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Abstract

Web-scale training on paired text-image data is001
becoming increasingly central in multimodal002
learning, but is challenged by the highly noisy003
nature of datasets in the wild. Standard data004
filtering approaches succeed in removing mis-005
matched text-image pairs, but permit semanti-006
cally related but highly abstract text. In this007
work, we propose a new metric, Image Cap-008
tion Concreteness (ICC), that evaluates cap-009
tion text without an image reference to mea-010
sure its concreteness and relevancy for use011
in multimodal learning. Our approach lever-012
ages strong foundation models for measur-013
ing visual-semantic information loss in multi-014
modal representations. We demonstrate that015
this strongly correlates with human evalua-016
tion of concreteness in both single-word and017
sentence-level texts. Moreover, we show that018
curation using ICC complements existing ap-019
proaches and succeeds in distilling multimodal020
web-scale datasets for more effective learning.021

1 Introduction022

Pre-training large vision-language models (VLMs)023

on web-crawled datasets consisting of image-024

caption pairs has become the standard practice025

in achieving state-of-the-art results in vision-and-026

language tasks such as image captioning and multi-027

modal representation learning. However, raw web028

data are often noisy and contain many low-quality029

samples, which impair VLMs’ learning in terms of030

quality and efficiency (Li et al., 2022; Schuhmann031

et al., 2022; Radenovic et al., 2023). While various032

factors impact data quality, we focus on semantic033

noise, characterized by analyzing the meaning of034

data items rather than, e.g., identifying low resolu-035

tion images or quantifying token repetitions.036

Existing datasets are commonly filtered using037

VLMs such as CLIP (Radford et al., 2021) to iden-038

tify image-text semantic misalignments (Sharma039

et al., 2018; Schuhmann et al., 2022), namely,040

↓ It does not look
like something I
would eat

Talk about a bad
hair day, his is
frightful

I cant see this im-
age it is too dark

↑ A sandwich sits
on a small blue
plate

Curly-haired man
with a mustache
in a vintage photo

A cat standing on
a counter looking
at a coffee cup

Figure 1: Given an image caption, ICC measures
its visual concreteness. We show samples from MS-
COCO (Lin et al., 2014), containing captions with low
(↓) and high (↑) ICC scores. As illustrated, our method
detects highly abstract captions, which are problematic
in the context of multimodal learning. It does so by
learning to quantify visual-semantic information loss
in multimodal foundation models.

captions irrelevant to their images, or using rule- 041

based proxies such as measuring the complexity 042

of captions via semantic parsing (Radenovic et al., 043

2023). However, these approaches fail to identify 044

captions that are highly abstract and may contain 045

subjective, non-visual information, despite being 046

semantically aligned with the image and having 047

a sufficiently complex grammar. Figure 1 shows 048

examples of such image-caption pairs. A caption 049

such as “It does not look like something I would 050

want to eat” is semantically related to the image, 051

but a model trained to predict this caption from its 052

image may learn to hallucinate details, e.g., liking 053

a certain type of food in this example, which are 054

not visually grounded and are highly subjective. 055

In this vein, we consider the visual concreteness 056

of image captions, referring to the degree to which 057

text describes a specific visual scene that can be 058

vividly imagined (as opposed to abstract text that 059

may correspond to many possible visual represen- 060

tations). Visual concreteness provides a comple- 061
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Figure 2: Predicting visual concreteness scores of image captions with our method. We first acquire information
using a semantic-bottleneck autoencoder (SBA, top left) and an visual-bottleneck autoencoder (VBA, bottom left).
We then distill a weighted combination of their reconstruction scores into a smaller language model (LM, right),
which learns to produce ICC scores for new texts. We visualize reconstruction scores for highly concrete (“A black
dog”) and highly abstract (“A nice location”) texts. High and low scores are colored in green and red, respectively.
As illustrated, our final score, which combines the two pipelines, yields more accurate concreteness predictions.

