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ABSTRACT

Approximate nearest neighbor search (ANNS) over vector databases is a funda-
mental operation for many modern applications, where rapid processing of queries
is of critical importance. In traditional database systems, which face the same
requirement, multiple-query optimization (MQO) has been extensively studied
to address this challenge. Although MQO is a general technique that exploits
shared computation to process a set of queries more efficiently than evaluating each
query in isolation, no analogous algorithmic strategy has yet been proposed for
ANNS. To this end, we present a novel algorithmic MQO framework tailored to
ANNS. The framework is universally applicable to graph-based ANNS methods,
delivering significant speedups while keeping both the underlying index and the
search algorithm intact. Specifically, we construct a minimum spanning tree over
the query vectors and initialize each query’s search entry using the nearest neighbor
returned by its parent in the tree, thereby revealing and exploiting opportunities for
computation reuse. We empirically validate our framework across multiple ANNS
methods and datasets, demonstrating its feasibility and effectiveness.

1 INTRODUCTION

Given a database D of vectors, the end goal of approximate nearest neighbor search (ANNS) is to
retrieve, for each query vector, its closest neighbor in D in as little time as possible. This problem
serves as a fundamental building block for many modern ML applications, from retrieval-augmented
generation (Lewis et al., 2020; Borgeaud et al.| 2021) and recommendation systems (Bachrach et al.,
2014} [Feng et al.l 2022) to computer vision tasks (Aiger et al.,[2023; Jang & Cho, [2020) and content
generation and summarization (Baud & Aussem,|2023). To improve performance, much prior work
has focused on devising advanced index structures to accelerate individual query processing (Bentley,
1975;|Gionis et al., |1999; [Wang et al.| 2021; |Weber et al.,|1998; Malkov & Yashunin, |2018)).

In traditional relational databases, which share a similar need for efficient query processing, multiple-
query optimization (MQO) introduces a complementary dimension of optimization, offering a
different perspective on the same challenge. MQO (Dokeroglu et al.| 2014} Bayir et al.,2006; Marcus
et al.| 2019) identifies and reuses overlapping computations among multiple queries so that collective
execution outperforms isolated processing. For relational databases, queries can be decomposed via
relational algebra, enabling MQO algorithms to capture shared tasks and avoid redundant work.

Since MQO is a powerful algorithmic concept that can be applied generally, it is natural to ask whether
its principles could accelerate query processing in ANNS. Indeed, a batched setting—where multiple
queries are submitted to the index simultaneously—commonly arises in ANNS and is supported by
many prior works (Jayaram Subramanya et al., [2019}|Azizi et al.l 2023} [Liu et al.l 2023 Zhao et al.,
2020; |Groh et al.| [2023; |Yu et al., 2022; Ootomo et al., [2024)), yet they do not explicitly explore
inter-query relationships to uncover reuse opportunities and exploit overlapping computations. To
the best of our knowledge, an MQO framework tailored to ANNS has not yet been proposed. This
difficulty stems from the fact that ANNS queries are vectors of real numbers, lacking the algebraic
structure that makes shared computation explicit in relational settings.

Fortunately, MQO becomes feasible for ANNS once one exploits the inherent structure and details
of modern ANNS algorithms. Modern ANNS solutions construct a proximity graph by connecting
nearby data points and then perform a greedy search. Starting from an entry point selected according
to a predefined policy, the search hops to the neighbor closest to the query until convergence. Because
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choosing an entry point near the query reduces the number of hops and hence the search time,
initializing the search closer to the query accelerates retrieval. When multiple queries are processed
as a batch, we therefore propose using, for each query, the nearest neighbor result of any previously
processed query that lies close in the embedding space as its entry point. Through this strategy, we
enable indirect reuse of computation by supplying high-quality entry points.

The remaining challenge is to determine a processing strategy that maximizes proximity between
each entry point and its corresponding query. We address this by organizing the query batch () into
a minimum spanning tree (MST) based on pairwise distances, which yields a connected structure
spanning all queries with minimum total edge length. Each query’s search is then initialized at the
nearest neighbor result of its parent in the MST, accelerating the overall batch search. We also present
a formal theoretical analysis, deriving explicit bounds on the expected search latency to establish
provable performance guarantees that underpin our MQO framework.

Furthermore, we introduce a rapid query preprocessing method for scenarios where the full batch is
only revealed at runtime and end-to-end latency must be minimized. Constructing the exact MST in
such cases is prohibitive, as it requires O(|Q|?) pairwise-distance computations. Instead, we partition
@ into multiple groups and employ an auxiliary ANNS index to build an approximate MST within
each group, reducing computational burden while preserving high-quality processing strategy.

Experimental results show that our framework achieves up to a 1.84 x speedup in the search process
and a fully end-to-end geometric mean speedup of 1.22x. Importantly, these gains are obtained
without altering any underlying index structure or search algorithm, and the framework applies
effectively to arbitrary graph-based indexes. Consequently, it offers a valuable, readily integrable
technique for accelerating diverse ANNS applications without modifying their core structure.

2 PRELIMINARIES

2.1 APPROXIMATE NEAREST NEIGHBOR SEARCH

Given a dataset D of high-dimensional vectors, the nearest neighbor search problem seeks to construct
a data structure that, for any query vector ¢, returns its closest neighbor in D with minimal latency.
However, as the dimensionality of D increases, exact search methods suffer from the curse of
dimensionality and effectively degrade to linear-time scanning (Indyk & Motwani, 1998} Marimont
& Shapiro, [1979; |Clarkson) [1994)). Consequently, the combination of large dataset sizes and high
dimensionality motivates the approximate nearest neighbor search (ANNS), in which one trades the
accuracy for speed. In this context, accuracy is measured by recall, defined as the fraction of queries
for which the true nearest neighbor is correctly identified.

Existing approximate nearest neighbor search (ANNS) techniques are classified into four groups:
tree-based (Bentleyl, [1975; Beckmann et al. [1990), quantization-based (Jegou et al.| 2010; |Gao &
Long| |2024), hashing-based (Gionis et al.| [1999; [Liu et al., 2014)), and graph-based methods (Ja-
yaram Subramanya et al.,|2019; Malkov & Yashunin, |2018; Harwood & Drummond, |2016)). Multiple
researches experimentally report that graph-based approaches outperform others by achieving higher
recall and lower latency (Wang et al., 2021; Malkov & Yashuninl 2018 [Fu et al.,[2019)).

