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Abstract

User sessions empower many search and rec-001
ommendation tasks on a daily basis. Such002
session data are semi-structured, which en-003
code heterogeneous relations between queries004
and products, and each item is described005
by the unstructured text. Despite recent ad-006
vances in self-supervised learning for text or007
graphs, there lack of self-supervised learn-008
ing models that can effectively capture both009
intra-item semantics and inter-item interac-010
tions for semi-structured sessions. To fill011
this gap, we propose CERES, a graph-based012
transformer model for semi-structured ses-013
sion data. CERES learns representations014
that capture both inter- and intra-item seman-015
tics with (1) a graph-conditioned masked lan-016
guage pretraining task that jointly learns from017
item text and item-item relations; and (2)018
a graph-conditioned transformer architecture019
that propagates inter-item contexts to item-020
level representations. We pretrained CERES021
using ∼468 million Amazon sessions and find022
that CERES outperforms strong pretraining023
baselines by up to 9% in three session search024
and entity linking tasks.025

1 Introduction026

User sessions are ubiquitous in online e-commerce027

stores. An e-commerce session contains customer028

interactions with the platform in a continuous pe-029

riod. Within one session, the customer can issue030

multiple queries and take various actions on the031

retrieved products for these queries, such as click-032

ing, adding to cart, and purchasing. Sessions are033

important in many e-commerce applications, e.g.,034

product recommendation (Wu et al., 2019a), query035

recommendation (Cucerzan and White, 2007), and036

query understanding (Zhang et al., 2020).037

This paper considers sessions as semi-structured038

data, as illustrated in Figure 1. At the higher level,039

sessions are heterogeneous graphs that contain in-040

teractions between items. At the lower level, each041

Product 1
Title: Harrys Razor
Type: Personal Care

Product 2 
Title: Harrys Potter
Type: DVD

Product 3
Title: Harrys Potter
Type: Book

Viewed Viewed Purchased

Rewrite RewriteQ1: "Harry" Q2: "Harry Potter" Q3: "Harry Potter
Book"

Figure 1: Illustration of a customer session. A session
consists of two types of items: queries and products.
The customer searched for 3 keywords sequentially and
interacted with the products returned by the search en-
gine.

graph node has unstructured text descriptions: we 042

can describe queries by search keywords and prod- 043

ucts by titles, attributes, customer reviews, and 044

other descriptors. Our goal is to simultaneously 045

encode both the graph and text aspects of the ses- 046

sion data to understand customer preferences and 047

intents in a session context. 048

Pretraining on semi-structured session data re- 049

mains an open problem. First, existing works on 050

learning from session data usually treat a session 051

as a sequence or a graph (Xu et al., 2019; You 052

et al., 2019; Qiu et al., 2020b). While they can 053

model inter-item relations, they do not capture the 054

rich intra-item semantics when text descriptions 055

are available. Furthermore, these models are usu- 056

ally large neural networks that require massive la- 057

beled data to train from scratch. Another line of re- 058

search utilizes large-scale pretrained language mod- 059

els (Lan et al., 2019; Liu et al., 2019; Clark et al., 060

2020) as text encoders for session items. However, 061

they fail to model the relational graph structure. 062

Several works attempt to improve language models 063

with a graph-structured knowledge base, such as in 064

(Liu et al., 2020; Yao et al., 2019; Shen et al., 2020). 065

While adjusting the semantics of entities according 066

to the knowledge graph, they fail to encode general 067

graph structures in sessions. 068

We propose CERES (Graph Conditioned 069

Encoder Representations for Session Data), a pre- 070

training model for semi-structured e-commerce ses- 071

sion data, which can serve as a generic session 072

encoder that simultaneously captures both intra- 073
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item semantics and inter-item relations. Beyond074

