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Abstract

Consider the sequential optimization of a continuous, possibly non-convex, and
expensive to evaluate objective function f . The problem can be cast as a Gaussian
Process (GP) bandit where f lives in a reproducing kernel Hilbert space (RKHS).
The state of the art analysis of several learning algorithms shows a significant gap
between the lower and upper bounds on the simple regret performance. When N is
the number of exploration trials and γN is the maximal information gain, we prove
an Õ(

√
γN/N) bound on the simple regret performance of a pure exploration

algorithm that is significantly tighter than the existing bounds. We show that this
bound is order optimal up to logarithmic factors for the cases where a lower bound
on regret is known. To establish these results, we prove novel and sharp confidence
intervals for GP models applicable to RKHS elements which may be of broader
interest.

1 Introduction

Sequential optimization has evolved into one of the fastest developing areas of machine learning [1].
We consider sequential optimization of an unknown objective function from noisy and expensive to
evaluate zeroth-order1 observations. That is a ubiquitous problem in academic research and industrial
production. Examples of applications include exploration in reinforcement learning, recommendation
systems, medical analysis tools and speech recognizers [4]. A notable application in the field of
machine learning is automated hyper-parameter tuning. Prevalent methods such as grid search can
be prohibitively expensive [5, 6]. Sequential optimization methods, on the other hand, are shown to
efficiently find good hyper-parameters by an adaptive exploration of the hyper-parameter space [7].

Our sequential optimization setting is as follows. Consider an objective function f defined over
a domain X ⊂ Rd, where d ∈ N is the dimension of the input. A learning algorithm is allowed
to perform an adaptive exploration to sequentially observe the potentially corrupted values of the
objective function {f(xn) + εn}Nn=1, where εn are random noises. At the end of N exploration trials,
the learning algorithm returns a candidate maximizer x̂∗N ∈ X of f . Let x∗ ∈ argmaxx∈X f(x) be a
true optimal solution. We may measure the performance of the learning algorithm in terms of simple
regret; that is, the difference between the performance under the true optimal solution, f(x∗), and
that under the learnt value, f(x̂∗N ).

Our formulation falls under the general framework of continuum armed bandit that signifies receiving
feedback only for the selected observation point xn at each time n [8, 9, 10, 11]. Bandit problems have
been extensively studied under numerous settings and various performance measures including simple

1Zeroth-order feedback signifies observations from f in contrast to first-order feedback which refers to
observations from gradient of f as e.g. in stochastic gradient descent [see, e.g., 2, 3].
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regret [see, e.g., 10, 12, 13], cumulative regret [see, e.g., 14, 15, 16], and best arm identification [see,
e.g., 17, 18]. The choice of performance measure strongly depends on the application. Simple regret
is suitable for situations with a preliminary exploration phase (for instance hyper-parameter tuning)
in which costs are not measured in terms of rewards but rather in terms of resources expended [10].

Due to infinite cardinality of the domain, approaching f(x∗) is feasible only when appropriate
regularity assumptions on f and noise are satisfied. Following a growing literature [19, 20, 21, 22],
we focus on a variation of the problem where f is assumed to belong to a reproducing kernel Hilbert
space (RKHS) that is a very general assumption. Almost all continuous functions can be approximated
with the RKHS elements of practically relevant kernels such as Matérn family of kernels [19]. We
consider two classes of noise: sub-Gaussian and light-tailed.

Our regularity assumption on f allows us to utilize Gaussian processes (GPs) which provide powerful
Bayesian (surrogate) models for f [23]. Sequential optimization based on GP models is often referred
to as Bayesian optimization in the literature [4, 24, 25]. We build on prediction and uncertainty
estimates provided by GP models to study an efficient adaptive exploration algorithm referred to as
Maximum Variance Reduction (MVR). Under simple regret measure, MVR embodies the simple
principle of exploring the points with the highest variance first. Intuitively, the variance in the GP
model is considered as a measure of uncertainty about the unknown objective function and the
exploration steps are designed to maximally reduce the uncertainty. At the end of exploration trials,
MVR returns a candidate maximizer based on the prediction provided by the learnt GP model. With
its simple structure, MVR is amenable to a tight analysis that significantly improves the best known
bounds on simple regret. To this end, we derive novel and sharp confidence intervals for GP models
applicable to RKHS elements. In addition, we provide numerical experiments on the simple regret
performance of MVR comparing it to GP-UCB [19, 20], GP-PI [26] and GP-EI [26].

1.1 Main Results

We first derive novel confidence intervals for GP models applicable to RKHS elements (Theorems 1
and 2). As part of our analysis, we formulate the posterior variance of a GP model as the sum
of two terms: the maximum prediction error from noise-free observations, and the effect of noise
(Proposition 1). This interpretation elicits new connections between GP regression and kernel ridge
regression [27]. These results are of interest on their own.

We then build on the confidence intervals for GP models to provide a tight analysis of the simple
regret of the MVR algorithm (Theorem 3). In particular, we prove a high probability Õ(

√
γN
N )2

simple regret, where γN is the maximal information gain (see § 2.4). In comparison to Õ( γN√
N

)

bounds on simple regret [see, e.g., 19, 20, 28], we show an O(
√
γN ) improvement. It is noteworthy

that our bound guarantees convergence to the optimum value of f , while previous Õ( γN√
N

) bounds do

not, since although γN grows sublinearly with N , it can grow faster than
√
N .

We then specialize our results for the particular cases of practically relevant Matérn and Squared
Exponential (SE) kernels. We show that our regret bounds match the lower bounds and close the gap
reported in [28, 29], who showed that an average simple regret of ε requires N = Ω

(
1
ε2 (log( 1

ε ))
d
2

)
exploration trials in the case of SE kernel. For the Matérn-ν kernel (where ν is the smoothness
parameter, see § 2.1) they gave the analogous bound of N = Ω

(
( 1
ε )2+

d
ν

)
. They also reported a

significant gap between these lower bounds and the upper bounds achieved by GP-UCB algorithm.
In Corollary 1, we show that our analysis of MVR closes this gap in the performance and establishes
upper bounds matching the lower bounds up to logarithmic factors.

