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ABSTRACT

Recent deep music generation studies have put much emphasis on music structure
and long-term generation. However, we are yet to see high-quality, well-structured
whole-song generation. In this paper, we make the first attempt to model a full mu-
sic piece under the realization of compositional hierarchy. With a focus on sym-
bolic representations of pop songs, we define a hierarchical language, in which
each level of hierarchy focuses on the context dependency at a certain music scope.
The high-level languages reveal whole-song form, phrase, and cadence, whereas
the low-level languages focus on notes, chords, and their local patterns. A cas-
caded diffusion model is trained to model the hierarchical language, where each
level is conditioned on its upper levels. Experiments and analysis show that our
model is capable of generating full-piece music with recognizable global verse-
chorus structure and cadences, and the music quality is higher than the baselines.
Additionally, we show that the proposed model is controllable in a flexible way.
By sampling from the interpretable hierarchical languages or adjusting external
controls, users can control the music flow via various features such as phrase har-
monic structures, rhythmic patterns, and accompaniment texture.

1 INTRODUCTION

In recent years, we have witnessed a lot of progress in the field of deep music generation. With
significant improvements on the quality of generated music (Copet et al.l 2023} [Thickstun et al.,
2023)) on short segments (typically ranging from a measure up to a phrase), researchers start to put
more emphasis on long-term structure as well as how to control the generation process in a musical
way. The current mainstream approach of structural generation involves first learning disentangled
latent representations and then constructing a predictive model that can be controlled by the learned
representations or external labels (Yang et al., 2019; Wang et al., 2020bj; |Wei et al., |2022; (Chen
et al., |2020). However, generating an entire song remains an unresolved challenge. As composi-
tions extend in length, the number of involved music representations and their combinations grow
exponentially, and therefore we need to organize various music representations in a structured way.

We argue that compositional hierarchy of music is the key to the solution. In this study, we focus
on symbolic pop songs, proposing a computational hierarchical music language and modeling such
language with cascaded diffusion models. The proposed music language has four levels. The top-
level language describes the phrase structure and key progression of the piece. The second-level
language reveals music counterpoint using a reduction of the melody and a rough chord progression,
focusing on the music flow within phrases. The third-level language consists of the complete lead
melody and the finalized chord progression, which is usually known as a lead sheet, further detailing
the local music flow. At the last level, the language is defined as piano accompaniment. Intuitively,
the language aims to characterize the intrinsic homophonic and tonal features of most pop songs —
a verse-chorus form, a chord-driven tonal music flow, and a homophonic accompaniment texture.

We represent all levels of the symbolic languages as multi-channel images and train four layers of
image diffusion models in a cascaded fashion, one for each level of the music language. The scope
of the first layer is full-song and up to 256 measures, the scope of the second layer is 32 measures,
and the third and the fourth layer each has a scope of 8 measures. Additional autoregressive controls
are added to the low-level diffusion models to strengthen long-term temporal coherency. Experi-
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mental results show that our model is capable of generating well-structured full-piece music with
recognizable verse-chorus structure and high music quality.

Moreover, at each level, optional external conditions can be added via the cross-attention mechanism
of diffusion models to control the generation process at each level of the hierarchy. As a demonstra-
tion, we add long-term control of chord progression, local control of rhythmic and accompaniment
pattern to the corresponding levels of the hierarchy. All the external controls uses pre-trained la-
tent codes from existing music representation learning models. We show that these controls can
effectively guide hierarchical generation in a more customizable way.

In summary, the contribution of the paper is as follows:

* We achieve high-quality and well-structured whole-song generation using a cascaded
diffusion model approach. Objective and subjective measurement show that both mono-
phonic lead sheets and polyphonic accompaniment generated by our model have more iden-
tifiable phrase boundaries, better-structured phrase development in similarity and contrast,
and higher music quality compared to baselines.

* We propose a computational hierarchical music language, which serves as a structural
inductive bias making the training process decomposable and efficient in terms of data and
computing power utilization. Also, the hierarchical languages can be extracted automati-
cally without manual annotation of music structure.

* Our model enables flexible and interpretable controls, with not only our proposed hier-
archical language but also with external pre-trained latent representations in various music
scopes.

2 RELATED WORK

In this section, we first review music structure in musicology in section[2.1] followed by music struc-
ture modeling in deep music generation approaches in section[2.2] Finally, in section [2.3| we review
the state-of-the-art deep generative methods relevant to the problem of whole-song generation.

2.1 MUSIC STRUCTURE MODELING

Traditional music theory focuses on the analysis of music structure in terms of counterpoint
(Clementi et al., 2010), harmony (Schoenberg| |1983), forms (Kochl [1787), etc. In the early 20th
century, a more comprehensive theory, Schenkerian analysis (Cadwallader et al.l [1998), emerged
with a focus on the generative procedure of music. The theory introduces a compositional hierarchy
of music, aiming to show how a piece is composed from its background, the normal form of music,
to its middle ground, where music form and rough music development are realized, and finally to
the foreground, the actual composition.

Nowadays, compositional hierarchy is still prevalent in modern musicology. Notable developments
include [Tagg| (1982), a general compositional hierarchy for pop music, and Generative Theory of
Tonal Music (GTTM) (Lerdahl & Jackendoft] 1996)), a theory focusing on the definition and analysis
of formal musical syntax. From a computational perspective, these studies provide more formal
music features and computer-friendly generative processes (Hamanaka et al., [2015; |2016). The
focus of this paper is to further leverage the compositional hierarchy of music to develop a fully
computable language and to model it with deep generative modeling.