2.2  GRAPH-BASED APPROXIMATE NEAREST NEIGHBOR SEARCH

Graph-based ANNS methods (Malkov & Algorithm 1 GREEDYBEAMSEARCH(ep, ¢, w, G)
Yashunin| [2018}; [Fu et al., 2019; |Jayaram Sub-

ramanya et al., 2019, [Harwood & Drummond, I: bea.m < [ep], _V'_S'ted 9
2016; [Li et al., 2019) construct a graph index while beam ¢ V'_S'ted do

in the form of a proximity graph G = (V, E) 3 v argmin  p(z,q)
over the dataset D, where each vector v € D @Ebeam \visited
corresponds to a node in V. The edge set E is
determined with respect to the distance metric p
and the underlying geometric structure of D.

4 visited «— visited U {v}

5 beam <« beam U N (v)

6: sort beam increasingly by p(-, q)
7 beam < top-w entries of beam
8: end while

9: return beam

Although numerous algorithms exist for con-
structing ¢, most share a common search rou-
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tine. Given a graph index G and an entry point ep, a simple greedy search locates a query ¢ by
iteratively moving from the current node v to a neighbor = € N (v) that minimizes p(z, g). The
search terminates once no neighbor is closer to g. Graph-based methods extend this to a greedy beam
search, as formalized in Algorithm[I]} This variant maintains a beam of size w tracking the w closest
nodes encountered, with strict greedy search recovered when w = 1. The search concludes when
every node in the beam has already been visited.

Fast convergence of Algorithm [I|depends critically on the choice of A/(v), how the graph index is
built. A naive approach is letting A/ (v) to consist of the M closest nodes of v. Recent works (Malkov
& Yashunin, 2018; |Fu et al., [2019; Jayaram Subramanya et al., [2019; | Harwood & Drummond, 2016))
refine this by enforcing diversification through pruning. They try to construct A/ (v) such that it
consists of M nodes that are not only close to v but are also well separated from one another. Further
details on the pruning methodology can be found on Appendix [B] In practice, Algorithm [I]is invoked
for each v € V to generate a candidate set, and pruning is then applied to finalize N (v).

2.3 MULTIPLE-QUERY OPTIMIZATION

For many computational tasks, processing a batch of inputs together can bring an extra dimension
of optimization and higher throughput. In traditional databases, this challenge is known as the
multiple-query optimization (MQO) (Sellis} [1988). MQO seeks an execution strategy that combines
relational queries by exploiting shared intermediate results and eliminating redundant computation.

We illustrate MQO with a minimal example. Consider a table with attributes a and n, denoting users’
age and name, respectively, and two queries X and Y. Query X retrieves the names of individuals
over 20 years old, while query Y counts the number of users older than 45. Query X is evaluated by
applying a selection 0,9 followed by a projection II,,, whereas query Y applies 0,45 and then an
aggregation to count the results. Since 0,~2¢ yields a superset of 0,45, the intermediate result of X
can be reused for Y, reducing computation. A more detailed example is provided in Appendix [C]

This example highlights the relational domain’s substantial overlapping computations and ample
opportunities for reuse. A rich body of work has consequently devised MQO algorithms that construct
processing strategies for batches to exploit such reuse (Dokeroglu et al. 2014} [Bayir et al., 2006}
Trummer & Koch, 2017} Marcus et al.,|2019). By contrast, the algorithmic potential of MQO in
ANNS remains largely underexplored. In this paper, we bridge this gap by identifying and exploiting
MQO opportunities to achieve more efficient query processing in ANNS.

3 ENABLING MULTIPLE-QUERY OPTIMIZATION IN ANNS

To enable multiple—query optimization, two key prerequisites must be satisfied:

1. Identification of reuse opportunities. Analyze incoming queries to uncover common
intermediate computations, enabling computational reuse and efficiency.

2. Preprocessing algorithm for query batches. Reorder or transform queries to materialize
the identified reuse potential and fully exploit it throughout execution.

The fundamental reason MQO is feasible in traditional databases is that the first requirement,
identification of reuse opportunities, is readily satisfied. Since relations consist of tuples with
fixed schemas and finite attributes, factoring each query into a relational-algebra tree reveals identical
or subsumable operations that naturally emerge across queries. This structural characteristic allows
overlapped computations to be identified easily through syntactic or semantic analysis of the queries.

By contrast, in approximate nearest neighbor search, a query is simply a vector of real numbers
with no additional structure. Consequently, potential overlaps across distinct queries remain hidden,
making the discovery of reusable computations nontrivial.

3.1 MAIN IDEA: MQO FRAMEWORK FOR ANNS

The key to revealing reuse opportunities lies in leveraging the distinctive properties and design details
of modern ANNS algorithms. A crucial observation is that modern ANNS solutions predominantly
rely on graph-based methods, wherein a greedy beam search (Algorithm |1)) is initiated from an
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Figure 1: Overall idea for multiple-query optimization in ANNS.

entry point ep determined by a predefined policy that is independent of the query. For instance,
HNSW (Malkov & Yashuninl 2018)) uses the topmost node in its hierarchical graph, while NSG (Fu
et al., [2019) and Vamana (Jayaram Subramanya et al., [2019) use a medoid of D regardless of the
input query. However, since proximity graph tends to connect nearby points, the choice of entry point
critically influences performance. Intuitively, selecting an entry point close to the query reduces the
number of hops required for search, thereby minimizing search latency.

We propose replacing the predefined entry point with one tailored to each query. While this is
infeasible for an isolated query, it becomes possible when processing a batch. Consider two successive
queries q1, g2 € @Q with p(q1, g2) small. Searching for ¢; returns its nearest neighbor a; such that
p(a1,q1) is small. Given that p is a proper metric,

plar,q2) < plar,q1) + p(qi,q2),

guaranteeing a; to lie near gs. Initializing the search for ¢ at a; therefore provides a high-quality
entry point for g, enabling indirect reuse of computation without modifying the underlying index.

To realize and exploit such reuse potential, we must order the query batch @ = {¢1, ..., q|Q|} so that
successive queries remain close. Formally, we seek a permutation Q,, = (qj, . . . ,ql’ QI) minimizing
QI

> o(di-1,40),
=2

which is precisely the open traveling salesman problem (TSP) on Q.

