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ABSTRACT

Graph Neural Networks (GNNs) have demonstrated powerful representation ca-
pability in semi-supervised node classification. In this task, there are often three
types of information – graph structure, node features, and node labels. Existing
GNNs usually leverage both node features and graph structure by feature trans-
formation and aggregation, following end-to-end training via node labels. In this
paper, we change our perspective by considering these three types of information
as three views of nodes. This perspective motivates us to design a new GNN
framework as multi-view learning which enables alternating optimization train-
ing instead of end-to-end training, resulting in significantly improved computation
and memory efficiency. Extensive experiments with different settings demonstrate
the effectiveness and efficiency of the proposed method.

1 INTRODUCTION

Graph is a fundamental data structure that denotes pairwise relationships between entities in a wide
variety of domains (Wu et al., 2019b; Ma & Tang, 2021). Semi-supervised node classification is
one of the most crucial tasks on graphs. Given graph structure, node features, and labels on a part
of nodes, this task aims to predict labels of the remaining nodes. In recent years, Graph Neural
Networks (GNNs) have proven to be powerful in semi-supervised node classification (Gilmer et al.,
2017; Kipf & Welling, 2016; Velickovic et al., 2017). Existing GNN models provide different archi-
tectures to leverage both graph structure and node features. Coupled GNNs, such as GCN (Kipf &
Welling, 2016) and GAT (Velickovic et al., 2017), couple feature transformation and propagation to
combine node feature and graph structure in each layer. Decoupled GNNs, such as APPNP (Klicpera
et al., 2018), first transform node features and then propagate the transformed features with graph
structure for multiple steps. Meanwhile, there are GNN models such as Graph-MLP (Hu et al., 2021)
that extract graph structure as regularization when integrating with node features. Nevertheless, the
majority of aforementioned GNNs utilize node labels via the loss function for end-to-end training.

In essence, existing GNNs have exploited three types of information to facilitate semi-supervised
node classification. This understanding motivates us to change our perspective by considering these
three types of information as three views of nodes. Then we can treat the design of GNN models
as multi-view learning. The advantages of this new perspective are multi-fold. First, we can follow
key steps in multi-view learning methods to design GNNs by investigating (1) how to capture node
information from each view and (2) how to fuse information from three views. Such superiority
offers us tremendous flexibility to develop new GNN models. Second, multi-view learning has been
extensively studied (Xu et al., 2013) and there is a large body of literature that can open new doors
for us to advance GNN models.

To demonstrate the potential of this new perspective, following a traditional multi-view learning
method (Xia et al., 2010), we introduce a shared latent variable to explore these three views si-
multaneously in a multi-view learning framework for graph neural networks (MULTIVIEW4GNN).
The proposed framework MULTIVIEW4GNN can be conveniently optimized in an alternating way,
which remarkably alleviates the computational and memory inefficiency issues of the end-to-end
GNNs. Extensive experiments under different settings demonstrate that MULTIVIEW4GNN can
achieve comparable or even better performance than the end-to-end trained GNNs especially when
the labeling rate is low, but it has significantly better computation and memory efficiency.
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2 THE PROPOSED FRAMEWORK

We use bold upper-case letters such as X to denote matrices. Xi denotes its i-th row and Xij

indicates the i-th row and j-th column element. We use bold lower-case letters such as x to denote
vectors. The Frobenius norm and trace of a matrix X are defined as ∥X∥F =

√∑
ij X

2
ij and

tr(X) =
∑

i Xii. Let G = (V, E) be a graph, where V is the node set and E is the edge set.
Ni denotes the neighborhood node set for node vi. The graph can be represented by an adjacency
matrix A ∈ Rn×n, where Aij > 0 indices that there exists an edge between nodes vi and vj in G,
or otherwise Aij = 0. Let D = diag(d1, d2, . . . , dn) be the degree matrix, where di =

∑
j Aij

is the degree of node vi. The graph Laplacian matrix is defined as L = D − A. We define the
normalized adjacency matrix as Ã = D− 1

2AD− 1
2 and the normalized Laplacian matrix as L̃ =

I − Ã. Furthermore, suppose that each node is associated with a d-dimensional feature x and we
use X = [x1,x2, . . . ,xn]

⊤ ∈ Rn×d to denote the feature matrix.

In this work, we focus on the node classification task on graphs. Given a graph G = {A,X} and a
partial set of labels YL = {y1,y2, . . . ,yl} for node set VL = {v1, v2, . . . , vl}, where yi ∈ RC is a
one-hot vector with C classes, our goal is to predict labels of unlabeled nodes. The labels of graph
G can also be represented as a label matrix Y ∈ Rn×C , where Yi = yi if vi ∈ VL and Yi = 0 if
vi ∈ VU . The subscript U and L denote the sets of unlabeled and labeled nodes, respectively.

2.1 MULTI-VIEW LEARNING FOR GNNS

For the node classification task, we take a new perspective that considers node feature X, graph
structure A, and node label Y as three views for nodes, and model graph neural networks as multi-
view learning. In particular, we need to jointly model each view and integrate three views. To
achieve this goal, we introduce a latent variable F inspired by a traditional multi-view learning
method (Xia et al., 2010). Then the loss function can be written as:

argmin
F,Θ

L = λ1DX(X,F) +DA(A,F) + λ2DY (YL,FL), (1)

where F is the introduced latent variable shared by three views, DX(·, ·), DA(·, ·) and DY (·, ·) are
functions to explore node feature, graph structure, and node label, respectively. These functions
can contain parameters which we denote them as Θ. Hyper-parameters λ1 and λ2 are introduced to
balance the contributions from these three views. One major advantage of the multi-view learning
perspective is that it enables immense flexibility to design GNN models. Specifically, based on (1),
there are numerous designs for DX(·, ·), DA(·, ·) and DY (·, ·). Examples are shown below:

• DX is to map node features X to F. In reality, we can first transform X before mapping.
Thus, feature transformation methods can be applied including traditional methods such as
PCA (Collins et al., 2001; Shen, 2009) and SVD (Godunov et al., 2021), and deep methods
such as, MLP and self-attention (Vaswani et al., 2017). We also have various choices of the map-
ping functions such as Multi-Dimensional Scaling (MDS) (Hout et al., 2013) which preserves
the pairwise distance between X and F and any distance measurements.