training a potent language model for intra-item se-075

mantics, our model also conditions the language076

modeling task on graph-level session information,077

thus encouraging the pretrained model to learn how078

to utilize inter-item signals. Our model architec-079

ture tightly integrates two key components: (1)080

an item Transformer encoder, which captures text081

semantics of session items; and (2) a graph condi-082

tioned Transformer, which aggregates and propa-083

gates inter-item relations for cross-item prediction.084

As a result, CERES models the higher-level inter-085

actions between items.086

We have pretrained CERES using 468,199,822087

sessions and performed experiments on three088

session-based tasks: product search, query search,089

and entity linking. By comparing with publicly090

available state-of-the-art language models and091

domain-specific language models trained on alter-092

native representations of session data, we show that093

CERES outperforms strong baselines on various094

session-based tasks by large margins. Experiments095

show that CERES can effectively utilize session-096

level information for downstream tasks, better cap-097

ture text semantics for session items, and perform098

well even with very scarce training examples.099

We summarize our contributions as follows: 1)100

We propose CERES , a pretrained model for semi-101

structured e-commerce session data. CERES can102

effectively encode both e-commerce items and103

sessions and generically support various session-104

based downstream tasks. 2) We propose a new105

graph-conditioned transformer model for pretrain-106

ing on general relational structures on text data. 3)107

We conducted extensive experiments on a large-108

scale e-commerce benchmark for three session-109

related tasks. The results show the superiority110

of CERES over strong baselines, including main-111

stream pretrained language models and state-of-112

the-art deep session recommendation models.113

2 Customer Sessions114

A customer session is the search log before a fi-115

nal purchase action. It consists of customer-query-116

product interactions: a customer submits search117

queries obtains a list of products. The customer118

may take specific actions, including view and pur-119

chase on the retrieved products. Hence, a session120

contains two types of items: queries and products,121

and various relations between them established by122

customer actions.123

We define each session as a relational graph 124

G = (V, E) that contains all queries and products 125

in a session and their relations. The vertex set 126

V = (Q,P) is partitioned into ordered query set 127

Q and unordered product set P . The queries Q = 128

(q1, . . . , qn) are indexed by order of the customer’s 129

searches. The edge set E contains two types of 130

edges: {(qi, qj), i < j} are one-directional edges 131

that connect each query to its previous queries; and 132

{qi, pj , aij} are bidirectional edges that connects 133

the ith query and jth product, if the customer took 134

action aij on product pj retrieved by query qj . 135

The queries and products are represented by tex- 136

tual descriptions. Specifically, each query is rep- 137

resented by customer-generated search keywords. 138

Each product is represented with a table of tex- 139

tual attributes. Each product is guaranteed to have 140

a product title and description. In this paper, we 141

call “product sequence” as the concatenation of 142

title and description. A product may have addi- 143

tional attributes, such as product type, color, brand, 144

and manufacturer, depending on their specific cate- 145

gories. 146

3 Our Method 147

In this section we present the details of CERES. 148

We first describe our designed session pretraining 149

task in Section 3.1, and then describe the model 150

architecture of CERES in Section 3.2. 151

3.1 Graph-Conditioned Masked Language 152

Modeling Task 153

Suppose G = (V, E) is a graph on T text items as 154

vertices, v1, . . . , vT , each of which is a sequence 155

of text tokens: vi = [vi1, . . . , viTi ], i = 1, . . . , T . 156

We propose graph-conditioned masked language 157

modeling (GMLM), where masked tokens are pre- 158

dicted with both intra-item context and inter-item 159

context: 160

pGMLM(vmasked) =
∏

jth masked
P(vij |G, {vik}kth unmasked),

(1) 161

which encourages the model to leverage informa- 162

tion graph-level inter-item semantics efficiently in 163

order to predict masked tokens. To optimize (1), 164

we need to learn token-level embeddings that are 165

infused with session-level information, which we 166

introduce in Section 3.2.2. Suppose certain tokens 167

in the input sequence of items as masked (detailed 168

below), we optimize the predictions of the masked 169

tokens with cross entropy loss. The pretraining 170

framework is illustrated in Figure 3. 171
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Figure 2: Model illustration. CERES first produces intra-item embeddings in the Item Transformer Encoder.
Then, the Graph-Conditioned Transformer aggregates and propagates session-level information to obtain inter-
item embeddings.

Input Item Tokens

Item Transformer Encoder
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Figure 3: Pretraining framework illustration. CERES
learns both inter-item and intra-item embeddings for
item tokens for Masked LM and Graph-Conditioned
Masked LM. In practice, we find it beneficial to opti-
mize both.

Token Masking Strategy. To mask tokens in172

long sequences, including product titles and de-173

scriptions, we follow (Devlin et al., 2018) and174

choose 15% of the tokens for masking. For short175

sequences, including queries and product attributes,176

there is a 50% probability that a short sequence will177

be masked, and for those sequences 50% of their178

tokens are randomly selected for masking.179

3.2 Model Architecture180

To model the probability in (1), we design two181

key components in the CERES model: 1) a182

Transformer-based item encoder, which produces183

token-level intra-item embeddings that contain con-184

text information within a single item; and 2) a185

graph-conditioned Transformer for session encod-186

ing, which produces session-level embeddings that187

encodes inter-item relations, and propagates the188

session information back to the token-level. We189

illustrate our model architecture in Figure 2.190

3.2.1 Item Transformer Encoder191

The session item encoder aims to encode intra-item192

textual information for each item in a session. We193

design the item encoder based on Transformers,194

which allows CERES to leverage the expressive195

power of the self-attention mechanism for model-196

ing domain-specific language in e-commerce ses-197

sions. Given an item i, the transformer-based item198

encoder compute its token embeddings as follows: 199

[vi1, . . . ,viTi ] = Transformeritem([vi1, . . . , viTi ])