2.2  STRUCTURED DEEP MUSIC GENERATION

Recent advances in deep generative models have greatly improved music generation quality, pri-
marily by more effective modeling of the local musical structure in two ways: implicit and explicit.
Implicit approaches, exemplified by models such as Music Transformer (Huang et al.,|2019), Muse-
BERT (Wang & Xia, 2021)), and Jukebox (Dhariwal et al., 2020), learn structures by predicting
and filling musical events, often revealing context dependencies via attention weights. Explicit ap-
proaches leverage domain knowledge to acquire interpretable music representations, allowing the
learning of structures like measure-level pitch contour and accompaniment (Yang et al., | 2019; Wang
et al., 2020b). This study aims to combine both explicit and implicit approaches and further model
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Table 1: Definition of the four-level hierarchical music language. We use m for measure, b for beat,
s for step to represent the temporal resolution of each level. M denotes the number of measures in
a piece, v denote the number of beats in a measure, and é denotes the number of steps in a beat.

Languages (res.) Specification Data Representation  Structural Focus

Key changes 1 8x Mx12 .
Phrase division X eR Music form

Melody reduction

Form (m)

Counterpoint (b) X2 ¢ R2XTMx128 Phrase similarity, phrase

Simplified chord development & cadence

Lead melody 3 2% 6y M X128 Melodic pattern, similarity
Lead Sheet (s) Chord X" €eR & coherence
Accompaniment (s) ~ Accompaniment X% e R2X0vMx128 Acc. pattern, similarity &

coherence, Mel-acc relations

phrase and whole-song structures. The explicit modeling lies in our definition of a computational
hierarchical music language, and the implicit modeling of the structure lies in the cascaded diffusion
models.

2.3 DIFFUSION AND CASCADED MODELING FOR MUSIC GENERATION

Diffusion models, after their success in image and audio domains, have very recently been applied
to music generation (Mittal et al., 2021 |L1 & Sung, 2023} Min et al., 2023)). Besides high sample
quality, diffusion models naturally lead to coherent local structures with the innate inpainting method
Lugmayr et al.| (2022), i.e., by generating music segments conditioned on surrounding contexts. As
for long-term structures, we recently saw the design of cascaded diffusion modeling in Motsai
Schneider et al.|(2023)), which generates high-fidelity audios using multi-scale sampling.

In this study, our focus is on symbolic music and we adopt the idea of multi-scale generation in cas-
caded models. Additionally, we integrate the cascaded process with the proposed hierarchical music
language, so that each layer of the diffusion model focuses on a certain interpretable aspect of music
composition. In particular, all levels of music languages are defined as image-like representations.
Inspired by sketch- and stroke-based image synthesis |(Cheng et al.| (2023)), we model hierarchical
music generation by regarding high-level and low-level music languages as the background and
foreground “strokes”, respectively.

3 METHODOLOGY

Our model for whole-song generation is a realization of the music compositional hierarchy. In this
section, we first introduce the definition of our hierarchical music languages in section Then,
we discuss how to model these languages via cascaded diffusion models, where each level of the
language is conditioned on its upper levels. We show the data representation of these languages in
section The training and inference of the model are discussed in section [3.3| and section
respectively.

3.1 DEFINITION OF HIERARCHICAL MUSIC LANGUAGES

We define four levels of hierarchical music languages to reveal the generative procedure of music. As
shown in Table[I] the four levels of languages, from highest to lowest, are: 1) Form of music key and
phrase, 2) Counterpoint of reduced melody and simplified harmony, 3) Lead Sheet of melody and
chords, and 4) Accompaniment. The key idea behind this hierarchical design lies in the relationship
among the four levels — more abstract music concepts at higher levels are realized by stylistic
specifications at lower levels. For example, a lead sheet is an abstraction implying many possible
ways to arrange the accompaniment that share the same melodic and harmonic structure, while an
instantiated accompaniment is one of the possible realizations showing the accompaniment structure
in more detail.

Among the four levels, Form, Lead Sheet, and Accompaniment all involve common concepts in
computer music, and there exist either labeled datasets or reliable algorithms to automatically ex-
tract the information from music. In contrast, melody reduction and simplified chords, as defined
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in Counterpoint, is our tailored design to show intermediate music structure involving cadence of
phrase and phrase similarity. Similar music structures are rarely defined for automatic music gener-
ation. To this end, we contribute a fonal reduction algorithm to ensure the availability of this level
of information (see Appendix [A.T]for details) in order to complete the language hierarchy.

3.2 DATA REPRESENTATION

While music scores are inherently symbolic, we transform them into continuous, image-like piano-
roll representations for better compatibility with diffusion models. Specifically, languages at all
levels are represented by multi-channel images (examples are shown in Appendix The width
of the images represents the music time under different resolutions, and the height represents 128
MIDI pitches or 12 pitch classes. We denote the length of a piece to be M measures, each measure
containing -y beats, and each beat containing ¢ steps.

The language Form contains key signature and phrase division under the resolution of one measure.
We represent key by K € R?*MX12 \here tonic information and scale information are stored
on the two channels. As for phrase division, our representation is derived from the conventional
string representation (Dai et al., [2020). For example, "14A8" represents a 4-measure intro phrase
followed by an 8-measure verse phrase. We use P € RS> 1 (o represent phrase division where the
6 phrase types are mapped to 6 image channels (see Table[3]in Appendix[A.2). We further introduce
a measure countdown value to fill in the corresponding pixels. Formally, let myg, ..., mo + L — 1 be
the indices of a L-measure phrase of type ig, then for mg < m < mgy + L,

Pli,m, ] =1y (1 — w). (1)
We broadcast P to match the pitch-axis of K and define the first-level language form as the chro-
magram X ! := concat(K, P) € R8*Mx12

The other levels of languages use a similar piano-roll representation. The language Counterpoint is
represented by X2 € R2X7Mx128 ynder the resolution of one beat, where two channels correspond
to note onset and sustain. Both melody reduction and simplified chord progression share the same
piano-roll using different pitch registers. Similarly, Lead Sheet uses X3 € R?X9vMx128 (4 repre-
sent the actual melody and chords and Accompaniment uses X* € R2*07Mx128 o represent the
accompaniment, both in the same resolution of one step.