• DA aims to impose constraints on the latent variable F with the graph structure. Traditional
graph regularization techniques can also be employed. For instance, the Laplacian regulariza-
tion (Yin et al., 2016) is to guide a node i’s feature Fi to be similar to its neighbors; Locally
Linear Embedding (LLE) (Roweis & Saul, 2000) is to force the Fi be reconstructed from its
neighbors. Moreover, modern deep graph learning methods can be applied, such as graph em-
bedding methods (Perozzi et al., 2014; Grover & Leskovec, 2016) and Graph Contrastive Learn-
ing (Zhu et al., 2020; Hu et al., 2021), which implicitly encodes node similarity and dissimilarity.

• DY establishes the connection between the latent variable FL and the ground truth node label
YL for labeled nodes. It can be any classification loss function, such as the Mean Square Error
and Cross Entropy Loss.

In this work, we set the dimensions of the latent variable F as Rn×C , which can be considered
as a soft pseudo-label matrix. Then the following designs are chosen for these functions: (i) for
DX , we use an MLP with parameter Θ to encode the features of node i as MLP(Xi; Θ), and then
adopt the Euclidean distance to map Fi as ∥MLP(Xi; Θ) − Fi∥22; (ii) for DA, Laplacian smooth-
ness is imposed to constrain the distance between one node’s pseudo labels Fi and its neighbors as
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∑
(vi,vj)∈E ∥Fi/

√
di − Fj/

√
dj∥22; and (iii) for DY , we adopt Mean Square Loss ∥Fi −Yi∥22 to

constraint the pseudo label of a labeled node close to its ground truth. These designs lead to our
multi-view learning framework for graph neural networks (MULTIVIEW4GNN). Its loss function
can be written in the matrix form as:

L = λ1 ∥MLP(X)− F∥2F︸ ︷︷ ︸
DX

+tr(F⊤L̃F)︸ ︷︷ ︸
DA

+λ2 ∥FL −YL∥2F︸ ︷︷ ︸
DY

, (2)

where the first term maps node features into the label space, the second term indicates the pseudo
labels should be smooth over the graph, and the last term constrains that the pseudo labels should be
close to the ground-truth labels for labeled nodes.

Remark. There are recent works (Zhu et al., 2021; Ma et al., 2021; Yang et al., 2021) that aim to
provide a unified optimization framework for understanding the message passing mechanism of dif-
ferent GNNs and designing new graph filter layers. However, they only focus on the forward process
without taking the backward learning process into consideration, and they still follows the existing
GNN architecture with end-to-end training. In this work, we do not aim to understand the message
passing and design new GNN layers based on existing architectures. Instead, MULTIVIEW4GNN is
a new graph deep learning framework as multi-view learning.

2.2 AN ALTERNATING OPTIMIZATION METHOD FOR MULTIVIEW4GNN

It is difficult to find the optimal solution of the loss function (2) for both F and Θ simultaneously
due to the coupling between the latent variable F and model parameters Θ. The alternating opti-
mization (Bezdek & Hathaway, 2002) based iterative algorithm can be a natural solution for this
challenge. Specifically, for each iteration, we first fix the model parameters Θ and update the shared
latent variable F on all three views. Then, we fix F and update the parameters Θ, which is effective
in exploring the complementary characteristics of the three views. These two steps alternate until
convergence. Next, we show the alternating optimization algorithm in detail.

Update F. Fixing MLP, we can minimize L with respect to the latent variable F using the gradient
descent method. The gradient of L with respect to F (i.e., FU and FL) is

∂L
∂FL

= 2
(
λ1(FL −MLP(XL)) + (L̃F)L + λ2(FL −YL)

)
, (3)

∂L
∂FU

= 2
(
λ1(FU −MLP(XU )) + (L̃F)U

)
. (4)

The gradient descent update of F with step sizes ηL and ηU is:

Fk+1
L = Fk

L − 2ηL

(
λ1(F

k
L −MLP(XL)) + (L̃Fk)L + λ2(F

k
L −YL)

)
= 2ηL

(
(ÃFk)L + λ1MLP(XL) + λ2YL

)
+

(
1− 2ηL(λ1 + λ2 + 1)

)
Fk

L, (5)

Fk+1
U = Fk

U − 2ηU

(
λ1(F

k
U −MLP(XU )) + (L̃Fk)U

)
= 2ηU

(
(ÃFk)U + λ1MLP(XU )

)
+

(
1− 2ηU (λ1 + 1)

)
Fk

U . (6)

According to the smoothness and strong convexity of the problem, we set ηL = ηU = 1
2(λ1+λ2+1)

to ensure the decrease of loss value L (Nesterov et al., 2018), and the update becomes:

Fk+1
L =

1

λ1 + λ2 + 1
(ÃFk)L +

λ1

λ1 + λ2 + 1
MLP(XL) +

λ2

λ1 + λ2 + 1
YL, (7)

Fk+1
U =

1

λ1 + λ2 + 1
(ÃFk)U +

λ1

λ1 + λ2 + 1
MLP(XU ) +

λ2

λ1 + λ2 + 1
Fk

U . (8)

Update Θ. Fixing Fk+1, we can minimize the loss function L with respect to MLP parameters:

argmin
Θ

∥MLP(X; Θ)− Fk+1∥2F , (9)
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which equals training the MLP with the soft pseudo labels via the Mean Square Error Loss. Besides,
we can also apply the Cross-Entropy Loss, and the details are in Appendix A.

Alternating Optimization and Scalability. The multi-view learning perspective allows us to derive
the alternating optimization solution which provides better flexibility in training than the end-to-end
training in existing GNNs. The alternating optimization solution is a highly efficient and scalable
training strategy, resulting in significantly improved computation and memory efficiency. Specifi-
cally, variable F and MLP model parameters Θ can be optimized separately. We can update F once
and then train MLP multiple times. Meanwhile, there is no gradient backpropagation through the
feature aggregation process so the aggregation steps do not need to store the activation and gradient
values, which saves a significant amount of memory and computation. Moreover, due to the alternat-
ing updating scheme, we can use stochastic optimization to update F and train MLP by sampling the
graph structure and node features. This can further improve the memory and computation efficiency
as proved theoretically and empirically in stochastic optimization (Lan, 2020). In particular, only
first-order neighbors are sampled in each update step of F, which avoids the neighborhood explosion
problem in training large-scale GNNs (Hamilton et al., 2017; Fey et al., 2021).

2.3 UNDERSTANDINGS OF MULTIVIEW4GNN

Another important advantage of alternating optimization is that it provides helpful insights to under-
stand MULTIVIEW4GNN. In particular, based on the updating rules of F and Θ, we can naturally
draw the following understandings on MULTIVIEW4GNN.

