First the worst: Finding better gender translations during beam search

Anonymous ACL submission

Abstract
Generating machine translations via beam search seeks the most likely output under a model. However, beam search has been shown to amplify demographic biases exhibited by a model. We aim to address this, focusing on gender bias resulting from systematic errors in grammatical gender translation. Almost all prior work on this problem adjusts the training data or the model itself. By contrast, our approach changes only the inference procedure. We explore two techniques: applying constraints during inference to improve gender diversity in n-best lists, and reranking n-best lists using gender features obtained from the source sentence. Combining these methods gives large gains in gender translation accuracy for three language pairs without requiring additional bilingual data or retraining.

1 Introduction
Neural language generation models optimized by likelihood have a tendency towards ‘safe’ word choice. This lack of output diversity has been noted in NMT (Vanmassenhove et al., 2019) and throughout NLP (Li et al., 2016; Sultan et al., 2020). Model-generated language may be repetitive or stilted. More insidiously, generating the most likely output based only on corpus statistics can amplify any existing biases in the corpus (Zhao et al., 2017).

Potential harms arise when biases around word choice or grammatical gender inflections reflect demographic or social biases (Sun et al., 2019). The resulting gender mistranslations could involve implicit misgendering of a user or other referent, or perpetuation of social stereotypes about the ‘typical’ gender of a referent in a given context.

Dominant approaches to the problem almost exclusively involve retraining (Vanmassenhove et al., 2018; Escudé Font and Costa-jussà, 2019; Stafanovičs et al., 2020) or tuning (Saunders and Byrne, 2020; Basta et al., 2020) on gender-adjusted data. Such approaches are often computationally expensive and risk introducing new biases (Shah et al., 2020). Instead, this paper seeks to improve translations from existing models. Roberts et al. (2020) have recently highlighted beam search’s tendency to amplify gender bias – we aim to guide it instead towards finding better gender translations.

Our contributions are as follows: we rerank the n-best lists of NMT models exhibiting gender bias, demonstrating that we can extract better gender translations from the original model’s beam. We also generate new n-best lists subject to gendered inflection constraints, and show this increases the frequency of correctly gendered entities appearing in n-best lists. We make no changes to the NMT model or training data, and require only monolingual resources for the source and target languages.

1.1 Related work
Prior work mitigating gender bias in NLP often involves adjusting training data, directly (Zhao et al., 2018) or via embeddings (Bolukbasi et al., 2016). Our inference-only approach is closer to work on controlling or ‘correcting’ gendered output.

Controlling gender translation generally involves introducing external information into the model. Miculicich Werlen and Popescu-Belis (2017) integrate cross-sentence coreference links into reranking to improve pronoun translation. Vanmassenhove et al. (2018) and Moryossef et al. (2019) incorporate sentence-level gender features into training data and during inference respectively. Token-level source gender tags are used by Stafanovičs et al. (2020) and Saunders et al. (2020). As in this prior work, our focus is applying linguistic gender-consistency information, rather than obtaining it.

A separate line of work treats gender-related inconsistencies as a search and correction problem. Roberts et al. (2020) find that beam search amplifies gender bias compared to sampling search. Saunders and Byrne (2020) rescore trans-
2 Finding consistent gender in the beam

There are two elements to our proposed approach. First, we produce an n-best list of translations using our single model per language pair. We use either standard beam search or a two-pass approach where the second pass searches for differently-gendered versions of the highest likelihood initial translation. We then select a translation from the list, either by log likelihood or by how far the target language gender features correspond to the source sentence.

2.1 Gender-constrained n-best lists

We produce n-best lists in two ways. One option is standard beam search. Alternatively, we synthesize n-best lists using the gendered constraint scheme of Saunders and Byrne (2020), illustrated in Figure 1. This involves a second gender-constrained beam search pass to reinflect an initial hypothesis, producing a synthesized n-best list containing gendered alternatives of that hypothesis.

The second reinflection pass uses a target language gender inflection transducer which defines grammatically gendered reinflections. For example, Spanish definite article el could be unchanged or reinflected to la, and profession noun médico could be reinflected to médica (and vice versa). Composing the reinflections with the original hypothesis generates a constrained hypothesis lattice.

