthetic
scenes with limited objects and change types in CLEVR Park et al. (2019). More recently, IDC-PCL
Yao et al. (2022) and CLIP4IDC Guo et al. (2022) have adopted BERT-like training approaches to
model difference captioning language, achieving state-of-the-art performance.

3 METHODOLOGY

In this section, we describe the methodology behind the dataset generation as well as IDC model
training. Subsection 3.1 describes the data generation process used to create the METS dataset.
Subsection 3.2 describes the architecture of the model used to train on the METS dataset to perform
the multi-input image difference captioning task.

3.1 DATA GENERATION

We generate a dataset of image editing sequences, with textual machine annotations of each editorial
step and human edit summarization captions after the 5th, 10th, and 15th manipulation, as shown in
Fig. 4. Binary masks of the manipulation regions at each step are also included. Our dataset covers
a wide variety of pixel-level and generative manipulations. The prompt for each manipulation is
generated using GPT-3.5 to ensure plausible and diverse manipulations.

3.1.1 INDIVIDUAL EDITS

We identify two main categories of edits: pixel-level and generative manipulations. Pixel-level
edits are simple manipulations such as changing the brightness of an image or applying a blur filter.
Generative manipulations change the semantic content of the image, altering the story that the image
tells.

Figure 3: METS image generation pipeline for generative manipulations. The image, its localized
narrative, object class name, and segmentation mask are sampled from the OpenImages dataset. The
localized narrative and class name are used to construct a prompt for GPT3.5, which outputs a likely
replacement candidate object or a property change. The prompt templates are manipulation-type
specific and can be seen in suppmat. In the case of inpainting, the GPT3.5 block is omitted, and
the prompt is simply background. The pre-processing of the segmentation mask ensures that no part
of the object remains outside of the mask. It involves generating a convex hull of the mask and
applying dilation to it. The generative manipulation is then conditioned on the image, the mask, and
the prompt and applied using Firefly Generative Fill.
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Pixel level manipulations are performed using the AuglyPapakipos & Bitton (2022) image augmen-
tation library, with a random choice of augmentation type and parameters. Augmentation types
include brightness, contrast, saturation, and encoding quality changes; blur, noise and sharpness
filters; and overlaying random stripes of the color of different widths.

We further divide generative manipulations into three categories: inpainting where an object is re-
moved from the image, replacement where an object is replaced with another object, and property
change where the object’s material properties are altered. We illustrate different types of manipula-
tions in Fig. 2.

Generative manipulations are applied using Firefly Generative Fill2, which is a language-guided
inpainting model. In addition to the image itself, the model is provided with a segmentation mask
and a text prompt. We generate a convex hull of the segmentation mask and apply dilation to it to
ensure that no part of the object remains outside of the mask. The origin of the text prompt depends
on the type of manipulation. For inpainting we use the word background, which was shown to
perform on par with inpainting-specific models. For replacement, we further illustrate the image
editing pipeline in Fig. 3, where we use GPT3.5 in a few-shot learning manner, prompting with a
localized narrative for the whole image, a bounding box of the mask, and the class label of the mask
to come up with a probable replacement candidate object that would be a close match to the shape of
the original object. We use a similar strategy for property change, but prompting GPT3.5 to output
a likely property change.

Original

‘Two Canada gooses are 
missing, and one is replaced 

with a swan.’

Human Annotations

Machine Annotations 1: Duck, replacement: background
2: Object was removed, nothing applied
3: Duck, random_noise, variance: 0.1
4: Duck, replacement: background
5: Object was removed, nothing applied

1 ... 5
6: Goose, replacement: pink flamingo
7: Pink flamingo, sharpness, decreased severely
8: Pink flamingo, sharpness, increased moderately
9: Pink flamingo, saturation, increased moderately
10: Goose, replacement: rubber duck

1 ... 10
11: duck, sharpness, decreased severely
12: duck, contrast, increased severely
13: Rubber duck, contrast, increased slightly
14: Duck, replacement: swan
15: Swan, saturation, increased moderately

‘Two geese are removed.’ ‘Two birds are removed, one is 
slightly changed, and one is 
replaced with a flamingo.’

Edit 5 Edit 10 Edit 15

Figure 4: An example of a sequence of manipulations in METS. The original image is shown in the
first column, followed by the manipulated images. The binary masks of the manipulated regions are
superimposed on the images. The machine annotations generated during the sequence creation are
shown in orange, while the human annotations are shown in blue. Note that only edit steps 5, 10,
and 15 are shown, as these are the steps for which human annotations were collected. All other data
types are available for all steps.

