
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

SCORE-BASED NEURAL PROCESSES

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural processes (NP) are a flexible class of models that generate stochastic processes
by operating on finite-dimensional marginal distributions. NPs are designed to maintain
exchangeability and marginal consistency, which are necessary to define a valid stochastic
process. However, NP variants can come with drawbacks such as limited expressivity, un-
correlated samples, and consistency sacrifices. To address the issues of previous NPs, we
introduce score-based neural processes, scoreNP, which incorporate a score-based gen-
erative model within the neural process paradigm. This score-based approach enhances
expressivity, allowing the model to capture complex non-Gaussian distributions of func-
tions, generate correlated samples, and maintain marginal consistency. Previously, no NP
variant has been able to maintain conditional consistency. We show that using guidance
methods from conditional diffusion sampling, scoreNP is the first NP is able to satisfy con-
ditional consistency. Empirically, scoreNP performs well qualitatively and quantitatively
well across a range of unconditional and conditional functional generation tasks.

1 INTRODUCTION

Neural processes (NP) (Garnelo et al., 2018) are a class of generative models on function spaces, that is
they model stochastic processes. Rather than operating directly in the function space NPs leverage the Kolo-
mogorov Extension theorem (KET) to operate on the finite dimensional marginal distributions. They can
be used for a range of tasks including function regression and Bayesian optimisation. In practical settings,
such as weather monitoring (Andersson et al., 2023), noisy and irregularly gathered data are often the norm.
Moreover, the functional nature of these settings motivates the use of NPs to provide a functional probabilis-
tic perspective. However, the original NP (Garnelo et al., 2018) lacks expressivity, limiting its applicability.
Follow-up works, including Attentive NPs (ANPs) (Kim et al., 2019), Convolutional NPs (ConvNPs) (Gor-
don et al., 2020) and Gaussian NPs (GNPs) (Bruinsma et al., 2021) aim to improve expressivity. However,
these approaches fall into the setting of predictive NPs, meaning the generative process no longer follows an
underlying stochastic process.

Recently, Markov NPs (MNPs) (Xu et al., 2023) were proposed as a generalisation of the original NP,
offering greater expressivity while maintaining the generative nature through a finite hierarchical model of
NPs. Score-based generative models are an expressive class generative models and can be interpreted as
an infinitely deep hierarchical model which motivates further generalisation to incorporate them within the
NP framework. Recently, (Geometric) Neural Diffusion Processes (NDPs) (Mathieu et al., 2023; Dutordoir
et al., 2023) adopted the NP setting for diffusion models. However, due to the architectural constraints, they
disregard the marginal consistency element of the KET, (Eq.2), meaning they do not model valid stochastic
processes.

Score-based generative models (Song et al., 2021b) have become one of the most commonly used class of
diffusion models. Typically, diffusion models are applied in the finite dimensional domain such as audio or
images. Recently, they have been extended to work with the infinite-dimensional function space (Pidstrigach

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Figure 1: ScoreNP unconditional generation: Denoising from N (0, I) (right to left) to a distribution over
functions drawn from a Matern-(52) kernel

et al., 2023; Bond-Taylor & Willcocks, 2023; Phillips et al., 2022; Biloš et al., 2023; Franzese et al., 2023).
While these works extend diffusion models to function spaces, operating directly on the function space
means practical implementations sacrifice consistency due to discretisation. Moreover, they require full
regularly spaced functional data, which is not always feasible.

Our main contribution is the introduction of a novel NP framework, score-based neural processes (scoreNP).
This extends generative neural processes by incorporating score-based generative models through a joint
diffusion process in a latent-data space, which satisfies the KET consistency conditions. The score-based
approach enables us to model expressive distributions and maintain strong performance even in low or
zero-context settings. Additionally, it allows us to train the model using a variational adaptation of the
score-matching objective, which we demonstrate can be interpreted as a variational lower bound on the
log-likelihood.

Additionally, unlike all existing NP models we show how utilising a form of guidance on an unconditional
diffusion model to produces posterior distributions which are consistent w.r.t to both the context and tar-
get set. This defines a unique stochastic process over the in domain. It also enables us to generate both
unconditional (see Fig.1) and conditional samples from a single objective and training run.

We validate our method experimentally through 1D functional regression tasks which include complex non-
Gaussian distributions.

2 BACKGROUND

In this section we will discuss requirements for modelling stochastic processes and the necessary back-
grounds of Neural processes and score-based generative models.

2.1 STOCHASTIC PROCESSES

A Stochastic Process (SP) is defined as a set of random variables {yi}i∈I , where I is an (uncountable) index
set, where yi take values in Y . This can be seen as a map F : I → Y , and p(F (xi)) = p(yi) is a probability
distribution. By Kolomogorov’s Extension theorem (KET), one can uniquely define a stochastic process
with uncountable index set, e.g I = R, if for all finite collections U ⊂ I , the marginal distributions are
both (marginally) consistent and exchangeable (permutation invariant). More specifically a distribution p is
exchangeable if given any permutation π ∈ Sn then;

p(y1:n|x1:n) = p(yπ(1:n)|xπ(1:n)) = p(yπ(1), . . . , yπ(n)|xπ(1), . . . , xπ(n)), (1)
and (marginally) consistent if, given any integers m < n, if we marginalise the distribution across the
marginal densities of indices m+ 1 : n, the following distributions are equal.

p(y1:m|x1:m) =

∫
ym+1:n

p(y1:n|x1:n)dym+1:n (2)

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

There is also another requirement for valid stochastic processes under a conditioning context set, that is
conditional consistency. For any context set C = {x1:m, y1:m} and a prior p(f) on a stochastic process f .

p(f) =

∫
p(f |C)p(y1:m|x1:m)dy1:m (3)

2.2 NEURAL PROCESSES

Neural Processes (Garnelo et al., 2018) are flexible models for probabilistic modelling in the function space.
However, their original formulation comes with certain limitations such as underfitting and limited expres-
sivity. Follow up works build on NPs, Convolutional NPs, (Gordon et al., 2020), Attentive NPs (Kim et al.,
2019), Markov NPs (Xu et al., 2023), to alleviate these shortcomings.

Based on de Finetti’s theorem, NPs (Garnelo et al., 2018) construct the following generative model:

p(y1:n) =

∫
q(z)

n∏
i=1

N (yi;µθ(xi, z), σθ(xi, z))dz (4)

Where q(z) is assumed to be a tractable prior such as N (0, I) which regularises a variational posterior
qϕ(·|(x1:n, y1:n)) and µθ, σθ are neural networks which capture the complexities of the model. They rep-
resenta z with a high-dimensional random vector which acts as a global representation of functions from
underlying SP f . Sampling from Eq.4 gives finite marginal distributions which satisfy the KET consistency
conditions. However, the Gaussian assumption on yi and the single step decoding (z → y) limits the ex-
pressive power of this model, especially due to the constraints imposed on the neural network architectures
by the KET conditions. MNPs (Xu et al., 2023) propose a generalisation to Eq.4.

pθ(y1:n|x1:n) =
∫
z(1:k)

∫
y
(1:k)
1:n

q(z(1:k))p(y
(0)
1:n)

k∏
t=1

n∏
i=1

ptθ(y
(t)
i |y(t−1)

i , xi, z
(t))dz(1:k) (5)

Where y(0)1:n are sampled from a tractable simple prior and p(t)θ is a normalising flow parameterised by a
neural network. This generalisation builds a finite markov chain of NPs for expressive SPs.

We develop on this insight by operating in the continuous-time domain building an infinite markov chain of
NPs via a denoising diffusion model.