However, our mechanism does not require a single path. Once query g; yields its nearest neighbor
a;, that same a; can serve as the entry point for all subsequent queries. Thus it suffices to find any
connected structure spanning the entire set (). Such structure supports traversal from an arbitrary
starting query, where the discovery sequence of oriented edges defines a processing strategy. Our
objective is now to choose a set of query pairs Q, C {(¢,¢') | ¢,¢' € @} spanning () that minimizes

> nlad),

{2,4'}€Qyp

which is exactly the classical minimum spanning tree (MST) objective. Since every hamiltonian path
is a spanning tree, MST-based preprocessing is superior over TSP-based formulation. Thus, we adopt
the MST approach as our final strategy. We additionally include experimental comparisons with
alternative query planning strategies, with results presented in Appendix D}

Figure [T] summarizes our discussion. In (a), the standard ANNS search always begins from the
predefined entry point ep, irrespective of the query. In (b), we apply MQO via TSP: solving the TSP
on ( yields a path Q, = {q1, g2, g3, g1}, so that search for g, starts from ep and each subsequent ¢;
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initializes at the nearest neighbor a;_; of the preceding query. In (c), we discard path constraint and
utilize a tree structure: solving the MST on () gives the edge set Q, = {(q1,42), (¢2,¢3), (g2, q4)},
allowing queries to use the best available entry point. For instance, the search for g4 starts from as
instead of as. This improved approach minimizes inter-query distances and, consequently, the total
number of hops and node visits across the batch, ultimately reducing the overall latency.

3.2 THEORETICAL GUARANTEE

At a high level, our MQO framework posits that the distance L between the entry point and a query
node directly dictates the search latency. This dependence was intuitively assumed in our earlier
discussion on Section [3.1] without formal justification. Theorem|I]supplies the missing link. We prove
that the expected running time grows at least linearly with L, so any preprocessing that systematically
shortens L is guaranteed to reduce the search cost.

Setup. Let the dataset D = {v;}, be i.i.d. draws from a distribution on R¢ with density f
supported on a region YW C R with nonempty interior. Assume f admits a strictly positive
lower bound fnin on W. Construct a proximity graph G by connecting each vector to its M
nearest neighbors. For simplicity, assume a strict greedy search (w = 1) and the Euclidean metric
p(x,y) = ||z — yl|2. Further assume a dense regime where In N > Ind and N > M.

Theorem 1 (Average running time, lower bound). Let ep, q € D be the entry point and the query
vector, respectively, and let L = p(ep, q) be the distance between them. Suppose the greedy search
process starting from ep converges to q. Then there exists ¢ = ¢(d, fiin) > 0 independent of L such
that the expected running time E[T (ep, q)] satisfies

E[T(ep, q)] 2 [CM< Mﬁ N)é] L (i.e., E[T(ep, q)] :Q(L))

The main strategy of the proof is to bound the expected reduction in distance achieved by a single
greedy hop. We choose a radius R large enough that, with high probability, all M nearest neighbors
of the current node lie within the ball of radius R. The core insight is that, for this typical case, the
greedy step decreases the distance by at most R while on the rare complementary event that some
neighbor lies outside this ball, the step may cover a larger gap, but no more than the total distance L.
By balancing these two regimes, we obtain a tight upper bound on the expected progress per hop.
Summing this bound over the entire path to the query then yields a matching lower bound on the
expected number of hops and on the overall search complexity. The full proof is given in Appendix [A]

While Theorem [I] establishes a direct link between the distance L and the search cost, it does not
quantify how much L can be reduced by our MST-based preprocessing. Theoretical studies on
Euclidean MSTs show that, for |Q| points sampled uniformly from the unit hypercube, the total MST
weight scales as O(|Q|(@~1)/9) (Steele & Snyder, [1989). Hence, by ordering the queries according
to the MST, our MQO framework guarantees that the average inter-query distance shrinks at rate
O(|Q|~1/%), leading to progressively larger per-query latency reductions as |Q| grows.

3.3 RAPID QUERY PREPROCESSING

For batched query scenarios in which queries accumulate incrementally over a time window or are
known a priori, preprocessing can be performed during the accumulation period. By contrast, in
scenarios where the full batch is only revealed at runtime, one must minimize the end-to-end runtime,
including any preprocessing overhead. In such cases, constructing the MST is prohibitively expensive,
as computing all pairwise distances incurs O(|Q|?) time. Since the subsequent search scales linearly
with |Q)], the quadratic term soon dominates, precluding the use of our MQO framework.

Breaking the quadratic barrier starts from noting that constructing a single spanning tree is unneces-
sary; instead, a spanning forest suffices. Beginning from the entry point governed by the predefined
policy, each tree root can be entered exactly once, after which the traversal proceeds within the tree
according to the method proposed in Section Thus, with K trees, the predefined entry point is
utilized K times rather than only once.
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Figure 2: Overview of rapid query preprocessing scheme.

The overall procedure of our rapid preprocessing method is illustrated in Figure (D We partition Q
into K groups, {QW) ... QU}, via a recursive random-hyperplane strategy. At each iteration, we
sample a random vector in R? as the normal vector of the hyperplane. Then we project the queries
in the largest group onto the vector, and partition that group into two subsets according to the sign
of projection. The time required to build the spanning forest, where each tree is the MST of its

corresponding group, is proportional to Zfil |Q(i) |2. By always bisecting the largest group, we
minimize max; |Q(i) |, thereby effectively reducing the overall preprocessing cost.

After partitioning, ) we build a spanning tree within each group. We utilize an auxiliary ANNS
to further tackle the quadratic dependency. If the group size |Q(?| is sufficiently small, computing
the exact MST for the group of queries does not incur intolerable overhead. On the other hand, if it
is above a certain threshold 7, we first build a lightweight ANNS proximity graph over the group,
symmetrize it to form an undirected graph, and then compute the MST on top of the ANNS graph.
This confines the MST computation to a much smaller edge set, alleviating quadratic complexity.