mentary dimension of textual quality to consider062

for vision-and-language tasks, as filtering captions063

by concreteness is a natural way to encourage064

visually-grounded predictions.065

We propose the Image Caption Concreteness066

(ICC) metric for quantifying the visual concrete-067

ness of image captions calculated from text alone,068

i.e., without an image reference. We measure069

concreteness using autoencoding pipelines with070

visual-semantic information bottlenecks, previ-071

ously used for other aims (Kamath et al., 2023;072

Yang et al., 2023). Specifically, we use a semantic-073

bottleneck autoencoder that identifies how well an074

LLM recovers the input caption from its seman-075

tic CLIP embedding, and a visual-bottleneck au-076

toencoder that leverages the competence of text-077

to-image generative models. Our ICC metric is078

distilled from these pipelines; see Figure 2.079

Extensive experiments show ICC’s effective-080

ness in filtering multimodal web-scale data for081

downstream tasks such as image captioning and082

text-based image retrieval. We will release our083

data, code, and trained models, anticipating the084

use of ICC for further tasks that require curation085

of web-scale visually-grounded text.086

2 Method087

Given an image caption (of an unseen image), we088

aim to predict its degree of visual concreteness.089

Our underlying assumption is that more visually090

concrete text can be mapped to or from a visual091

representation with less information loss. Con-092

versely, we expect that visually abstract text can- 093

not be converted to or from a visual representation 094

without significant information loss, since it does 095

not clearly describe a well-defined image. We 096

model this process with autoencoder components 097

that convert text to and from visual-semantic rep- 098

resentations, and quantify the information loss of 099

this process as a proxy for visual concreteness. 100

We proceed to describe our proposed semantic- 101

bottleneck autoencoder and visual-bottleneck au- 102

toencoder components, and their consolidated dis- 103

tillation into the ICC score. 104

Semantic-bottleneck Autoencoder (SBA). Moti- 105

vated by findings that CLIP embeddings encode vi- 106

sual information in text and particularly concrete- 107

ness (Alper et al., 2023), we construct an autoen- 108

coding pipeline with CLIP text embeddings as a se- 109

mantic information bottleneck, as shown in Figure 110

2 (top left). We extract visual information from the 111

CLIP text embedding space by utilizing a frozen 112

LLM (Llama-2-7b, Touvron et al., 2023), training 113

a linear layer that converts the VLM text encoder’s 114

output to inputs for the LLM. The training objec- 115

tive aims at reconstructing the input captions via a 116

token-wise cross-entropy objective. 117

After training SBA over image–caption pairs, 118

we use it for measuring text concreteness by en- 119

coding and decoding the text followed by measur- 120

ing reconstruction fidelity via per-character Edit 121

Distance (Levenshtein et al., 1966), normalized by 122

caption length as detailed in the appendix. This 123

pipeline succeeds in reconstructing highly con- 124

crete text (such as “A black dog” shown in Figure 125
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Word Conc. Sentence Conc.

Method ρ ρs τ ρ ρs τ

CLIP-SP 0.60 0.62 0.44 -0.36 -0.35 -0.27
aveCLIP 0.55 0.56 0.39 0.29 0.28 0.22
ICC 0.75 0.75 0.55 0.69 0.67 0.54

Table 1: Concreteness evaluation on single-word and
sentence-level texts, measured using Pearson ρ, Spear-
man ρs, and Kendall (τ ) correlation coefficients.