Note that for the four levels 1 < k < 4, X* have different shapes. In the following sections, we
write { X *|k C {1,2,3,4}} to denote the concatenation along the channel axes with possible broad-
casting and repetition operations. For example, X! can be expanded -y times in width and repeated
11 times in height to be concatenated with X2, resulting in a tensor in R19*7M:128 = Additionally,
we write the time-series expression X[ to denote X*|[:, ¢, :] for simplicity.

3.3 MODEL ARCHITECTURE

Whole-song music generation is achieved by generating the four levels of hierarchical music lan-
guages one after another in a top-down order (as shown in Figure [T). For each level, we train a
diffusion model to realize the current-level language based on the existing upper-level languages.
The time scopes (image widths) of these diffusion models are more or less the same (constrained
only by computational resources) but the actual music scopes differ a lot, because the resolution in
lower-level languages is finer. In this paper, for level £ = 1,...,4, we set the time scope b, to be
b1 = 256 and by.4 = 128, which means the music scope for these levels are 256 measures, 128 beats,
128 steps, and 128 steps, respectively. In the usual setting when v = § = 4, the scope of the models
are 256 measures, 32 measures, 8§ measures, and 8 measures, respectively. Consequently, except
that the first layer is an unconditional generation of the whole sequence, the generation problems at
all the other layers are essentially conditional generation of music segments sliced from the entire
sequences.

The generation of a music language slice X[, 1, at level k& 7 1 can be conditioned on multiple

resources inside and outside the defined hierarchy. In this study, our model is designed to take in
three sources of structural conditions:

Background condition. We regard the generation as a realization of existing higher-level languages

at the corresponding scope Xf:tlﬁrbk, where the higher-level language segments are like sketch im-
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Figure 1: Model diagram of cascaded diffusion models for hierarchical symbolic music generation.

ages directly guiding the current generation. Background condition is applied by concatenating the
X t<:t]ibk along the channel axis with the input image to the diffusion model.

Autoregressive condition. The segment should not only be a realization of the background condi-
tion, but also coherent with prior realizations X Ef . For example, the realization of a verse phrase
in the end of the composition is usually similar to the realization in the beginning. In our model, we
assume autoregression in the hierarchy that X ﬁt are known. We select Sy relevant music segments
prior to ¢ based on a defined similarity metric on X <*. These music segments are encoded into
latent representations and being cross-attended in the diffusion models.

External condition. Besides the compositional hierarchy, music generation is usually controlled by
other external conditions. These conditions can be possibly high-level or low-level stylistic controls
(Wei & Xia, |2021)), cross-modality control of text (Zhang et al.,[2020), or audio (Wang et al.|[2022).
As an illustration of our model compatibility, we use pre-trained latent representations of long-term
chord progression, rhythmic pattern, and accompaniment texture as the control for Counterpoint,
Lead Sheet, and Accompaniment generation, respectively. At each level &, we denote the array of
external control codes by Z k which are cross-attended in our diffusion models.

Similar to [Min et al.| (2023)), we adopt 2D-UNet with cross-attention as the backbone neural archi-
tecture for all four levels of the generation with several modifications. First, the input channels are
increased to allow background condition. Second, autoregressive and external conditions are fed
through cross-attention layers with classifier-free guidance (Baykal et al.| 2023)). In Appendix
we include more detail on the model architecture and training method. The model is trained to model
the conditional probability density of multiple levels of music segments. Formally, let the backbone
model at level £ be denoted by

Gﬁk(xnvn;ylvy23y3)v (2)
where 0}, is the model parameter, n = 0, ..., IV is the diffusion step, x,, is the input image mixed
with Gaussian noise at diffusion step n, and y1, y2, y3 are background, autoregressive, and external
control, respectively. Our training objective is to model the probability

<k
Por (Xt s, | X, X205 Z7) 3)
under the loss function
) <k ok
L(0y) = }]?:tégk (X Xit X201, 25, 4)
where
fek (.13, Y1,Y2, y3) = IEe,n| |6 — €p,, (-rnv n,Y1,Y2, y3)”§ (5)



Published as a conference paper at ICLR 2024

Algorithm 1 Whole-song generation algorithm.

Constants: Resolution factor for each level 1y = 1,79 = 7,73 = ry = §vy
Input: External control Z*(2 < k < 4) (optional)

1: X1~ pg, (-10,0,0)
: M <+ INFERSONGLENGTH(X1)
cfork=2,...,4do

k
X(I)C:bk//Q ~ Do, (|‘Xv0<b;C ’ @, Z[])C:bk)
fort = O,hk72hk,...,7"kMd0
. k <k
th-i-hk:t-i-bk ~ Pek('\XﬁtJrhk’XbekvXq »Ztk:t+bk)

end for
end for
return X*(1 <k < 4)

VRN AELD

3.4 WHOLE-SONG GENERATION ALGORITHM

At the inference stage, we leverage the conditional probability eq. to achieve whole song gen-
eration by autoregressively inpainting the generated segments using a hop length of hy := by, // 2.
Inpainting is a commonly-used method in diffusion models for image editing, and is developed as
a quasi-autoregressive method for sequential generation (Min et al.| 2023). The whole-song gener-
ation algorithm is shown in Algorithm [l Since X! is zero-padded to 256 measures in training, in
the inference algorithm, we derive the actual song length by finding the first all-zero entries of the
generated X !. This process is denoted by INFERSONGLENGTH(-) in Algorithm Here, we use

k k .y <k <k ok
X ht by ™ peo("Xt:tJrhkvXt:t+bk-’X<t 7Zt:t+bk) (6)
to indicate the distribution of the second half of the sequence conditioned on the first half via in-
painting.