Another important aspect worth noting is the ) reordering step. We apply Prim’s algorithm (Prim),
1957) to each group to compute its MST, which produces oriented edges in discovery order. This
orientation allows us to use the nearest neighbor result of the parent query as the entry point for the
child query. Although one could process queries directly in Prim’s sequence, we instead reorder the
forest to maximize locality for better cache utilization. For each tree, we select a root at random and
perform a depth-first traversal, recording edges in the order they are first encountered. This flattening
procedure ensures that consecutive edges correspond to spatially adjacent regions in the tree. While
the total edge distance remains unchanged, the reordering mitigates cache inefficiencies caused by
Prim’s arbitrary discovery order, thereby improving locality and reducing runtime.

3.4 OVERALL ALGORITHM

Algorithm 2 MQO-ANNS(Q, G, ep,w, K, T) Algorithm 3 REORDER(F)
1: A« EMPTYLIST(|Q|) Require: forest ' = {T},..., Tk}
2: if needRapidPreprocessing then Ensure: list ), of (parent, child) pairs in
3: F < MAKEFOREST(Q, K, ) DFS order with parent= & for each root
4: else I Qp ]
5: F + {MST(Q)} 2: for each tree T in F do
6: end if 3: Groot < RANDSELECT(T)
7: Q, < REORDER(F) 4 APPEND(Qp, (D, Groot))
8: for each (¢, ¢.) in Q,, do 5 E < DFS(T, groot)
o ep if ¢. is root, 6: for each edge (gparent, genila) in E do
' 5o {A[p] otherwise 7: APPEND(Qp, (Gparent, Gehild))
10 Alc] < GREEDYBEAMSEARCH(s, g, w, G) 5  endfor
11: end for 9: end for
12: return A 10: return @y,
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Figure 3: QPS - recall curve with varying query batch size. The reported results exclude preprocessing
overhead, and MQO denotes standard MQO here.

For completeness, we outline the full framework in Algorithm [2 When end-to-end speedup is
essential and rapid preprocessing is required, we build a spanning forest via partitioning and auxiliary
ANNS (Line 3) as described in Section[3.3] Otherwise, computing the exact MST captures reuse
opportunities to the fullest extent (Line 5). We then invoke Algorithm |3|to produce sequence of
oriented query pairs ), which defines the search plan (Line 7). Finally, we execute the search for
each query (Lines 8—11). When a query is a root, we begin from the predefined entry point ep, and
otherwise we initialize from the nearest neighbor result obtained for its parent in the tree. More
detailed and complete versions of these algorithms are provided in Appendix

4 EVALUATION

We evaluate our MQO framework on three widely used graph-based ANNS indexes: HNSW (Malkov
& Yashunin, [2018), NSG (Fu et al.,[2019), and Vamana (Jayaram Subramanya et al.,[2019). For each
index, we adopt the official implementations[ﬂ extending only the search API to allow specification
of an external entry node. Unless stated otherwise, we use the default parameters when constructing
each graph index. We used search on each graph index without applying MQO as the baseline.
Experiments are conducted on three datasets: SIFT (uint8, 128-dim, Euclidean) (Amsaleg & Jégoul
2010), DEEP (float, 96-dim, Euclidean) (Yandex & Lempitskyl 2016} Baranchuk & Babenkol [2021a)),
and Yandex Text-to-Image (T2I) (float, 200-dim, inner-product) (Baranchuk & Babenkol [2021b)).
From the original dataset of 1B vectors, we randomly sample 1M vectors to form the dataset D and
another 1M for the query batch ), drawn from the same distribution without overlap. We report
recall@1 for all experiments. The detailed setup for the evaluation can can be found on Appendix [F

4.1 FEASIBILITY AND EFFECTIVENESS OF THE PROPOSED MQO FRAMEWORK

We begin by evaluating our MQO framework under the assumption that the MST, which captures the
full extent of reuse opportunities among queries, is provided in advance. We refer to this setting as
standard MQO. While Sections [3.1and [3.2] provide intuitive explanations and theoretical guarantees,
it remains essential to verify the effectiveness of standard MQO under practical conditions—namely,
on pruned proximity graphs (Section[2.2), non-Euclidean metrics, and general beam sizes (w > 1).

'"HNSW (Malkov & Yashunin, 2018): https://github.com/nms1ib/hnswlib
NSG (Fuet alL|2019): https://github.com/ZJULearning/nsg
Vamana (Jayaram Subramanya et al.,[2019): https://github.com/microsoft/DiskANN


https://github.com/nmslib/hnswlib
https://github.com/ZJULearning/nsg
https://github.com/microsoft/DiskANN

Under review as a conference paper at ICLR 2026

{I:I Search Time w/o MQO Y Search Time w/ MQO

Query Preprocessing Time }

SIFT DEEP T21 SIFT DEEP T21
6.0 20 60 200
£ 45 <2 45
g 3.0 QE) 30
= 1.5 = 15
0.0 g ol AVH N
Lo @ 0 QO @ QO @
Q?% %&v %4% %C"é Q& «?é%%:;é& @ % é‘aé%@fv
(a) Recall 0.9 / # queries 100K (b) Recall 0.9 / # queries 1M
SIFT DEEP T21 SIFT DEEP T21
16 100 160 1000
2 12 2 120
g 8 2 80
= 4 = 40
0&0 200 oo O 080 @ R0 ew 0
S & S ST &S S
(c) Recall 0.99 / # queries 100K (d) Recall 0.99 / # queries IM

Figure 4: End-to-end time comparison for different recall and # queries. The results include
preprocessing overhead, and MQO denotes lightweight MQO here.

Figure 3| presents the evaluation results, with each row corresponding to a dataset and each column
to an ANNS index. In all cases, standard MQO yields consistent performance improvements,
irrespective of the underlying index construction algorithm, the dataset, or the target recall level.

In particular, even at a small batch size of |Q] = 10K, standard MQO achieves a 1.32x geometric
mean speedup at a recall 0.9. Moreover, as predicted in Section[3.2] QPS further increases with batch
size. For large batch of |Q] = 1M, the speedup rises to 1.84x relative to the baseline without MQO.

We also observe a decrease in speedup as the recall target increases, due to larger beam sizes (w).
For instance, with |Q| = 1M, the speedup is 1.84x at recall 0.9 but decreases to 1.62x at recall
0.99. This behavior arises because the search algorithm persists until the beam is fully populated and
convergence is reached. When the beams are large, the algorithm may continue exploring even after
the true nearest neighbor has been discovered. Consequently, the advantage conferred by standard
MQO ’s improved entry points is partially diminished by the convergence-based termination criterion.