2). However, while abstract captions are expected126

to yield generally poor reconstructions, their mea-127

surements are less consistent (e.g. “A nice loca-128

tion” yields a non-negligible reconstruction score129

of 0.4). To more robustly handle such cases, we130

propose our VBA component, detailed next.131

Visual-bottleneck Autoencoder (VBA). The132

VBA is constructed by using images as an inter-133

mediate representation through which textual in-134

formation passes. In particular, we concatenate a135

text-to-image model (Stable Diffusion 2, Ramesh136

et al., 2022) and a captioning model (BLIP-2, Li137

et al., 2023). For this pipeline, all components are138

frozen and no training is required; we directly mea-139

sure information loss as a result of mapping to and140

then from images, as shown in Figure 2 (bottom141

left). Due to the difficulty of reconstructing exact142

matches from images, we measure the semantic fi-143

delity in reconstruction (rather than edit distance)144

using BERTScore F1 score (Zhang et al., 2019).145

ICC Score. We assemble SBA and VBA recon-146

struction scores over a collection of image–caption147

pairs and distill their aggregated values into our fi-148

nal ICC score. Specifically, we train a small text149

encoder model (Liumm et al., 2019) over a linear150

combination of the two scores, with weights com-151

puted by regressing over a set of annotated cap-152

tions. Additional details, ablations and visualiza-153

tions are provided in the appendix.154

3 Results and Discussion155

We proceed to first show ICC’s correlation to con-156

creteness (Section 3.1), followed by its benefit in157

data curation for downstream tasks (Section 3.2).158

3.1 Concreteness Correlation159

Table 1 shows the correlations of different con-160

creteness estimation methods to ground-truth con-161

creteness scores on both single-word and sentence-162

level (caption) benchmarks. We compare to zero-163

Data B@4 M R C S BSc

CC 9.9 15.0 37.5 34.6 96 0.47
CC+CLIP 10.4 15.3 38.3 36.2 98 0.48
CC+CA 9.2 14.7 36.2 31.8 93 0.47
CC+ICC 11.8 16.3 40.7 42.5 109 0.51

LA 0.5 4.8 12.9 1.9 14 -0.04
LA+CLIP 0.2 4.0 11.0 1.1 9 -0.07
LA+CA 0.2 3.9 10.7 1.0 9 -0.07
LA+ICC 7.8 12.2 30.5 21.2 72 0.35

Table 2: Captioning results using 500k filtered sam-
ples over the MS-COCO Karpathy test split. Data de-
notes the training dataset – Conceptual Captions (CC)
or LAION-400M (LA). We compare our performance
(+ICC) to two filtering baselines: +CLIP indicates fil-
tering by top CLIP similarity and +CA indicates Com-
plexity and Action filtering. We also report perfor-
mance obtained by randomly selecting 500k samples
(1st and 4th rows). B@4, M, R, C, S and BSc de-
note BLEU-4, METEOR, Rouge-L, CIDEr, SPICE,
and BERTScore metrics respectively.

COCO Flickr

Data R@1 R@5 R@10 R@1 R@5 R@10

LA 4.5 15.0 23.0 9.6 27.7 40.5
LA+CLIP 2.2 8.0 13.1 4.9 15.1 23.1
LA+CA 6.5 19.7 29.3 16.3 40.5 55.2
LA+ICC 10.0 27.1 38.4 21.7 49.6 62.4

Table 3: Text-to-image retrieval results for represen-
tations trained on 500k samples with different filter-
ing methods: LA indicates 500k random samples from
LAION-400M, +CLIP indicates filtering by CLIP sim-
ilarity; +CA indicates Complexity and Action filtering.

shot probing of CLIP through Stroop probing (SP) 164

as proposed by Alper et al. (2023). We also com- 165

pare to aveCLIP (Wu and Smith, 2023), which 166

generates multiple images from a caption and 167

measures the average similarity between the text 168

and generated images. Due to its high computa- 169

tional cost, we only evaluate it on a statistically- 170

significant portion of the single-word benchmark, 171

which contains nearly 15K samples. 172

Correlation to Word Concreteness. We first val- 173

idate our metric by measuring it on a dataset intro- 174

duced by Hessel et al. (2018). This dataset is com- 175

posed of 39,954 English uni-grams and bigrams 176

coupled with human-labelled concreteness scores 177

on a scale from 1 (abstract) to 5 (concrete), aver- 178

aged over annotators. To compare with prior work, 179
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we only use unigram nouns, totaling 14,562 items.180