In contrast to the existing results which mainly focus on Gaussian and sub-Gaussian distributions for
noise, we extend our analysis to the more general class of light-tailed distributions, thus broadening
the applicability of the results. This extension increases both the confidence interval width and the
simple regret by only a multiplicative logarithmic factor. These results apply to e.g. the privacy
preserving setting where often a light-tailed noise is employed [30, 31, 32].

2The notations O and Õ are used to denote the mathematical order and the mathematical order up to
logarithmic factors, respectively.
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1.2 Literature Review

The celebrated work of Srinivas et al. [19] pioneered the analysis of GP bandits by proving an
Õ(γN

√
N) upper bound on the cumulative regret of GP-UCB, an optimistic optimization algorithm

sequentially selecting xn which maximize an upper confidence bound index over the search space.
That implies an Õ( γN√

N
) simple regret [28]. Their analysis relied on deriving confidence intervals for

GP models applicable to RKHS elements. They also considered a fully Bayesian setting where f is
assumed to be a sample from a GP and noise is assumed to be Gaussian. [20] built on feature space
representation of GP models and self-normalized martingale inequalities, first developed in [33] for
linear bandits, to improve the confidence intervals of [19] by a multiplicative log(N) factor. That led
to an improvement in the regret bounds by the same multiplicative log(N) factor. A discussion on
the comparison between these results and the confidence intervals derived in this paper is provided
in § 3.3. A technical comparison with some recent advances in regret bounds requires introducing
new notations and is deferred to § 4.4.

The performance of Bayesian optimization algorithms has been extensively studied under numer-
ous settings including contextual information [34], high dimensional spaces [35, 36], safety con-
straints [37, 38], parallelization [39], meta-learning [40], multi-fidelity evaluations [41], ordinal
models [42], corruption tolerance [43, 29], and neural tangent kernels [44, 45]. [46] introduced an
adaptive discretization of the search space improving the computational complexity of a GP-UCB
based algorithm. Sparse approximation of GP posteriors are shown to preserve the regret orders while
improving the computational complexity of Bayesian optimization algorithms [36, 47, 48]. Under
the RKHS setting with noisy observations, GP-TS [20] and GP-EI [49, 50] are also shown to achieve
the same regret guarantees as GP-UCB (up to logarithmic factors). All these works report Õ( γN√

N
)

regret bounds.

The regret bounds are also reported under other often simpler settings such as noise-free ob-
servations [51, 52, εn = 0,∀n] or a Bayesian regret that is averaged over a known prior on
f [39, 53, 54, 55, 56, 57, 58, 59], rather than for a fixed and unknown f as in our setting.

Other lines of work on continuum armed bandit exist, relying on other regularity assumptions such
as Lipschitz continuity [9, 11, 12, 60], convexity [61] and unimodality [62], to name a few. A
notable example is [11] who showed that hierarchical algorithms based on tree search yieldO(N

d+1
d+2 )

cumulative regret. We do not compare with these results due to the inherent difference in the regularity
assumptions.

1.3 Organization

In § 2, the problem formulation, the regularity assumptions, and the preliminaries on RKHS and
GP models are presented. The novel confidence intervals for GP models are proven in § 3. MVR
algorithm and its analysis are given in § 4. The experiments are presented in § 5. We conclude with a
discussion in § 6.

2 Problem Formulation and Preliminaries

Consider an objective function f : X → R, where X ⊆ Rd is a convex and compact domain.
Consider an optimal point x∗ ∈ argmaxx∈X f(x). A learning algorithm A sequentially selects
observation points {xn ∈ X}n∈N and observes the corresponding noise disturbed objective values
{yn = f(xn) + εn}n∈N, where εn is the observation noise. We use the notationsHn = {Xn, Yn},
Xn = [x1, x2, ..., xn]>, Yn = [y1, y2, ..., yn]>, xn ∈ X , yn ∈ R, for all n ≥ 1. In a simple regret
setting, the learning algorithm determines a sequence of mappings {Sn}n≥1 where each mapping
Sn : Hn → X predicts a candidate maximizer x̂∗n. For algorithm A, the simple regret under a budget
of N tries is defined as

rAN = f(x∗)− f(x̂∗N ). (1)

The budget N may be unknown a priori. Notationwise, we use Fn = [f(x1), f(x2), . . . , f(xn)]>

and En = [ε1, ε2, . . . , εn]> to denote the noise free part of the observations and the noise history,
respectively, similar to Xn and Yn.
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2.1 Gaussian Processes

The Bayesian optimization algorithms build on GP (surrogate) models. A GP is a random process
{f̂(x)}x∈X , where each of its finite subsets follow a multivariate Gaussian distribution. The distribu-
tion of a GP is fully specified by its mean function µ(x) = E[f̂(x)] and a positive definite kernel (or
covariance function) k(x, x′) = E

[
(f̂(x)− µ(x))(f̂(x′)− µ(x′))

]
. Without loss of generality, it is

typically assumed that, for prior GP distributions, µ(x) = 0,∀x ∈ X .

Conditioning GPs on available observations provides us with powerful non-parametric Bayesian
(surrogate) models over the space of functions. In particular, using the conjugate property, conditioned
on Hn, the posterior of f̂ is a GP with mean function µn(x) = E[f̂(x)|Hn] and kernel function
kn(x, x′) = E[(f̂(x)− µn(x))(f̂(x′)− µn(x′))|Hn] specified as follows:

µn(x) = k>(x,Xn)
(
k(Xn, Xn) + λ2In

)−1
Yn,

kn(x, x′) = k(x, x′)− k>(x,Xn)
(
k(Xn, Xn) + λ2In

)−1
k(x′, Xn), σ2

n(x) , kn(x, x), (2)

where with some abuse of notation k(x,Xn) = [k(x, x1), k(x, x2), . . . , k(x, xn)]>, k(Xn, Xn) =
[k(xi, xj)]

n
i,j=1 is the covariance matrix, In is the identity matrix of dimension n, and λ > 0 is a real

number.

In practice, Matérn and squared exponential (SE) are the most commonly used kernels for Bayesian
optimization [see, e.g., 4, 24],

kMatérn(x, x′) =
1

Γ(ν)2ν−1

(√
2νρ

l

)ν
Bν

(√
2νρ

l

)
, kSE(x, x′) = exp

(
− ρ

2

2l2

)
,

where l > 0 is referred to as lengthscale, ρ = ||x− x′||l2 is the Euclidean distance between x and x′,
ν > 0 is referred to as the smoothness parameter, Γ and Bν are, respectively, the Gamma function
and the modified Bessel function of the second kind. Variation over parameter ν creates a rich family
of kernels. The SE kernel can also be interpreted as a special case of Matérn family when ν →∞.