NPs can be split into two classes; latent and conditional. ScoreNP falls into the former. Latent NPs hold
certain advantages over conditional NPs such as the full generative nature and correlated individual samples.
This allows them to be applied to settings with changing context such as Bayesian optimisation. When refer-
ring to NPs (Garnelo et al., 2018) we will be assuming the latent NP set up, inline with previous literature.

2.3 SCORE-BASED GENERATIVE MODELS

Score-based generative models (SGM) (Song et al., 2021b) are a class of diffusion models where the noising
and denoising process is determined by continuous-time stochastic differential equations (SDE). The forward
and reverse SDEs are defined ∀ τ ∈ [0, 1]. The forward process is defined by an Itô SDE;

dyτ = f(y, τ)dτ + g(τ)dBτ ; (6)

Where f(·) and g(·) are affine drift and diffusion coefficients respectively and B is a standard Wiener pro-
cess. Where pτ (y) is the probability density of yτ and Eq.6 is designed such that y1 ∼ p1 is a tractable
probability distribution. The reverse of the Itô SDE Eq.6 is also an Itô SDE operating backwards in time,
and is given by;

dyτ =
[
f(y, τ)− g(τ)2∇yτ log p

τ (y)
]
dτ + g(τ)dB̄τ (7)

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

B̄τ is a standard Wiener process under time reversal. ∇yτ log p
τ (y) is called the score. If the score is

known for all τ we can solve Eq.7 to generate samples from p0(y). However, it is intractable for arbitrary
probability distributions, hence it is estimated by a Score Network, Sθ(yτ , τ) which is approximated through
a Score Matching (SM) objective:

SM(θ) :=

∫ 1

0

Epτ (y)
[
ω(τ)||∇yτ log p

τ (y)− Sθ(y
τ , τ)||2

]
dτ (8)

where ω(τ) is a time-dependent scalar weighting function. pτ (y) is intractable, however the transition
density pτ |0 = p(yτ |y0) is known for affine f and g.

(Denoising) Score Matching is a tractable equivalent objective for estimating the the score of a distribution
∇y log p(y) (Hyvarinen, 2005) based on the transition density.

DSM(θ) :=

∫ 1

0

Ep0(y)Epτ|0(y)

[
ω(τ)||∇yτ log p

τ |0(y)− Sθ(y
τ , τ)||2

]
dτ (9)

3 SCORE-BASED NEURAL PROCESS (SCORENP)

In this section we introduce our model, Score-Based Neural Processes (ScoreNP) which operates a score-
based generative model jointly in the data-space and an encoded latent-space. We first define the time-
dependent marginal distributions and the generative process before discussing how the model is parame-
terised and trained.

Algorithm 1 Single Training Step for ScoreNP

Require: (x1:n, y1:n), qϕ(·), τ ∼ U(0, 1), Sθ,ψ(·), pτ |0(·)
z ∼ qϕ(· |(x1:n, y1:n))
zτ ∼ pτ |0(z)
Compute latent score: sψ(zτ , τ)
for i ∈ [1 : n] do

yτi ∼ pτ |0(yi)
Compute conditional data score: sθ(yτi , xi, z

τ , τ)
si = sθ(y

τ
i , xi, z

τ , τ)
end for
Sθ(y

τ , x, zτ , τ) = {s1, . . . , sn}
Compute L(·) ▷ Eq.20
Get gradients
Update {θ, ψ, ϕ}

At the high-level we can consider our
model as an infinitely deep hierarchical NP,
similar to how diffusion models are in-
terpreted as infinitely deep VAEs (Huang
et al., 2021). As in (latent) NPs, we encode
the function input and outputs (x1:n, y1:n)
into a high-dimensional latent vector z, us-
ing a variational encoder qϕ, which acts as
a representation for the function. Function
outputs y1:n and z are jointly diffused un-
der a forward process. A reverse diffusion
step at τ for a single target point yτi condi-
tions on itself, the noised latent zτ , and the
input location xi, which enforces a condi-
tional independence on yi’s. A denoising
step for zτ is treated as a typical diffusion
denoising step. Learning a prior over the latent space with a diffusion produces samples from well-supported
regions which improves performance in low context domains. The conditional independence provides a gen-
erative model for valid SPs. The encoder, qϕ is optimised towards improving the target denoising steps.

3.1 GENERATIVE PROCESS OF SCORENP

We propose a time-dependent joint distribution which is defined for all τ ∈ [0, 1] and under the generative
model ensure KET conditions are satisfied. Based on the conditional de Finettis theorem we define a time-
dependent joint distributions as:

pτ (y1:n, z|x1:n) = pτ (z)

n∏
i=1

pτ (yi|z, xi) (10)

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

(a) Training Step: visually show the joint diffusion pro-
cess under a training step, (1) a data point is sampled
and encoded into a latent variable z0 ∼ q(·|(x, y). (2)
Sample τ ∼ U(0, 1) and apply a forward diffusion on
(z0, y0

1:3) to get (zτ , yτ
1:3). (3) Approximate the score

∇yτ
1:n,zτ log pτ (z)

∏n
i=1 p

τ (yi|z, xi) at τ using the score
network Sθ,ϕ(y

τ , zτ , τ) and reparameterise to update the
encoder. see Alg.1

(b) A graphical model of the Generative pro-
cess under sampling. We get initial states
(y1

1:3, z
1) by sampling from the tractable distri-

butions p1z, p1y . Compute the scores with depen-
dence indicated with arrows. The state is up-
dated through the scores and the SDE change in
time dτ . This process is iteratively (dotted lines)
applied while τ > 0. Finally, we set the current
states y0

1:n and return targets (see Alg.3)
.

Figure 2: Visualisation of training step (left) and graphical model of generative process (right)

Where p0(y1:n, z|x1:n) represents the distribution of the marginals from the underlying SP. The similarities
to the NP generative model (Eq.4) implies marginalising over the latent z on p0(y1:n, z|x1:n) gives valid
finite marginal distribution. Hence, we want to sample from p0(z)

∏n
i=1 p

0(y1:n, z|x1:n). Extending the
forward diffusion process Eq.6, to the joint variable u = (y1:n, z |x1:n) we get;

duτ = f(u, τ)dτ + g(τ)dBτ (11)

Using Bayes’ rule we get two equivalent forms for the reverse SDE;

duτ =
[
f(u, τ)− g(τ)2∇yτ1:n,z

τ log pτ (y1:n | z)qτ (z)
]
dτ + g(t)dB̄τ (12)

duτ =
[
f(u, τ)− g(τ)2∇yτ1:n,z

τ log pτ (y1:n)q
τ (z | y1:n)

]
dτ + g(t)dB̄τ (13)

Noting that Eq.12 has the score of the time-dependent marginals before invoking conditional independence,
we can rewrite is to be the reverse diffusion process which depends on the score of the time-dependent
marginals Eq.10

duτ =

[
f(u, τ)− g(τ)2∇yτ1:n,z

τ log pτ (z)

n∏
i=1

pτ (yi|z, xi)

]
dτ + g(t)dB̄τ (14)

Solving the SDE Eq.14 allows us to sample from the time-dependent marginals at any point. The forward
process ensures that p1(z) and p1(y1:n|z, x1:n) are tractable distributions, namely N (0, I), hence solving
the reverse SDE provides us with a consistent generative process for yτ1:n. At τ = 0 we have a generative
process for the target stochastic process.