3.1.2 SEQUENCE GENERATION

We sample the images from the OpenImages dataset, making use of the provided segmentation
masks and localized narratives. We choose the images with at least 5 non-overlapping segmentation
masks. We then follow a procedure illustrated in Fig. 5 to apply a sequence of edits to the image.
At each iteration step, we pick a segmentation mask and either apply a generative or a pixel-level
manipulation to that area of the image or move on to the next mask. The probability of switching to
the next mask is proportional to the number of manipulations already applied to the mask.

Formally, we define the probabilities of applying a generative manipulation Pg , a pixel-level manip-
ulation Pp and moving on to the next mask Pn as follows:

Pg = g − n

2
, Pp = (1− g)− n

2
, Pn = 1− Pg − Pp, (1)

where g = 0.9 if no generative manipulations have been applied to the mask yet and g = 0.1
otherwise. The value of n is proportional to the number of manipulations already applied to the

2https://firefly.adobe.com/upload/inpaint
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Figure 5: The diagram of the sequence generation process. For each image, we first go through
up to 15 segmentation masks and apply edits, chosen randomly, where the probabilities of choices
depend on the number of edits already applied to the mask. The probability of applying a generative
manipulation is greatly lowered if a generative manipulation has already been applied. This lowers,
but does not eliminate, the chance of making destructive or mutually exclusive manipulations.

mask, defined as follows:

n = max(0,
40× (i− imin)

100
), (2)

where i is the current step and imin is the minimum number of steps required to move on to the next
mask. We set imin = 5.

After each manipulation step, we record the type of manipulation, the parameters of the manipula-
tion, and the binary mask used to apply the manipulation. This information is saved in a text format.
For pixel-level manipulations, the text format is as follows:

Object: obj name, manipulation: edit name, intensity: intensity

where obj name is the name of the object as annotated within the OpenImages dataset,
edit name is the manipulation type and intensity is chosen at random from a set of predefined
parameters, individual for each manipulation type.

For generative manipulations, the text format is as follows:

Object: obj name, replacement: prompt

where prompt is either background for inpainting or the output of GPT3.5 for replacement and
property change manipulations. Examples of the template-generated text can be seen from Fig. 4,
marked as machine annotation.

As a result, for each input image, we obtain a sequence of manipulated versions applied on top of
each other and a list of annotations describing each manipulation step type, parameters, and location.
We generate 1000 such sequences with an average of 21.4 steps per sequence.

3.1.3 LABELLING

We collect human annotations for difference summarization at the 5th, 10th, and 15th step of the
manipulation sequence. In each task, the users are presented with the input image I and an output
image I ′n, n ∈ [5, 10, 15] and are asked to provide a short one-sentence summary of all of the
differences they see between the two images. Examples of such summaries can be seen in Fig. 4,
marked as human annotations.

3.2 ARCHITECTURE

Our architecture is illustrated in Fig. 6. Our setup consists of a Vision Transformer (ViT) Dosovitskiy
et al. (2021) image encoder and the open-sourced LLaMA2-chat (7B) large language model Touvron
et al. (2023b). The visual tokens are concatenated in groups of 4 and projected to the language

6
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Figure 6: Architecture diagram of the model. The LLaMA-2 language model is conditioned using
the multi-modal instruction template, which includes at least two image features and optional aux-
iliary textual information. All optional content is placed within dashed boxes. The image features
extracted from the ViT image encoder are concatenated in groups of 4 and projected to the LLM
embedding space with a linear projection layer. The visual encoder weights are frozen, and only the
language model and the projection layer are trained.

model’s embedding space with a linear projection layer. During training, the visual encoder weights
are frozen, and only the language model and the projection layer are trained.

Uniquely, we use multiple images as input to the model and train it for the task of image difference
captioning. We note that this approach is capable of handling an arbitrary number of input images,
which allows us to input several snapshots of the image editing sequence at once.

Optionally, we provide the model with auxiliary textual information in the form of machine anno-
tations, described in Section 3.1. The annotations for each manipulation are interleaved with the
image features and are used to guide the model’s attention to the relevant parts of the image.