4 ANALYSIS OF STRUCTURAL MUSIC GENERATION

In this section, we show an example of whole-song music generation of 40 measures in Figure
The given Form of the piece has a simple verse-chorus structure with 4-measure verse and 8-measure
chorus phrases appearing multiple times.

The generated music shows a clear music structure. The melodies of three verses all consist of
syncopated rhythm in a narrow pitch range, while the melodies of two choruses are both relatively
lyrical with a broader pitch range (indicated by shaded rectangles). The accompaniment pattern pre-
dominantly features eighth notes in verses and sixteenth notes in choruses. Moreover, the cadences
at phrase boundaries are clearly indicated by the tonic or dominant chords and the “fill” in the ac-
companiment (indicated by dotted red rectangles). Furthermore, we notice the music intensity in the
second half is stronger than in the first half, which is realized by more active pitch movements and
higher pitches (indicated by shaded rectangles with dotted borders). Such intensity changes make
the composition go to a climax point before ending, showing a well-formed chronological structure.

In Appendix we break down the hierarchical generation process and show examples of struc-
tural controllability of each level. More generation results are available at the demo page

5 EXPERIMENTS

We focus our experiments on evaluating the generated Lead Sheet and Accompaniment, the two
lower levels of languages. The rationale is that the information of higher-level languages are difficult
to evaluate directly, and they are implied at the lower levels.

We decompose whole-song evaluation into evaluation of music structure and quality. In section[5.3]
we first propose an objective metric to measure structure, and then subjectively evaluate both struc-
ture and quality on music segments (8-measure) and whole-song samples (32 measures). An extra
evaluation on generation plagiarism is discussed in Appendix

"Demo page: https://wholesonggen.github.iol
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"14A4A4B8b4A4A804" phrase types). The three staves (from top to bottom) show the generated

Counterpoint, Lead Sheet, and Accompaniment. Here, rectangles with colored background are used

gles with colored background indicate a variation of motifs. We use red dotted rectangles to show

to indicate the appearance of the same motifs in verse and chorus sections. Dashed boarder rectan-
where the generated score show a strong implication of phrase boundary or cadence.

Figure 2: An example of whole-song generation of 40 measures under a given Form (Ab major and

(
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5.1 DATASET

We use the POP909 (Wang et al.,|2020a) dataset to train our four-stage model. POP909 is a pop song
dataset of 909 MIDI pieces containing lead melodies, secondary melodies, piano accompaniment
tracks, key signatures, and chord annotations. We pad each song to 256 measures to train Stage 1,
and segment each song into corresponding time scopes (128 beats for stage 2 and 128 steps for Stage
3 and 4) with a hop size of one measure. 90% of the songs are used for training and the rest 10% are
used for testing. Training samples are transposed to all 12 keys. The annotations for key and phrase
divisions are extracted using |Dai et al.| (2020). Counterpoint of each song are extracted using Tonal
Reduction Algorithm proposed in Appendix [A.] All other annotations are available in the dataset.

5.2 BASELINE SETTINGS

We construct two baseline models for whole-piece lead sheet and accompaniment generation tasks.
The two models are modified based on two state-of-the-art phrase-level generation models, respec-
tively; one is diffusion-based, and the other is Transformer-based.

Diffusion-based (Polyff.+ph.l.). We augment Polyffusion (Min et al., 2023)) with phrase label sig-
nals as external conditions, and use the iterative inpainting technique to generate whole pieces.
We train two versions of diffusion models for lead sheet and accompaniment generation tasks on
POP909, both adopting the same data representations as in section [3.2] This also serves as an abla-
tion study on the effectiveness of our cascaded model design.

Transformer-based (TFxI(REMI)+ph.l.). Naruse et al.|(2022) augment phrase label tokens on the
REMI representation with Transformer-XL as the model backbone. Similarly, we train two ver-
sions for lead sheet and accompaniment generation on POP909, for lead sheet and accompaniment
generation, respectively.

5.3 EVALUATION

Objective Evaluation. For whole-song well-structuredness, we design Inter-phrase Latent Simi-
larity (ILS) to measure the content similarity among phrases of the same types (chorus or verse).
We leverage pre-trained disentangled VAEs that encode music notes into latent representations and
compare cosine similarities in the latent space. Given a similarity matrix showing pairwise simi-
larity of 2-measure segments within a song, ILS is defined as the ratio between same-type phrase
similarity and global average similarity, and therefore higher values indicate better structure.

We compute ILS on lead melody, chord, and accompaniment. Using pre-trained VAEs from [Yang
et al.| (2019) and Wang et al.| (2020b), we compute the latent representations of pitch contour and
rhythm (i.e., 2, 2;) for lead melody, latent z.y,q for chord, and latent texture 2y for accompaniment.
We pre-define four types of common phrase divisions and let models generate 32 samples for each
division, resulting in 128 full songs in total. ILS?, 8 € {p,r, chd, txt} are calculated for each song,
and we show their mean and standard deviation in Table[2] The results show our model significantly
outperforms baselines on the phrase content similarity of chord and accompaniment, indicating its
effectiveness in preserving long-term structural dependency.

Table 2: Objective evaluation of phrase content similarity.