Understanding 1: Updating F is a feature-enhanced Label Propagation. Label Propagation
(LP) (Zhou et al., 2003) is a well-known graph semi-supervised learning method based on the label
smoothing assumption that connected nodes are likely to have the same label. LP can be written in
an iteration form: F(k+1) = αÃF(k) + (1− α)Y, where F(0) = Y, k is the propagation step, and
α is a hyper-parameter. Comparing LP with our update rule for F in Eq. (7) and Eq. (8), we can find
that MLP(X) is involved in the propagation where MLP(X) can be regarded as labels generated
by node features. In other words, our update rule for F takes advantage of node features, graph
structure and labels while LP only uses graph structure and labels.

Understanding 2: Updating Θ is a pseudo-labeling approach. Pseudo-labeling (Lee et al., 2013;
Arazo et al., 2020) is a popular method in semi-supervised learning that uses a small set of labeled
data along with a large amount of unlabeled data to improve model performance. It usually generates
pseudo labels for the unlabeled data and trains the deep models using both the true labels and pseudo
labels with different weights. From this perspective, MULTIVIEW4GNN uses the pseudo labels F
to train Θ such that it can take advantage of both labeled and unlabeled nodes.

Figure 1: An overview of the proposed MULTIVIEW4GNN method, where grey color represents
unlabeled nodes, and each node is associated with input features.

2.4 IMPLEMENTATION DETAILS OF MULTIVIEW4GNN

In this subsection, we detail the implementation of MULTIVIEW4GNN. As shown in Figure 1, we
first preprocess the node feature through a diffusion, then alternatively update pseudo label F and
MLP while taking into account the weight of pseudo labels and the class balancing problem, and
finally get the prediction of unlabeled nodes. Next, we describe each step in detail.

Preprocessing. From Understanding 1, we use MLP to enhance the label propagation, so a good
initialized MLP is needed. In real graphs, labeled data are usually scarce so that it is challenging
to get a good initialization of MLP with a small number of labels. Therefore, we first diffuse the
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original node features with its neighbors to get smoothing and enhanced features. The new features
are obtained from X′ = LP(X, α). Then, we train MLP only using the labeled data for a few epochs
to get an initialization, similar to pseudo-labeling methods (Iscen et al., 2019; Lee et al., 2013).

Update F. We initial F0 = Y. Then we update F for labeled nodes and unlabeled nodes by Eq. (7)
and Eq. (8), respectively. Since F acts as pseudo labels when training the MLP, we normalize F
to be the distribution of classes by using the softmax function with temperature after the update:
Fij =

exp(Fij/τ)∑C
k=1 exp(Fik/τ)

, where τ is a hyperparameter to control the smoothness of pseudo labels.

Pseudo-label certainty and class balancing. Directly using all pseudo labels to train MLP is not
appropriate due to the following reasons. First, not all pseudo labels have the same certainty. Second,
pseudo-labels may not be balanced over classes, which will impede learning. To address the first
issue, we assign a confidence weight to each pseudo-label. According to information theory, entropy
can be used to quantify a distribution’s uncertainty, so we define the weight for unlabeled nodes as
wi = 1− H(Fi)

log(C) , where wi ∈ [0, 1] and H(Fi) = −
∑C

j=1 Fij logFij is the entropy of the pseudo
label Fi. To deal with the class imbalance problem, we adopt a simple method that chooses the same
number of unlabeled nodes for each class with the highest weight to train MLP.

Update MLP. We train MLP using both labeled nodes set L and high confidence unlabeled nodes
set Ut. The loss function can be written as follows:

LMLP(X
′,F; Θ) =

∑
i∈L

ℓ(MLP(X′
i; Θ),Fi) +

∑
j∈Ut

wj · ℓ(MLP(X′
j ; Θ),Fj) (10)

where ℓ(MLP(X′
i; Θ),Fi) = ∥MLP(X′

i; Θ)−Fi∥22 is a MSE loss and Θ is the parameters of MLP.

Prediction. The inference of our method is based on the pseudo labels F, and the predicted class for
the unlabeled node i can be obtained as ci = argmaxj Fij . The overall algorithm, implementation
details and code of MULTIVIEW4GNN are shown in Appendix B.

2.5 COMPLEXITY ANALYSIS

We provide time and memory complexity analyses for MULTIVIEW4GNN and the following rep-
resentative GNNs: GCN (Kipf & Welling, 2016), SGC (Wu et al., 2019a), and APPNP (Klicpera
et al., 2018). Suppose that p is the number of propagation layers, n is the number of nodes, m is
the number of edges, and c is the number of classes. For simplicity, we assume that the hidden
feature dimension is a fixed d for all transformation layers, and we have c ≪ d in most cases; all
feature transformations are updated t epochs; Besides, the adjacent matrix A is a sparse matrix, and
both forward and backward propagation have the same cost. Following (Li et al., 2021), we only
analyze the inherent differences across models by assuming that all models have the same transfor-
mation layers, allowing us to disregard the time required for feature transformation and the memory
footprint of network parameters. The time and memory complexities are summarized in Table 1.

Table 1: Comparison of time and mem-
ory complexities.

Method Time Memory
GCN O(2tpmd) O(nd+ pnd)
SGC O(pmd) O(nd)

APPNP O(2tpmc) O(nd+ pnc)
MULTIVIEW4GNN O(kpmc) O(nd+ nc)

Time complexity. We first analyze the time complex-
ity of feature aggregation. The feature aggregation can
be implemented as a sparse-dense matrix multiplication
with cost O(md) if the feature has d dimensions. There-
fore, the time complexity of training a p-layer GCN for
t epochs is O(2tpmd) with the gradient backpropagation.
For SGC, we only need p steps of feature propagation, so
the time complexity is O(pmd). For APPNP, the gradient also needs to backpropagate through p lay-
ers, but the feature dimension is c, resulting in the time complexity of O(2tpmc). Regarding MUL-
TIVIEW4GNN, as the model are optimized in an alternating way, there is no need to do both feature
transformation and aggregation in each epoch. Rather, we can propagate the pseudo labels only for
k times during the whole training process. As a result, the time complexity of MULTIVIEW4GNN
is O(kpmc). In practice, choosing k from [2, 5] can achieve very promising performance, while t
needs to be 500 or 1,000 for other models to converge.