We follow the multi-modal instructional template from Chen et al. (2023) and adjust it to our task:

[INST] <Img><ImageFeature></Img> T . . .<Img><ImageFeature></Img> T [idc]
ins [/INST]

where the image feature tags are repeated for each input image in the sequence, T is the optional
auxiliary textual information, [idc] is the task identifier for image difference captioning and ins
is the instruction that is chosen at random from a set of predefined instructions, all synonymous with
describe the defferences between the images..

The model is trained to minimize the captioning loss, which is defined as

L = −
m∑
i=1

l(sv, st1, . . . , s
t
i), (3)

where m is a variable token length and l is next-token log-probability conditioned on the previous
sequence elements

l(sv, st1, . . . , s
t
i) = log p(ti|x, t1, . . . , ti−1). (4)

3.2.1 TRAINING

All of the models are trained on a single A100 GPU with 80GB of memory for 300 epochs with
1000 steps per epoch and a batch size of 6. We use AdamW optimizer with a cosine learning rate

7
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scheduler with an initial learning rate of 10−5 and a warmup learning rate of 10−6 for a warmup
period of 1000 steps. The input image size is 448× 448, and the maximum token length is 1024.

4 EXPERIMENTS

4.1 DATASETS

Spot-the-Diff

“The people are close 
to the building 

instead of across the 
parking lot”

“The green ball 
became red”

Figure 7: Examples of images and annotations from the CLEVR-Change, Spot-the-Diff, Mag-
icBrush and PSBattles datasets.

In addition to our own dataset, we train and evaluate our model on a number of other datasets used
in the image difference captioning literature illustrated in Fig. 7.

CLEVR-Change Johnson et al. (2017) consists of 67,660, 3,976, 7,970 training, validation, and test
image pairs, respectively. The images are generated using the CLEVR engine and contain renders
of primitive 3D shapes. The types of edits include changes in shape, color, material, size, and
position of the objects. This dataset serves as a good benchmark due to its large volume and precise
annotations. However, the synthetic nature of the images creates a large domain gap, making it
difficult to generalize to real-world images.

Spot-the-Diff Jhamtani & Berg-Kirkpatrick (2018) is a dataset of 13,192 well-aligned image pairs
from CCTV cameras. There are no viewpoint changes, and the edits are limited to object addition,
deletion, or movement. The dataset is split into training, validation, and test sets following the
official split of 80%, 10% and 10%.

PSBattles Heller et al. (2018) is a dataset of real-world image pairs collected from the Reddit Pho-
toshop Battles subreddit. The difference captions for a subset of the dataset were collected by Black
et al. (2024) in a user study. We use this dataset for the evaluation of the model’s generalization
capability to real-world images.

InstructPix2Pix Brooks et al. (2022) is a dataset of ∼1M image pairs generated with prompt-to-
prompt Hertz et al. (2022) approach. The difference captions are later generated by Black et al.
(2024) using chatGPT-3. We use this dataset for pre-training of the model during the evaluation in
the PSBattles dataset to assess the benefits of fine-tuning on the METS dataset for domain adapta-
tion.

MagicBrush Zhang et al. (2024) contains sequences of edited images generated in a manner similar
to ours, but with human supervision. Due to the need for human supervision, the maximum length
of the sequences is limited to 3 steps. Of 878 training sequences, only 304 have a length of 4
(including the original image), and 547 have a length of 3. We use this dataset to evaluate the
model’s performance in the IDC-MI setting, using only the samples that have a length of 4. The
target annotation is a concatenation of the instructions for each step. As input, we use either the first
and the last image in the sequence or all four images in the sequence.

8
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4.2 EVALUATION

We evaluate the performance of our model in two different settings: standard IDC with two images
as input and ’image difference captioning with multiple inputs’ (IDC-MI). The former setting is the
most common in the literature, while the latter is a novel setting that we introduce in this work.

We evaluate the performance of our model on the standard IDC setting on the CLEVR-Change,
InstructPix2Pix, and PSBattles datasets. We evaluate the performance of our model in the IDC-MI
setting on the MagicBrush and our proposed METS datasets. In both cases, we use the standard
n-gram based metrics BLEU-4 (B4), CIDEr (C), METEOR (M), ROUGE-L (R) and SPICE (S) to
evaluate the performance of our model. Additionally, we use LLM-as-judge metric to assess the
semantic similarity of the captions that n-gram based metrics struggle to capture. We use GPT4 to
score the semantic similarity of each text pair as ’low’, ’medium’ or ’high’ and report the percentage
of medium and high scores.