2.2 RKHSs and Regularity Assumptions on f

Consider a positive definite kernel k : X × X → R with respect to a finite Borel measure (e.g.,
the Lebesgue measure) supported on X . A Hilbert space Hk of functions on X equipped with an
inner product 〈·, ·〉Hk is called an RKHS with reproducing kernel k if the following is satisfied.
For all x ∈ X , k(·, x) ∈ Hk, and for all x ∈ X and f ∈ Hk, 〈f, k(·, x)〉Hk = f(x) (reproducing
property). A constructive definition of RKHS requires introducing Mercer theorem, which provides
an alternative representation of kernels as an inner product of infinite dimensional feature maps [see,
e.g., 27, Theorem 4.1], and is deferred to Appendix A. We have the following regularity assumption
on the objective function f .

Assumption 1 The objective function f is assumed to live in the RKHS corresponding to a positive
definite kernel k. In particular, ||f ||Hk ≤ B, for some B > 0, where ‖f‖2Hk = 〈f, f〉Hk .

For common kernels, such as Matérn family of kernels, members of Hk can uniformly approximate
any continuous function on any compact subset of the domain X [19]. This is a very general class of
functions; more general than, e.g., the class of convex functions. It has thus gained increasing interest
in recent years.

2.3 Regularity Assumptions on Noise

We consider two different cases regarding the regularity assumption on noise. Let us first revisit the
definition of sub-Gaussian distributions.

Definition 1 A random variableX is called sub-Gaussian if its moment generating functionM(h) ,
E[exp(hX)] is upper bounded by that of a Gaussian random variable.

The sub-Gaussian assumption implies that E[X] = 0. It also allows us to use Chernoff-Hoeffding
concentration inequality [63] in our analysis.
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We next recall the definition of light-tailed distributions.

Definition 2 A random variable X is called light-tailed if its moment-generating function exists, i.e.,
there exists h0 > 0 such that for all |h| ≤ h0, M(h) <∞.

For a zero mean light-tailed random variable X , we have [64]

M(h) ≤ exp(ξ0h
2/2), ∀|h| ≤ h0, ξ0 = sup{M (2)(h), |h| ≤ h0}, (3)

whereM (2)(.) denotes the second derivative ofM(.) and h0 is the parameter specified in Definition 2.
We observe that the upper bound in (3) is the moment generating function of a zero mean Gaussian
random variable with variance ξ0. Thus, light-tailed distributions are also called locally sub-Gaussian
distributions [65].

We provide confidence intervals for GP models and regret bounds for MVR under each of the
following assumptions on the noise terms.

Assumption 2 (Sub-Gaussian Noise) The noise terms εn are independent over n. In addition,
∀h ∈ R,∀n ∈ N,E[ehεn ] ≤ exp(h

2R2

2 ), for some R > 0.

Assumption 3 (Light-Tailed Noise) The noise terms εn are zero mean independent random vari-
ables over n. In addition, ∀h ≤ h0,∀n ∈ N,E[ehεn ] ≤ exp(h

2ξ0
2 ), for some ξ0 > 0.

Bayesian optimization uses GP priors for the objective function f and assumes a Gaussian distribution
for noise (for its conjugate property). It is noteworthy that the use of GP models is merely for the
purpose of algorithm design and does not affect our regularity assumptions on f and noise. We use
the notation f̂ to distinguish the GP model from the fixed f .

2.4 Maximal Information Gain

The regret bounds derived in this work are given in terms of the maximal information gain, defined
as γN = supXN⊆X I(YN ; f̂), where I(YN ; f̂) denotes the mutual information between Yn and
f̂ [see, e.g., 66, Chapter 2]. In the case of a GP model, the mutual information can be given as
I(Yn; f̂) = 1

2 log det
(
In + 1

λ2 k(Xn, Xn)
)
, where the notation (log) det denotes the (logarithm of)

determinant of a square matrix. Note that the maximal information gain is kernel-specific and XN -
independent. Upper bounds on γN are derived in [19, 21, 22] which are commonly used to provide
explicit regret bounds. In the case of Matérn and SE kernels, γN = O

(
N

d
2ν+d (log(N))

2ν
2ν+d

)
and

γN = O
(
(log(N))d+1

)
, respectively [22].

3 Confidence Intervals for Gaussian Process Models

The analysis of bandit problems classically builds on confidence intervals applicable to the values of
the objective function [see, e.g., 67, 68]. The GP modelling allows us to create confidence intervals
for complex functions over continuous domains. In particular, we utilize the prediction (µn) and
the uncertainty estimate (σn) provided by GP models in building the confidence intervals which
become an important building block of our analysis in the next section. To this end, we first prove
the following proposition which formulates the posterior variance of a GP model as the sum of two
terms: the maximum prediction error for an RKHS element from noise free observations and the
effect of noise.

Proposition 1 Let σ2
n be the posterior variance of the surrogate GP model as defined in (2). Let

Z>n (x) = k>(x,Xn)
(
k(Xn, Xn) + λ2In

)−1
. We have

σ2
n(x) = sup

f :||f ||Hk≤1
(f(x)− Z>n (x)Fn)2 + λ2‖Zn(x)‖2l2 .

Notice that the first term f(x)− Z>n (x)Fn captures the maximum prediction error from noise free
observations Fn. The second term captures the effect of noise in the surrogate GP model (and is
independent of Fn). A detailed proof for Proposition 1 is provided in Appendix B.
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Proposition 1 elicits new connections between GP models and kernel ridge regression. While the
equivalence of the posterior mean in GP models and the regressor in kernel ridge regression is well
known, the interpretation of posterior variance of GP models as the maximum prediction error for
an RKHS element is less studied [see 27, Section 3, for a detailed discussion on the connections
between GP models and kernel ridge regression].

3.1 Confidence Intervals under Sub-Gaussian Noise

The following theorem provides a confidence interval for GP models applicable to RKHS elements
under the assumption that the noise terms are sub-Gaussian.