4.2 END-TO-END SPEEDUP

Next, we consider a scenario in which the entire query batch is revealed immediately before the
search begins, leaving no opportunity for extensive preprocessing. In such cases, constructing the
MST as a preprocessing step can become more expensive than the search itself, especially as the
batch size increases, as illustrated in Appendix[g To address this, we bypass MST construction and
instead adopt the rapid query preprocessing method introduced in Section [3.3] aiming to optimize the
overall runtime across both the preprocessing and search phases. We denote this variant lightweight
MQO, and compare its end-to-end performance against a baseline search without MQO.

Figure ] presents the results. lightweight MQO achieves a 1.22x geometric mean speedup over the
non-MQO baseline, averaged across recall targets {0.9,0.99} and batch sizes {100K, 1IM}. Even
when including preprocessing latency, significant gains arise from reordering query execution and
reassigning entry points. Notably, a net end-to-end speedup is maintained at large batch sizes (e.g.,
|Q| = 1M), as our rapid query preprocessing scales efficiently with batch size.

Specifically, when comparing speedups at recall targets of 0.9 and 0.99, we observe comparable
performance. As detailed in Section[4.1] the absolute gap between MQO and the non-MQO baseline
narrows at higher recall levels. However, achieving higher recall requires longer search durations,
which reduces the relative impact of preprocessing. These opposing effects effectively cancel out,



Under review as a conference paper at ICLR 2026

G-145 146 148 1.48 148 R-147 151 150 1.54 1.56 ©.1.441.441.461.48 1.48 1.53
o0
U EEEE L0147 154 154 1.58 1.59 ™ .1.481.51 1.54 1.56 1.57 17
=}
151 153 1.55 1.5 1.56 5 _ §
=~ £8-146 156 1.56 1.59 1.60 = ~-1.471.511.551.561.56 163
Q-1.53 1.55 1.57 1.57 5§~ &
el ©.
S 154 157 158 157 & 147 1.55 156 1.60 1.61 \2.1.481.52 1.58 s
o [ so BRI R 149 157 157 *.1.49 153 1.57 1.61
50 75 100 125 150 1.0 12 14 16 18 32 48 64 80 96 112
W construction a M
(@) () (©)

Figure 5: Geometric mean of speedup by standard MQO with Vamana for pairs of parameters (a)
Weonstruction=M , (b) -Weonstruction> and (¢) M-a.

yielding a near-constant end-to-end speedup across the evaluated recall range. The detailed analysis
of our approximation method is given in Appendix

4.3 EFFECT OF GRAPH PARAMETERS

Another question of practical interest is how the performance of our MQO framework evolves as the
graph index is tuned. To investigate this, we use the DEEP dataset with || = 100K and systematically
vary the three construction knobs of Vamana—maximum out-degree M, the construction beam size
Weonstruction, and pruning coefficient o (denoted R, L, and « respectively in (Jayaram Subramanya
et al, [2019)). Figure 5] reports the speedup at recall 0.9 for each pairwise combination of these
parameters, with the third parameter aggregated via its geometric mean.

In summary, more complex, higher-quality graphs consistently yield greater speedups. Specifically,
increasing M and weonsyruction €nhances graph size and fidelity, while raising « enforces more ag-
gressive pruning. Each of these adjustments improves graph quality, thereby reducing the beam size
required to achieve a given recall and, consequently, translating into higher speedup (Section[4.T)).
Comprehensive results on correlation between each parameter and required beam size or the beam
size and the speedup are provided in Appendix [H]

5 CONCLUSION AND DISCUSSION

In this paper, we have presented a multiple-query optimization framework toward approximate
nearest neighbor search, thereby broadening the scope of optimization. By strategically reordering
query execution and selecting tailored entry points for each query, our approach enhances search
performance without any modification to the underlying index structure or the search algorithm.

We note that our MQO framework can achieve greater benefits in real-world scenarios. For our
empirical evaluation, we assumed that both the dataset D and the query batch () follow the exact same
distribution, which is arguably the least favorable setting for MQO, as queries exhibit no inherent
locality, interleave with data points, and preclude any natural clustering. In contrast, real-world
workloads often yield batched queries with strong spatial locality. A prime example is retrieval-
augmented generation (RAG) systems, in which a user’s original query is rewritten or augmented
by multiple methods (Mao et al., 2021} |Gao et al., 2023} |Wang et al.| 2024; |Shen et al., 2024} Chan
et al.| 2024 [Wang et al.} 2025)), producing a batch of related queries on which ANNS is performed.
Since these queries share a common origin, they tend to cluster in the embedding space, increasing
opportunities for computation reuse and amplifying the advantages of MQO.

There remains ample opportunity to extend our preliminary MQO framework. One interesting
direction is to consider index construction. In graph-based ANNS, building the graph index essentially
amounts to executing the search algorithm over an entire batch of queries, a setting that aligns naturally
with our framework. Exploring whether the proposed framework can accelerate index building while
preserving quality constitutes an intriguing avenue for future work.
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6 REPRODUCIBILITY STATEMENT

We provide code in the supplementary material to demonstrate the methods proposed in this paper.
A small dataset and a README file are included to facilitate usage. By following the provided
instructions, one can reproduce the results obtained with our framework and compare them against
the baseline.
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A PROOF OF THEOREM/[I]

Proof. 1. The d-dimensional ball. Define B%(r) as the ball of radius r centered at z € R%:

Bi(r) = {yeR? | p(z,y) <r}.
Under the Euclidean metric, its volume is

/2

Valr) = o = Va(1)r.

@2+
Since f(x) > fumin > 0 on W, whenever B%(r) C W we have
PI‘[U € B:(vi(r)] > fmin Vd(r) = ,urdv B = fmin Vd(l)'

2. Effective radius R;. For any 0 € (0, 1), define Rs so that whenever r > R, the probability of
having at least M dataset points in B (r) is at least 1 — §. Concretely, letting
p = Pr[|[{veD|veBir)C W} > M|,
we require p > 1 — § given r > Rs. We show that
1
_ 1 NM\d
Rs = (y(NfMJrl) th) :

Write X = [{v € D : v € B(r)}| ~ Bin(N,po) with py = Prjv € Bd(r)] > ur?. By
(1 —2) <e ", wehave

e = 5 (S

=0 =0

N d\N—-M+1
M(M>(1—/u“)

M (N> e—urd (N=-M+1) ~ NM e—urd(N—M-H)_
M

IN

IN

IN

Then, from
r>Rs = pr*(N—M+1) > lnNTM — NMeur!(N-MtD) o 0,
we conclude r > Rg implies 1 — p < J, so indeed p > 1 — 4.
3. Expected decrease in distance. Consider a single hop (iteration) of the greedy search process.
Let
A = p(z, q) — p(next(z), q).

be the decrease in distance after we travel from the current node 2 to one of its neighbor next(z)
that is closest to the query.