As illustrated in Table 1, ICC significantly outper-181

forms prior works over all correlation metrics.182

Correlation to Caption Concreteness. We183

manually annotated concreteness scores for 200184

captions from LAION-400M (Schuhmann et al.,185

2022); see the appendix for more details. As Table186

1 shows, our method exhibits superior correlation187

with human judgements of text-level concreteness,188

providing further motivation for its use.189

3.2 VLM Dataset Curation190

Captioning Models. In Table 2 we show quan-191

titative results of applying ICC filtering on top192

of standard CLIP filtering over different datasets193

for training a captioning model. We hold the194

dataset size fixed for all experiments. The cap-195

tioning model used is an encoder-decoder archi-196

tecture with a pretrained Swin (Liu et al., 2021)197

vision encoder and GPT-2 (Radford et al., 2019)198

text decoder, trained for a single iteration on each199

training sample. Additional training details are200

provided in the appendix. We compare to two fil-201

tering methods – top-CLIP similarity filtering and202

Complexity and Action filtering (Radenovic et al.,203

2023), using our re-implementation, as there is no204

publicly-available code. The latter is a rule-based205

filtering method which aims to retain only suffi-206

ciently complex captions that also contain an ac-207

tion, based on semantic parsing. As illustrated in208

the table, filtering with ICC outperforms alterna-209

tive filtering methods for captioning given a fixed210

number of desired samples and training iterations.211

As can also be observed in the table, filtering with212

a fixed CLIP similarity threshold may even de-213

grade performance, suggesting that samples with214

very high CLIP similarity are not necessarily bet-215

ter for training captioning models.216

Image-Text Representation Learning. We also217

perform a representation learning experiment by218

training a dual text and image encoder model219

on a dataset filtered with different methods. Ta-220

ble 3 reports performance over standard retrieval221

benchmarks, namely COCO (Lin et al., 2014) and222

Flickr (Plummer et al., 2015). The model is ini-223

tialized from a pretrained vision-encoder (Dosovit-224

skiy et al., 2010) and text-encoder (Devlin et al.,225

2018) as suggested by Zhai et al. (2022). All other226

experimental settings are identical to the caption-227

ing model training. As illustrated in the table, ICC228

yields superior performance for this task.229

4 Related Work 230

Evaluating Text Concreteness. Word con- 231

creteness is a topic of interest in cognitive sci- 232

ence (Schwanenflugel, 2013), and a number of 233

works have studied automatic prediction of word 234

concreteness using machine learning (Hill et al., 235

2014; Hill and Korhonen, 2014; Hessel et al., 236

2018; Rabinovich et al., 2018; Charbonnier and 237

Wartena, 2019; Alper et al., 2023). However, lit- 238

tle attention has been paid to measuring concrete- 239

ness at the sentence or string level. Most similar to 240

us is Wu and Smith (2023), who generate multiple 241

images for each caption and average the similari- 242

ties over all the images to produce a sentence-level 243

concreteness score. Other text evaluation metrics 244

compare to reference texts (Gehrmann et al., 2023) 245

or a reference image (Hessel et al., 2021), while 246

we are interested in the inherent quality of text in 247

isolation (namely, its visual concreteness). 248

Multimodal Dataset Curation. Due to the highly 249

noisy nature of Internet multimodal data, prior 250

works have filtered using approaches such as rule- 251

based text parsing (Radenovic et al., 2023), using 252

CLIP similarity to detect misaligned text-image 253

pairs (Schuhmann et al., 2022), and de-duplicating 254

semantically similar content (Abbas et al., 2023). 255

A number of prior works have also proposed re- 256

placing or augmenting multimodal datasets with 257

synthetic samples (Li et al., 2022, 2023; Fan et al., 258

2023). By contrast, our approach does not require 259

modification of the given dataset and identifies se- 260

mantically infelicitous captions allowed by prior 261

methods. Our work also contrasts with dataset dis- 262

tillation, which has been applied to multimodal 263

dataset curation (Wu et al., 2023); while dataset 264

distillation methods select samples to explicitly 265

optimize a chosen downstream objective, we fo- 266

cus on the simpler and more general task of identi- 267

fying samples of inherently poor quality. 268

5 Conclusion 269

We present a new metric for measuring the visual 270

concreteness of image captions without an image 271

reference. By leveraging strong foundation mod- 272

els, we quantify visual-semantic information loss 273

and find that this highly correlates with human 274

concreteness judgments. Our results demonstrate 275

that ICC is effective at multimodal data filtering. 276

We foresee the use of ICC in additional tasks re- 277

quiring the curation of web-scale multimodal data, 278

where visually concrete text is needed. 279
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Limitations280

While our method detects and filters an important281

category of noise in multimodal datasets, we note282

that abstract captions such as those in Figure 1 may283

contain important information which our method284

discards. Future work might instead extract the285

relevant visual information from such captions, to286

avoid losing the information signal in such items.287

We also note that such captions often contain ex-288

ternal or subjective information which could be289

of interest to tasks such as news image captioning290

or multimodal sentiment analysis, where external291

context is of interest. To identify such cases, fur-292

ther work might enhance the interpretability of our293

method to explore why a caption is or is not con-294

crete.295

Ethics Statement296

Models trained on multimodal Internet data may297

inherit biases from their training data. Our method298

is not designed to filter potentially harmful im-299

age descriptions; moreover, such biases are also300

present in the models used as part of our pipeline301

(CLIP, generative models) and thus our model may302

possibly inherit or amplify these issues for down-303

stream tasks. We anticipate further research into304

such biases and guidelines needed before putting305

these models into deployment.306
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Appendix A Implementations Details 479