Theorem 1 Assume Assumptions 1 and 2 hold. Provided n noisy observations Hn = {Xn, Yn}
from f , let µn and σn be as defined in (2). Assume Xn are independent of En. For a fixed x ∈ X ,
define the upper and lower confidence bounds, respectively,

Uδn(x) , µn(x) + (B + β(δ))σn(x), and Lδn(x) , µn(x)− (B + β(δ))σn(x), (4)

with β(δ) = R
λ

√
2 log(1

δ ), where δ ∈ (0, 1), and B and R are the parameters specified in Assump-
tions 1 and 2. We have

f(x) ≤ Uδn(x) w.p. at least 1− δ, and f(x) ≥ Lδn(x) w.p. at least 1− δ.

We can write the difference in the objective function and the posterior mean as follows.

f(x)− µn(x) = f(x)− Z>n (x)Yn = f(x)− Z>n (x)Fn︸ ︷︷ ︸
Prediction error from noise free observations

− Z>n (x)En︸ ︷︷ ︸
The effect of noise

.

The first term can be bounded directly following Proposition 1. The second term is bounded as a
result of Proposition 1 and Chernoff-Hoeffding inequality. A detailed proof of Theorem 1 is provided
in Appendix C.

3.2 Confidence Intervals under Light-Tailed Noise

We now extend the confidence intervals to the case of light-tailed noise. The main difference with
sub-Gaussian noise is that Chernoff-Hoeffding inequality is no more applicable. We derive new
bounds accounting for light-tailed noise in the analysis of Theorem 2.

Theorem 2 Assume Assumptions 1 and 3 hold. For a fixed x ∈ X , define the upper and lower confi-

dence bounds U δn(x) and Lδn(x) similar to Theorem 1 with β(δ) = 1
λ

√
2
(
ξ0 ∨

2 log( 1
δ )

h2
0

)
log( 1

δ ) 3,

where δ ∈ (0, 1), andB, h0 and ξ0 are specified in Assumptions 1 and 3. AssumeXn are independent
of En. We have

f(x) ≤ Uδn(x) w.p. at least 1− δ, and f(x) ≥ Lδn(x) w.p. at least 1− δ.

In comparison to Theorem 1, under the light-tailed assumption, the confidence interval width increases

with a multiplicative O(
√

log( 1
δ )) factor. A detailed proof of Theorem 2 is provided in Appendix C.

Remark 1 Theorems 1 and 2 rely on the assumption that Xn are independent of En. As we shall see
in § 4, this assumption is satisfied when the confidence intervals are applied to the analysis of MVR.

3.3 Comparison with the Existing Confidence Intervals

The most relevant work to our Theorems 1 and 2 is [20, Theorem 2] which itself was an improvement
over [19, Theorem 6]. [20] built on feature space representation of GP kernels and self-normalized
martingale inequalities [33, 69] to establish a 1 − δ confidence interval in the same form as in

Theorem 1, under Assumptions 1 and 2, with confidence interval widthB+R
√

2(γn + 1 + log(1
δ )) 4

3The notation ∨ is used to denote the maximum of two real numbers, ∀a, b ∈ R, (a ∨ b) , max(a, b).
4Note that the effect of λ is absorbed in γn.
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(instead of B + β(δ)). There is a stark contrast between this confidence interval and the one given in
Theorem 1 in its dependence on γn, which has a relatively large and possibly polynomial in n value.
That contributes an extra O(

√
γN ) multiplicative factor to regret.

Neither of these two results (our Theorem 1 and [20, Theorem 2]) imply the other. Although our
confidence interval is much tighter, there are two important differences in the settings of these
theorems. One difference is in the probabilistic dependencies between the observation points xn and
the noise terms {εj}j<n. While Theorem 1 assumes that Xn are independent of En, [20, Theorem 2]
allows for the dependence of xn on the previous noise terms {εj}j<n. This is a reflection of the
difference in the analytical requirements of MVR and GP-UCB. The other difference is that [20,
Theorem 2] holds for all x ∈ X . While, Theorem 1 holds for a single x ∈ X . As we will see
in § 4.2, a probability union bound can be used to obtain confidence intervals applicable to all x in
(a discretization of) X , which contributes only logarithmic terms to regret, in contrast to O(

√
γn).

Roughly speaking, we are trading off the extra O(
√
γn) term for restricting the confidence interval to

hold for a single x. It remains an open problem whether the same can be done when xn are allowed
to depend on {εj}j<n.

4 Maximum Variance Reduction and Simple Regret

In this section, we first formally present an exploration policy based on GP models referred to as
Maximum Variance Reduction (MVR). We then utilize the confidence intervals for GP models derived
in § 3 to prove bounds on the simple regret of MVR.

4.1 Maximum Variance Reduction Algorithm

MVR relies on the principle of maximally reducing the uncertainty, where the uncertainty is measured
by the posterior variance of the GP model. After N exploration trials, MVR returns a candidate
maximizer according to the prediction provided by the learnt GP model. A pseudo-code is given in
Algorithm 1.

Algorithm 1 Maximum Variance Reduction (MVR)

1: Initialization: k, X , f , σ2
0(x) , k(x, x).

2: for n = 1, 2, . . . , N do
3: xn = argmaxx∈Xσ

2
n−1(x), where a tie is broken arbitrarily.

4: Update σ2
n(.) according to (2).

5: end for
6: Update µN (.) according to (2).
7: return x̂∗N = argmaxx∈XµN (x), where a tie is broken arbitrarily.

We note that MVR, similar to other standard GP bandit algorithms, requires optimizing an internal
index created based on previous observations (here, σ2

n−1(.) and µN (.)). Examples of other typical
indices are UCB and EI, which are often referred to as acquisition functions. The index itself may be
multi modal in general. It is however standard to assume a perfect optimization of the index, since
the cost of evaluating f is considered to dominate the cost of maximizing the index [19].

4.2 Regret Analysis

For the analysis of MVR, we assume there exists a fine discretization of the domain for RKHS
elements, which is a standard assumption in the literature [see, e.g., 19, 20, 48].

Assumption 4 For each given n ∈ N and f ∈ Hk with ‖f‖Hk ≤ B, there exists a discretization Dn
of X such that f(x)− f([x]n) ≤ 1√

n
, where [x]n = argminx′∈Dn ||x

′ − x||l2 is the closest point in

Dn to x, and |Dn| ≤ CBdnd/2, where C is a constant independent of n and B.