Memory complexity. It requires O(nd) memory for storing node features. For the end-to-end train-
ing models, we need to store the intermediate state at each layer for gradient calculation. Specifically,
for GCN, we need to store the hidden state for p layers, so the memory complexity is O((p+1)nd).
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SGC only needs to store the propagated feature O(nd) as we omit the memory of network param-
eters. Similarly, APPNP has the memory complexity of O(nd + pnc). For MULTIVIEW4GNN, it
does not need to store the gradients at each propagation layer. Instead, MULTIVIEW4GNN needs to
hold the pseudo label F. So the memory complexity of MULTIVIEW4GNN is O(nd+ nc).

If we omit the difference in the dimension of the propagation features (d = c), the time and memory
of GCN and APPNP are the same, as they require feature propagation in each epoch. We call
the methods that need propagation every epoch as Persistent propagation methods. Similarly, the
methods that only need to propagate once, such as SGC, SIGN (Rossi et al., 2020), and C&S (Huang
et al., 2020) have the same time and memory complexity, namely One-time propagation methods.
MULTIVIEW4GNN is a Lazy propagation method since the features are propagated k times during
training with k being a small number. Thus, MULTIVIEW4GNN can be seen as a balance between
these two groups of methods.

3 EXPERIMENT

In this section, we verify the effectiveness of the proposed method, MULTIVIEW4GNN, through the
semi-supervised node classification tasks. In particular, we try to answer the following questions:

• RQ1: How does MULTIVIEW4GNN perform when compared to other models?
• RQ2: Is MULTIVIEW4GNN more efficient than state-of-the-art GNNs?
• RQ3: How do different components affect MULTIVIEW4GNN?

3.1 EXPERIMENTAL SETTINGS

Datasets. For the transductive semi-supervised node classification task, we choose nine common
used datasets including three citation datasets, i.e., Cora, Citeseer and Pubmed (Sen et al., 2008), two
coauthors datasets, i.e., CS and Physics, two Amazon datasets, i.e., Computers and Photo (Shchur
et al., 2018), and two OGB datasets, i.e., ogbn-arxiv and ogbn-products (Hu et al., 2020). For the
inductive node classification task, we use Reddit and Flikcr datasets (Zeng et al., 2019). More details
about these datasets are shown in Appendix C.

Following (Liu et al., 2021), we use 10 random data splits for the three citation datasets, and we run
the experiments 3 times for each split. We report the average performance and standard deviation.
Besides, we also test multiple labeling rates, i.e., 5, 10, 20, 60, 30% and 60% labeled nodes per class,
to get a comprehensive comparison. For other datasets, we use the fixed split and run 10 times.

Baselines. We compare the proposed MULTIVIEW4GNN with three groups of methods: (i) Per-
sistent propagation methods, i.e., GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2017) and
APPNP (Klicpera et al., 2018); (ii) One-time propagation methods, i.e., SGC (Wu et al., 2019a),
SIGN Rossi et al. (2020), and C&S (Huang et al., 2020); and (iii) Non-GNN methods including MLP
and Label Propagation(Zhou et al., 2003). We report test accuracy results of all models selected by
the highest validation accuracy. Parameter settings for all methods are illustrated in Appendix E.

3.2 PERFORMANCE COMPARISON ON BENCHMARK DATASETS

Transductive Node Classification. The transductive node classification results are partially shown
in Table 2. We leave results on more datasets and methods in Appendix D due to the space limitation.
From these results, we can make the following observations:

• MULTIVIEW4GNN consistently outperforms other models at low label rates on all datasets. For
example, in Cora and CiteSeer with label rate 5, our method can gain 1.2 % and 5.6 % relative
improvement compared to the best baselines. This is because the pseudo labels generated by our
framework are helpful for training models when there are few labels available. When the label
rate is high, our method is also comparable to the best results. In addition, MULTIVIEW4GNN is
alternately optimized but not end-to-end trained, which suggests that end-to-end training could
not be necessary for node semi-supervised classification.

• MULTIVIEW4GNN performs the best on OGB datasets. For example, in ogbn-products, it ob-
tains 7.86% and 2.63% relative improvement compared to APPNP and SIGN, respectively.

• Compared with the One-time propagation methods , Persistent propagation methods usually per-
form better when the labeling rate is low. In addition, the label propagation outperforms MLP in
most cases, indicating the rationality of our proposed feature-enhanced label propagation.
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Table 2: Transductive node classification accuracy (%) on benchmark datasets.
Method Persistent propagation methods One-time propagation methods Ours

Dataset Label GCN GAT APPNP SGC SIGN C&S MULTIVIEW4GNN
Cora 5 70.68 ± 2.17 72.97 ± 2.23 75.86 ± 2.34 70.06 ± 1.95 69.81 ± 3.13 56.52 ± 5.53 76.78 ± 2.56

10 76.50 ± 1.42 78.03 ± 1.17 80.29 ± 1.00 76.28 ± 1.22 76.25 ± 1.26 71.04 ± 3.30 80.66 ± 1.92
20 79.41 ± 1.30 81.39 ± 1.41 82.34 ± 0.67 80.30 ± 1.72 79.71 ± 1.11 77.96 ± 2.13 82.66 ± 0.98
60 84.30 ± 1.44 85.11 ± 1.10 85.49 ± 1.25 84.17 ± 1.39 84.16 ± 1.18 82.21 ± 1.45 85.60 ± 1.12

30% 86.87 ± 1.35 87.24 ± 1.19 87.77 ± 1.13 86.97 ± 0.90 87.17 ± 1.28 87.60 ± 1.12 87.70 ± 1.19
60% 88.60 ± 1.19 88.68 ± 1.13 88.49 ± 1.28 88.60 ± 1.38 88.21 ± 1.11 88.68 ± 1.39 88.96 ± 1.10

CiteSeer 5 61.27 ± 3.85 62.60 ± 3.34 63.92 ± 3.39 60.21 ± 3.48 57.44 ± 3.71 50.39 ± 4.70 67.48 ± 2.90
10 66.28 ± 2.14 66.81 ± 2.10 67.57 ± 2.05 65.23 ± 2.36 63.87 ± 3.09 58.96 ± 2.75 69.39 ± 2.59
20 69.60 ± 1.67 69.66 ± 1.47 70.85 ± 1.45 68.82 ± 2.11 68.60 ± 1.94 65.85 ± 2.74 71.26 ± 1.69
60 72.52 ± 1.74 73.10 ± 1.20 73.50 ± 1.54 71.43 ± 1.26 72.63 ± 1.39 71.21 ± 1.79 72.84 ± 1.65