For a given 9, with probability higher or equal than 1 — 4, all the M nearest neighbors reside
inside B(R;). In such cases, the distance to the query cannot decrease more than R in that hop.
Otherwise (an event of probability at most §), some points among the M nearest neighbors reside
outside B¢(Rs). For such cases, the decrease in distance can be bounded above trivially by L.
Thus, for any § € (0,1) we have :

E[A] = E[p(m,q)—p(next(x),q)} < Rs + 6L.

To obtain a tight upper bound on E[A], we choose

1(M111N)il’

0 = _—
L uwN
so that .
d
5L — (MlnN) .
ulN
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Recall that

1
1 NM\
R; = 1 .
g <u(N—M+1) S )
Substituting 6 = 6* yields

1 1 1 d
Ry« = ——-——— < MInN+InL+ -In(ugN)— =In(MInN .
s (u(N—M+1){ nN +In +dn(,u ) dn( n )})
AsIn N > Ind, In L is negligible compared to In N. Thus the terms inside the logarithm can
be bounded above by (M + 1)In N when N is large. Furthermore, as N > M, we have

M1 2M
N A1 < . Thus,

M1HN>5

1
Rs- < 21
" ( pN

Choosing § = ¢§* thus balances the contribution of two terms Rs« and §*L so that neither
dominates.

Thus, the expected decrease in distance per hop satisfies

E[A] < Rs- + 6*L < (1 +2Y9) (Ml;fN) '
W

This completes the derivation of the upper bound on the expected decrease in distance per hop.

4. Expected running time of the algorithm. Let 7 be the sequence of nodes visited in the greedy
search algorithm.

T = (.’170 =€p, T1, T2, ..., TT-1, TT = Q)7
where 7' is the stopping time, the number of hops needed for the algorithm to reach q.
T =min{i>0:2;,=q}.
Also let
A = p(wiz1,q) — p(xis q)
denote the decrease in distance from g at the i-th hop.
As we prove for the case where greedy search successfully converged to g, by construction A; > 0
and ZiT:1 A;=1L.

In the previous step, we showed that for every «

E[Al|1’171:$} < A’ A = (1+21/d)(

Min N\
1N '

Consequently o
E[A;] < A foralli > 1.

With the non-negativity of the A;, Tonelli’s theorem gives us

T o) 0o [
L= E[z; Ai] =Y EAiluen] < Z;E[Ai] <A ;Pr{T > i} = AE[T].

i=1

Therefore,

L ’ul/d N 1/d
7] = A 1424 \ MInN

Connecting the runtime with the number of hops is straightforward. Since at each hop the algorithm
inspects M edges and a single /5 distance evaluation in R? costs ©(d) arithmetic operations, there
exists an absolute constant o > 0 such that the expected running time satisfies

E[T (ep,q)] > (ad)ME[T].
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Combining with the bound on E[T'] and absorbing « into the constant gives

ad,ul/d N 1/d
E >
—_———

=: ¢(d, fmin)

This matches the statement of Theorem[I]

B PRUNING IN GRAPH-BASED ANNS

Instead of using a naive kNN graph as a graph index, ANNS methods employ an additional pruning
step. The pruning step is inspired by the relative neighborhood graph (RNG) (Toussaint, [1980) and
its relaxed variant, the sparse neighborhood graph (SNG) (Arya & Mount, |1993). In an RNG, an
edge (v;,v;) is considered redundant and pruned if there exists a third node v such that (v;, v;) is the
longest side of triangle Av;v;v. Equivalently, an edge (v;, v;) is retained in RNG if

Vo eV, p(v,v;) > p(vi,v;) or p(v,v;) > p(v;, v;).

The SNG applies the similar principle with fewer eliminations so that it guarantees the strict greedy
search, GREEDYBEAMSEARCH(ef, ¢, 1, G), always converge to its true nearest neighbor for all ¢ €
D. This desirable property motivates the use of an SNG as the underlying proximity graph for many
state-of-the-art ANNS methods (Malkov & Yashunin, 2018; [Fu et al.,2019; |Jayaram Subramanya
et al.,[2019; Harwood & Drummond, 2016).

Constructing the exact SNG is computationally prohibitive, as it requires applying the pruning rule
to the full node set V' for every v € V. Instead, ANNS methods approximate SNG by invoking
Algorithm T]during graph construction to obtain a compact set of candidates per node and running
pruning only on this smaller set. For instance, (Malkov & Yashunin| 2018)) prune edges within the
beam returned by Algorithm [I| whereas (Fu et al.,|2019) and (Jayaram Subramanya et al., 2019)
apply pruning to the accumulated visited set.

C MQO ON TRADITIONAL DATABASES

Here, we show a further demonstration of multiple-query optimization upon relational databases with
an extended example from Section[2.3] Table User stores a unique identifier uid, each customer’s
name and their age. SalesOrder records individual orders with a primary key oid, a foreign-key
uid that links back to User, and a Boolean valid field that is t rue when the order has not been
canceled.

Listing 1: Query A Listing 2: Query B
SELECT U.name SELECT COUNT(*)
FROM User U, SalesOrder S FROM User U, SalesOrder S
WHERE U.uid = S.uid WHERE U.uid = S.uid
AND U.age > 20 AND U.age > 45
AND S.valid = TRUE AND S.valid = TRUE

The queries can be written down in relational algebra as below.

A= Hname (Uage>20 (U) > Oyalid=true (S))
B = “YCOUNT (Uage>45 A valid=true (U > S)) (1)
= YcouNT (Tage>as (U) X Opatid=t rue (S)) ()
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Both queries rely on the same base join J = U X 0yarid=true(S). Query B applies the stricter
predicate age > 45, which implies age > 20; hence its input is a subset of Query A’s. Computing J
once and sharing it therefore avoids a second full scan of SalesOrder and a second join.