Assumption 4 is a mild assumption that holds for typical kernels such as SE and Matérn [19, 20]. The
following theorem provides a high probability bound on the regret performance of MVR, when the
noise terms satisfy either Assumption 2 or 3.
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Theorem 3 Consider the GP bandit problem, with a fixed N . Under Assumptions 1, 4, and (2 or 3),
for δ ∈ (0, 1), with probability at least 1− δ, MVR satisfies

rMVR
N ≤

√
2γN

log(1 + 1
λ2 )N

2B + β(
δ

3
) + β

(
δ

3C
(
B +

√
Nβ(2δ/3N)

)d
Nd/2

)+
2√
N
,

where under Assumption 2, β(δ) = R
λ

√
2 log(1

δ ), and under Assumption 3, β(δ) =

1
λ

√
2
(
ξ0 ∨

2 log( 1
δ )

h2
0

)
log( 1

δ ), and B, R, h0, ξ0 and C are the constants specified in Assump-

tions 1, 2, 3 and 4.

A detailed proof of the theorem is provided in Appendix D.

Remark 2 Under Assumptions 2 and 3, respectively, the regret bounds can be simplified as

rMVR
N = O(

√
γN log(Nd/δ)

N
), and rMVR

N = O
(√

γN
N

log(Nd/δ)

)
.

For instance, in the case of Matérn-ν kernel, under Assumption 2 and 3, respectively,

rMVR
N = O

(
N

−ν
2ν+d (log(N))

ν
2ν+d

√
log(Nd/δ)

)
, and rMVR

N = O
(
N

−ν
2ν+d (log(N))

ν
2ν+d log(Nd/δ)

)
,

which always converge to zero as N grows.

Remark 3 In the analysis of Theorem 3, we apply Assumption 4 to µN as well as f . For this
purpose, we derive a high probability B +

√
Nβ(2δ/3N) upper bound on ‖µN‖Hk (see Lemma 4

in Appendix D), which appears in the regret bound expression.

Remark 4 Theorem 3 holds for a fixed N . The result however easily extends to an anytime regret
bound, using a standard probability union bound over N . Specifically, if we replace δ in the bound
with δ0 = 6δ

π2N2 , the theorem holds, with probability 1−δ, for allN ∈ N. Note that
∑∞
N=1

6δ
π2N2 = δ.

4.3 Optimal Order Simple Regret with SE and Matérn Kernels

To enable a direct comparison with the lower bounds on simple regret proven in [28, 29], in the
following corollary, we state a dual form of Theorem 3 for the Matérn and SE kernels. Specifically
we formalize the number of exploration trials required to achieve an average ε regret.

Corollary 1 Consider the GP bandit problem with an SE or a Matérn kernel. For ε ∈ (0, 1), define
Nε = min{N ∈ N : E[rMVR

n ] ≤ ε,∀n ≥ N}. Under Assumptions 1, 4, and (2 or 3), upper bounds
on Nε are reported in Table 1.

Table 1: The upper bounds on Nε defined in Corollary 1 with SE or Matérn kernel.
Kernel Under Assumption 2 Under Assumption 3

SE Nε = O
(
( 1
ε )2 log( 1

ε )d+2
)

Nε = O
(
( 1
ε )2 log( 1

ε )d+3
)

Matérn-ν Nε = O
(

( 1
ε )2+

d
ν (log( 1

ε ))
4ν+d
2ν

)
Nε = O

(
( 1
ε )2+

d
ν (log( 1

ε ))
6ν+2d

2ν

)

A proof is provided in Appendix E. [28, 29] showed that for the SE kernel, an average simple regret
of ε requires Nε = Ω

(
1
ε2 (log( 1

ε ))
d
2

)
. For the Matérn-ν kernel they gave the analogous bound of

Nε = Ω
(

( 1
ε )2+

d
ν

)
. They also reported significant gaps between these lower bounds and the existing

results [see, e.g., 28, Table I]. Comparing with Corollary 1, our bounds are tight in all cases up to
log(1/ε) factors.
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4.4 Comparing the Regret Bounds with Other Related Work

There are several Bayesian optimization algorithms namely GP-UCB [19], IGP-UCB, GP-TS [20],
TruVar [70], GP-EI [50, 49] and KernelUCB [71] which enjoy theoretical upper bounds on regret
under Assumptions 1, 2 and 4. The regret bounds of these algorithms grow at least as fast as O( γN√

N
).

That does not necessarily converge to zero, since γN can grow faster than
√
N , resulting in trivial

regret bounds. For example, in the case of a Matérn-ν kernel, inserting γN = Õ(N
d

2ν+d ) [22] gives
an Õ(N

d−2ν
4ν+2d ) regret, which does not converge to zero for d > 2ν, meaning the algorithm does not

necessarily approach f(x∗).

More recently, [21] developed a GP-UCB based algorithm, specific to Matérn family of kernels, that
constructs a cover for the search space, as many hypercubes, and fits an independent GP to each cover
element. This algorithm, referred to as π-GP-UCB, was proven to achieve diminishing regret for all
ν > 1 and d ≥ 1. In particular, [21, Theorem 3] provided an upper bound on the regret of π-GP-UCB,
which in our notation implies rπ-GP-UCB

N = Õ(N
−2ν−d

4ν+d(2d+4) ). In contrast, our bound for the case of
Matérn kernel rMVR

N = Õ(N
−ν

2ν+d ) is uniformly tighter that the bound on rπ-GP-UCB
N , for all ν > 1

and d ≥ 1. [72] introduced LP-GP-UCB where the GP model is augmented with local polynomial
estimators to construct a multi-scale upper confidence bound guiding the sequential optimization.
They further improved the regret bounds of [21] and showed that the performance of LP-GP-UCB
matches the lower bound for some configuration of parameters ν and d in the case of a Matérn kernel.
Defining I0 = (0, 1], I1 = (1, d(d+1)

2 ], I2 = (d(d+1)
2 , d

2+5d+12
4 ] and I3 = (0,∞) \ I0 ∪ I1 ∪ I2,

their bounds on simple regret are as follows. For ν ∈ I0 ∪ I1, rLP-GP-UCB
N = Õ(N

−ν
2ν+d ). For ν ∈ I2,

rLP-GP-UCB
N = Õ(N

−1
2+d ). For ν ∈ I3, rLP-GP-UCB

N = Õ(N
−4ν+d(d+1)
8ν+2d(d+5) ) [see, 72, Sec. 3.2, for a detailed

discussion on bounds on the simple regret of LP-GP-UCB]. In comparison, our bounds on simple
regret match the Ω(N

−ν
2ν+d ) lower bound [28], up to logarithmic factors, with all parameters ν and d.