30% 75.20 ± 0.85 75.01 ± 0.99 75.71 ± 0.71 75.09 ± 1.01 74.44 ± 0.83 74.65 ± 0.95 75.09 ± 0.79
60% 76.88 ± 1.78 76.70 ± 1.81 77.42 ± 1.47 76.66 ± 1.59 76.41 ± 1.96 76.34 ± 1.37 77.00 ± 1.67

Pubmed 5 69.76 ± 6.46 70.42 ± 5.36 72.68 ± 5.68 68.55 ± 6.88 66.52 ± 6.15 65.3 ± 6.02 73.51 ± 4.80
10 72.79 ± 3.58 73.35 ± 3.83 75.53 ± 3.85 72.80 ± 3.55 71.32 ± 3.70 72.51 ± 3.75 75.55 ± 5.09
20 77.43 ± 1.93 77.43 ± 2.66 78.93 ± 2.11 76.48 ± 2.84 76.39 ± 2.65 75.34 ± 2.49 79.16 ± 2.26
60 82.00 ± 1.62 81.40 ± 1.40 82.55 ± 1.47 80.34 ± 1.61 81.75 ± 1.55 80.63 ± 1.49 82.53 ± 1.76

30% 88.07 ± 0.29 86.51 ± 0.41 87.56 ± 0.39 86.23 ± 0.43 89.09 ± 0.33 88.44 ± 0.40 88.24 ± 0.36
60% 88.48 ± 0.46 86.52 ± 0.56 87.56 ± 0.52 86.63 ± 0.38 89.55 ± 0.56 88.53 ± 0.56 88.83 ± 0.55

ogbn-arxiv 54% 71.91 ± 0.15 71.92 ± 0.17 71.61 ± 0.30 68.74 ± 0.12 71.95 ± 0.11 71.03 ± 0.15 72.76 ± 0.17
ogbn-products 8% 75.70 ± 0.19 OOM 76.62 ± 0.13 74.29 ± 0.12 80.52±0.16 77.11 ± 0.06 82.64± 0.21

• The standard deviation of all models is not small across different data splits, especially when the
label rate is very low. It demonstrates that splits can significantly affect a model’s performance.
A similar finding is also observed in the PyTorch-Geometric paper (Fey & Lenssen, 2019).

Inductive Node Classification. For inductive node classification, only training nodes can be ob-
served in the graph during training, and all nodes can be used during the inference (Zeng et al.,
2019). For MULTIVIEW4GNN, we first train an MLP with the training nodes’ features and then do
inference for the unlabeled node using the feature-enhanced label propagation in Eq (7) and Eq (8).
As shown in Table 3, the MULTIVIEW4GNN outperforms other baselines on the inductive node clas-
sification task. The only difference between MULTIVIEW4GNN and MLP is the feature-enhanced
label propagation, and the performance improvement can demonstrate its superiority.

Table 3: Inductive node classification accuracy (%).
Method MLP GCN APPNP SGC C&S MULTIVIEW4GNN
Reddit 62.84 93.30 94.11 93.85 95.30 95.74
Flickr 37.87 49.20 49.40 50.58 51.46 52.29

3.3 EFFICIENCY COMPARISON

In this subsection, we compare the efficiency of our MULTIVIEW4GNN with other baselines, based
on two large datasets, i.e., ogbn-arxiv and ogbn-products. To make a fair comparison, we choose
the identical feature transformation layers for each method as there are no learnable parameters in
feature propagation layers. Besides, we train model parameters with the same iterations in each
method, i.e., 500 epochs for ogbn-arxiv and 1,000 epochs for ogbn-products. All the experiments
are conducted on the same machine with a NVIDIA RTX A6000 GPU (48 GB memory).

For MULTIVIEW4GNN, we can update F with different frequency in training, i.e., 1, 2, 3, 4, 5, and
“Full”. “Full” means we update both F and MLP in each epoch. For MULTIVIEW4GNN-k, we only
update the F for k times during the training procedure. The overall results are shown in Table 4.

Table 4: Efficiency comparison of different methods.
Dataset ogbn-arxiv ogbn-products
Method ACC(%) Time (s) Memory (GB) ACC (%) Time (s) Memory (GB)

MLP 55.68 12.01 2.68 61.17 214 21.18
SGC 66.92 12.06 2.71 74.29 215 21.85
SIGN 71.95 24.89 4.67 80.52 492 43.17
GCN 71.91 24.71 3.33 75.70 1,284 38.36

APPNP 71.61 33.70 3.20 76.62 1,913 29.15
MULTIVIEW4GNN-Full 72.76 22.28 2.81 81.83 901 24.49

MULTIVIEW4GNN-1 70.09 12.86 2.81 80.03 218 24.49
MULTIVIEW4GNN-2 72.32 12.89 2.81 80.34 219 24.49
MULTIVIEW4GNN-3 72.60 12.92 2.81 81.00 220 24.49
MULTIVIEW4GNN-4 72.71 12.95 2.81 81.89 221 24.49
MULTIVIEW4GNN-5 72.70 12.98 2.81 82.64 222 24.49
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Training Time. For the Persistent propagation methods including GCN, APPNP and MULTI-
VIEW4GNN-Full, the training time is longer than other methods that do not need to propagate
every epoch. Both APPNP and MULTIVIEW4GNN-Full need to propagate ten layers every epoch
and GCN needs to propagate three layers. However, the training time of MULTIVIEW4GNN-Full
is nearly half of APPNP and still less than GCN, which matches our time complexity analysis in
Section 2.5, as there is no gradient backpropagate through propagation layers. Compared with the
One-time propagation methods like SGC, MULTIVIEW4GNN with only a few update steps, such
as MULTIVIEW4GNN-5, can achieve better accuracy with a minor increase in training time. For
example, the whole training time of MULTIVIEW4GNN-5 is only 0.92s and 7s longer than SGC,
but it has 8.63% and 11.24 % relative performance improvements in ogbn-arxiv and ogbn-products
datasets, respectively. Meanwhile, we can observe that MULTIVIEW4GNN-5 has very similar per-
formance with MULTIVIEW4GNN-Full, which suggests that there is no need to do propagation and
train the model simultaneously for each epoch. This also suggests that the end-to-end training with
propagation might not be necessary.