vi = Pool([vi1, . . . , viTi ]),
(2) 200

where vij is the embedding of the jth token in the 201

ith item, and vi is the pooled embedding of the ith 202

item. At this stage, {vij}, {vi} are embeddings 203

that only encode the intra-item information. 204

Details of Item Encoding. We detail the encoding 205

method for the two types of items, queries and 206

products, in the following paragraphs. 207

Each query qi = [qi1, . . . , qiTi ] is a sequence 208

of tokens generated by customers as search key- 209

words. We add a special token at the beginning 210

of the queries, [SEARCH], to indicate that the se- 211

quence represents a customer’s search keywords. 212

Then, to obtain the token-level embedding of the 213

queries and the pooled query embedding by taking 214

the embedding of the special token [SEARCH]. 215

Each product pi is a table of K attributes: 216

p1, . . . , pK , where p1 is always the product se- 217

quence, which is the concatenation of prod- 218

uct title and bullet description. Each attribute 219

pki = [pki1, p
k
i2, . . .] starts with a special token 220

[ATTRTYPE], where ATTRTYPE is replaced with 221

the language descriptor of the attribtue. Then, 222

the Transformer is used to compute token and sen- 223

tence embeddings for all attributes. The product 224

embedding is obtained by average pooling of all 225

attribute’s sentence embeddings. 226

3.2.2 Graph-Conditioned Session 227

Transformer 228

The Graph-Conditioned Session Transformer aims 229

to infuse intra-item and inter-item information 230

to produce item and token embeddings. For 231

this purpose, we first design a position-aware 232

graph neural network (PGNN) to capture the 233
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Item Token EmbeddingsLatent Conditioning Tokens

Figure 4: Illustration of cross-attention over latent con-
ditioning tokens. The item token embeddings perform
self-attention as well as cross-attention over latent con-
ditioning tokens, thus incorporating session-level in-
formation. Latent conditioning tokens perform self-
attention to update their embeddings, but do not attend
to item tokens to preserve session-level information.

inter-item dependencies in a session graph to pro-234

duce item embeddings. Then conditioned on the235

PGNN-learned item embedding, we propose a236

cross-attention Transformer, which produces in-237

fused item and token embeddings for the Graph-238

Conditioned Masked Language Modeling task.239

Position-Aware Graph Neural Network. We240

use a GNN to capture inter-item relations. This241

will allow CERES to obtain item embeddings that242

encode the information from other locally corre-243

lated items in the session. Let [v1, . . . ,vN ] denote244

the item embeddings produced by the intra-item245

transformer encoder. We treat them as hidden states246

of nodes in the session graph G and feed them to247

the GNN model, obtaining session-level item em-248

beddings [vh
1 , . . . ,v

h
N ].249

The items in a session graph are sequential ac-250

cording to the order the customers generated them.251

To let the GNN model learn of the positional in-252

formation of items, we train an item positional253

embedding in analogous to positional embedding254

of tokens. Before feeding the item embeddings to255

GNN, the pooled item embeddings are added item256

positional embeddings according to their positions257

in the session’s item sequence. In this way, the item258

embeddings {vi}i∈V are encoded their positional259

information as well.260

Cross-Attention Transformer. Conditioned on261

PGNN, we design a cross-attention transformer262

which propagates session-level information in263

PGNN-produced item embeddings to all tokens264

to produce token embeddings that are infused with265

both intra-item and inter-item information.266

In order to propagate item embeddings to tokens,267

we treat item embeddings as latent tokens that can268

be treated as a “part” of item texts. for each item i,269

we first expand vh
i to K latent conditioning tokens270

by using a multilayer perceptron module to map271

vh
i to K embedding vectors [vh

i1, . . . ,v
h
iK ] of the272

same size. For each item i, we compute its latent273

conditioning tokens by averaging all latent tokens 274

in its neighborhood. Suppose N(i) is the set of all 275

neighboring items in the session graph, itself in- 276

cluded. In each position, we take the average of the 277

latent token embeddings in N(i) as the kth latent 278

conditioning token, vh
ik, for the ith item. Then, we 279

concatenate the latent conditioning token embed- 280

dings and the item token embeddings obtained by 281

the session item encoder: 282

[vh
i1, . . . ,v

h
iK ,vi1, . . . ,viNi ]. (3) 283

Finally, we compute the token-level embeddings 284

with session information by feeding the concate- 285

nated sequence to a shallow cross-attention Trans- 286

former. The cross-attention Transformer is of the 287

same structure as normal Transformers. The dif- 288

ference is that we prohibit the latent conditioning 289

tokens from attending over original item tokens 290

to prevent the influx of intra-item information po- 291

tentially diluating session-level information stored 292

in latent conditioning tokens. Illustration of cross- 293

attention Transformer is provided in Figrue 4. 294

We use the embeddings produced by this cross- 295

attention Transformer as the final embeddings for 296

modeling the token probabilities in Equation (1) 297

and learning the masked language modeling tasks. 298

During training, the model is encouraged to learn 299

good token embeddings with the Item Transformer 300

Encoder, as better embeddings {vij}Ni
j=1 is neces- 301

sary to improve the quality of {vc
ij}

Ni
j=1. The 302

Graph-Conditioned Transformer will be encour- 303

aged to produce high-quality session-level embed- 304

dings for the GMLM task. Hence, CERES is en- 305

couraged to produce high-quality embeddings that 306

unify both intra-item and inter-item information. 307

3.3 Finetuning 308

When finetuning CERES for downstream tasks, we 309

first obtain session-level item embeddings. The 310

session embedding is computed as the average of 311

all item embeddings. To obtain embedding for a 312

single item without session context, such as for 313

retrieved items in recommendation tasks, only the 314

Item Transformer Encoder is used. 315

To measure the relevance of an item to a given 316

session, we first transform the obtained embed- 317

dings by separate linear maps. Denote the trans- 318

formed session embeddings as s and item embed- 319

dings as y. The similarity between them is com- 320

puted by cosine similarity dcos(s,y). To finetune 321

the model, we optimize a hinge loss on the cosine 322

similarity between sessions and items. 323
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4 Experiments324