We can now perform constrained beam search, which can encourage NMT to output specific vocabulary (Stahlberg et al., 2016; Khayrallah et al., 2017). The only difference from standard beam search is that gender-constrained search only expands translations forming paths in the constrained hypothesis lattice. In the Figure 1 example, beam- n search would produce the n most likely translations, while the gender-constrained pass would only produce the 4 translations in the lattice.

Importantly, for each language pair we use just one NMT model to produce gendered variations of its own hypotheses. Unlike Saunders and Byrne (2020) we do not reinflect translations with a separate gender-sensitive model. This removes the complexity, potential bias amplification and computational load of developing the gender-translation-specific models central to their approach.

While we perform two full inference passes to simplify implementation, further efficiency improvements are possible. For example, the source sentence encoding could be reused for the reinflection pass. In principle, some beam search constraints could be applied in the first inference pass, negating the need for two passes. These potential efficiency gains would not be possible if using a separate NMT model to reinflect the translations.

2.2 Reranking gendered translations

Algorithm 1 Gender-reranking an n-best list

Input: x: Source sentence; Y: set of translation hypotheses for x; L: Log likelihoods for all y ∈ Y; A: word alignments between x and all y

\[p, p_g \leftarrow \text{pronoun_and_gender}(x) \quad \text{▷ Or oracle} \]
\[e \leftarrow \text{get_entity}(x, p) \quad \text{▷ Or oracle} \]

for all \(y \in Y \) do

\[y_{\text{score}} \leftarrow 0 \]

for all \(t \in A_y(e) \) do

\[t_g \leftarrow \text{get_gender}(t) \]

if \(t_g = p_g \) then

\[y_{\text{score}} += 1 \]

end if

end for

end for

\[\hat{y} = \text{argmax}_{y}(y_{\text{score}}, y \in Y) \]
\[\hat{y} = \text{argmax}_{y}(L(y), y \in \hat{Y}) \]

return \(\hat{y} \)

We select an output translation from an n-best list in two ways, regardless of whether the list was produced by beam search or the two-pass approach. One option selects the highest-likelihood translation under the NMT model. Alternatively, we rerank for gender consistency with the source
sentence. We focus on either oracle or inferred entities coreferent with a source pronoun.

The oracle case occurs in several scenarios. Oracle entity labels could be provided as for the WinoMT challenge set (Stanovsky et al., 2019). They could also be user-defined for known entities (Vannmassenhove et al., 2018), or if translating the same sentence with different entity genders to produce multiple outputs (Moryossef et al., 2019).

The inferred case determines entities automatically. In Algorithm 1, pronoun_and_gender finds a source pronoun and its grammatical gender. We then find coreferent entities using a target language coreference resolution tool in get_entity. For brevity Algorithm 1 is written for one entity per sentence: in practice there is no such limit.

For each entity we find the aligned translated entity, similar to Stafanović et al. (2020). We determine the translated entity’s grammatical gender by target language morphological analysis in get_gender. Finally we rerank, first by source gender agreement, tie-breaking with log likelihood.

3 Experimental setup

We translate English into German, Spanish and Hebrew using Transformers (Vaswani et al., 2017) with 30K BPE vocabularies (Sennrich et al., 2016). We train the en-de model on WMT19 newstask data including filtered Paracrawl (Barrault et al., 2019), en-es on UNCorpus data (Ziemski et al., 2016), and en-he on the IWSLT corpus (Cettolo et al., 2014).

For further training details see Appendix A.

Some proposed steps require tools or resources:
1) For gender-constrained search, creating gender inflection transducers; 2) For inferred-reranking, finding source gendered entities 3) For all reranking, finding translated gendered entities; 4) For all reranking, getting translated entity genders.

For 1) we use Spacy (Honnibal and Montani, 2017) and DEMorphy (Altinok, 2018) morphological analysis for Spanish and German, and fixed rules for Hebrew, on large vocabulary lists to produce gender transducers, directly following Saunders and Byrne (2020). The highest likelihood outputs from beam-4 search form the original hypothesis lattices. For 2) we use a RoBERTa model (Liu et al., 2019) tuned for coreference on WinoMT challenge data. For 3) we use fast_align (Dyer et al., 2013). For 4) we use the same morphological analysis as in 1, now on translated entities.