Memory Cost. Compared with the Persistent propagation methods, MULTIVIEW4GNN requires
less memory with no requirement to store the hidden states in the propagation layers. Thus, MUL-
TIVIEW4GNN can keep a constant memory even with more propagation layers. Compared with
MLP and SGC, MULTIVIEW4GNN only slightly increases memory as it needs to store the pseudo
label matrix as analyzed in Section 2.5. In addition, MULTIVIEW4GNN is suitable for large-scale
datasets that cannot fit in the GPU memory. First, it is easy to propagate the pseudo labels using
CPUs as the label dimension is often lower than that of features. Then, MULTIVIEW4GNN is
amenable to sampling training with mini-batch, which would significantly reduce the memory cost
as discussed in Section 2.2. The only additional cost beyond One-time propagation methods is that
we need to transfer the result of MLP from GPU to CPU to do feature enhanced label propagation.
Due to the small dimension of labels and the limited number of propagations during training, the
cost is negligible.

3.4 ABLATION STUDY

In this subsection, we conduct ablation studies to gain a better understanding of how each component
of our method works which correspondingly answers the third question.
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Figure 2: Performance of MULTIVIEW4GNN variants.

Feature Diffusion. It is expected that
feature diffusion can improve the ac-
curacy of the MLP in the pretrain-
ing procedure when the label rate is
low and thus improve the quality of
pseudo labels F during its following
update steps. To validate this, we re-
move the feature diffusion step and
also use the pseudo labels to train our method, which is called MULTIVIEW4GNN-w/o-diffusion.
Experiments are conducted on both Cora and CiteSeer datasets. From Figure 2, we can see that at
low label rates, MULTIVIEW4GNN is better than MULTIVIEW4GNN-w/o-diffusion which means
that feature diffusion can boost the model’s performance on low label rate setting. As the labeling
rate increases, the performance gap becomes small, especially in the CiteSeer dataset. This shows
that feature diffusion is not the key component in our method when the label rate is not very low.

Pseudo Labels. One of the most important advantages of MULTIVIEW4GNN is that we leverage
pseudo labels to better train MLP. To study the contribution of pseudo labels in MULTIVIEW4GNN,
we test the model variant MULTIVIEW4GNN-w/o-pseudo which only uses labeled data on Cora and
CiteSeer datasets. Compared with MULTIVIEW4GNN, Figure 2 shows that pseudo labels have a
large impact on model performance on both datasets, especially when the label rate is low.

Moreover, we choose the top K confidence pseudo labels per class after the first update of F to
verify their accuracy. We adopt the same way to evaluate Label Propagation on Cora dataset with
the label rate 20. As shown in Figure 3, after the first update of F, the accuracy of the top 180 nodes
from each class can be 90%. So it is reasonable to use these pseudo labels to train MLP. Besides,
the accuracy of our method at each K is much better than Label propagation, which suggests the
effectiveness of the feature-enhanced label propagation update for F.
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Hyperparameters Sensitivity. We test the parameter sensitivity of λ1 and λ2 in Eq (2) on Physics
and Photo datasets by fixing one with the best parameters and tuning the other. From Figure 4,
MULTIVIEW4GNN is not very sensitive to these two hyperparameters at the chosen regions.

4 RELATED WORK

Graph Neural Network (GNN) is an effective architecture to represent the graph-structure data.
Two essential operations in the GNN are feature propagation and feature transformation. Consid-
ering how may times feature propagation in the training procedure, we categorize GNNs into Per-
sistent propagation GNNs and One-time propagation GNNs. Persistent propagation GNNs (e.g.,
GCN (Kipf & Welling, 2016), GraphSAGE (Hamilton et al., 2017), GAT (Velickovic et al., 2017))
require feature propagation on each training step. GCN (Kipf & Welling, 2016) is the most com-
monly used method which performs feature transformation then feature aggregation in each layer.
More recently, decoupled GNNs are proposed to alleviate the over-smoothness problem (Li et al.,
2018; Oono & Suzuki, 2019). APPNP (Klicpera et al., 2018) is the first work to first apply multiple
feature transformations then multiple aggregations. Similar architectures are also utilized in (Liu
et al., 2021; 2020; Zhou et al., 2021). However, these decoupled GNNs still require feature aggrega-
tion in each training step. One-time propagation GNNs are more efficient than the above Persistent
propagation methods for they only propagate once despite the number of training steps. SGC (Wu
et al., 2019a) is the first one to do feature aggregation and then transformation. SIGN (Rossi et al.,
2020) adopts a similar strategy with a different aggregation scheme. Recently, more efficient neu-
ral networks are proposed which utilize graph structure for post-process. Huang et al. (2020) train
a base predictor on labeled data and then apply a correct and a smooth step to post-process. Dong
et al. (2021) further understand the relationship between decoupled GNNs and label propagation and
utilizes soft pseudo labels for training. PPRGo (Bojchevski et al., 2020) precomputes the PageRank
matrix but it lose much edge information due to aggressive sparsification of the PageRank matrix,
which often leads to degraded performance and non-trivial tradeoff between efficiency and accuracy.

Multi-view learning on Graph. Our proposed multi-view learning framework for graph representa-
tion learning differs from existing works in literature. Specifically, multi-view graph cluster (Wang
et al., 2019; Pan & Kang, 2021) consider a totally different setting where multi-view attributes
and multiple structural graphs exist. Multi-view graph contrastive learning algorithms (Hassani &
Khasahmadi, 2020; Wang et al., 2021) use data augmentation to generate different graph views,
then encourage the similarity between different views generated from the same graph while reduce
the similarity in other view pairs. In contrast, our multi-view learning framework considers node
features, graph structure, and node labels as three views of the nodes.

Unified understanding on GNN. Recent works (Zhu et al., 2021; Ma et al., 2021; Yang et al., 2021)
aim to provide a unified optimization framework for understanding the message passing mechanism
of different GNNs and designing new graph filter layers. However, they only focus on the for-
ward process without taking the backward learning process into consideration, and they are still
following the existing GNN architecture with end-to-end training. In this work, we do not aim
to understand the message passing and design new layers based on existing architectures. Instead,
MULTIVIEW4GNN is a new graph deep learning framework as multi-view learning. It provides a
new perspective for graph representation learning with better flexibility, explanability, and efficiency.