4.1 Experiment Setup325

Dataset. We collected customer sessions from326

Amazon for pretraining and finetuning on down-327

stream tasks. 468,199,822 customer sessions are328

collected from August 1 2020 to August 31 2020329

for pretraining. 30,000 sessions are collected from330

September 2020 to September 7 2020 for down-331

stream tasks. The pretraining and downstreaming332

datasets are from disjoint time spans to prevent data333

leakage. All data are cleaned and anonymized so334

that no personal information about customers was335

used. Each session is collected as follows: when a336

customer perform a purchase action, we backtrace337

all actions by the customer in 600 seconds before338

the purchase until a previous purchase is encoun-339

tered. The actions of customers include: 1) search,340

2) view, 3), add-to-cart, and 4) purchase. Search341

action is associated with customer generated query342

keywords. View, add-to-cart, and purchase are as-343

sociated with the target products. All the products344

in the these sessions are gathered with their product345

title, bullet description, and various other attributes,346

including color, manufacturer, product type, size,347

etc. In total, we have 37,580,637 products. The348

sessions have an average of 3.24 queries and 4.36349

products. Queries have on average 5.63 tokens,350

while product titles and bullet descriptions have351

averagely 17.42 and 96.01 tokens.352

Evaluation Tasks and Metrics. We evaluate all353

the compared models on the following tasks: 1)354

Product Search. In this task, given observed cus-355

tomer behaviors in a session, the model is asked356

to predict which product will be purchased from a357

pool of candidate products. The purchased prod-358

ucts are removed from sessions to avoid trivial in-359

ference. The candidate product pool is the union of360

all purchased products in the test set and the first361

10 products returned by the search engine of all362

sessions in the test set.363

2) Query Search. Query Search is a recommen-364

dation task where the model retrieves next queries365

for customers which will lead to a purchase. Given366

a session, we hide the last query along with prod-367

ucts associated with it, i.e. viewed or purchased368

with the removed query. Then, we ask the model369

to predict the last query from a pool of candidate370

queries. The candidate query pool consists of all371

last queries in the test set.372

3) Entity Linking. In this task we try to under-373

stand the deeper semantics of customer sessions. 374

Specifically, if customer purchases a product in a 375

session, the task is to predict the attributes of the 376

purchased product from the rest contexts in the 377

session. In total, we have 60K possible product 378

attributes. 379

Baselines. The compared baselines can be catego- 380

rized into three groups: 381

1) General-domain pretrained language mod- 382

els which include BERT (Devlin et al., 2018), 383

RoBERTa (Liu et al., 2019), and ELECTRA (Clark 384

et al., 2020). These models are state-of-the-art 385

pretrained language models, which can serve as 386

general-purpose language encoders for items and 387

enable downstream session-related tasks. Specifi- 388

cally, the language encoders produce item embed- 389

dings first, and compose session embeddings by 390

pooling the items in sessions. To retrieve items 391

for sessions, one can compare the cosine similarity 392

between sessions and retrieved items. 393

2) Pretrained session models which are pre- 394

trained models on e-commerce session data. Specif- 395

ically, we pretrain the following language models 396

using our session data: a) Product-BERT, which 397

is a domain-specific BERT model pretrained with 398

product information; b) SQSP-BERT, where SQSP 399

is short for Single-query Single-Product. SQSP- 400

BERT is pretrained on query-product interaction 401

pairs with language modeling and contrastive learn- 402

ing objectives. They are used in the same manner 403

in downstream tasks as general-domain pretrained 404

language models. The detailed configurations are 405

provided in the Appendix. 406

3) Session-based recommendation methods 407

including SR-GNN (Wu et al., 2019b) and 408

NISER+ (Gupta et al., 2019), which are state-of- 409

the-art models for session-based product recom- 410

mendation on traditional benchmarks, including 411

YOOCHOOSE and DIGINETICA; and Nvidia’s 412

MERLIN (Mobasher et al., 2001), which is the best- 413

performing model in the recent SIGIR Next Items 414

Prediction challenge (Kallumadi et al., 2021) 415

To evaluate the performance on these tasks, we 416

employ standard metrics for recommendation sys- 417

tems, including MAP@K, and Recall@K. 418

4.2 Implementation Details 419

The implementation details for pretraining and fine- 420

tuning stages are described as follows. 421

Pretraining details. We developed our model 422

based on Megatron-LM (Shoeybi et al., 2019). We 423

used 768 as the hidden size, a 12-layer transformer 424
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blocks as the backbone language model, a two-425