In addition, LP-GP-UCB is impractical due to large constant factors, though a practical heuristic was
also given.

Of important theoretical value, SupKernelUCB [71], which builds on episodic independent batches
of observations, was proven to achieve Õ(

√
γN
N ) regret on a finite set (|X | <∞). SupKernelUCB

is reported to perform poorly in practice [21, 47, 29]. While the proof of the regret bound for
SupKernelUCB is given on a finite set, relying on the remarks from [21] and [29, Appendix A.4], we
note that the bounds can be extended to a continuous domain using a discretization argument. That
leads to rSupKernelUCB

N = O(log2(N)
√

γN
N ), under similar assumptions as ours. In comparison, our

bound on rMVR
N is tighter with a factor of (log(N))

3
2 .

It is noteworthy that our techniques do not directly apply to the analysis of cumulative regret of
algorithms such as GP-UCB. The key difference is that in MVR the observation points xn are
independent of the noise terms εn (although xn are allowed to depend on {xj}j<n, and x̂∗N is allowed
to depend on {xn, εn}n≤N ), while in GP-UCB xn are allowed to depend on {εj}j<n (see also Sec.
3.3). It remains an interesting open question whether the existing analysis of the regret performance
of GP-UCB [20] is tight or the gap with the lower bound [28] is an artifact of its proof. For more
details on this open question, see [73].

5 Experiments

In this section, we provide numerical experiments on the simple regret performance of MVR,
Improved GP-UCB (IGP-UCB) as presented in [20], and GP-PI and GP-EI as presented in [26].

We follow the experiment set up in [20] to generate test functions from the RKHS. First, 100 points
are uniformly sampled from interval [0, 1]. A GP sample with kernel k is drawn over these points.
Given this sample, the mean of posterior distribution is used as the test function f . Parameter λ2 is
set to 1% of the function range. For IGP-UCB we set the parameters exactly as described in [20].
The GP model is equipped with SE or Matérn-2.5 kernel with l = 0.2. We use 2 different models for
the noise: a zero mean Gaussian with variance equal to λ2 (a sub-Gaussian distribution) and a zero
mean Laplace with scale parameter equal to λ (a light-tailed distribution). We run each experiment
over 25 independent trials and plot the average simple regret in Figure 1. More experiments on
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two commonly used benchmark functions for Bayesian optimization (Rosenbrock and Hartman3)
are reported in Appendix F. Further details on the experiments are provided in the supplementary
material.

(a) SE, Gaussian Noise (b) Matérn, Gaussian Noise

(c) SE, Laplace Noise (d) Matérn, Laplace Noise

Figure 1: Comparison of the simple regret performance of Bayesian optimization algorithms on
samples from RKHS.

6 Discussion

In this paper, we proved novel and sharp confidence intervals for GP models applicable to RKHS
elements. We then built on these results to prove Õ(

√
γN/N) bounds for the simple regret of an

adaptive exploration algorithm under the framework of GP bandits. In addition, for the practically
relevant SE and Matérn kernels, where a lower bound on regret is known [28, 29], we showed the
order optimality of our results up to logarithmic factors. That closes a significant gap in the literature
of analysis of Bayesian optimization algorithms under the performance measure of simple regret.

The limitation of our work adhering to simple regret is that neither our theoretical nor experimental re-
sults proves that MVR is necessarily the right algorithm in practice. Overall, exploration-exploitation
oriented algorithms such as GP-UCB may perform worse than MVR in terms of simple regret due to
two reasons. One is over-exploitation of local maxima when f is multimodal, and the other is depen-
dence on an exploration-exploitation balancing hyper-parameter that is often set too conservatively,
to guarantee low regret bounds. Furthermore, their existing analytical regret bounds are suboptimal
and possibly trivial (non-diminishing; when γN grows faster than

√
N , as discussed). On the other

hand, when compared in terms of cumulative regret (
∑N
n=1 f(x∗)− f(xn)), MVR suffers from a

linear regret.

The main value of our work is in proving tight bounds on the simple regret of a GP based exploration
algorithm, when other Bayesian optimization algorithms such as GP-UCB lack a proof for an always
diminishing regret under the same setting as ours. It remains an open question whether the possibly
trivial regret bounds of GP-UCB (as well as GP-TS and GP-EI, whose analysis is inspired by that of
GP-UCB) is a fundamental limitation or an artifact of the proof [73].

Funding Disclosure

This work was funded by MediaTek Research.

10



References
[1] Eric Mazumdar, Aldo Pacchiano, Yi-an Ma, Peter L Bartlett, and Michael I Jordan. On thompson

sampling with langevin algorithms. Proceedings of ICML, 2020.

[2] Alekh Agarwal, Dean P Foster, Daniel Hsu, Sham M Kakade, and Alexander Rakhlin. Stochastic
convex optimization with bandit feedback. arXiv preprint arXiv:1107.1744, 2011.

[3] Sattar Vakili and Qing Zhao. A random walk approach to first-order stochastic convex optimiza-
tion. In IEEE International Symposium on Information Theory (ISIT), 2019.

[4] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the human out of
the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2016.

[5] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In 25th annual conference on neural information processing systems
(NIPS 2011), volume 24. Neural Information Processing Systems Foundation, 2011.

[6] Robert T McGibbon, Carlos X Hernández, Matthew P Harrigan, Steven Kearnes, Mohammad M
Sultan, Stanislaw Jastrzebski, Brooke E Husic, and Vijay S Pande. Osprey: Hyperparameter
optimization for machine learning. Journal of Open Source Software, 1(5):34, 2016.

[7] Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter
optimization at scale. arXiv preprint arXiv:1807.01774, 2018.

[8] Rajeev Agrawal. The continuum-armed bandit problem. SIAM journal on control and optimiza-
tion, 33(6):1926–1951, 1995.