5 CONCLUSION

In this work, we provide a new perspective to view the three types of information available for
node classification (i.e., graph structure, node feature, and node label) as three views of nodes. This
understanding inspires us to design GNN models as multi-view learning. The proposed MULTI-
VIEW4GNN framework can naturally be trained with the alternating optimization algorithm. Exper-
imental results validate that MULTIVIEW4GNN is both computational and memory efficient with
promising performance on the node classification task especially when the label rate is low.
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A MULTIVIEW4GNN WITH CROSS ENTROPY LOSS

In section 2.2, we instance MULTIVIEW4GNN with a Mean Square Error Loss. In this section, we
show it can be replaced by a Cross Entropy Loss. By replacing the first part of Eq (2) to be a cross
entropy between MLP and F, the formulation becomes:

L = λ1CE
(

MLP(X),F
)
+ tr(F⊤L̃F) + λ2∥FL −YL∥2F (11)

where CE(·, ·) is the cross entropy function. Adopting the same gradient decent method, the update
rule for F becomes:

Fk+1
L = Fk

L − ηL

(
−λ1 logMLP(XL) + 2(L̃Fk)L + 2λ2(F

k
L −YL)

)
= (1− 2ηL (1 + λ2))F

k
L + ηLλ1 logMLP(X)L + 2ηLÃFk

L + 2ηLλ2YL, (12)

Fk+1
U = Fk

U − ηU

(
−λ1 logMLP(XU ) + 2(L̃Fk)U

)
= (1− 2ηU )F

k
U + ηUλ1 logMLP(XU ) + 2ηU (ÃFk)U (13)

where the MLP is the output after the Softmax function and the step size can be set as ηL = ηU =
1

2(1+λ2)
. Therefore, the update rule of F is:

Fk+1
L =

λ1

2 (1 + λ2)
logMLP(XL) +

1

1 + λ2
(ÃFk)L +

λ2

1 + λ2
YL, (14)

Fk+1
U =

λ1

2(1 + λ2)
logMLP(XU ) +

1

1 + λ2
(ÃFk)U +

λ2

1 + λ2
Fk

U (15)

Then we can consider the hidden variable F as pseudo label and update the parameters of MLP
based on the cross entropy loss CE(MLP,F). In practice, there are some situations that the cross
entropy have a better performance than the original mean square error loss. Using two different
losses would give similar results in most cases, and we report the best one.

B ALGORITHM OF MULTIVIEW4GNN

In this section, we provide the algorithm 1 and code of MULTIVIEW4GNN.

In line 1, we first initialize the pseudo label F as label matrix Y. In line 2, we preprocess data by
feature diffusion. In line 3, we pretrain the MLP on the labeled data for a few epochs. From lines 4
to 9, we update F and MLP alternatively and iteratively.

Algorithm 1: MULTIVIEW4GNN
Input :Adjacent matrix A; Feature matrix X; Labels Y; Hyper-parameters λ1, λ2, α, pseudo

node number m; Labeled nodes L; layer p, pretraining step S; update times t
Output :Pseudo Label F, MLP parameter Θ

1 Initialize F← Y ;
2 X′ ← LP (X, α) ;
3 Pretraining S steps MLP with L =

∑
i∈L ℓ(MLP(x′

i; Θ),Yi);
4 while Stopping condition is not met do
5 Update F based on Eq. (7) and Eq. (8) for p times ;
6 Normalize F based on Fij =

exp(Fij/τ)∑C
k=1 exp(Fik/τ)

;

7 Select m top unlabeled nodes Ut per class by wi = 1− H(Fi)
log(C) ;

8 Update Θ for t times by minimizing LMLP (X
′, F ; Θ) =

∑
i∈L∪Ut

ℓ(MLP(x′
i; Θ),Fi) ;

9 end
10 return F,Θ ;

The code implemented by Pytorch is avaliable at https://anonymous.4open.science/r/multiview4gnn-
F418/.
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C DATASET STATISTICS

In the experiments, the data statistics used in Section 3 are summarized in Table 5. For Cora, Cite-
Seer and PubMed dataset, we adopt different label rates, i.e., 5, 10, 20, 60, 30% and 60% labeled
nodes per class, to get a more comprehensive comparison. For label rates 5, 10, 20, and 60, we use
500 nodes for validation and 1000 nodes for test. For label rates 30% and 60%, we use half of the
rest nodes for validation and the remaining half for test. For Ogbn-arxiv dataset, we use the original
fixed data split.

Table 5: Dataset Statistics.

Dataset Nodes Edges Features Classes
Cora 2,708 5,278 1,433 7

CiteSeer 3,327 4,552 3,703 6
PubMed 19,717 44,324 500 3

Coauthor CS 18,333 81,894 6,805 15
Coauthor Physics 34,493 247,962 8,415 5

Amazon Computer 13,381 245,778 767 10
Amazon Photo 7,487 119,043 745 8

Flickr 89,250 899,756 500 7
Reddit 232,965 11,606,919 602 41

Ogbn-Arxiv 169,343 1,166,243 128 40
Ogbn-Products 2,449,029 61,859,140 100 47

D TRANSDUCTIVE NODE CLASSIFICATION RESULTS

Table 6: The overall results of the transductive node classification task.

Method Non-GNN Persistent propagation methods One-time propagation methods Ours
Dataset Label Rate LP MLP GCN GAT APPNP SGC SIGN C&S Multiview4GNN

Cora 5 57.60 ± 5.71 42.34 ± 3.31 70.68 ± 2.17 72.97 ± 2.23 75.86 ± 2.34 70.06 ± 1.95 69.81 ± 3.13 56.52 ± 5.53 76.78 ± 2.56
10 63.76 ± 3.60 51.34 ± 3.37 76.50 ± 1.42 78.03 ± 1.17 80.29 ± 1.00 76.28 ± 1.22 76.25 ± 1.26 71.04 ± 3.30 80.66 ± 1.92
20 67.87 ± 1.43 59.23 ± 2.52 79.41 ± 1.30 81.39 ± 1.41 82.34 ± 0.67 80.30 ± 1.72 79.71 ± 1.11 77.96 ± 2.13 82.66 ± 0.98
60 73.92 ± 1.25 68.35 ± 2.08 84.30 ± 1.44 85.11 ± 1.10 85.49 ± 1.25 84.17 ± 1.39 84.16 ± 1.18 82.21 ± 1.45 85.60 ± 1.12

30% 82.26 ± 1.89 73.26 ± 1.38 86.87 ± 1.35 87.24 ± 1.19 87.77 ± 1.13 86.97 ± 0.90 87.17 ± 1.28 87.60 ± 1.12 87.70 ± 1.19
60% 86.05 ± 1.35 76.49 ± 1.13 88.60 ± 1.19 88.68 ± 1.13 88.49 ± 1.28 88.60 ± 1.38 88.21 ± 1.11 88.68 ± 1.39 88.96 ± 1.10