layer Graph Attention Network and three-layer426

Transformer as the conditioned language model427

layers. In total, our model has 141M parameters.428

The model is trained for 300,000 steps with a batch429

size of 512 sessions. The parameters are updated430

with Adam, with peak learning rate as 3e− 5, 1%431

steps for linear warm-up, and linear learning rate432

decay after warm-up until the learning rate reaches433

the minimum 1e− 5. We trained our model on 16434

A400 GPUs on Amazon AWS for one week.435

Finetuning details. For each downstream task,436

we collected 30,000 sessions for training, 3000 for437

validation and 5000 for testing. For each of the pre-438

trained model, we finetune them for 10 epochs with439

a maximal learning rate chosen from [1e-4, 1e-5,440

5e-5, 5e-6] to maximize MAP@1 on the validation441

set. The rest of the configuration of optimizers is442

the same as in pretraining.443

4.3 Main Results444

4.3.1 Product Search445

Table 1 shows the performance of different meth-446

ods for the product search task. We observe that447

CERES outperforms domain-specific methods by448

more than 1% and general-domain methods by over449

6% in MAP@1. The second best performing model450

is Product-BERT, which is pretrained on product451

information alone.452

We also compared with session-based recom-453

mendation systems. SR-GNN and NISER+ model454

only session graph structure but not text seman-455

tics; hence they have limited performance because456

of the suboptimal representation of session items.457

While MERLIN can capture better text semantics,458

its text encoder is not trained on domain-specific459

e-commerce data. While it can outperform general-460

domain methods, its performance is lower than461

Product-BERT and CERES. The benefits of joint462

modeling of text and graph data and the Graph-463

Conditioned MLM allow CERES to outperform464

existing session recommendation models.465

4.3.2 Query Search466

Table 2 shows the performance of different meth-467

ods on Query Search. Query Search is a more dif-468

ficult task than Product Search because customer-469

generated next queries are of higher variance. In470

this challenging task, CERES outperforms the best471

domain-specific model by over 7% and general-472

domain model by 12% in all metrics.473

4.3.3 Entity Linking 474

Table 3 shows the results on Entity Linking. Sim- 475

ilar to Query Search, this task also requires the 476

models to tie text semantics (queries/product at- 477

tributes) to a customer session, which requires a 478

deeper understanding of customer preferences. It is 479

easier than Query Search as product attributes are 480

of lower variance. However, the product attributes 481

that the customer prefer rely more on session in- 482

formation, as they may have been reflected in the 483

past search queries and viewed products. In this 484

task, CERES outperforms domain-specific models 485

and general-domain models by averagely 9% in 486

MAP@1 and 6% in MAP@32 and MAP@64. 487

4.4 Further Analysis and Ablation Studies 488

In this section we present further studies to under- 489

stand: 1) the effect of training data sizes in the 490

downstream task; 2) the effects of different com- 491

ponents in CERES for both the pretraining and 492

finetuning stages. following observations: 493

CERES is highly effective when training data 494

are scarce. We compare CERES with two 495

strongest baselines (BERT, and Product-BERT) 496

when the training sample size varies. Figure 5 497

shows the MAP@64 scores of these methods on 498

Product Search and Query Search when training 499

size varies. Clearly, the advantage of CERES is 500

greater when training data is extremely small. With 501

a training size of 300, CERES can achieve a decent 502

performance of about 37.55% in Product Search 503

and 36.37% in Query Search, while the baseline 504

models cannot be trained sufficiently with such 505

small-sized data. This shows that the efficient uti- 506

lization of session-level information in pretraining 507

and fine-tuning stages make the model more data 508

efficient than other pretrained models. 509

300 1000 3000 10000 30000
0
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40
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80

CERES
Product Bert
Bert

(a) Product Search
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(b) Query Search

Figure 5: Effect of sample size on Product Search and
Query Search. x-axis represents the training data size
and y-axis represents MAP@64.

Graph-Conditioned Transformer is Vital to 510

Pretraining. Without the Graph-Conditioned 511

Transformer in pretraining, our model is essen- 512
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Method map@1 recall@1 map@32 recall@32 map@64 recall@64
SR-GNN 36.313 37.284 50.683 99.592 60.413 99.689
NISER+ 37.193 38.144 52.855 98.293 62.371 99.111
MERLIN 89.744 90.166 93.067 98.98 93.075 99.33
BERT 85.096 84.688 89.172 99.082 89.18 99.301
RoBERTa 79.647 78.963 83.207 95.396 83.25 97.494
Electra 85.897 86.32 89.841 99.344 89.845 99.519
Product-Bert 91.026 91.71 93.856 99.563 93.856 99.563
SQSP-Bert 85.577 85.795 90.049 99.038 90.057 99.301
CERES 92.628 93.094 94.848 99.551 94.853 99.65