The score in Eq.14 is parameterised with a score network Sθ,ψ in the following manner to ensure
marginal consistency. We have two time-dependent score models; the data score, Sθ(yτ1:n, x1:n, z

τ , τ) ≈
∇yτ1:n

log
∏n
i=1 p

τ (yi|z, xi) and the latent score, Sψ(zτ , τ) ≈ ∇zτ log q
τ (z|y1:n).

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Due to the assumption that yi is conditionally independent of yj given z, the data score is separated into
pointwise components:

Sθ(y
τ
1:n, x1:n, z

τ , τ) =

sθ(y

τ
1 , x1, z

τ , τ)

sθ(y
τ
2 , x2, z

τ , τ)
...

sθ(y
τ
n, x3, z

τ , τ)

 ≈

∇yτ1

log pτ (y1|z, x1)
∇yτ2

log pτ (y2|z, x2)
...

∇yτn
log pτ (yn|z, xn)

 (15)

This ensures marginal consistency is maintained during neural network forward passes. The latent score
Sψ(z, τ) has no constraints placed on it and follows existing architectures for score networks.

Theorem 1. Given initial value conditions that z1 ∼ p1(z) is tractable and y11:n ∼ p1(y1:n|x1:n) is
tractable and defines a valid stochastic process over X , then ∀τ ∈ [0, 1] the probability distribution
pτ (z)pτ (y1:n|z, x1:n) determined by Eq.14 is a valid stochastic process over X . (App.A for sketch proof)

Thm.1 allows us to define our generative model for consistent marginals solving the reverse SDE Eq.14 and
marginalising over the joint diffusion paths.

3.2 JOINT VARIATIONAL SCORE-MATCHING LOSS

Now that we have defined the generative model, we need to show how to train this via a score matching
objective. Neural Processes Garnelo et al. (2018) maximise the log-likelihood of the marginal distribution
of a target sets (y1:n, x1:n) ∈ Dtrain via the Evidence Lower Bound (ELBO).

log pθ(y1:n|x1:n) ≥ Eqϕ(z|y1:n,x1:n) [log pθ(y1:n|z, x1:n) + log qϕ(z)− log qϕ(z|x1:n, y1:n)] (16)

where pθ is the decoder based on µθ, σθ from Eq.4. Additionally, it is often desired to maximise the log-
likelihood of targets w.r.t context set (y1:m, x1:m) where m < n. We avoid this setting in our work as
we condition on contexts by sampling from a posterior distribution utilisng reconstruction guidance on the
trained unconditional model. Replacing, the first two terms in Eq.17 with the parameterised time-dependent
marginals at τ = 0

log pθ(y1:n|x1:n) ≥ Eqϕ(z|y1:n,x1:n)

[
log p0θ(y1:n|z, x1:n) + log p0ψ(z)− log qϕ(z|x1:n, y1:n)

]
(17)

We get an ELBO based on the joint marginal distributions from scoreNP. However, it is infeasible to get
log p0θ(y1:n|z, x1:n) + log p0ϕ(z) directly. Hence, similar to (Song et al., 2021a; Huang et al., 2021) we

show that with the likelihood weighting, ω(τ) = g(τ)2

2 we can derive an upper bound on the negative log-
likelihood (NLL) through a variational score matching objective on the joint reverse process. Firstly, we
define variational score-matching with likelihood weighting, Using Eq.18 we are able to derive an upper
bound on NLL.

Jvar-sm(θ, ψ, ϕ; g(·)2) :=
∫ 1

0

Epdata(y1:n)Eqϕ(z|y1:n)

[
g(τ)2

2
||∇yτ ,zτ log p

τ (y1:n)q
τ
ϕ(z|y1:n)− Sθ,ψ(y

τ , zτ , τ)||2
]
dτ

(18)

Theorem 2 (Variational Lower Bound). Let p0θ,ψ(y1:n, z) be defined as the the probability joint density
under reverse process at τ = 0 under the reverse SDE Eq.10 and p0θ(y1:n) be the corresponding marginal:
Let p(y1:n, z) = pdata(y1:n)qϕ(z|y1:n) be the joint data-latent distribution. Suppose, {(yτ1:n, zτ)}τ∈[0,1] is
a stochastic process defined by the SDE Eq.11 with {(y01:n, z0)} ∼ pdata(y1:n)qϕ(z|y1:n). Then, under mild
regularity conditions. (see app.A for proof)

−Epdata(y1:n)

[
log p0θ(y1:n)

]
≤ J var-sm(θ, ψ, ϕ; g(·)2) +Hϕ(z

0) (19)

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

This result is an extension from previous VLB’s on diffusion models (Huang et al., 2021; Vahdat et al.,
2021). It notably takes into account the use of Bayes’ rule to allow for tractable training on the joint and the
use of a diffusion model in the data space as a decoder.

Again we note that the variational Score Matching objective Eq.18 equal to a variational Denoising Score
Matching objective up to a constant. Replacing, Jvar(θ, ψ, ϕ; g(·)2) in Eq.28 with its DSM equivalent we
get a tractable objective.

L(y1:n, x1:n; θ, ψ, ϕ) = Jvar-dsm(θ, ψ, ϕ; g(·)2) +Hϕ(z) (20)

The parameters of the score models, {θ, ψ} are optimised for the objective Eq.20. Generally, we backpro-
pogate through both score models1 to the encoder via the reparameterisation trick (Kingma & Welling, 2022)
to update the variational parameters ϕ.

Encoder The encoder, qϕ(z|x1:n, y1:n) is parameterised using a permutation invariant network such as a
DeepSet (Zaheer et al., 2018) or SetTransformer (Lee et al., 2019) to maintain exchangeability (Eq.1) as is
standard in NP literature. However, since our generative process drops the encoder during sampling (Sec.
4), this is not strictly necessary. We retain permutation invariant encoders in this work, but the increased
flexibility opens the door for future research into more expressive encoders within the scoreNP framework.

Encoder Collapse We adopt a similar training regime to LSGM (Vahdat et al., 2021) where we set
∇zτ log q

τ (z) = −zτ initially for a pretraining stage, which regularises qϕ(z) and allows the encoder to
learn a structured latent space before learning the latent score. Without this we found the model to suf-
fers from encoder collapse and set qϕ(z) ≈ δ(0). In the second stage we set ∇zτ log q

τ (z|y1:n, x1:n) =
−αzτ + (1 − α)Sψ(z

τ , τ), where α ∈ [0, 1] can be a learnable or explicitly defined. The encoder is ei-
ther frozen or continues evolving through end-to-end learning during the second stage. Whilst, the latter is
preferred we found that for certain datasets freezing the encoder was helpful to prevent encoder collapse.

Geometric variance preserving SDE We apply the Geometric Variance Preserving SDE (Geo. VPSDE)
from (Vahdat et al., 2021), which offers a more gradual noising process compared to the original VPSDE
(Song et al., 2021b). While the reduced variance during training with likelihood weighting motivated this
choice, we also found that the slower noising process aids in training the encoder by allowing more time
with distinguishable data, making reparameterization more effective. Details of the exact SDE formulation
can be found in Sec.E.3

4 CONDITIONAL GENERATION

In many generative modelling scenarios we want to be to generate samples from a posterior distribution
conditioning on some input, e.g inpainting, class-conditional generation. This is the case for the Neural
Process Family, where we want to generate a posterior distribution over a function space given a (finite)
context set C = {xC , yC}, and this is achieved by modelling a posterior distribution over target sets, T =
{xT , yT }. Neural Process variants achieve by maximising the marginal log-likelihood over the targets given
a context set during training. Then, at test time, only the contexts are known and are used to generate samples
at target points given the context and the conditional model.