[9] Robert Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. Advances in
Neural Information Processing Systems, 17:697–704, 2004.

[10] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in finitely-armed and
continuous-armed bandits. Theoretical Computer Science, 412(19):1832–1852, 2011.

[11] Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. X-armed bandits. Journal
of Machine Learning Research, 12(5), 2011.

[12] Alexandra Carpentier and Michal Valko. Simple regret for infinitely many armed bandits. In
International Conference on Machine Learning, pages 1133–1141. PMLR, 2015.

[13] Aniket Anand Deshmukh, Srinagesh Sharma, James W Cutler, Mark Moldwin, and Clayton
Scott. Simple regret minimization for contextual bandits. arXiv preprint arXiv:1810.07371,
2018.

[14] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Mach. Learn., 47(2–3):235–256, May 2002.

[15] Aleksandrs Slivkins. Introduction to multi-armed bandits. arXiv preprint arXiv:1904.07272,
2019.

[16] Qing Zhao. Multi-armed bandits: Theory and applications to online learning in networks.
Synthesis Lectures on Communication Networks, 12(1):1–165, 2019.

[17] Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos. Best arm identification in multi-armed
bandits. In COLT, pages 41–53, 2010.

[18] Aditya Grover, Todor Markov, Peter Attia, Norman Jin, Nicolas Perkins, Bryan Cheong, Michael
Chen, Zi Yang, Stephen Harris, William Chueh, et al. Best arm identification in multi-armed
bandits with delayed feedback. In International Conference on Artificial Intelligence and
Statistics, pages 833–842. PMLR, 2018.

[19] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process
optimization in the bandit setting: no regret and experimental design. In Proceedings of the 27th
International Conference on International Conference on Machine Learning, pages 1015–1022.
Omnipress, 2010.

11



[20] Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In International
Conference on Machine Learning, pages 844–853, 2017.

[21] David Janz, David Burt, and Javier Gonzalez. Bandit optimisation of functions in the matern
kernel rkhs. In Proceedings of Machine Learning Research, volume 108, pages 2486–2495.
PMLR, 26–28 Aug 2020.

[22] Sattar Vakili, Kia Khezeli, and Victor Picheny. On information gain and regret bounds in
gaussian process bandits. arXiv preprint arXiv:2009.06966, 2020.

[23] Carl E Rasmussen and Christopher KI Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

[24] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems 25, pages 2951–
2959. Curran Associates, Inc., 2012.

[25] Peter I Frazier. Bayesian optimization. In Recent Advances in Optimization and Modeling of
Contemporary Problems, pages 255–278. INFORMS, 2018.

[26] Matthew D Hoffman, Eric Brochu, and Nando de Freitas. Portfolio allocation for bayesian
optimization. In UAI, pages 327–336. Citeseer, 2011.

[27] Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, and Bharath K Sriperumbudur. Gaus-
sian processes and kernel methods: A review on connections and equivalences. Available at
Arxiv., 2018.

[28] Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher. Lower bounds on regret for noisy
Gaussian process bandit optimization. In Proceedings of the 2017 Conference on Learning The-
ory, volume 65 of Proceedings of Machine Learning Research, pages 1723–1742, Amsterdam,
Netherlands, 07–10 Jul 2017. PMLR.

[29] Xu Cai and Jonathan Scarlett. On lower bounds for standard and robust gaussian process bandit
optimization. arXiv preprint arXiv:2008.08757, 2020.

[30] Debabrota Basu, Christos Dimitrakakis, and Aristide Tossou. Differential privacy for multi-
armed bandits: What is it and what is its cost? arXiv preprint arXiv:1905.12298, 2019.

[31] Wenbo Ren, Xingyu Zhou, Jia Liu, and Ness B Shroff. Multi-armed bandits with local
differential privacy. arXiv preprint arXiv:2007.03121, 2020.

[32] Kai Zheng, Tianle Cai, Weiran Huang, Zhenguo Li, and Liwei Wang. Locally differentially
private (contextual) bandits learning. arXiv preprint arXiv:2006.00701, 2020.

[33] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear stochastic bandits.
In Advances in Neural Information Processing Systems, pages 2312–2320, 2011.

[34] Andreas Krause and Cheng S. Ong. Contextual gaussian process bandit optimization. In
Advances in Neural Information Processing Systems 24, pages 2447–2455. Curran Associates,
Inc., 2011.

[35] Josip Djolonga, Andreas Krause, and Volkan Cevher. High-dimensional gaussian process
bandits. In Advances in Neural Information Processing Systems 26, pages 1025–1033. Curran
Associates, Inc., 2013.

[36] Mojmir Mutny and Andreas Krause. Efficient high dimensional bayesian optimization with
additivity and quadrature fourier features. In Advances in Neural Information Processing
Systems 31, pages 9005–9016. Curran Associates, Inc., 2018.

[37] Felix Berkenkamp, Andreas Krause, and Angela P Schoellig. Bayesian optimization with safety
constraints: safe and automatic parameter tuning in robotics. arXiv preprint arXiv:1602.04450,
2016.

[38] Yanan Sui, Vincent Zhuang, Joel W Burdick, and Yisong Yue. Stagewise safe bayesian
optimization with gaussian processes. arXiv preprint arXiv:1806.07555, 2018.

12



[39] Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabás Póczos. Paral-
lelised bayesian optimisation via thompson sampling. In International Conference on Artificial
Intelligence and Statistics, pages 133–142, 2018.

[40] Zi Wang, Beomjoon Kim, and Leslie Pack Kaelbling. Regret bounds for meta bayesian
optimization with an unknown gaussian process prior. In Advances in Neural Information
Processing Systems, pages 10477–10488, 2018.

[41] Kirthevasan Kandasamy, Gautam Dasarathy, Junier Oliva, Jeff Schneider, and Barnabas Poczos.
Multi-fidelity gaussian process bandit optimisation. Journal of Artificial Intelligence Research,
66:151–196, 2019.

[42] Victor Picheny, Sattar Vakili, and Artem Artemev. Ordinal bayesian optimisation. arXiv preprint
arXiv:1912.02493, 2019.

[43] Ilija Bogunovic, Andreas Krause, and Jonathan Scarlett. Corruption-tolerant gaussian process
bandit optimization. arXiv preprint arXiv:2003.01971, 2020.