Table 1: The performance of different methods for Product Search, after fine-tuning with 30,000 training sessions.
Method map@1 recall@1 map@32 recall@32 map@64 recall@64
BERT 47.276 47.627 60.143 92.553 60.214 95.417
RoBERTa 26.603 26.323 37.722 74.468 37.839 80.196
Electra 32.853 32.788 47.512 90.426 47.632 95.663
Product-BERT 52.724 52.973 66.035 95.99 66.065 97.463
SQSP-BERT 45.833 46.29 60.195 92.881 60.26 95.499
CERES 59.936 60.284 72.329 97.463 72.331 97.627

Table 2: The performance of different methods for Query Search, after fine-tuning with 30,000 training sessions.

tially the same as domain-specific baselines, such513

as Product-BERT, which are trained on session data514

but only with intra-item text signals. While SQSP-515

BERT has access to session-level information when516

maximizing the masked language modeling objec-517

tive, the lack of a dedicated module for GMLM518

results in worse performance, as shown in the main519

experiment results.520

We could train the Graph-Conditioned Trans-521

former from scratch in the finetuning stage. We522

present a model called CERES w/o Pretrain, which523

attaches the Graph-Conditioned Session Trans-524

former to Product-BERT as the Item Transformer525

Encoder. As shown in Figure 6, this ablation526

method achieves MAP@64 scores of 89.341%527

in Product Search, 64.890% in Query Search,528

and 74.031% in Entity Linking, which are be-529

low Product-BERT. This shows that the pretrain-530

ing stage of the Graph-Conditioned Transformer531

is necessary to facilitate its ability to aggregate532

and propagate session-level information for down-533

stream tasks.534

Graph-Conditioned Transformer Improves535

Item-level Embeddings. We also present CERES536

w/o Cond, which has the same pretrained model537

as CERES, but only uses the Item Transformer538

Encoder in the finetuning stage. The Item539

Transformer Encoder is used to compute session540

item embeddings that contain only item-level541

information, and then takes the average of these542

embeddings as session embedding. As shown in543

Figure 6, CERES w/o Cond acheives 94.741%,544

72.175%, and 81.03% respectively in Product545

Search, Query Search, and Entity Linking,546

observing a drop of 0.1% to 0.2% in performance547

compared with CERES. The performance drop548

Product Search Query Search Entity Linking0

20

40

60

80

M
AP

@
64

MAP@64 for Ablation Models
CERES
CERES w/o Cond
CERES w/o Pretrain
CERES w/o GNN

Figure 6: Results on three tasks on ablation models. y-
axis represents MAP@64. CERES w/o Cond is CERES
without the Graph-Conditioned Transformer in the fine-
tuning stage. CERES w/o Pretrain is CERES without
pretraining the Graph-Conditioned Transformer, but in-
stead training it from scratch in the finetuning stage.
CERES w/o GNN is CERES pretrained without the
GNN module.

is minor and CERES w/o Cond still outperforms 549

baseline pretrained language models. Hence, the 550

Graph-Conditioned Transformer in the pretraining 551

stage helps the Item Transformer Encoder to learn 552

better item-level embeddings that can be used for 553

more effective leveraging of session information in 554

the downstream tasks. 555

Graph Neural Networks Improve Representa- 556

tion of Sessions. In CERES w/o GNN, we pretrain 557

a CERES model without a Graph Neural Network. 558

Specifically, CERES w/o GNN skips the neighbor- 559

hood information aggregation for items, and uses 560

item-level embeddings obtained by the Item Trans- 561

former Encoder directly as latent conditioning to- 562

kens. We train and finetune this model with the 563

same setup as CERES. Without GNN, the model’s 564

performance is consistently lower than CERES, 565

achieving 93.453%, 71.231%, 80.26% MAP@64 566

in three downstream tasks, observing a 1.13% per- 567

formance drop. This shows that GNN’s aggrega- 568
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Method map@1 recall@1 map@32 recall@32 map@64 recall@64
BERT 55.609 55.353 66.386 90.511 66.481 95.073
RoBERTa 66.506 65.754 74.516 93.248 74.561 95.438
Electra 62.321 62.365 62.985 68.296 63.122 74.318
Product-Bert 66.827 66.393 74.611 94.404 74.641 96.046
SQSP-Bert 63.942 64.872 72.232 91.241 72.307 94.891
CERES 75.481 75.456 81.121 95.255 81.16 96.898

Table 3: The performance of different methods for Entity Linking, after fine-tuning with 30,000 training sessions.