This comes with two main issues:

(a) Firstly, inferring from a conditional generative model sacrifices of consistent marginal distributions
with respect to the context set C, as it breaks conditional consistency (Xu et al., 2023). Hence, all previous
NPs are at most (marginally) consistent w.r.t to the target set.

1See E.3 for a more comprehensive overview of the training procedure

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Figure 3: Posterior model distribution under condi-
tional sampling given context points (red). Mean in
(black), 2 std dev (blue) with individual samples over-
layed

(b) Secondly, at test time the context set can be
vary over any distribution on the domain X and
length. Due to the many degrees of freedom, all
these bases are hard to cover during training, this
can lead to certain context set types not being well
trained which can lead to inaccurate predictions.

With this in mind we propose using a conditional
sampling method from the underlying uncondi-
tional model, similar to guidance Chung et al.
(2024); Dhariwal & Nichol (2021) which is enabled
due to the underlying diffusion model in scoreNP.

Neural Processes (Garnelo et al., 2018) define a
conditional generative model by:

p(yT |xT) =
∫
z

qϕ(z|C)p(yT |z, xT)dz (21)

Where, p(yT |C, xT) is a valid stochastic process and qϕ(z|C) is an approximate posterior. This approxima-
tion breaks conditional consistency (Xu et al., 2023), which implies they lose consistency w.r.t the context set
and the underlying prior cannot be considered a stochastic process. However we can consider an equivalent
conditional generative model, by using the fact that q(z|C) = pψ(z)pθ(C|z)/p(C). rewriting Eq.21 as

p(yT |xT) =
∫
z

pψ(z)pθ(C|z)
p(C)

p(yT |z, xT)dz (22)

Eq.22 means conditional consistency will hold as the posterior is not approximated by the inconsistent
encoder, qϕ(z|C)
Theorem 3 (Conditional Consistency). Given a prior pψ(f) over a stochastic process f , two arbitrary con-
text sets C′ and C with well defined conditional densities pθ. Furthermore, pθ is consistent under marginali-
sation. Then the following equations hold. (see appendix A for proof)

pψ(f) =

∫
pψ(f)pθ(C′|f)dC′ =

∫
pψ(f)pθ(C|f)dC (23)

This result implies that a generative model in the form of Eq.22 is fully consistent over the entire input
domain and consistent w.r.t both context and target sets. We show how the diffusion model paradigm allows
us use conditional generative model of the form Eq.22, which NPs have traditionally been unable to achieve.

Conditional Diffusion We want to generate the conditional joint distribution p0θ(yT , z | C, xT), which is
the posterior under our score based diffusion at τ = 0 conditioned on the context set. Hence, we want to
approximate the conditional score for all τ ∈ [0, 1],

∇yτT ,z
τ log pτ (yT , z | C) = ∇yτ log p

τ (yT | z) +∇zτ log p
τ (z | C) (24)

= Sθ(y
τ
T , xT , z

τ , τ) +∇zτ log p
τ (z | C) (25)

Hence, we make an approximation for the conditional score of the latent distribution, ∇zτ log p
τ (z | C).

Estimating the conditional score As we want to sample from the latent conditioned on context, we con-
sider the diffusion flow which will produce samples of p0(z|yC) = q0(z)p0(yC|z)

p0(yC)
. This implies we need to

approximate the conditional score ∀τ ∈ [0, 1] :

∇zτ log

[
pτ (z)pτ (yC |z)

pτ (yC)

]
= ∇zt log p

τ (z) +∇zτ log p
τ (yC |z)−�������:0

∇zτ log p
τ (yC) (26)

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Leading to the following approximation for the conditional latent score.

Ŝψ,θ(z
τ , yτC) ≈ Sψ(zt, t) +∇zt log p̂

τ
θ (yC |z) (27)

Where p̂τθ (yC |z) is an approximation of the likelihood p(yτC |z) under a single denoising step in the (discre-
tised) reverse process. Using the autograd function in PyTorch (Paszke et al., 2019) we can compute the
gradients w.r.t zτ . In App.B we provide details on the approximation p̂τθ (yC |z).
Similarly, to (Dhariwal & Nichol, 2021) we require scaling on the gradients of the likelihood to model
accurate posteriors, choosing the scaling factor becomes a trade-off between diversity and underfitting. Ex-
tending the sampling to use more advanced sampling methods over simple predictor-only methods such as
the recently proposed SMC based methods (Wu et al., 2023) for asymptotically exact posteriors is an excit-
ing avenue for future research. This may alleviate the reliance on the troublesome guidance scale which is
hard to tune and causes log-likelihood evaluation issues. see App.D.1

5 EXPERIMENTS

In this section we provide experimental validation of our model scoreNP on a range of function regression
tasks. As scoreNP is a latent NP and a generalisation on NPs and MNPs we adopt the experiemental set up
from Xu et al. (2023). Predictive NPs such as convNPs, GNPs and (Geom) NDPs are not designed with full
consistency in mind and hence forego certain constraints allowing for improved performance in predictive
tasks.

Table 1: 1D Function Regression All comparisons are lifted from table 1 in (Xu et al., 2023). Compar-
ison models are as follows (a) Oracle models (when available). (b) GPs with optimised hyperparameters,
including an RBF kernel, a Matern kernel and a periodic kernel. (c) CBPs which combine Gaussian copula
processes with neural spline flows (Durkan et al., 2019) (d) NPs (Garnelo et al., 2018) (e) MNPs (f) ScoreNP
is evaluated with an ELBO for two evaluations and no guidance scale is applied (details in D.1)

Samples from GP Kernels Non-GP Data

Model RBF Matern Periodic Monotonic Convex SDEs

Oracle 2.846 ± 0.012 2.709 ± 0.013 0.641 ± 0.006 − − −
GPs 2.844 ± 0.013 2.708 ± 0.014 0.419 ± 0.013 0.633 ± 0.059 2.976 ± 0.224 1.719 ± 0.034
CBPs 2.628 ± 0.016 2.604 ± 0.015 0.169 ± 0.022 1.776 ± 0.088 4.268 ± 0.035 1.842 ± 0.024
NPs 0.935 ± 0.019 1.115 ± 0.021 0.356 ± 0.020 1.823 ± 0.006 1.956 ± 0.004 1.621 ± 0.009
MNPs 2.491 ± 0.024 2.290 ± 0.021 0.594 ± 0.032 2.755 ± 0.010 5.582 ± 0.081 1.942 ± 0.019

scoreNP 2.532 ± 0.04 2.42 ± 0.012 0.0072 ± 0.03 3.801 ± 0.030 4.033 ± 0.050 3.91 ± 0.02

5.1 1D FUNCTION REGRESSION

We consider the controlled setting of 1D function regression problems. Three kernels (RBF, Matern, Peri-
odic) are all considered where Oracle provides an upper bound on performance. In table 1 we show com-
petitive performance over MNPs on the RBF and Matern but fall short of all comparisons in Periodic. We
hypothesise that the higher frequency nature of this kernel results in a more complex which is currently not
captured by our architecture. Across the non-GP datasets scoreNP shows improvements on both monotonic
and SDE highlighting the ability of modelling complex distributions. The lower performance compared to
CBPs and MNPs is likely due to the fact we don’t use a guidance scale, this hypothesis is further validated
as we see little improvement in the conditional log-likelihood to the unconditional (3.98 vs 4.03). 2D regres-
sion tasks and further qualitative results are shown in App. D.10 and App. B.1. We show failure cases of
the model to generate coherent conditional samples given context on MNIST (LeCun & Cortes, 2010) desite
strong unconditional likelihoods, which highlights the need for further analysis on architectural design.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

6 RELATED WORK

Infinite Dimensional Diffusion Models Diffusion Models have recently been extended to function spaces
(Pidstrigach et al., 2023; Bond-Taylor & Willcocks, 2023; Biloš et al., 2023), theory of diffusion models to
work in Hilbert spaces, which makes them theoretically well-defined. However, even with Neural archi-
tectures which heavily reduce inconsistency under discresation, such as Implicit Neural Representations
(Sitzmann et al., 2020) or Neural Operators (Kovachki et al., 2021). This leaves a gap between practical and
theoretical consistency (Phillips et al., 2022) decomposes the function space remaining marginally consis-
tent to the target points but has limited representational power. (Mathieu et al., 2023; Dutordoir et al., 2023)
both fully ignore consistency and work directly on finite dimensions, empirically showing that consistency
is often approximated in the learning process. However, without the guarantees in place these models are
still vulnerable to producing miscalibrated uncertainties and inconsistent predictions.