We evaluate gender translation on WinoMT (Stanovsky et al., 2019), measuring overall accuracy and ΔG (F1 score difference between masculine and feminine labelled sentences, closer to 0 is better). As WinoMT lacks references we assess cased BLEU on WMT18 (en-de, 3K sentences), WMT13 (en-es, 3K sentences) and IWSLT14 (en-he, 962 sentences) using SacreBLEU (Post, 2018). For validation during NMT model training we use test sets from earlier years of the same tasks.

4 Results and discussion

We first discuss the possibilities of oracle-reranking n-best lists in Table 1, before proceeding to the more general scenario of inferred-reranking. Comparing lines 1 vs 2, gender-constrained beam-4 search scores very closely to standard beam-4 search for all metrics and language pairs if simply taking the highest likelihood output. For beam-20 (5 vs 6) en-de and en-es, constraints do mitigate the BLEU degradation common with larger beams (Stahlberg and Byrne, 2019).

In lines 1 vs 3, 5 vs 7, we oracle-rerank beam search outputs instead of choosing by highest likelihood. We see about 10% accuracy improvement relative to non-reranked beam-4 across languages, and over 25% relative improvement for beam-20. Combining oracle-reranking and constraints further boosts accuracy. This suggests constraints encourage presence of better gender translations in n-best lists, but that reranking is needed to extract them.

Using beam-20 significantly improves the performance of reranking. With constraints, beam-20 oracle-reranking gives absolute accuracy gains of about 20% over the highest likelihood beam search output. However, beam-4 shows most of the improvement over that baseline. We find diminishing returns as beam size increases (Appendix B), suggesting large, expensive beams are not necessary.

So far we have shown accuracy improvements with oracle reranking, indicating that the synthesized n-best lists often contain a gender-accurate hypothesis. In Table 2, we explore inferred-reranking using a RoBERTa model, investigating whether that hypothesis can be found automatically.

We find very little degradation in WinoMT accu-

[fairseq/tree/master/examples/roberta/wsc](https://github.com/pytorch/fairseq/tree/master/examples/roberta/wsc)
Table 1: Accuracy (%) and masculine/feminine F1 difference \(\Delta G \), oracle-reranking WinoMT. BLEU scores are for en-de WMT18, en-es WMT13, and en-he IWSLT14, which lack gender labels so cannot be oracle-reranked.

Table 2: Accuracy (%) and masculine/feminine F1 difference \(\Delta G \). Inferred-reranking with genders and entities for WinoMT and generic test sets determined by a RoBERTa model. Non-reranked results unchanged from Table 1.

Table 3: WinoMT accuracy for inferred-reranking the adaptation scheme of Saunders and Byrne (2020).

4 Of Table 2 has higher accuracy than non-reranked beam-20 S&B, without any model fine-tuning.

Finally, we note that our approach can be used for disambiguation in many gender translation scenarios. One benefit beyond the scope of this paper is application to incorporating context: gender information could potentially come from a prior or subsequent sentence, or reflect external user preferences. Another benefit is flexibility to introducing new gendered vocabulary such as neopronouns: if a term can be defined for reranking, it can be searched for in the beam without retraining.

5 Conclusions

This paper attempts to improve gender translation without a single change to the NMT model. We demonstrate that gender-constraining the target language during inference can encourage models to produce \(n \)-best lists with correct hypotheses. Moreover, we show that simple reranking heuristics can extract more accurate gender translations from the \(n \)-best lists using oracle or inferred information.

Unlike other approaches to this problem we do not attempt to counter unidentified and potentially intractable sources of bias in the training data, or produce new models. However, our approach does significantly boost the accuracy of a prior data-centric bias mitigation technique. In general we view our scheme as orthogonal to such approaches: if a model ranks diverse gender translations higher in the beam initially, finding better gender translations during beam search becomes simpler.
Impact statement

Where machine translation is used in people’s lives, mistranslations have the potential to misrepresent people. This is the case when personal characteristics like social gender conflict with model biases towards certain forms of grammatical gender. As mentioned in the introduction, the result can involve implicit misgendering of a user or other human referent, or perpetuation of social biases about gender roles as represented in the translation. A user whose words are translated with gender defaults that imply they hold such biased views will also be misrepresented.