4.2.1 EVALUATING IDC WITH MULTIPLE INPUTS

Table 1: Performance evaluation in the IDC-MI setting shows BLEU-4 (B4), CIDEr (C), METEOR
(M), ROUGE-L (R) and LLM as judge medium (L (M)) and high (L (H)) scores. We report the
performance of our model and compare it with GPT3.5 and GPT4-V, varying the number of input
images and the presence of auxiliary textual information.

model images text B4 C M R L (M) L (H)
METS

GPT3.5 Brown et al. (2020) 0 yes 1.6 8.6 10.4 15.1 16.2 0.6
GPT4-V et al. (2024) 2 no 4.0 18.6 14.0 20.3 22.2 2.6
GPT4-Vet al. (2024) 2 yes 1.3 0.3 11.5 13.5 19.7 0.9
GPT4-Vet al. (2024) 4 no 3.0 15.1 13.4 19.9 26.9 1.9
GPT4-Vet al. (2024) 4 yes 1.4 0.4 11.6 12.9 24.1 1.2
FVTC-2 (ours) 2 no 5.8 20.7 11.4 23.1 22.6 9.4
FVTC-2T (ours) 2 yes 7.8 25.8 13.0 26.0 24.3 11.0
FVTC-4 (ours) 4 no 6.6 23.5 12.3 24.3 22.6 9.6
FVTC-4T (ours) 4 yes 8.2 25.9 13.4 26.3 30.1 12.4

MagicBrush

FVTC-2 (ours) 2 no 4.9 29.4 13.3 28.1 - -
FVTC-4 (ours) 4 no 6.8 44.5 15.6 31.2 - -

For the IDC-MI setting, we evaluate the model’s performance while varying the number of input
images and the presence of auxiliary textual information. The intermediate images are sampled to
be equally spaced in the sequence, and the textual information is provided in the form of machine
annotations described in Section 3.1. We compare the performance of our model with GPT4-V,
which has multi-modal capabilities and is capable of taking multiple images and/or text as input.
Additionally, we compare with GPT3.5, which serves as a text-only baseline, taking as input only
the auxiliary text and no images.

The results of the IDC-MI setting are shown in Table 1. We demonstrate that our method is able
to take advantage of the additional inputs, achieving the best performance when both intermediate
images and auxiliary textual information are present. On the other hand, GPT4-V suffers from the
addition of intermediate images and text, showing a decrease in performance in both cases.

Compared to the base case of just two-image input, the addition of text to our model improves
the performance by an average of 18.9% across all metrics, and intermediate images improve the
performance by an average of 10.1% across all metrics. The combination of both intermediate
images and textual information shows an average improvement of 22.4% across all metrics.

On the other hand, the performance of GPT4-V suffers from the addition of intermediate images,
decreasing in performance with the addition of both extra images and text.
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Table 2: Image difference captioning performance evaluation on the CLEVR-Change and PSBattles
datasets. We report the performance of our model and compare it with the state-of-the-art models
and report BLEU-4 (B4), CIDEr (C), METEOR (M) and ROUGE-L (R) scores.

MODEL TRAINING DATA B4 C M R S

CLEVR CHANGE

DUDA PARK ET AL. (2019) CLEVR 47.3 112.3 33.9 - -
IFDC HUANG ET AL. (2022) CLEVR 49.2 118.7 32.5 69.1 -
R3NET+SSP TU ET AL. (2021A) CLEVR 54.7 123.0 39.8 73.1 -
SGCC OLUWASANMI ET AL. (2019) CLEVR 51.1 121.8 40.6 73.9 -
NCT TU ET AL. (2023B) CLEVR 55.1 124.1 40.2 73.8 -
SRDL+AVS TU ET AL. (2021B) CLEVR 54.9 122.2 40.2 73.3 -
VARD TU ET AL. (2023A) CLEVR 55.2 124.1 40.8 74.1 -
FVTC-2 (OURS) CLEVR 54.7 151.8 40.0 77.1 -

SPOT-THE-DIFF

SRDL+AVS TU ET AL. (2021B) SPOT-DIFF - 35.3 13.0 31.0 18.0
R3NET+SSP TU ET AL. (2021A) SPOT-DIFF - 36.6 13.1 32.6 18.8
VARD-LSTM TU ET AL. (2023A) SPOT-DIFF - 39.3 13.1 33.1 17.5
VARD-TRANSFORMER TU ET AL. (2023A) SPOT-DIFF - 30.3 12.5 29.3 17.3
FVTC-2 (OURS) SPOT-DIFF - 45.5 13.7 28.7 19.3