Gaussian Processes and the Neural Process Family Gaussian Processes (GP) (Rasmussen & Williams,
2006) are perhaps the most important class of models for stochastic processes due to closed-form solutions
and exact posteriors. However, they are extremely limited by the Gaussian assumption. The Neural Process
Family is a neural approximate alternative to GPs, but also come with their own problems with consistencies
and similar expressivity issues. Diffusion models provide a neat solution to these problems. (Bonito et al.,
2023) use a the diffusion noising process to induce correlations for predictive NPs.
Latent diffusion models have become a staple in image synthesis (Rombach et al., 2022) The benefit of
the a latent prior learnt through a diffusion means you to sample from well supported regions of the latent
space. This brings improved results in zero and low context settings where previous NPs have struggled.
We followed a lot of (Vahdat et al., 2021) practical implementation for scoreNP. The training procedure of
scoreNP is not dissimilar to that recently proposed in, DisCo-Diff (Xu et al., 2024),where they augment a
diffusion model with discrete latents to induce smoother score networks.

7 CONCLUSION

Limitations Sampling time of diffusion models is a drawback meaning the application high-speed sequen-
tial decision making isn’t possible in the current scoreNP framework. Hence, improving synthesis speed is a
necessary extension. The variational inference makes the learnability a difficult task with a couple of difficult
balancing hyperparameters.

Future work ScoreNP provides new avenues neural processes. Further in-depth empricial analysis on the
training procedure to fully extract the power of diffusion models. The flexibility of non-strictly permutation
invariant encoder may further improve the expressivity of the latent space orthogonal extensions to include
inductive biases such as stationarity or equivariance is an exciting direction. The proposed conditional
sampling opens up some exciting areas for future NP research.

Conclusion We introduce score-based Neural Process (scoreNP), the first diffusion model which correctly
adopts the NP framework satisfying the marginal consistency and exchangeability conditions of KET. We
demonstrate how to train our model with a VLB based on a variational score-matching objective. We also
show that leveraging reconstruction guidance for conditional sampling makes scoreNP the first NP variant to
achieve conditional consistency. Our experiments on both unconditional and conditional function regression
tasks quantitatively and qualitatively validates our framework.

8 REPRODUCIBILITY STATEMENT

We provide Algorithms in the main text 1 and the appendix 32 for the main algorithms which have novel
aspects in our work. In D we provide details on how our datasets are collected and in E.3 we provide

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

an overview to our low level training procedure. In A we provide at least a sketch proof for all theorems
proposed in the paper. If the paper is accepted, will provide open source code.

REFERENCES

Tom R. Andersson, Wessel P. Bruinsma, Stratis Markou, James Requeima, Alejandro Coca-Castro, Anna
Vaughan, Anna-Louise Ellis, Matthew A. Lazzara, Dani Jones, J. Scott Hosking, and Richard E. Turner.
Environmental sensor placement with convolutional gaussian neural processes, 2023. URL https:
//arxiv.org/abs/2211.10381.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL https:
//arxiv.org/abs/1607.06450.

Marin Biloš, Kashif Rasul, Anderson Schneider, Yuriy Nevmyvaka, and Stephan Günnemann. Modeling
Temporal Data as Continuous Functions with Stochastic Process Diffusion. In Proceedings of the 40th
International Conference on Machine Learning, pp. 2452–2470. PMLR, July 2023.

Sam Bond-Taylor and Chris G. Willcocks. ∞-Diff: Infinite Resolution Diffusion with Subsampled
Mollified States, March 2023.

Lorenzo Bonito, James Requeima, Aliaksandra Shysheya, and Richard E. Turner. Diffusion-Augmented
Neural Processes, November 2023.

Wessel P. Bruinsma, James Requeima, Andrew Y. K. Foong, Jonathan Gordon, and Richard E. Turner. The
gaussian neural process, 2021. URL https://arxiv.org/abs/2101.03606.

Hyungjin Chung, Jeongsol Kim, Michael T. Mccann, Marc L. Klasky, and Jong Chul Ye. Diffusion pos-
terior sampling for general noisy inverse problems, 2024. URL https://arxiv.org/abs/2209.
14687.

Prafulla Dhariwal and Alex Nichol. Diffusion Models Beat GANs on Image Synthesis, June 2021.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows, 2019. URL
https://arxiv.org/abs/1906.04032.

Vincent Dutordoir, Alan Saul, Zoubin Ghahramani, and Fergus Simpson. Neural Diffusion Processes, June
2023.

Giulio Franzese, Giulio Corallo, Simone Rossi, Markus Heinonen, Maurizio Filippone, and Pietro
Michiardi. Continuous-Time Functional Diffusion Processes, July 2023.

F. N. Fritsch and J. Butland. A method for constructing local monotone piecewise cubic interpolants. 5(2):
300–304, 1984. doi: 10.1137/0905021. URL https://doi.org/10.1137/0905021.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, S. M. Ali Eslami, and
Yee Whye Teh. Neural Processes, July 2018.

Jonathan Gordon, Wessel P. Bruinsma, Andrew Y. K. Foong, James Requeima, Yann Dubois, and Richard E.
Turner. Convolutional Conditional Neural Processes, June 2020.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. FFJORD:
Free-form Continuous Dynamics for Scalable Reversible Generative Models, October 2018.

Chin-Wei Huang, Jae Hyun Lim, and Aaron Courville. A Variational Perspective on Diffusion-Based Gen-
erative Models and Score Matching, September 2021.

11

https://arxiv.org/abs/2211.10381
https://arxiv.org/abs/2211.10381
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2101.03606
https://arxiv.org/abs/2209.14687
https://arxiv.org/abs/2209.14687
https://arxiv.org/abs/1906.04032
https://doi.org/10.1137/0905021

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Aapo Hyvarinen. Estimation of Non-Normalized Statistical Models by Score Matching. 2005.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol Vinyals,
and Yee Whye Teh. Attentive Neural Processes, July 2019.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes, December 2022.

Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew M.
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces. CoRR,
abs/2108.08481, 2021. URL https://arxiv.org/abs/2108.08481.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.lecun.
com/exdb/mnist/.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
former: A framework for attention-based permutation-invariant neural networks, 2019. URL https:
//arxiv.org/abs/1810.00825.

Emile Mathieu, Vincent Dutordoir, Michael J. Hutchinson, Valentin De Bortoli, Yee Whye Teh, and
Richard E. Turner. Geometric Neural Diffusion Processes, July 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library, December
2019.

Angus Phillips, Thomas Seror, Michael Hutchinson, Valentin De Bortoli, Arnaud Doucet, and Emile Math-
ieu. Spectral Diffusion Processes, November 2022.