Eq. (I) pushes both predicates into the join, while Eq. (Z)) postpones the age test on User. If users
older than 45 are rare, Eq. produces fewer rows and is usually cheaper to share; if filtering by
age is inexpensive but reading SalesOrder dominates, Eq. (Z) may be preferable. Cost estimates
stored in catalog statistics guide the optimizer toward the better choice.

Early studies framed MQO as a shortest-path search over plan graphs (Sellis| |1988]), followed by
meta-heuristic techniques such as genetic algorithms (Bayir et al., |2006) and exact formulations
using integer linear programming (Dokeroglu et al.;|2014). Modern work augments these rules with
learning-based models that predict when sharing pays off under shifting workloads. Regardless of
method, the key steps are (i) detect overlapping sub-trees like J and (ii) select the reuse strategy that
minimizes total runtime and I/O.

D COMPARISON OF QUERY PLANNING STRATEGIES

We compare our MST-based query planning (MST) with other possible solutions, evaluating the
impact of different preprocessing methods on query search performance.

As baselines, we considered not applying MQO, k-means clustering-based planning (Clustering)
and a traveling salesman problem-based planning (TSP). Since solving exact TSP is infeasible, we
implemented it based on the Adaptive Large Neighborhood Search algorithm.

We used batch size of 10K at recall@1 = 0.9, and the results are shown in Table|l| To ensure a fair
comparison, the preprocessing time across all strategies was unified by setting it equal to the time
required for MST construction. The reported results do not include preprocessing overhead.

Table 1: Search latency (s) when applying different query planning strategies.

Dataset Index w/o MQO Cluster TSP MST

HNSW 0.402 0.338  0.315 0.298
DEEP NSG 0.431 0302 0287  0.276
Vamana 0.621 0516 0477  0.467
HNSW 0.477 0424  0.395 0.376
SIFT NSG 0.402 0.333 0.306  0.299
Vamana 0.707 0.667 0589  0.571
HNSW 1.369 1.214 1.145 1.126
T21 NSG 2.012 1.678 1.592 1.573
Vamana 2.206 1.834 1.725 1.735

As expected, the MST-based planning achieves the best performance overall as it minimizes the
distance between entry point and the query compared to other methods.
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E OVERALL ALGORITHM

Algorithm 4 MQO-ANNS(Q, G, ep, w, K, T)

Require: Query batch Q = {q1, .. .,q|q|}, graph index G, predefined entry point ep, beam size w,
desired number of groups K, size threshold 7

Ensure: array A[l...|Q)|] with the search result for every query

: A+ EMPTYLIST(|Q))

if needRapidPreprocessing then
F + MAKEFOREST(Q, K, T)

else
F  {MST(Q)}

end if

@)p < REORDER(F)

for each (g, ¢.) in @, (left—to-right) do

9: if . is the root then

PRDIUN AR

10: Alc] + GREEDYBEAMSEARCH(ep, ¢., w,G)
11: else

12: Alc] < GREEDYBEAMSEARCH(A[p], ¢c, w, Q)
13: end if

14: end for

15: return A

Algorithm 5 MAKEFOREST(Q, K, 7)

Require: Query batch (), desired number of groups K, size threshold 7
Ensure: A spanning forest ' = {T7,..., Tk} of Q

I: F o

2: {QW,...,QU)} « PARTITION(Q, K)

3: fori < 1to K do

4: if |Q()| < 7 then > small group: use exact MST
5: T, + MST(QW)

6: else > large group: use ANNS
7: H; <+ BUILDANNSGRAPH(Q()

8: H; + SYMMETRIZE(H;) > make the ANNS graph undirected
9: T, + MST(H;)

10: end if
11: F«+ FU{T;} > add component tree to the forest
12: end for

13: return F’

Algorithm 6 REORDER(F))
Require: forest F = {Ty,..., Tk} > T; denotes a tree, represented by set of edges
Ensure: list (), of (parent, child) pairs in DFS order with parent= & for each root
1: Qp — H
2: for each tree T'in F' do
3: ¢r < CHOOSEROOT(T) > pick any node as root
4 APPEND(Q, (&, ¢r)) > add edge for root
5 for each edge (g, g.) in DFS(T, ¢,) do > DFS on T starting from g,
6: APPEND(Qy, (dp: )
7 end for
8: end for
9: return @),
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Algorithm 7 PARTITION(Q, K)

Require: Query batch @ C RY, desired number of groups K
Ensure: K disjoint subsets {Q™"), ..., Q) with U1K=1 QW =Q

LC+{Q} > current collection of groups
2: fort<1to K —1do

3: Q™** « arg maxcec |C] > pick the largest group
4: h ~ Uniform (Sdil) > (d-1)-dimensional hyperplane
5: A+— g, B+ g

6: for all ¢ € Q™** do > split by the hyperplane
7: if h- g > 0 then

8: A+ AU{q}

9: else
10: B+ BU{q¢}
11: end if
12: end for
13: C+ (C\{Q™>})U{A,B} > replace Q™ with its two children
14: end for
15: return C

F ADDITIONAL EXPERIMENTAL SETTINGS

We evaluate our MQO framework on three widely used graph-based ANNS indices: HNSW (Malkov
& Yashunin, [2018), NSG (Fu et al.}[2019), and Vamana (Jayaram Subramanya et al.,[2019). For each
index, we use the official implementatiorﬂ without modifying its core indexing or search algorithms,
extending only the search API to accept an external entry node.

NSG and Vamana are planar proximity graphs. Thus we simply integrate MQO by replacing their
default entry points with those selected by our framework. HNSW, in contrast, employs a multi-layer
hierarchy. The search begins at the topmost layer, performs a strict greedy search, and propagates the
nearest-neighbor result downward through each successive layer until the bottom layer is reached.
To support MQO in HNSW, we retain the original hierarchical search for the K queries using the
predefined entry point (Section[3.3)), and for all remaining queries we initiate search directly at the
bottom layer node determined by preceding query results.