PSBATTLES

VIXEN-C BLACK ET AL. (2024) IP2P 4.5 7.7 9.5 20.5 -
FVTC-2 (OURS) IP2P 5.3 10.3 10.8 22. -
FVTC-2 (OURS) IP2P + METS 5.5 14.2 11.2 22.6 -

4.2.2 EVALUATING IDC WITH TWO INPUTS

We observe that in the IDC setting, shown in Table 2, the model achieves competitive performance
on the CLEVR-Change dataset, outperforming the previous state-of-the-art model VARD on the
CIDEr and ROUGE-L metrics. On the InstructPix2Pix dataset, the model outperforms VIXEN only
on the METEOR metric. However, it shows a better capability to generalize to real-world images,
outperforming VIXEN on the PSBattles dataset for all metrics. Additionally, fine-tuning the model
on the METS dataset further improves its performance on PSBattles, showing the dataset’s ability
to bridge the domain gap between synthetic and real-world images.

4.3 LIMITATIONS

As with most LLMs, FVTC can occasionally hallucinate details that are not present in the input
images. When errors are made, they are most commonly occurrences of miscounting. For example,
the model may state that multiple occurrences of an object have been replaced with another instead
of a single occurence or vice versa (i.e. use of plural versus singular). The remaining category of
failure cases observed involves cases where level of detail may be too succinct, for example stating
an object is replaced but not stating with what.

5 CONCLUSION

We have introduced a novel task of image difference captioning with multiple inputs and demon-
strated that the presence of additional visual and/or textual inputs improves the model’s captioning
performance. We have introduced METS – a new dataset of long image editing sequences paired
with machine annotations and human edit summarization captions. We have trained a multi-modal
LLM with multiple visual inputs and provided a comprehensive evaluation of the benefits of both
additional visual and textual inputs. Additionally, we have demonstrated that fine-tuning a model
that is trained on other synthetic data with METS helps to bridge the domain gap and improves
zero-shot performance on real-life images.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. NeurIPS, 35:23716–23736, 2022.

Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, and
Lei Zhang. Bottom-up and top-down attention for image captioning and visual question answer-
ing. In Proc. CVPR, pp. 6077–6086, 2018.

Alexander Black, Jing Shi, Yifei Fai, Tu Bui, and John Collomosse. Vixen: Visual text comparison
network for image difference captioning, 2024.

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
editing instructions. arXiv preprint arXiv:2211.09800, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. NeurIPS, 33:1877–1901, 2020.

Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman Kr-
ishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large lan-
guage model as a unified interface for vision-language multi-task learning, 2023.

Coalition for Content Provenance and Authenticity. Technical specification 1.3. Technical report,
C2PA, 2023. URL https://c2pa.org/specifications/specifications/1.3/
specs/_attachments/C2PA_Specification.pdf.

Marcella Cornia, Matteo Stefanini, Lorenzo Baraldi, and Rita Cucchiara. Meshed-memory trans-
former for image captioning. In Proc. CVPR, pp. 10578–10587, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venu-
gopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks for visual
recognition and description. In Proc. CVPR, pp. 2625–2634, 2015.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale, 2021.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. Palm-e: An embodied
multimodal language model. In arXiv preprint arXiv:2303.03378, 2023.

Constantin Eichenberg, Sidney Black, Samuel Weinbach, Letitia Parcalabescu, and Anette Frank.
Magma–multimodal augmentation of generative models through adapter-based finetuning. arXiv
preprint arXiv:2112.05253, 2021.

Josh Achiam et al. Gpt-4: OpenAI technical report, 2024.

Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang, Pan Lu,
Conghui He, Xiangyu Yue, et al. Llama-adapter v2: Parameter-efficient visual instruction model.
arXiv preprint arXiv:2304.15010, 2023.

Alex Graves and Alex Graves. Long short-term memory. Supervised sequence labelling with recur-
rent neural networks, pp. 37–45, 2012.