Jakiw Pidstrigach, Youssef Marzouk, Sebastian Reich, and Sven Wang. Infinite-Dimensional Diffusion
Models for Function Spaces, February 2023.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning. The
MIT Press, 2006.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models, 2022. URL https://arxiv.org/abs/2112.
10752.

Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wetzstein.
Implicit neural representations with periodic activation functions, 2020. URL https://arxiv.org/
abs/2006.09661.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum Likelihood Training of Score-Based
Diffusion Models, October 2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-Based Generative Modeling through Stochastic Differential Equations, February 2021b.

Zoltán Sylvester, Paul Durkin, and Jacob A. Covault. High curvatures drive river meandering. Geology, 47
(3):263–266, February 2019. ISSN 0091-7613. doi: 10.1130/G45608.1.

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Sing-
hal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier Features Let Networks Learn High
Frequency Functions in Low Dimensional Domains, June 2020.

12

https://arxiv.org/abs/2108.08481
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1810.00825
https://arxiv.org/abs/1810.00825
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2006.09661
https://arxiv.org/abs/2006.09661

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based Generative Modeling in Latent Space, December
2021.

Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul, Mishig
Davaadorj, Dhruv Nair, Sayak Paul, William Berman, Yiyi Xu, Steven Liu, and Thomas Wolf. Diffusers:
State-of-the-art diffusion models. https://github.com/huggingface/diffusers, 2022.

Luhuan Wu, Brian L. Trippe, Christian A. Naesseth, David M. Blei, and John P. Cunningham. Practical and
Asymptotically Exact Conditional Sampling in Diffusion Models, June 2023.

Jin Xu, Emilien Dupont, Kaspar Märtens, Tom Rainforth, and Yee Whye Teh. Deep Stochastic Processes
via Functional Markov Transition Operators, May 2023.

Yilun Xu, Gabriele Corso, Tommi Jaakkola, Arash Vahdat, and Karsten Kreis. DisCo-Diff: Enhancing
Continuous Diffusion Models with Discrete Latents, July 2024.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and Alexan-
der Smola. Deep sets, 2018. URL https://arxiv.org/abs/1703.06114.

A PROOFS

In this section we will rewrite the proposed theorems and their corresponding proofs, including any required
assumptions which were overly cumbersome for the main text.

Theorem 1. Given initial value conditions that z1 ∼ p1(z) is tractable and y11:n ∼ p1(y1:n|x1:n) is
tractable and defines a valid stochastic process over X , then ∀τ ∈ [0, 1] the probability distribution
pτ (z)pτ (y1:n|z, x1:n) determined by Eq.14 is a valid stochastic process over X

Proof. (sketch proof) To prove this we will use the fact that the corresponding probability flow ODE to
the SDE Eq.14, has identical marginals for all τ ∈ [0, 1]. Under a discretisation of this probability flow
ODE, each step can be considered a Functional markov transition operator (FMTO) Xu et al. (2023). As
z1 ∼ p1(z) is tractable and y1:n ∼ p1(y1:n|x1:n, z) with p1(y1:n|x1:n, z) being a valid stochastic process.
Hence, at any time τ under discretisation the probability flow ODE produces consistent and exchangeable
marginals.

By the strong Convergence theorem of Euler-Maruyama the marginals extend to being marginally consistent
and exchangeable on the continuous time domain [0, 1].

Finally, as the marginals under the probability flow ODE are equivalent to the SDE this completes the
proof.

Theorem 2 (Variational Lower Bound). Under mild regularity conditions, the NLL over the data-
distribution is upper bounded by:

−Epdata(y1:n) [log pθ(y1:n)] ≤ J var-sm(θ, ψ, ϕ; g(·)2) +Hϕ(z) (28)

Proof. Assumptions adapted from (Song et al., 2021a) to generalise to the joint setting:

(i) p(x) ∈ C2 and Ex∼p
[
∥x∥22

]
<∞.

(ii) p1(x) ∈ C2 and Ex∼p1
[
∥x∥22

]
<∞.

(iii) ∀τ ∈ [0, 1] : f(·, t) ∈ C1, ∃C > 0, ∀x ∈ RD, t ∈ [0, 1] : ∥f(x, t)∥2 ≤ C(1 + ∥x∥2).

13

https://github.com/huggingface/diffusers
https://arxiv.org/abs/1703.06114

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

(iv) ∃C > 0, ∀x, y ∈ RD : ∥f(x, t)− f(y, t)∥2 ≤ C∥x− y∥2.

(v) g ∈ C and ∀τ ∈ [0, 1], |g(τ)| > 0.

(vi) For any open bounded set O,
∫ 1

0

∫
O

(
∥pt(x)∥22 + ∃g(t)2∥∇xpt(x)∥22

)
dxdt <∞.

(vii) ∃C > 0, ∀x ∈ RD, t ∈ [0, 1] : ∥∇x log pt(x)∥2 ≤ C(1 + ∥x∥2).
(viii) ∃C > 0, ∀x, y ∈ RD : ∥∇x log pt(x)−∇y log pt(y)∥2 ≤ C∥x− y∥2. Where p is the joint density

(ix) ∃C > 0, ∀x ∈ RD, τ ∈ [0, 1] : ∥sθ(x, t)∥2 ≤ C(1 + ∥x∥2).
∃C > 0, ∀x ∈ RD, τ ∈ [0, 1] : ∥sψ(x, t)∥2 ≤ C(1 + ∥x∥2).

(x) ∃C > 0, ∀w, z ∈ RD : ∥sψ(w, τ)− sψ(z, τ)∥2 ≤ C∥w − z∥2.

(xi) ∃C > 0, ∀z, x, y ∈ RD : ∥sθ(x, z, τ)− sθ(y, z, τ)∥2 ≤ C∥x− y∥2.

(xiii) Novikov’s condition: E
[
exp

(
− 1

2

∫ T
0
∥∇x log pt(x)− sθ(x, t)∥22dt

)]
<∞.

(xiv) ∀τ ∈ [0, 1]∃k > 0 : pτ (y1:n, z) = O(exp(−∥(y1:n, z)∥k2)) as ∥(y1:n, z)∥2 → ∞.

(xv) ∃C > 0, such that z ∼ qϕ(·), |z| < C

We follow similar steps to what they proved in (Song et al., 2021a) Theorem 1 and Corollary 1. The first
two steps are identical, let us define µ, and ν to be path measures for two stochastic processes {Ut}t∈[0,T]

and {Ût}t∈[0,T]

1.

DKL

(
pdata(y)qϕ(z|y)

∣∣∣∣ p0ψ(z)p0θ(y|z)) ≤ DKL(µ||ν)

Due to data processing inequality.

2.

DKL(µ||ν) ≤ DKL(p
1(y)q1ϕ(z|y)||πzπy|z) + Eu∼p1(y)q1ϕ(z|y)

[
DKL(µ(·|U(1) = u)||ν(·|Û(1) = u)

]
(29)

Due to the chain rule of KL divergence;

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

3. Using Girsanov’s Theorem we get the following;
DKL(µ(·|u(1) = x)||ν(·|u(1) = x)) (30)

= −Eµ

[
log

dν

dµ

]
(31)

= Eµ

[∫ 1

0

g(t)(∇u log pt(y) +∇u log q
t
ϕ(z|y)− sθ(y, z, t)− sψ(z, t))dB̄t (32)

+
1

2

∫ 1

0

g(t)2
∥∥∥∇u log p

t(y) +∇u log q
ϕ
t (z|y)− sθ(y, z, t)− sψ(z, t)

∥∥∥2
2
dt

]
(33)

= Eµ

[
1

2

∫ 1

0

g(t)2
∥∥∥∇u log pt(y) +∇u log q

ϕ
t (z|y)− sθ(y, z, t)− sψ(z, t)

∥∥∥2
2
dt

]
(34)

=
1

2

∫ 1

0

Ept(y)qϕt (z|y)

[
g(t)2

∥∥∇u log p
t(y) +∇u log q

t
ϕ(z|y)− sθ(y, z, t)− sψ(z, t)

∥∥2
2

]
dt (35)

= J var−sm(ϕ, θ, ψ; g(·)2) (36)
As this minimising KL is equivalent to maximising the log-likelihood this completes the proof.