Lead Melody Chord Accompaniment
ILS? ¢ ILS" 1 LS 4 ILS™ 4
Ground Truth 2.284+0.14 230£0.13 | 1.42£0.07 1.68 £ 0.09
Cas.Diff. (ours) 205+0.14 1.49+0.07 | 1.324+0.05 1.19 £ 0.06
Polyff. + ph.L 0.60£0.12 0.76 £0.05 | 0.52+0.06 0.61+0.04
TFxI(REMI) + ph.l. | 1.89+0.15 1.71+0.13 | 0.68 £ 0.06 0.74 £ 0.04

Subjective Evaluation. We design a double-blind online survey that consists of two parts: short-
term (8 measures) evaluation of music quality, and whole-song (32 measures) evaluation of both
music quality and well-structuredness. Participants rate Creativity, Naturalness, and Musicality for
short-term music segments. For whole-song evaluation, we drop Creativity but introduce two more
criteria: Boundary Clarity and Phrase Similarity to focus on the structure of the generation. All
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(a) Short-term lead sheet generation

(b) Short-term accompaniment generation

BN Cas.Diff. (ours) [0 TFx(REMI) [0 Polyff. B Cas.Diff. (ours) [0 TFxIREMI) [0 Polyff.
0 TFxI(REMI)+phl. @ Polyff+phl  [EZH GT 0 TFxI(REMIytphl  EEEE Polyff+phl — EZE GT
54 54
4 4
34 34
2 2
14 14
0- 0-
Creativity Naturalness Musicality Creativity Naturalness Musicality

(c) Whole-song lead sheet generation

(d) Whole-song accompaniment generation

I Cas.Diff. (ours)

1 TFxI(REMI)

I Cas.Diff. (ours)

1 TFxI(REMI)

54 BB TFxI(REMI)+phl. R Polyff+ph.l. 54 I TFxI(REMI)+phl. EEER Polyff+ph.l.
4 4 4
34 34
2 2
14 14
0- 0 -
Boundary Phrase Naturalness ~ Musicality Boundary Phrase Naturalness ~ Musicality
Clarity Similarity Clarity Similarity

Figure 3: Subjective ratings on music quality and well-structuredness, evaluated over Cas.Diff.
(Cascaded Diffusion), various baselines, and GT (human-composed ground truth).

metrics are rated based on a 5-point scale. We constrain whole-song length to 32 measures so that
the participants can better memorize the samples and the survey has a reasonable duration. These
generated pieces still preserve a condensed pop-song Form by specifying Form to contain intro,
outro and repetitive verses or choruses.

Additionally, we use two more reference models (Polyff. and TFxI(REMI), the two baseline models
trained without phrase label conditions) for short-term evaluation. This is to investigate whether the
inductive bias of phrase labels causes degradation in music quality. We let each model generate three
samples for both short-term and whole-song levels as well as both lead sheet and accompaniment
generation, resulting in 3 X 2 x 2 = 12 groups of samples. Each group of samples share the same
prompt (2 measures for 8-measure samples, and 4 measures for 32-measure samples) and phrase
labels (for whole-song generation). In the survey, both the group order and the sample order are
randomized.

A total of 57 people participated in our survey, and the evaluation result is shown in Figure [3] The
bar height shows the mean rating, and the error bar shows its 95% confidence interval. Observe that
our model significantly outperforms baselines in the structural metrics of whole-song generation,
especially in accompaniment generation. Our model consistently outperforms baselines in terms of
mean music quality in both short-term and whole-song generation, proving that our introduction of
inductive bias does not degrade the generation quality.

6 CONCLUSION

In conclusion, we contribute the first hierarchical whole-song deep generative algorithm for sym-
bolic music. The current study focuses on the pop music genre, and experimental results demon-
strate that our model consistently generates more structured, natural, and musical outputs compared
to baseline methods, both at the whole-song and the phrase scales. Additionally, our model offers
extensibility, allowing flexible external controls via pre-trained music embeddings. Our approach
relies on two key components: a hierarchical music language that balances human interpretability
with computational tractability, and a cascaded diffusion architecture that effectively captures the
hierarchical structure of entire compositions through both top-down and context-dependent mecha-
nisms. It demonstrates that a strong structural inductive bias can lead to more effective and efficient
learning for deep music generative models, and such methodology is potentially useful for other
domains as well. In the future, we plan to extend our hierarchical language and generation approach
to both multi-track symbolic music and music audio.
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A APPENDIX

In the appendix, we provide detailed explanations of certain parts of our methodology and offer more
examples of generated results. Specifically, we elaborate on the Tonal Reduction Algorithm (TRA)
for the language Counterpoint in the detailed mapping rules of phrase types for language Form
in[A.2} model architecture and training details in [A.3} some more generated examples in [A.4} an
evaluation on whether the generated examples have plagiarism issue in [A.5} and an evaluation on
external control efficacy in[A.6]

A.1 TONAL REDUCTION ALGORITHM

The Tonal Reduction Algorithm (TRA) is designed for the extraction of the second-level music
language Counterpoint (defined in section [3.1)) containing melody reduction and simplified chord
progression. Here, the extraction of simplified chord progression is relatively trivial and can be
approximated by downsampling the chord progression to the ideal resolution. The most challeng-
ing aspect of TRA is to find melody reduction for a music phrase. The melody reduction should
demonstrate a more fundamental music flow with respect to the harmony and remove local melodic
contours, passing tones, motifs, and other music stylistic properties. In the following, we focus on
the melody reduction part of the TRA algorithm.

Assume (z1,...,xy) is a note sequence of a melody phrase. The sequence is sorted by note onsets
and each note has properties of its onset, pitch, duration, and underlying chord progression. We
consider the input music phrase under the graph representation G(V, E) where V := {z1,...,zn}
are the vertices and F := {(x;,z;+1)|1 < i < N} are the edges showing temporal order. The key
point of the proposed method is the discovery of skip edges (x;,x;),¢ < j, meaning the motion
(@i, x;) is more structurally important than (x, z} + 1),Vi < 4’ < j. The algorithm defines cost of
all possible edges based on music domain knowledge and find the shortest path from z; to zx as
the reduction of the input music phrase.