tion of information can help item-level embeddings569

encode more session-level information, improving570

performance in downstream tasks.571

Model Efficiency. CERES has additional few572

GNN and Transformer layers attached to the end of573

the model. The additional layers bring ∼20% addi-574

tional inference time compared to standard BERT575

with 12 layers and 768 hidden size.576

5 Related work577

Pretrained language models such as BERT (Devlin578

et al., 2018), BART (Lewis et al., 2019), ELEC-579

TRA (Clark et al., 2020), RoBERTa (Liu et al.,580

2019) have pushed the frontiers of many NLP tasks581

by large margins. Their effectiveness and efficiency582

in parallelism have made them popular and general-583

purpose language encoders for many text-rich appli-584

cations. However, they are not designed to model585

relational and graph data, and hence are not the586

best fit for e-commerce session data.587

Researchers have also sought to enhance text588

representations in pretrained models with knowl-589

edge graphs (Shen et al., 2020; Liu et al., 2020;590

Yao et al., 2019; Sun et al., 2020, 2021). While591

these models consider a knowledge graph struc-592

ture on top of text data, they generally use entities593

or relations in knowledge graphs to enhance text594

representations, but cannot encode arbitrary graph595

structures. This is not sufficient in session-related596

applications as session structures are ignored.597

Many works have been proposed to learn pre-598

trained graph neural networks. Initially, methods599

were proposed for domain-specific graph pretrain-600

ing (Hu et al., 2019a,b; Shang et al., 2019). How-601

ever, they rely on pre-extracted domain-specific602

node-level features, and cannot be extended to ei-603

ther session data or text data as nodes. Recently,604

many works have been proposed to pretrain on gen-605

eral graph structure (Hu et al., 2020; You et al.,606

2020; Qiu et al., 2020a). However, they cannot607

encode the semantics of text data as nodes.608

Contextual information in sessions have been609

shown beneficial to various related recommenda-610

tion tasks, such as product recommendation (Wu611

et al., 2019b; Dehghani et al., 2017; Jannach and612

Ludewig, 2017; Gupta et al., 2019) and query 613

rewriting (Li et al., 2017; Cucerzan and White, 614

2007). Many existing session-based recommenda- 615

tion methods seek to exploit the transitions between 616

items (Yap et al., 2012; Rendle et al., 2010; Wang 617

et al., 2018; Li et al., 2017) and considering ses- 618

sions as graphs (Xu et al., 2019; Ruihong et al., 619

2021; Wang et al., 2020). 620

6 Limitations and Risks 621

This paper limits the application of CERES to ses- 622

sion data with text descriptions. CERES has the po- 623

tential of being a universal pretraining framework 624

for arbitrary heterogeneous data. For example, ses- 625

sions can include product images and customer 626

reviews for more informative multimodal graphs. 627

We leave this extension for future work. 628

Session data are personalized experience for cus- 629

tomers and could cause privacy issues if data are 630

not properly anonymized. In application, the model 631

should be used to avoid exploitation or leakage of 632

customers personal profiles and preferences. 633

7 Conclusion 634

We proposed a pretraining framework, CERES, 635

for learning representations for semi-structured e- 636

commerce sessions. We are the first to jointly 637

model intra-item text and inter-item relations in ses- 638

sion graphs with an end-to-end pretraining frame- 639

work. By modeling Graph-Conditioned Masked 640

Language Modeling, our model is encouraged to 641

learn high-quality representations for both intra- 642

item and inter-item information during its pretrain- 643

ing on massive unlabeled session graphs. Further- 644

more, as a generic session encoder, our model 645

enabled effective leverage of session information 646

in downstream tasks. We conducted extensive 647

experiments and ablation studies on CERES in 648

comparison to state-of-the-art pretrained models 649

and recommendation systems. Experiments show 650

that CERES can produce higher quality text rep- 651

resentations as well as better leverage of session 652

graph structure, which are important to many e- 653

commerce related tasks, including product search, 654

query search, and query understanding. 655
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Attribute Value
Title Chemex Pour-over Coffee Maker

Bullet Description Just coffee maker.
Color N/A
Brand Chemex

Manufacturer Chemex
Product Type Coffee Maker

Table 4: Example Product Table. Each product is
guaranteed to have a title. Most products have bul-
let descriptions, which can be split into multiple en-
tries. Products could have other attributes, such as
color, brand, product type, etc. as well.