S. Gregory. Ticks or it didn’t happen. https://lab.witness.org/
ticks-or-it-didnt-happen/, 2019. Accessed: 2024-01-20.

11

https://c2pa.org/specifications/specifications/1.3/specs/_attachments/C2PA_Specification.pdf
https://c2pa.org/specifications/specifications/1.3/specs/_attachments/C2PA_Specification.pdf
https://lab.witness.org/ticks-or-it-didnt-happen/
https://lab.witness.org/ticks-or-it-didnt-happen/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jiuxiang Gu, Jianfei Cai, Gang Wang, and Tsuhan Chen. Stack-captioning: Coarse-to-fine learning
for image captioning. In Proc. AAAI, volume 32, 2018.

Zixin Guo, Tzu-Jui Wang, and Jorma Laaksonen. Clip4idc: Clip for image difference captioning. In
Proc. Conf. Asia-Pacific Chapter Assoc. Comp. Linguistics and Int. Joint Conf. NLP, pp. 33–42,
2022.

S. Heller, L. Rossetto, and H. Schuldt. The PS-Battles Dataset – an Image Collection for Image
Manipulation Detection. CoRR, abs/1804.04866, 2018. URL http://arxiv.org/abs/
1804.04866.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626,
2022.

Xiaowei Hu, Zhe Gan, Jianfeng Wang, Zhengyuan Yang, Zicheng Liu, Yumao Lu, and Lijuan Wang.
Scaling up vision-language pre-training for image captioning. In Proc. CVPR, pp. 17980–17989,
2022.

Lun Huang, Wenmin Wang, Yaxian Xia, and Jie Chen. Adaptively aligned image captioning via
adaptive attention time. NeurIPS, 32, 2019.

Qingbao Huang, Yu Liang, Jielong Wei, Yi Cai, Hanyu Liang, Ho-fung Leung, and Qing Li. Image
difference captioning with instance-level fine-grained feature representation. IEEE Transactions
on Multimedia, 24:2004–2017, 2022. doi: 10.1109/TMM.2021.3074803.

Harsh Jhamtani and Taylor Berg-Kirkpatrick. Learning to describe differences between pairs of
similar images. In Proc. Conf. Empirical Methods NLP, pp. 4024–4034, 2018.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 2901–2910, 2017.

Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image descrip-
tions. In Proc. CVPR, pp. 3128–3137, 2015.

Hoeseong Kim, Jongseok Kim, Hyungseok Lee, Hyunsung Park, and Gunhee Kim. Agnostic change
captioning with cycle consistency. In Proc. ICCV, pp. 2095–2104, 2021.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language models. arXiv preprint
arXiv:2301.12597, 2023.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei Hu, Lei Zhang, Lijuan Wang, Houdong
Hu, Li Dong, Furu Wei, et al. Oscar: Object-semantics aligned pre-training for vision-language
tasks. In Proc. ECCV, pp. 121–137. Springer, 2020.

Jiasen Lu, Caiming Xiong, Devi Parikh, and Richard Socher. Knowing when to look: Adaptive
attention via a visual sentinel for image captioning. In Proc. CVPR, pp. 375–383, 2017.

Yunpeng Luo, Jiayi Ji, Xiaoshuai Sun, Liujuan Cao, Yongjian Wu, Feiyue Huang, Chia-Wen Lin,
and Rongrong Ji. Dual-level collaborative transformer for image captioning. In Proc. AAAI,
volume 35, pp. 2286–2293, 2021.

Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang, and Alan Yuille. Deep captioning with
multimodal recurrent neural networks (m-rnn). In Proc. ICLR, 2015.

Jack Merullo, Louis Castricato, Carsten Eickhoff, and Ellie Pavlick. Linearly mapping from image
to text space. arXiv preprint arXiv:2209.15162, 2022.

Ron Mokady, Amir Hertz, and Amit H Bermano. Clipcap: Clip prefix for image captioning. arXiv
preprint arXiv:2111.09734, 2021.

12

http://arxiv.org/abs/1804.04866
http://arxiv.org/abs/1804.04866


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Basil Mustafa, Carlos Riquelme Ruiz, Joan Puigcerver, Rodolphe Jenatton, and Neil Houlsby. Mul-
timodal contrastive learning with limoe: the language-image mixture of experts. In NeurIPS,
2022.

Ariyo Oluwasanmi, Enoch Frimpong, Muhammad Umar Aftab, Edward Yellakuor Baagyere,
Zhiguang Qin, and Kifayat Ullah. Fully convolutional captionnet: Siamese difference cap-
tioning attention model. IEEE Access, 7:175929–175939, 2019. URL https://api.
semanticscholar.org/CorpusID:209382557.
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