CiteSeer 5 39.06 ± 3.53 41.05 ± 2.84 61.27 ± 3.85 62.60 ± 3.34 63.92 ± 3.39 60.21 ± 3.48 57.44 ± 3.71 50.39 ± 4.70 67.48 ± 2.90
10 42.29 ± 3.26 47.99 ± 2.71 66.28 ± 2.14 66.81 ± 2.10 67.57 ± 2.05 65.23 ± 2.36 63.87 ± 3.09 58.96 ± 2.75 69.39 ± 2.59
20 46.15 ± 2.31 56.96 ± 1.80 69.60 ± 1.67 69.66 ± 1.47 70.85 ± 1.45 68.82 ± 2.11 68.60 ± 1.94 65.85 ± 2.74 71.26 ± 1.69
60 52.76 ± 1.14 66.37 ± 1.56 72.52 ± 1.74 73.10 ± 1.20 73.50 ± 1.54 71.43 ± 1.26 72.63 ± 1.39 71.21 ± 1.79 72.84 ± 1.65

30% 62.75 ± 1.30 70.37 ± 1.00 75.20 ± 0.85 75.01 ± 0.99 75.71 ± 0.71 75.09 ± 1.01 74.44 ± 0.83 74.65 ± 0.95 75.09 ± 0.79
60% 69.39 ± 2.01 73.15 ± 1.36 76.88 ± 1.78 76.70 ± 1.81 77.42 ± 1.47 76.66 ± 1.59 76.41 ± 1.96 76.34 ± 1.37 77.00 ± 1.67

Pubmed 5 65.52 ± 6.42 58.48 ± 4.06 69.76 ± 6.46 70.42 ± 5.36 72.68 ± 5.68 68.55 ± 6.88 66.52 ± 6.15 65.3 ± 6.02 73.51 ± 4.80
10 68.39 ± 4.88 65.36 ± 2.08 72.79 ± 3.58 73.35 ± 3.83 75.53 ± 3.85 72.80 ± 3.55 71.32 ± 3.70 72.51 ± 3.75 75.55 ± 5.09
20 71.88 ± 1.72 69.07 ± 2.10 77.43 ± 1.93 77.43 ± 2.66 78.93 ± 2.11 76.48 ± 2.84 76.39 ± 2.65 75.34 ± 2.49 79.16 ± 2.26
60 75.79 ± 1.54 76.20 ± 1.48 82.00 ± 1.62 81.40 ± 1.40 82.55 ± 1.47 80.34 ± 1.61 81.75 ± 1.55 80.63 ± 1.49 82.53 ± 1.76

30% 82.51 ± 0.34 85.92 ± 0.25 88.07 ± 0.29 86.51 ± 0.41 87.56 ± 0.39 86.23 ± 0.43 89.09 ± 0.33 88.44 ± 0.40 88.24 ± 0.36
60% 83.38 ± 0.64 86.14 ± 0.64 88.48 ± 0.46 86.52 ± 0.56 87.56 ± 0.52 86.63 ± 0.38 89.55 ± 0.56 88.53 ± 0.56 88.83 ± 0.55

CS 20 77.45 ± 1.80 88.12 ± 0.78 91.73 ± 0.49 90.96 ± 0.46 92.38 ± 0.38 90.32 ± 0.99 92.02 ± 0.41 92.41 ± 0.44 92.77 ± 0.50
Physics 20 86.70 ± 1.03 88.30 ± 1.59 93.29 ± 0.80 92.81 ± 1.03 93.49 ± 0.67 93.23 ± 0.59 93.03 ± 1.15 93.23 ± 0.55 94.63 ± 0.31

Computers 20 72.44 ± 2.87 60.66 ± 2.98 79.17 ± 1.92 78.38 ± 2.27 79.07 ± 2.34 73.00 ± 2.0 73.04 ±1.15 73.25± 2.09 79.12 ± 2.50
Photo 20 81.58 ± 4.69 75.33 ± 1.91 89.94 ± 1.22 89.24 ± 1.42 90.87 ± 1.14 83.50 ± 2.9 86.11 ± 0.66 84.87 ± 1.04 91.23 ± 1.26

ogbn-arxiv 54% 68.14 ± 0.00 55.68 ± 0.11 71.91 ± 0.15 71.92 ± 0.17 71.61 ± 0.30 68.74 ± 0.12 71.95 ± 0.11 71.03 ± 0.15 72.76 ± 0.17
ogbn-products 8% 74.08 ± 0.00 61.17 ± 0.20 75.70 ± 0.19 OOM 76.62 ± 0.13 73.15 ± 0.12 80.52±0.16 77.11 ± 0.06 82.64± 0.21

E PARAMETER SETTING

E.1 TRANSDUCTIVE SETTINGS

For all deep models, we use 3 transformation layers with 256 hidden units for OGB datasets and 2
layers with 64 hidden units for other datasets. We use the same learning rate of 0.01. For all methods,
hyperparameters are tuned based on the loss and validation accuracy from the following search space:
1) dropout rate: {0, 0.5, 0.8}; 2) weight decay: {0, 5e-4, 5e-5}; and 3) For the hyperparameters range
between 0 and 1, we tune them by step size 0.1. The propagation step K for APPNP and C&S is
tuned from {5, 10} and {10, 20, 50}, respectively. The λ1 and λ2 in MULTIVIEW4GNN are tuned
from {0.1, 0.3, 0.5, 0.7, 1} and {1, 3, 5, 7, 10}, respectively. Adam optimizer(Kingma & Ba, 2014)
is used in all experiments.
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E.2 INDUCTIVE SETTINGS

We first filter the training graph that only contains labeled node for training, and the entire graph are
used for inference. For all models, we use 3 transformation layers with 256 hidden units for Reddit
dataset, and 2 layers with 64 hidden units for Flickr dataset. For all methods, hyperparameters are
tuned based on the loss and validation accuracy from the following search space: (1) learning rate:
{0.01, 0.05 }; (2) dropout: {0, 0.1}; (3) weight decay: {0}; For the hyperparameters range between
0 and 1, we tune them by step size 0.1. The propagation step K for APPNP and C& is tuned from
{2, 3, 5, 10} and {10, 20, 50}, respectively. The λ1 and λ2 in MULTIVIEW4GNN are tuned with
granularity of 0.1 in range [0, 1], and 1 in [1, 10], respectively.
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