A Details on Session Data834

A.1 Product Attributes.835

A product is represented with a table of attributes.836

Each product is guaranteed to have a product title837

and bullet description. In this paper, we regard838

the product title as the representative sequence of839

the product, called “product sequence”. A product840

may have additional attributes, such as product841

type, color, brand, and manufacturer, depending on842

specific products.843

A.2 Alternative Pretraining Corpora844

In this section we introduce alternative pretrain-845

ing corpora that encode information in a session,846

including products and queries, but not treating847

sessions as a whole.848

A.2.1 Product Corpus849

In this corpus, we gathered all product information850

that appeared in the sessions from August 2020 to851

September 2020. Each product will have descrip-852

tions such as product title and bullet description,853

and other attributes like entity type, product type,854

manufacturer, etc. Particularly, bullet description855

is composed of several lines of descriptive facts856

about the product. All products without titles are857

removed. Each of the remaining product forms a858

paragraph, where the product title comes as the first859

sentence, followed by the entries of bullet descrip-860

tions each as a sentence, and product attributes.861

An example document in this corpora is as fol-862

lows:863

[Title] Product Title864

[Bullet Description] Description bullet 1865

[Bullet Description] Description bullet 2866

[Product Type] Product Type867

[Color] Color868

A.2.2 Single-Query Single-Product (SQSP) 869

Corpus 870

In this corpus, we treat each session as a document 871

and each query-product pair as a sentence. A query- 872

product pair in the document are the pairs of queries 873

and products that are either viewed or clicked with 874

the given queries. A query-product pair looks like 875

the follows: 876

[SEARCH] search keywords [TITLE] product title877

[BULLET_DESCRIPTION] description 878

[ENTITY_TYPE] entity type 879

where the first [SEARCH] special token indicates 880

a field of query keywords, and [TITLE] indicates 881

fields of product information starting with product 882

tittles. In this corpus, we model the one-to-one 883

relation between queries and products. 884

A.2.3 Session Corpus 885

In this corpus, we treat each session as a document 886

and sequentially put text representations of items 887

in a session to the document with special tokens in- 888

dicating the fields of items. An example document 889

looks like the follows: 890

[SEARCH] keywords 1 [SEARCH] keywords 2 [CLICK]891

[TITLE] product 1 [SEARCH] keywords 3 [PURCHASE]892

[TITLE] product 2 893

In this example, the customer first attempted to 894

search with keywords 1 and then modified the key- 895

words to keywords 2. The customer then clicked on 896

product 1. At last, the customer modified his search 897

to keywords 3 and purchased product 2. In this cor- 898

pus, session information is present in a document, 899

but the specific relations between elements are not 900

specified. The comparison of different datasets are 901

in Table 5. 902

A.3 Alternative Pretraining Methods 903

We introduce the alternative pretraining models. 904

• Product-Bert. It is pretrained on the Product 905

Corpus. Specifically, we treat each product 906

in the Product Corpus as an article. Product 907

titles is always the first sentence, followed by 908

paragraphs of bullet descriptions, which can 909

contain multiple sentences. Then, each addi- 910

tional product attribute is a sentence added 911

after the bullet descriptions. 912

Product Bert is trained for 300,000 steps, with 913

a 12-layer transformer with a batch size of 914

6144 and peak learning rate of 1e-3, 1% linear 915
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Corpus Product Info Query Info Relational Session Context
Product 3 7 7 7

SQSP 3 3 3 7

Session-Corpus 3 3 7 3

Session-Graph 3 3 3 3

Table 5: Comparision of different pretraining dataset. Product Corpus has access only to product information.
SQSP models on the queries and query-product relations, without access to session context. Session Corpus has
access to contextual information in a session, but does not model on relations between objects. Session-Graph has
access to all information and models on the relational nature of nodes in the session graph.

warm-up steps, and 1e−2 linear weight decay916

to a minimum learning rate of 1e-5.917

• SQSP-Bert. It is pretrained on SQSP Cor-918

pus. The SQSP Bert uses the same Trans-919

former backbone as Product Bert. Given each920

query-product pair, SQSP feeds the text pair921

sequence to the Transformer for token embed-922

dings for masked language modeling loss. In923

addition to language modeling, for each query-924

product pair, we sample a random product for925

the query as a negative query-product pair.926

The text pair sequence of the negative sample927

is also fed to the Transformer. Then, a dis-928

criminator is trained in the pretraining stage929

to distinguish the ground-truth query-product930

pairs and randomly sampled pairs. The dis-931

criminator’s classification loss should serve as932

a contrastive loss.933

SQSP Bert is trained with the same configura-934

tion of Product Bert.935

B Details on Evaluation Metrics936

Mean Average Precision. Suppose that for a ses-937

sion, m items are relevant and N items are retrieved938

by the model, the Average Precision (AP) of a ses-939

sion is defined as940

AP@N =
1

min(m,N)

N∑
k=1

P (k)rel(k), (4)941

where P (k) is the precision of the top k re-942

trieved items, and rel(k) is an indicator function943

of whether the kth item is relevant. As we have at944

most one relevant item for each session, the above945

metric reduces to 1
r , where r is the rank of the rele-946

vant item in the retrieved list, and k =∞ when the947

relevant item is not retrieved. MAP@N averages948

AP@N over all sessions,949

MAP@N =
1

|S|
∑
s∈S

1

rs
(5)950

where rs is the rank of the relevant item for a spe- 951

cific session s. MAP in this case is equivalent to 952

MRR. 953

Mean Average Precision by Queries (MAPQ). 954

Different from MAP, MAPQ averages AP over last 955

queries instead of sessions. SupposeQ is the set of 956

unique last queries, and S(q), q ∈ Q is the set of 957

sessions whose last queries are q, then the average 958

precision for one query q is 959

APQ@N =
1∑k

i=1 rel(k)

N∑
k=1

min(1,

∑
rs≤k rel(k)

k
)

(6) 960

then we sum over all queries to obtain MAPQ@N. 961

Mean Reciprocal Rank by Queries (MRRQ). 962

MRRQ averages MRR over session last queries 963

instead of sessions. 964

MRRQ@N =
1

|Q|
∑
q∈Q

max
s∈S(q)

(rs) (7) 965

Recall. Recall@N calculates the percentage of 966

sessions whose relevant items were retrieved 967

among the top N predictions. 968
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