Theorem 3 (Conditional Consistency). Given a prior pψ(f) over a stochastic process f , two arbitrary
context sets C′ and C with well defined conditional densities pθ. Then the following equations hold.

pψ(f) =

∫
C′
pψ(f)pθ(C′|f)dC′ =

∫
C
pψ(f)pθ(C|f)dC (37)

Proof. We take one of the arbitrary context sets C.∫
C′
pψ(f)pθ(C′|f)dC′ = pψ(f)

∫
C′
pθ(C′|f)dC′ = pψ(f) (38)

As we have a well-defined posterior likelihood pθ over the context given the underlying stochastic process
which induces consistent marginals on C we can marginalise over it. This process is identical for any context
set which completes the proof.

B CONDITIONAL SCORE APPROXIMATION

Here we derive an approximation to the term ∇zτ log p
τ (yC |z).

As we don’t have an official decoder/classifier which is often used in this case, we use a single step under
the learnt data diffusion to compute the likelihood approximation of p̂τ (yC |z) ≈ p

τ |τ+dτ
θ (yC |zτ+dτ , yτ+dτC).

The reverse SDE for a single step is normally distributed with variance g(t)
√
dτ through time reversal of

Brownian motion. We set the mean to be the mean of pτ |0(yC) which we call µτ (yC). Now, as p̂ Gaussian
we can compute the closed form score. which is;

∇zτ log p̂
τ
θ (yC |z) = −(ŷC − µτ (yC))∇zτSθ(y

τ+dτ
C , zτ , τ, xC)

B.1 POSTERIOR DISTRIBUTIONS EXAMPLES

Here we showcase some unconditional and conditional model distributions from our trained ScoreNP on 1D
datasets.

Periodic Kernel unconditional samples:

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Figure 4: Results of conditional generation process for RBF Kernel with scaling parameter s = 100τ .

Figure 5: Results of conditional generation process for RBF Kernel with scaling parameter s = 5τ , The
small scale factor clearly shows inability to sample from a true posterior

C TRAINING AND SAMPLING ALGORITHMS

In this section we will outline the 3 main algorithms used throughout this work for training and sampling.

Algorithm 2 Unconditional Sampling

Require: Score models Sθ(·), Sψ(·),
Require: Initial Distributions: p1(z) = N (0, I), p1(yi) = N (0, I)
Require: Terminal time ϵ, time step dτ
Require: SDE dynamics; d(y, z)
Require: Target input locations: x1:n
T = 1
z ∼ p1(z)

y1:n ∼ p1(y1:n)

while T > ϵ do
Compute Latent Score: Sψ(z, T)
Compute Data Score: Sθ(y1:n, z, T, x1:n)
(z, y1:n) := (z, y1:n) + d(y, z)
T = T − dτ

end while
Return Targets (y1:n, x1:n)

Unconditional (Alg.2) and conditional sampling (Alg.3) are very similar, the operations on the targets re-
main the same, for conditional sampling we have additional requirements of context pairs and the forward
transition density.

D DATASETS & EXPERIMENTS

Information about the datasets used and the likelihood evaluation which was adopted for all experiments.

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Figure 6: Unconditional samples periodic kernel

Figure 7: Posterior Distribution of Periodic Kernel under time reversal with s = 200τ , this posterior shows
clear underfitting

D.1 LIKELIHOOD EVALUATION

We want to evaluate our model through log-likelihoods. Due to the variational aspect of our model we will
only be able to approximate using NELBO. As mentioned in (Vahdat et al., 2021) IWAE objective often used
in variational models can be biased due to variance when computing the likelihoods through the probability
flow ODE. Hence, we resort to NELBO, which is:

log p(yT |xT , yC) ≥ log pθ,ψ(yT , z|yC)− log qϕ(z|yT , xT) (39)
= log pθ(yT |z) + log pψ,θ(z|xC , yC)− log qϕ(z|yT , xT) (40)

Where the the context set is a subset of the target set C ⊂ T and pψ,θ(z|xC , yC) denotes the latent density
under conditional sampling given the context. If C = ∅, pψ,θ(z|xC , yC) simply becomes the unconditional
model pψ(z). The first two terms in 40 corresponding to the outputs of the under the joint diffusion are
computed by solving the corresponding joint probability flow ODE (Song et al., 2021b; Grathwohl et al.,
2018).

No guidance scale Although the guidance scale is useful for generating more accurate generations on the
context points it is problematic for likelihood evaluation. Due to the gradients of the approximated likelihood
p̂ being untrustworthy, especially at times close to 0. This is due to the fact that the parametrised score model
cares primarily about the value of y. This causes the latents to move outside of their true range and means
that solving the probability ODE becomes infeasible with ODE solvers.

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Algorithm 3 Conditional Sampling using Guidance

Require: Score models Sθ(·), Ŝψ,θ(·),
Require: Initial Distributions: p1(z) = N (0, I), p1(yi) = N (0, I)
Require: Terminal time ϵ, time step dτ
Require: SDE dynamics; d(y, z)
Require: Transition density: pτ |0(yC)
Require: Target input locations: x1:n
Require: Context inputs and outputs: (xC , yC)
T = 1
z ∼ p1(z)

y1:n ∼ p1(y1:n)

while T > ϵ do
Get Noised Context: yTC ∼ pT |0(yC)
Compute conditional Latent Score: Sψ,θ(z, T, yTC)
Compute Data Score: Sθ(y1:n, z, T, x1:n)
(z, y1:n) := (z, y1:n) + d(y, z)
T = T − dτ

end while
Return targets (y1:n, x1:n)

D.2 1D FUNCTIONS

We use the experimental set up from MNPs (Xu et al., 2023) and reproduce the dataset information here for
the benefit of the reader.

D.3 GAUSSIAN KERNEL FUNCTIONS

Variances were set at 0.0001 for the Radial Basis Function and Matern kernels, and 0.001 for the Exp-Sine-
Squared kernel. Function Domain spanned from −2.0 to 2.0. For this dataset, evaluation context size varies
randomly from 2 to 50.

D.4 MONOTONIC FUNCTIONS

The generation of monotonic functions starts by sampling N ∼ Poisson(5.0) to determine the number of
interpolation nodes. We then sample N + 1 increments Xincrements sampled from a Dirichlet distribution.
Increments are increased by 0.01 to avoid excessively small values, and are then normalized such that their
sum is 4.0. The final X values for interpolation nodes are obtained by adding −2.0 to the cumulative sum
of these increments so that these X values are within the range [−2.0, 2.0].

For each X value, a corresponding Y value is sampled from a Gamma distribution Y ∼ Gamma(2, 1). The
cumulative sum of Y values ensures monotonicity. A PCHIP interpolator (Fritsch & Butland, 1984) is then
created using these interpolation nodes (X and Y values) to generate function outputs. Given the functions,
we randomly sample 128 X values and compute their corresponding function values. Note that these X
values are now used to evaluate the functions, rather than serving as interpolation nodes. The function
values are normalized to the range [−1.0, 1.0]. Finally, Gaussian observation noise with a standard deviation
of 0.01 is added to these function values. For this dataset, evaluation context size varies randomly from 2 to
20.