[44] Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based
exploration. In International Conference on Machine Learning, pages 11492–11502. PMLR,
2020.

[45] Weitong Zhang, Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural thompson sampling.
arXiv preprint arXiv:2010.00827, 2020.

[46] T. Javidi and S. Shekhar. Gaussian process bandits with adaptive discretization. Electron. J.
Statist., 12(2):3829–3874, 2018.

[47] Daniele Calandriello, Luigi Carratino, Alessandro Lazaric, Michal Valko, and Lorenzo Rosasco.
Gaussian process optimization with adaptive sketching: Scalable and no regret. In Proceedings
of the Thirty-Second Conference on Learning Theory, volume 99 of Proceedings of Machine
Learning Research, Phoenix, USA, 25–28 Jun 2019. PMLR.

[48] Sattar Vakili, Victor Picheny, and Artem Artemev. Scalable thompson sampling using sparse
gussian process mdels. Available at Arxiv., 2020.

[49] Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, and Svetha Venkatesh. Regret for expected
improvement over the best-observed value and stopping condition. In Asian Conference on
Machine Learning, pages 279–294. PMLR, 2017.

[50] Ziyu Wang and Nando de Freitas. Theoretical analysis of bayesian optimisation with unknown
gaussian process hyper-parameters. arXiv preprint arXiv:1406.7758, 2014.

[51] Adam D. Bull. Convergence rates of efficient global optimization algorithms. The Journal of
Machine Learning Research, 2011.

[52] Sattar Vakili, Victor Picheny, and Nicolas Durrande. Regret bounds for noise-free bayesian
optimization. arXiv preprint arXiv:2002.05096, 2020.

[53] Zi Wang, Beomjoon Kim, and Leslie Pack Kaelbling. Regret bounds for meta bayesian
optimization with an unknown gaussian process prior. arXiv preprint arXiv:1811.09558, 2018.

[54] Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient Bayesian optimization. In
34th International Conference on Machine Learning, ICML 2017, volume 7, pages 5530–5543,
2017.

[55] Jonathan Scarlett. Tight regret bounds for bayesian optimization in one dimension. arXiv
preprint arXiv:1805.11792, 2018.

[56] Shubhanshu Shekhar and Tara Javidi. Significance of gradient information in bayesian opti-
mization. In International Conference on Artificial Intelligence and Statistics, pages 2836–2844.
PMLR, 2021.

13



[57] Steffen Grünewälder, Jean-Yves Audibert, Manfred Opper, and John Shawe-Taylor. Regret
bounds for gaussian process bandit problems. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, pages 273–280, 2010.

[58] Nando de Freitas, Alex J Smola, and Masrour Zoghi. Exponential regret bounds for gaussian
process bandits with eterministic observations. In Proceedings of the 29th International
Conference on Machine Learning, pages 955–962, 2012.

[59] Kenji Kawaguchi, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Bayesian optimization
with exponential convergence. In Advances in Neural Information Processing Systems, volume
2015-Janua, pages 2809–2817, 2015.

[60] Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Multi-armed bandits in metric spaces. In
Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 681–690,
2008.

[61] Alekh Agarwal, Dean P. Foster, Daniel J. Hsu, Sham M. Kakade, and Alexander Rakhlin and.
Stochastic convex optimization with bandit feedback. In Advances in Neural Information
Processing Systems, 2011.

[62] Richard Combes, Alexandre Proutière, and Alexandre Fauquette. Unimodal bandits with
continuous arms: Order-optimal regret without smoothness. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 4(1):1–28, 2020.

[63] Rita Giuliano Antonini, Yuriy Kozachenko, and Andrei Volodin. Convergence of series of
dependent ϕ-subgaussian random variables. Journal of mathematical analysis and applications,
338(2):1188–1203, 2008.

[64] Patrick Chareka, Ottilia Chareka, and Sarah Kennendy. Locally sub-gaussian random variable
and the strong law of large numbers. Atlantic Electronic Journal of Mathematics, 1(1):75–81,
2006.

[65] Sattar Vakili, Keqin Liu, and Qing Zhao. Deterministic sequencing of exploration and exploita-
tion for multi-armed bandit problems. IEEE Journal of Selected Topics in Signal Processing,
7(5):759–767, 2013.

[66] Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

[67] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

[68] S Bubeck, N Cesa-Bianchi, and G Lugosi. Bandits with heavy tail. arxiv. arXiv preprint
arXiv:1209.1727, 2012.

[69] Victor H Peña, Tze Leung Lai, and Qi-Man Shao. Self-normalized processes: Limit theory and
Statistical Applications. Springer Science & Business Media, 2008.

[70] Ilija Bogunovic, Jonathan Scarlett, Andreas Krause, and Volkan Cevher. Truncated variance
reduction: A unified approach to bayesian optimization and level-set estimation. arXiv preprint
arXiv:1610.07379, 2016.

[71] Michal Valko, Nathan Korda, Rémi Munos, Ilias Flaounas, and Nello Cristianini. Finite-time
analysis of kernelised contextual bandits. In Proceedings of the Twenty-Ninth Conference on
Uncertainty in Artificial Intelligence, UAI’13, page 654–663, Arlington, Virginia, USA, 2013.
AUAI Press.

[72] Shubhanshu Shekhar and Tara Javidi. Multi-scale zero-order optimization of smooth functions
in an rkhs. arXiv preprint arXiv:2005.04832, 2020.

[73] Sattar Vakili, Jonathan Scarlett, and Tara Javidi. Open problem: Tight online confidence
intervals for rkhs elements. In Conference on Learning Theory, pages 4647–4652. PMLR, 2021.

14


	Introduction
	Main Results
	Literature Review
	Organization

	Problem Formulation and Preliminaries
	Gaussian Processes
	RKHSs and Regularity Assumptions on f
	Regularity Assumptions on Noise
	Maximal Information Gain

	Confidence Intervals for Gaussian Process Models
	Confidence Intervals under Sub-Gaussian Noise
	Confidence Intervals under Light-Tailed Noise
	Comparison with the Existing Confidence Intervals

	Maximum Variance Reduction and Simple Regret
	Maximum Variance Reduction Algorithm
	Regret Analysis
	Optimal Order Simple Regret with SE and Matérn Kernels
	Comparing the Regret Bounds with Other Related Work

	Experiments
	Discussion