We attempt to avoid these failure modes by identifying translations which are at least consistent within the translation and with the source sentence. This is dependent on identifying grammatically gendered terms in the target language – however, this element is very flexible and can be updated for new gendered terminology. We note that models which do not account for variety in gender expression such as neopronoun use may not be capable of generating appropriate gender translations, but in principle a variety of gender translations could be extracted from the beam.

By avoiding the data augmentation, tuning and retraining elements in previously proposed approaches to gender translation, we seek to simplify the process and remove additional stages during which bias could be introduced or amplified (Shah et al., 2020).

In terms of compute time and power, we minimize impact by using a single GPU only for training the initial NMT models exactly once for the iterations listed in Appendix A. All other experiments involve rescoring those models and run in parallel on CPUs in under an hour, except the experiments following Saunders and Byrne (2020), an approach itself involving only minutes of GPU fine-tuning.

References

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. 2016. Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. In Advances in neural information processing systems, pages 4349–4357.

Matthew Honnibal and Ines Montani. 2017. spaCy 2: Natural language understanding with bloom embeddings. Convolutional Neural Networks and Incremental Parsing.

5Impact statement permitted on 5th page by ARR guidelines

A Model training details

All NMT models are 6-layer Transformers with a 30K BPE vocabulary, trained using Tensor2Tensor with batch size 4K (Vaswani et al., 2018). All data except Hebrew is truecased and tokenized using (Koehn et al., 2007). The en-de model is trained for 300K batches, en-es for 150K batches, and en-he for 15K batches, transfer learning from the en-de model. We filter the BPE-ized data for maximum (80) and minimum (3) length, and length ratio 3.

B Beam size for constrained reranking

In this paper we present results with beam sizes 4 and 20. Beam-4 search is commonly-used and meets a speed-quality trade-off for NMT (see e.g. Junczys-Dowmunt et al. (2016)). Beam-20 is still practical, but approaches diminishing returns for improved quality without search error mitigation (Stahlberg and Byrne, 2019). These beam sizes therefore illustrate contrasting levels of practical reranking. However, it is instructive to consider how wide a beam is really needed for improvements under gender-constrained reranking.

In Figure 2 we report WinoMT accuracy under gender-constrained oracle reranking with beam width increasing by intervals of 4. For all systems, the largest jump in improvement is between beam sizes 4 and 8, with diminishing returns after beam-12. The en-de curve is relatively shallow, possibly due to strong scores before reranking, or even a performance ceiling determined by the WinoMT framework itself. Curves for en-he and en-es are very close, suggesting a similarity between the gender distribution in the n-best lists for those models.

C Constrained vs unconstrained beams

We can observe the difference between standard and constrained beam search by examining the n-best lists. Table 4 (next page) gives 5 examples of 4-best lists for WinoMT sentences translated into German. Examples are not cherry-picked but selected from throughout WinoMT with a random number generator. Lists are ordered by NMT model likelihood and produced with standard unconstrained beam search, and with constrained beam search.

With standard unconstrained beam search, translations vary primarily in words unrelated to the entities, such as synonyms or verb tenses. However, entity grammatical genders are generally unchanged throughout the unconstrained n-best lists, except for 1 where the secondary entity changes. Reranking cannot always find a gender-consistent translation in the unconstrained lists, defaulting to the 1-best for all except 2 (which seems to have a poorly aligned hypothesis).

By contrast, constrained beam search ensures the n-best list contains gendered inflections of the initial best-scoring translation. The changes vary the grammatical genders of articles and entities, resulting in more gender-diverse hypotheses, and allowing reranking to find a better translation for 1.

We note that in 3, 4 and 5 both the pronoun and the default gender convention for unknown gender entities are masculine. Reranking is not strictly necessary to find a better translation for these sentences, since the highest likelihood output is gender-consistent. However, we note that some outputs with gender constraints do in fact vary the gender of the secondary entity – the entity with unspecified gender. This illustrates our approach’s ability to improve n-best list diversity even when it does not necessarily impact translation consistency.