We used the following parameters to construct each proximity graph. For HNSW (Malkov & Yashunin,
2018), we adopted the configuration reported in their paper, setting M = 16 and e fconstruction = 500.
For NSG (Fu et al, 2019) and Vamana (Jayaram Subramanya et al., 2019), we used the default
parameter settings provided in their official implementations. For NSG, we first constructed the
EFANNA (Fu & Cai, 2016)) £-NN graph using the parameters K = 200, L = 200, iter = 10, .S = 10,
and R = 100. The NSG was then built with L = 40, R = 50, and C = 500. For Vamana, we used
R=64,L =100 and v = 1.2.

All experiments were conducted on an AMD Ryzen Threadripper PRO 7985WX CPU, single core
and 1024GB of main memory.

HNSW (Malkov & Yashunin, 2018): https://github.com/nmslib/hnswlib
NSG (Fuet alL|2019): https://github.com/ZJULearning/nsg
Vamana (Jayaram Subramanya et al.,[2019): https://github.com/microsoft/DiskANN
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Figure 6: Necessity of our rapid query preprocessing method.

In this section, we illustrate the necessity and the details of our rapid preprocessing method introduced
in Section [3.3] Figure [6a]shows the time required to construct the exact minimum spanning tree for
a query set from the SIFT dataset. While MST construction is feasible for small batch sizes, the
quadratic time complexity quickly renders it impractical as the batch size grows. This observation
motivates the need for a rapid preprocessing approach when limited preprocessing time is available.

Figure [6b] demonstrates both the necessity and effectiveness of combining a partitioning strategy
with an auxiliary ANNS proximity graph. Throughout this paper, we adopt HNSW as our auxiliary
graph, since NSG construction requires a prior kNN graph and Vamana incurs multiple construction
rounds. We plot the preprocessing time on the horizontal axis and the quality of the resulting
forest—quantified by the average edge length—on the vertical axis. To account for the number
of trees (groups), we compute a weighted average of the batch’s average inter-query distance and
the forest’s average edge length, weighting the former by the number of trees and the latter by
the batch size minus the number of trees. The curve labeled ANNS-Only varies ANNS parameters
without partitioning, whereas Partition-Only varies the number of partitions without using ANNS.
The curve labeled Proposed Method consists of Pareto-optimal points obtained by jointly employing
partitioning and the auxiliary proximity graph. As the figure clearly shows, neither strategy alone
suffices: integrating both yields a synergistic improvement in the quality—time trade-off.

Next, we detail the hyperparameters associated to the approximation method. At first glance, tuning
the method may appear challenging due to the number of hyperparameters: the group-size threshold 7,
the number of groups K, and the auxiliary ANNS (HNSW) construction parameters. While extensive
tuning can yield marginal gains, we found that fixing 7 = 500 and setting M = e fconstruction = 7
for HNSW, while varying only K, is sufficient. For K letting K = |Q|/250 is a good starting point,
with further tuning yielding only slight improvements in overall speedup.

H MORE ON GRAPH PARAMETER EFFECT

We expand Section [f.3| with the raw measurements and the statistical tests.

Table 2: Partial association between graph parameters and residual speedup

Parameter p D

M 056 7.4x10""
Weonstruction  -0.18 0.03

« -0.11 0.20
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Figure 8: Speedup under varying beam size (recall 0.9).

Figure [/| shows the distribution of the beam required for 0.9 recall. All parameters continuously
downscale the beam.

Figure [§] plots speedup against the required beam for every configuration. The points hug a monotoni-
cally decreasing curve, justifying to set the beam width as the primary covariate.

After regressing speedup on beam width we compute Spearman partial correlations between the
residuals and each knob; results appear in Table 2} Only M, the out-degree limit is found to be
positively correlated. Weonstruction Shows p = 0.03 which is marginally significant, but falls below the
threshold with Bonferroni correction. « is found uninfluential other way than the search beam.

I PERFORMANCE FOR TOP-10 SEARCH

In this section, we examine the effect of our MQO framework when applied to top-10 search. Since
the framework initializes the search from an entry point closer to the query, it enables the greedy
beam search to converge more quickly, regardless of the final number of neighbors retrieved.

We evaluate search performance using the NSG index with a batch size of 100 K at recall@10=0.99,
and include results for top-1 neighbor search for comparison. Preprocessing overhead is not included
in the repored results (standard MQO). The results are presented in Table E}

Although small differences are observed, the general tendency of the speedup is the same for top-1
and top-10 search.
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Table 3: Search latency (s) for top-k search with and without MQO (preprocessing overhead ex-
cluded).

Top-k search Dataset Latency w/o MQO (s) Latency w/ MQO (s) Speedup

DEEP 14.741 9.101 1.62
k=10 SIFT 13.578 9.431 1.44
T21 117.364 87.856 1.34
DEEP 14.650 8.998 1.63
k=1 SIFT 13.397 9.227 1.45
T21 115.221 87.197 1.32

J  MULTI-THREAD EXTENSION OF THE FRAMEWORK
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Figure 9: Comparing MQO against non-MQO baselines on multi-threaded configuration. Here MQO
denotes lightweight MQO and includes both the time for preprocessing and the actual search.

To demonstrate our algorithmic advancement and computational savings, the experiments presented
in the main text were conducted in a single-threaded manner. Nevertheless, we emphasize that the
proposed MQO framework is inherently amenable to parallelization. Since our MQO framework
partitions the query batch into K groups, both query preprocessing and nearest neighbor search can
leverage inter-group parallelism by assigning a thread to each partitioned group.

We conducted a simple experiment to evaluate the scalability of our framework with respect to the
number of threads. We compared our lightweight MQO with inter-group parallelism to a baseline
that assigns each query to a separate thread without applying MQO. Parallelization was implemented
using OpenMP (Dagum & Menon, [1998). The experiment was conducted on the DEEP dataset
using the NSG graph index, targeting a recall of 0.9. We present the end-to-end time comparison in
Figure [0} As shown, our lightweight MQO with inter-group parallelism exhibited constant speedup
over the baseline across varying thread counts, demonstrating that our framework remains efficient
under parallel execution.

In addition, we note that even when only small groups are used, or using K = 1 in the extreme
case, intra-group parallelization remains feasible. In these scenarios, one can employ parallel
algorithms for minimum spanning tree construction (Bentleyl |1980) or ANNS proximity-graph con-
struction (Manohar et al.l | 2024; Harwood & Drummond, |2016; |Fu et al.,[2019) during preprocessing.
Furthermore, during the search phase, the branching degree of each node in the spanning tree over
the query group presents additional avenues for parallel execution.
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