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

D.5 CONVEX FUNCTIONS

To create a dataset of convex functions, we compute integrals of the monotonic functions previously created.
These convex functions are then randomly shifted and rescaled to increase diversity. The function values are
normalized to the range [−1.0, 1.0]. Finally, Gaussian observation noise with a standard deviation of 0.01 is
added to these function values. Evaluation Context sizes varied randomly from 2 to 20.

D.6 STRATONOVICH STOCHASTIC DIFFERENTIAL EQUATIONS

We create a dataset of 1D functions, each of which represents a solution to a Stochastic Differential Equation
(SDE). This SDE is defined by the drift function not to be confused with the SDE used for the diffusion
model:

f(x, t) = −(a+ x · b2) · (1− x2)

and the diffusion function:
g(x, t) = b · (1− x2),

with constants a and b both set to 0.1. The function sets up a time span that includes 128 uniformly dis-
tributed points within the range of [−5.0, 5.0]. We then uniformly sample an initial condition, x0, between
0.2 and 0.6. We use the sdeint.stratKP2iS function from the sdeint library to generate a solution
to the SDE. This solution forms a 1D function that depicts a trajectory of the SDE across the defined time
span, originating from the initial condition x0. Lastly, we randomly alter the eval context sizes between 2
and 50.

D.7 1D DATASET SET SIZES

All of the 1D datasets have the same set sizes and splits: 50,000 for the training set, 5,000 for the validation
set, and 5,000 for the test set.

D.8 MNIST

We provide some results from experiments on MNIST (LeCun & Cortes, 2010). We achieve an unconditional
ELBO of 7.12. This is a large improvement on ConvCNP and AttnCNP (Gordon et al., 2020) which report a
maximal log-likelihood of 1.27. in table 3. achieved by ConvCNPXL. We show that whilst we get, relatively
good qualitative image samples from the unconditional model, the conditional generation does not succeed.
Tuning the scaling parameter proved much harder in 2D to 1D.

D.9 GEOLOGY

Similarly to MNIST, we applied our method to the geofluvial task introduced in (Xu et al., 2023). This
task is a 2D function regression on grayscale images of river meandering on 128x128 images. The dataset is
generated using (Sylvester et al., 2019). Our unconditional model reported log-likelihoods of 2.15. Whereas,
MNP under maximal context size of 160 only achieved a marginal log-likelihood of 1.12 ± 0.15. We note
that these results are not directly comparable, but MNP showed decreasing performance as the context
decreases, perhaps suggesting that our unconditional model provides stronger likelihoods than MNPs context
conditioned model.
Furthermore, the image synthesis we get from the unconditional model is not high quality in qualitative
terms, see fig10 and 11 for comparison.

2we use logp(y1:n|z) as the estimate due to positively large latent likelihoods due to a very tight encoder

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Figure 8: MNIST conditional genertion Samples given context (left)

Figure 9: MNIST Unconditional generation Examples

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Figure 10: Geofluvial Unconditional Samples

Figure 11: Ground Truth Geofluvial Examples

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

D.10 QUALITATIVE RESULTS

E IMPLEMENTATION DETAILS

E.1 DIFFUSION SDES, SAMPLING

Geometric VPSDE as mentioned, we adopt the use of a Geometric Variance preserving SDE for both the
latent- and data-space. We provide the specific formulation of this process and the hyperparameters we used
for our implementation. The forward process for a random variable y under the Geo VPSDE.

dyτ = −1

2
β(τ)yτdτ +

√
β(τ)dBτ (41)

Where:

β(τ) =
σ2
min(

σ2
max

σ2
min

)τ

1− σ2
min(

σ2
max

σ2
min

)τ
log

σ2
max

σ2
min

(42)

The transition kernel is:

pτ |0(y) = N

yτ ;
√√√√1− σ2

min(
σ2
max

σ2
min

)t

1− σ2
min

, σ2
min(

σ2
max

σ2
min

)τI

 (43)

We set σ2
min = 3 × 10−5 and σ2

max = 0.995. We found that setting σ2
max any higher resulted in unstable

training and diverging samples.

The largeness of g(τ)2 as τ → 1 was ocassionally problematic and often caused instabilities in training,
sampling and evaluation.

Using the VPSDE was a non starter, we experienced 0 learning signal even with importance sampling tech-
niques suggested in (Vahdat et al., 2021)

Sampling We use 1000 uniform time steps of a predictor-only Euler-Maruyama sampler. This entails 2000
total NFEs across the latent-data diffusion. If we want to build a distribution over each sample in the batch
using n latent samples results in (2n)× 1000 NFEs.

E.2 ARCHITECTURES

Our model is made up of 3 main components during training,

1. Encoder: qϕ(·|X,Y)

2. Time-dependent Data Score: Sθ(y, t, x)

3. Time-dependent Latent Score: Sψ(z, t)

Once training is complete the Encoder is dropped and only the data-score and latent-score models are used
during generation.

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Encoder The encoder is a SetTransformer (Lee et al., 2019), DeepSet(Zaheer et al., 2018), or a Convolu-
tional Encoder based on architectures in the Hugging Face diffusers library (von Platen et al., 2022) for grid
based experiments (Images). The encoders take a collection of function input and output pairs (X,Y) and
output a mean and log-variance for a Normal distribution as in VAEs Kingma & Welling (2022). The mean
is computed through the main encoder with a small DeepSet used to produce the log-variance. Additionally,
the input locations X are encoded with fourier features (Tancik et al., 2020).

Time-dependent data score The time-dependent score model conditions on the time, the latent represen-
tation at that time and pointwisely on the input location xi and the corresponding noised function output yi.
Initially, zτ and τ are passed through a 1D Unet (von Platen et al., 2022), before employing a pointwise MLP
conditioning on the Unet output and (xi, yi). Each hidden layer of the MLP is appended with a layernorm
(Ba et al., 2016).

Time-dependent Latent Score The latent variables are modelled as large 1D vectors. In the 1D regression
tasks z ∈ R128. We use a 1D Unet (von Platen et al., 2022) from the diffusers library to model the scores.

E.3 OPTIMIZERS, SCHEDULERS,

E.4 COMPUTATIONAL REQUIREMENTS

Using an NVIDIA GeForce GTX 1080, training the 1D functions for 200 pretraining epochs (without the
latent score) and 200 end-to-end epochs took approximately 12 hours. Generating samples required 2000
Neural function evaluations for 1000 predictor-only steps on the joint space, generating a batch of 128
samples took a couple of minutes.

23

	Introduction
	Background
	Stochastic Processes
	Neural Processes
	Score-Based Generative Models

	Score-Based Neural Process (ScoreNP)
	Generative process of scoreNP
	Joint Variational Score-Matching loss

	Conditional Generation
	Experiments
	1D function regression

	Related Work
	Conclusion
	Reproducibility Statement
	Proofs
	Conditional Score Approximation
	Posterior Distributions examples

	Training and Sampling Algorithms
	Datasets & Experiments
	Likelihood Evaluation
	1D Functions
	Gaussian Kernel Functions
	Monotonic Functions
	Convex Functions
	Stratonovich Stochastic Differential Equations
	1D Dataset Set Sizes
	MNIST
	Geology
	Qualitative Results

	Implementation Details
	Diffusion SDEs, Sampling
	Architectures
	Optimizers, schedulers,
	Computational Requirements