The cost of an edge ¢(i, j),% < j has two components. First, based on the conventional belief in tonal
music that stepwise and harmonic motion are more fundamental than local patterns (Cadwallader
et al.,|1998)), we define a binary progression cost cy(z;, ;) based on the edge types:

* Prolongational edges: the pitches of x; and x; are identical and x; and x; are at most
K measures apart, meaning that notes in-between are elaborations of x;. In this case
Co((ﬂi,fﬂj) =0.1.

* Imaginary prolongational edges: the pitch class of x; and x; are identical and x; and x;
are at most /X measures apart. In this case co(z;, z;) = 1.

* Linear edges: the interval between x; and x; is a major or minor second and x; and x; are
at most K measures apart. In this case co(z;, z;) = 0.3.
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* Imaginary linear edges: the pitch-class interval between x; and x; is a major or minor
second and z; and z; are at most X' measures apart. In this case co(x;, z;) = 1.3.

 Arpeggiation: the interval between x; and x; is larger than second and z; and x; are both
chord tones belonging to the same chord. In this case co(z;, x;) = 1.5.

* Others: other (z;,z;) that does not belong to the above five categories and j = ¢ + 1. In
this case co(z;, z;) = 3.
Note that under this definition, the existence of at least one path from x; to zy is ensured.

Additionally, we give the algorithm a preference of reduction resolution by a distance cost
co(xs, x;) == (j —i)®. Hence, we extend the edges to E’ and define the cost (z;,z,) € E’ to
be:

c(zi, ;) = c1(wi, ) + csl@y, ). (7)

We use the shortest-path algorithm to find the shortest path from x; to zn. In practice, we find
K = 2 and a = 1.6 has the best performance.

After running the shortest path algorithm, we put these notes to the correct chord positions on the
score and assign a fixed rhythmic pattern under the resolution of quarter notes.

Table 3: Definition of phrase type

Phrase Type Channel ID Meaning
"A" 0 Verse section phrases
"B" 1 Chorus section phrases
X" 2 Other phrases with lead melody
i 3 Intro section phrases
"o" 4 Outro section phrases
"b" 5 Bridge section phrases

A.2 ADDITIONAL EXPLANATION OF DATA REPRESENTATION

The language of Form X! consists of phrase division P € R6*M*1 andkey K € R?*M*12 In this
section, we first present the six phrase types considered in this paper in Table[3] Such representation
is originated from the string representations in |Dai et al.| (2020). Each phrase type is mapped to a
channel in P following Table 3] We also provide an example data representation of all four levels
of hierarchical language in Figure 4]

A.3 MODEL ARCHITECTURE AND TRAINING DETAILS

In this section, we provide more detail on the model architecture and training method. We first
discuss the three conditioning methods introduced in section [3.3]in more detail and summarize the
information in Table 4]

Detail on background condition. At each level k¥ > 1, the background condition X ftk b, 1S repre-

sented by an image having the same width and height as the diffusion output. Thus, the background
condition can be concatenated with the input along channel axis at each step of the diffusion process.
The background condition will be set to all —1.0 under the probability pyncond = 0.2, following
classifier-free guidance (Baykal et al., |[2023).

Detail on autoregressive condition. At each level k > 1, the generation of X}, +p, is dependent

on past generation X Etk . Here we select top-Sj, past segments of length b} based on their phrase
type similarity to the current segment. (Recall that phrase type is encoded in X!.) These music
segments are embedded using 3 layers of 2d-convolution and fed to the backbone diffusion models
by cross-attention mechanism. In our implementation, we set Sy = 3, by = 32, S3 = Sy = 1,
and b5 = b}, = 96. The autoregressive condition will be set to all —1.0 under the probability

Puncond = 0.1.
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Figure 4: An illustration of our proposed hierarchical music languages.

Table 4: Details about the conditioning methods in four stages of diffusion models.

Generation stages Form Counterpoint  Lead Sheet  Accompaniment
Time scope 256 measures 128 beats 128 steps 128 steps
Output shape (2,256,12) (2,128,128) (2,128,128) (2,128,128)
Background cond: shape N/A (6,128,128) (8,128,128)  (10,128,128)
Background cond: puncond N/A 0.2 0.2 0.2
Autoreg. cond: # of segments N/A 3 1 1
Autoreg. cond: shape N/A (8,32,128) (10,96, 128) (12,96, 128)
Autoreg. cond: puncond N/A 0.1 0.1 0.1
External cond: # of latent codes N/A 4 4 4
External cond: latent dimension N/A 512 128 256
External cond: puncond N/A 0.2 0.2 0.2

14

Detail on external condition. The condition for Counterpoint is four 8-measure latent codes of
chord progression encoded from [Wang et al.| (2020b). The condition for Lead Sheet is four latent
codes of rhythmic pattern encoded from Yang et al|(2019). The condition for Accompaniment is
four latent codes of accompaniment texture encoded from [Wang et al.| (2020b). These latent codes
are fed to the backbone diffusion models by cross-attention mechanism and will be set to all —1.0
under the probability pynconda = 0.2.

The diffusion models for all four stages use the same noise schedule and training methods. Similar
to Min et al.| (2023), the backbone model is a 2D-UNet model, the encoder and decoder of which
contain 4 layers of 2d-convolution with spatial attention at the third and forth layers. We summarize
these common details across all four stages in Table[3]



Published as a conference paper at ICLR 2024

Table 5: Details about the backbone UNet model and training method. These features are the same

across all four stages.

Attributes Value

Diffusion Steps (N) 1000

Noise Schedule Linear from 1 to le-4

UNet Channels 64

UNet Channel Multipliers  1,2,4,4

Batch Size 16

Attention Levels 3,4

Number of Heads 4

Learning Rate Se-5
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Figure 5: Examples of generated Counterpoint of "A8" phrase in Eb major. The samples marked
with * are controlled by external conditions of “Unchanging chord progression”.