We observe occasional grammatical inconsistencies in n-best hypotheses (e.g. "die Fahrer" in 3). When constraining beam search to grammatical variations of a sentence with an imperfect NMT model, we expect some hypotheses with grammatical degradation. However, our priority, and the purpose of our reranking scheme, is consistency with the source in the output translation, not inconsistencies elsewhere in the n-best list.
1. The broker called the client because she had new stocks to recommend.

| Unconstrained | "Der Makler rief den Kunden an, weil sie neue Aktien zu empfehlen hatte."
| | "Der Makler rief die Klientin an, weil sie neue Aktien zu empfehlen hatte."
| | "Der Makler rief den Käufer an, weil es neue Aktien zu empfehlen hatte."

| Constrained | "Der Makler rief den Kunden an, weil sie neue Aktien zu empfehlen hatte."
| | "Die Maklerin rief den Kunden an, weil sie neue Aktien zu empfehlen hatte."
| | "Der Makler rief die Käuferin an, weil es neue Aktien zu empfehlen hatte."

2. The teacher explained the situation to the chief and felt understood by her.

| Unconstrained | "Die Lehrerin erklärte die Situation dem Chef und fühlte sich von ihr verstanden."
| | "Die Lehrerin erklärte die Situation dem Obersten und fühlte sich von ihr verstanden."

| Constrained | "Die Lehrerin erklärte die Situation dem Chef und fühlte sich von ihr verstanden."
| | "Die Lehrerin erklärte die Situation dem Obersten und fühlte sich von ihm verstanden."

3. The assistant hired the driver as he offered an excellent service.

| Unconstrained | "Der Assistent stellte den Fahrer ein, da er einen ausgezeichneten Service bot."
| | "Der Assistent stellte den Fahrer ein, da er einen hervorragenden Service bot."
| | "Der Assistent stellte den Fahrer ein, als er einen ausgezeichneten Service bot."

| Constrained | "Der Assistent stellte den Fahrer ein, da er einen ausgezeichneten Service bot."
| | "Die Assistentin stellte den Fahrer ein, da er einen ausgezeichneten Service bot."
| | "Der Assistent stellte den Fahrer ein, als er einen ausgezeichneten Service bot."

4. The laborer handed the application to the editor because he wants the job.

| Unconstrained | "Der Arbeiter übergab den Antrag an den Herausgeber, weil er den Job will."
| | "Der Arbeiter übergab die Bewerbung an den Herausgeber, weil er die Arbeit will."
| | "Der Arbeiter übergab die Bewerbung an den Herausgeber, weil er den Job will."

| Constrained | "Der Arbeiter übergab den Antrag an den Herausgeber, weil er den Job will."
| | "Der Arbeiter übergab den Antrag an den Herausgeber, weil er diesen Job will."
| | "Der Arbeiter übergab den Antrag an den Herausgeber, weil er die Job will."

5. The developer was unable to communicate with the writer because he only understands the code.

| Unconstrained | "Der Entwickler konnte nicht mit dem Schriftsteller kommunizieren, weil er nur den Code versteht."
| | "Der Entwickler konnte nicht mit dem Autor kommunizieren, weil er nur den Code versteh.
| | "Der Entwickler war nicht in der Lage, mit dem Schriftsteller zu kommunizieren, weil er nur den Code versteh.

| Constrained | "Der Entwickler konnte nicht mit dem Schriftsteller kommunizieren, weil er nur den Code versteht."
| | "Der Entwickler konnte nicht mit dem Schriftsteller kommunizieren, weil er nur den Code versteh.
| | "Der Entwickler konnte nicht mit dem Schriftsteller kommunizieren, weil er nur diesen Code versteht."

Table 4: English-German 4-best lists for 5 randomly-selected WinMT sentences, translated with normal beam search and gender-constrained beam search. Grammatically feminine human entities are underlined. Grammatically masculine human entities are emphasised. Lists are ordered by NMT model likelihood (first is 1best) - lines marked with * are those selected under oracle-reranking.

1: Constrained reranking finds a better gender translation that is not present in the unconstrained beam.
2: A better gendered translation is not found in either width-4 beam. Constraints still maintain semantic meaning throughout the beam while allowing syntactic variation, including a differently gendered secondary entity.
3, 4, 5: The highest likelihood output is acceptable. For 3 and 5 constraining the n-best list results in more gender variation.