A.4 MORE EXAMPLES ON STRUCTURAL GENERATION

In this section, we break down each level of the hierarchical language and show more generation
examples. For each level, we fix the upper level, and demonstrate a variety of generation results
under the upper level control. We also introduce generation samples that are controlled by external
conditions.

Form generation. Below shows examples of Form generated by our model:

(18) (A8B16A8B16) (b6) (B14) (02)

(112) (A4A4B12) (b4b4) (A4A4B12) (b4b4 (B16)odol)

(14) (A4A4B4X5) (b4) (A4b5B4X4X5) (02)

(14) (A8BY9ABBI9X18) (0201)

Here, we use parentheses to group music sections for better readability. The results show the model
captures verse-chorus form of pop songs: the composition usually starts with intro and ends with
outro; verse and chorus appears multiple times with bridge phrases in between. Phrases are usually
4 or 8 measures long, similar to real music samples.

Counterpoint generation with external harmony control. Figure [5(a)-(f) show examples of 8-
measure generation of the Counterpoint level. The results are all controlled by the same Form: an
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Figure 6: Examples of generated Lead Sheet of "A8" phrase in Eb major given the upper-level
Counterpoint. The samples with marked with * are controlled by additional latent codes.

8-measure verse phrase in Eb major. The generated samples show many possible ways to develop
the melody (different contour and melodic climax positions) and the harmony (different chord types
and harmonic rhythm). Moreover, each of the samples has a consistent style and usually ends in
a tonic or dominant chord indicating the ending of a phrase. Moreover, we also use a latent chord
representation (encoded from Wang et al.[(2020b))) of unchanging chord to control the Counterpoint
generation process and the results in shown in Figure [5[g)-(h). The results have fewer changes in
harmony and the melody reduction alters accordingly.

Lead Sheet generation with external rhythm control. Figure [§(b)-(2) show examples of 8-
measure generation of the Lead Sheet level. The results are all controlled by the same Counterpoint,
shown in Figure[6{a). The generated samples follow the pitch contour in the melody reduction and
different in local pitch and rhythm patterns. At this level, we also use latent control of rhythm
(encoded from |Yang et al.| (2019)) to control the melody generation using sixteenth notes. The
generation examples shown in Figure [5(h)-(i) shows melody realization with more frequent onsets
accordingly.

Accompaniment generation with external texture control. Figure [7[b)-(d) show examples of
8-measure generation of the Accompaniment level controlled by the same Lead Sheet, shown in
Figure [7(a). The generated samples mainly use arpeggios but are different in the exact patterns.
Some of the generation has a “fill” in the fourth and eighth measures to indicate phrasing. At
this level, we also use latent control of texture (encoded from |Wang et al.| (2020b)) to control the
accompaniment generation. Here the control is a texture of “Alberti bass” figure and Figure [5]e)
shows the generation results. The generation adopts the Alberti bass pattern and makes variations
throughout the piece.

A.5 EVALUATION OF GENERATION PLAGIARISM

In generative modeling, a critical consideration is whether the model overfits the training data, re-
sulting in generation plagiarism. This section includes a quantitative evaluation focused on the
similarity between generated segments and the entire training set. We primarily focus on melody
similarity, a most recognizable aspect of music composition.
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Figure 7: Examples of generated Accompaniment of "A8" phrase in Eb major given the upper-level
Melody. The samples with marked with * are controlled by additional latent codes.

Our goal is to measure the Degree of Plagiarism (DoP) with respect to a set of generated samples,
or a specific sample from this set. Let « be a two-measure melody segment from a generated piece
or a set of pieces, we define Similarity to the Training Set of segment x as:

S(x) = max sim(z, x'), (8)

where 7T denotes the training set, ’ is a two-measure segment from the training set, and sim(x, )
computes the similarity between @« and ’. Here S(x) € [0,1], and a larger S(x) shows a higher
degree of plagiarism. The DoP of a piece or a set of pieces can be represented by the histogram
of S(x). We typically report the mean and standard deviation of the histogram in the following
experiments.
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We define a rule-based similarity metric and a latent similarity metric as follows:

Rule-based similarity metric. We compute the note-wise similarity between two segments by
matching the exact onsets and pitches. Let n,n,’ denote the number of notes that appear in both x
and x’ with the same pitch class and onset, and let ng and ng denote the number of notes in & and
x’, respectively. The rule-based similarity metric is defined as:

2Npna

sim™(x, x') 1= — 2

Ny + N’
Latent similarity metric. We also measure the melodic similarity in the latent space because rule-
based methods cannot detect indirect plagiarism (e.g., same pitch contour or rhythm). We leverage
the pre-trained EC2-VAE (Yang et al.,[2019), which learns a semantic meaningful and disentangled
latent space of pitch contour and rhythmic pattern. We extract the latent code of pitch (denoted as
zy ) and rhythm (denoted as z°) of melody segments and compute the cosine similarity in terms of
both pitch and rhythm:

!’
1 / (25,27 )
sim(z,2') i = ————— )
P IE=AIRE= N
!
It / <Z;Evzg:>
sim’(x,x') (= ——————. (10)
P02 = e e

For both of the metrics, the samples in the training sets are transposed to 12 keys to account for
relative pitch similarity. Segments that only contain rests are discarded beforehand.

Table 6: Plagiarism evaluation of the models and the references. The highlighted data in red indicate
potential plagiarism.

Sample Source Sample Size . b Slmlla.r ltK Metric R
sim simy, sim,’ |

Test set (no plag.) 88 pieces 0.6567 £0.1141  0.8637 £ 0.0486  0.8320 % 0.0680
Copy-bot 1 (plag.) 128 pieces 0.7108 £0.1159  0.8616 £+ 0.0526  0.8276 =+ 0.0699
Copy-bot 2 (plag.) 128 pieces 0.6888 +0.1628  0.9086 £ 0.0340  0.8555 4+ 0.0411
Cas.Diff. (ours) 128 pieces 0.6530 4 0.1321  0.8743 +0.0491  0.8180 4+ 0.0710
Polyff. + ph.L 128 pieces 0.6117+0.1162  0.8639 £+ 0.0487  0.8424 + 0.0622
TFxI(REMI) + ph.l. | 128 pieces 0.6088 +0.1053  0.8599 £ 0.0446  0.8154 + 0.0642

In Table @ we show the mean and standard deviation of S(x) on the data samples generated using
our proposed methods and other baselines used for whole-song generation. We compute the statistics
of the test set of POP909 as a reference for plagiarism-free, since no song in the training set (or
their cover-song versions) appears in the test set. We also design two copy-bots as references for
potential plagiarism. The first copy-bot copies different part of the training set at each measure,
which emulates a direct plagiarism behavior. The second copy-bot encodes the melodies from the
training set and adds noise to the latent representation before reconstruction, which emulates an
indirect plagiarism behavior. Experimental results show that our proposed method (as well as the
baseline whole-song generation methods) have similar DoPs compared to the plagiarism-free DoP
of the test set. Also, the proposed metrics successfully detect both direct and indirect plagiarism
behaviors as the DoPs of copy-bots are noticeably higher. Thus, we conclude that our model has a
very low risk of plagiarism.

In Table [7, we show the mean and standard deviation of S(x) on each generated samples in the
demo page. Experimental results show that all samples are plagiarism-free except the third sample
in the section “More Examples of Whole-song Generation” of the demo page.

A.6 EVALUATION OF EXTERNAL CONTROL EFFICACY

In this section, we evaluate the efficacy of external controls. These controls are achieved by feeding
pre-trained representations as external condition to each layer of the cascaded diffusion model (in-
troduced in section [3.3). Specifically, we evaluate three scenario: (1) chord control in Counterpoint
generation (Stage two), (2) thythm control in Lead Sheet generation (Stage three), and (3) texture
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Table 7: Plagiarism evaluation of the samples in the demo page. The highlighted data in red indicate
potential plagiarism.

Generated sample

sim™

Similarity Metric

0t
blmp

sim®*

Main demo (Figure 2)

More demo 1
More demo 2
More demo 3
More demo 4
More demo 5
More demo 6

0.5846 + 0.0917
0.5770 £ 0.1262
0.5462 + 0.0880
0.7867 £ 0.1996
0.6476 + 0.0817
0.5949 + 0.0434
0.6050 + 0.0976

0.8943 + 0.0336
0.8856 + 0.0385
0.8861 + 0.0342
0.8950 + 0.0831
0.8861 + 0.0342
0.8861 + 0.0342
0.8348 +0.0477

0.7684 £ 0.0634
0.7919 + 0.0504
0.7786 + 0.0425
0.8926 £+ 0.1000
0.7786 + 0.0425
0.7786 + 0.0425
0.8322 + 0.0497

control in Accompaniment generation (Stage four). In this section, we let 2°%* denote the external
control in one of the three scenario and let %% denote the actual observation from which z** is

encoded from. Let °"* denote the conditional generation results.

Efficacy of control can be evaluated by computing the similarity between the input control and the
generation result. We propose a rule-based metric and a latent metric. The rule-based metric directly
computes the distance between £°"* and £®** in terms of the corresponding features. In particular,
for chord control, we compute the ¢, distance between the given chord condition and the generated
chord at each time step; and for rhythm or texture control, we compute the /5 distance of note onsets
between the given control and the generated lead sheets or accompaniments. Such distance-based
metric has previously been used to evaluate control efficacy in [Ren et al.|(2020) and Min et al.
(2023). In the latent metric, we encode the generation £°* back to the latent code z°“ using the
same pre-trained encoders and measure the cosine similarity between z°"* and 2°**,

There are two reference methods for comparison. First, we use the unconditional mode of our
method to serve as a baseline where control is ineffective. Second, we generate samples by sampling
from the Variational Autoencoders (VAEs) that the pre-trained encoders belong to. Specifically,
we sample z°** from the VAE posterior distribution and sample the rest of the latent codes from
Gaussian prior to decode results. By the well-disentangled property shown in the original paper
(Yang et al., |2019; |Wang et al., [2020b), this reference method indicates the maximum attainable
level of controllability.

For each of the three scenario, we randomly selected 32 versions of external control from the test
set and generate 128 music segments for each methods. In Table[8] we show the rule-based distance
(denoted by dis™) and latent similarity (denoted by sim'") for the three generation stages. Experi-
mental results show that the use of external condition significant yields controllability for all three
scenario.

Table 8: Objective evaluation of external control efficacy of chord, rhythm and texture in the three
diffusion stages. dis™® denotes the rule-based distance-based metric and sim'® denotes the latent
similarity-based metric.

Stage 1: Chord Stage 2: Rhythm Stage 3: Texture

dis™ | sim'* dis™ | sim'® dis™ | sim'®
Cas.Diff. (uncond) | 2.09+0.80 0.37£0.09 | 2.27+0.53 0.14+0.23 | 3.94+1.46 0.02+0.11
VAE Sampling 0.19+0.47 0.97+0.07 | 0.14+0.42 0.96+0.04 | 0.33+£0.59 0.90 £ 0.06
Cas.Diff. (cond) 1.73+1.02 048 +0.14 | 1.10+0.74 0.75+0.16 | 0.87 £0.80 0.89 + 0.06
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