A.1 Dataset Used For SBA & VBA 480

In all stages we use a subset of CC3M (Sharma 481

et al., 2018), composed of 595k samples curated 482

by Liu et al. (2023) to provide larger concept cov- 483

erage. We use 80% of the samples for training the 484

linear layer of the SBA, for a single epoch. We 485

then split the remaining 20% again to 80%/20%. 486

We then use the 80% for generating reconstruc- 487

tions of the SBA and VBA. These reconstruction 488

scores are used as the labels for the distillation 489

phase which is being done using the remaining 490

20%. 491
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Figure 3: Finding the Optimal Weights. We measure
the optimal combination of the two scores with respect
to GT concreteness annotations.

A.2 Optimal Weighting of Scores492

To find weights of the SBA and VBA scores for493

the final ICC distillation, we regress using logistic494

regression (where we label a caption as concrete495

if it is above the median score and abstract if it is496

below the median score) over a set of 244 sam-497

ples captions, sampled uniformly over the VBA498

and SBA score, which we manually annotate with499

concreteness scores as shown in Figure 3. As seen500

in the figure, both scores contribute to the optimal501

predicted concreteness score. Note that the set of502

annotated captions used for selecting the SBA and503

VBA scores is separate from our manually anno-504

tated sentence concreteness benchmark used for505

calculating correlation scores, thus avoiding data506

leakage.507

A.3 Normalizing By Caption Length508

We aim to have reconstruction scores that are only509

dependent on the concreteness of captions and not510

on the length of the captions. In Figure 4, we show511

the distribution of the reconstruction similarities512

before and after normalization per caption length.513

We can see in Figure 4a that there is a strong de-514

pendency on caption length, which we would like515

to avoid.516

More specifically, we force the reconstruction517

similarity distribution to be distributed according518

to LN (µ = 0.5, σ = 1), where LN denotes a519

Logit-Normal distribution. The normalization is520

performed by standardizing the logit of the similar-521

ities (defined by ln( 1
1−p)) for each caption length,522

and then taking the inverse logit. We can see523

in Figure 4b that short captions are reconstructed524

more easily compared to longer ones, and that nor-525

malization by caption length successfully disen-526

tangles the reconstruction scores from the caption527

length dependency.528

A.4 Datasets Used in Our Experiments 529

We use subsets of CC3M for training the caption- 530

ing model and subsets from CC3M and LAION- 531

400M for training the image-text representation 532

model. For LAION, we only sample 8M sam- 533

ples, filtered with the provided NSFW filter to re- 534

move unsafe contents. For CC3M, we filter all 535

samples with CLIP similarity below 0.3 (note that 536

LAION-400M is already filtered with 0.3 thresh- 537

old of CLIP similarity), leaving us with 1M sam- 538

ples. From these initial datasets, we further filter 539

using the methods described in the main paper. 540

A.5 ICC Distillation 541

We distill the knowledge obtained by the two 542

pipelines described in the paper in a two-stage 543

manner. Firstly, we distill the VBA and SBA 544

scores into two distinct DistilRoBERTa (Liumm 545

et al., 2019) models. We then collect a small 546

subset of 244 captions, sampled to have approx- 547

imately uniform joint distribution of scores, and 548

annotate the concreteness scores of these captions. 549

This is showcased in Figure 3. We regress over 550

these samples to get the optimal weights as dis- 551

cussed in A.2. We then use this optimal combina- 552

tion as the labels for training the final ICC model 553

used for all the experiments in the paper. All dis- 554

tilled models are trained with a Mean Squared Er- 555

ror (MSE) objective. 556

A.6 Caption Concreteness Benchmark 557

Next we describe the data collection and annota- 558

tion details. Our aim is to have a small, yet diverse 559

set of samples that represent the wide diversity of 560

possible captions. Since Laion-400M is very noisy 561

and only a small portion of it includes highly con- 562

crete captions, we sample 150 items that satisfy 563

the following rules: 564

• The caption must include at least 10 character 565

• The caption must not contain more the 80% 566

of capitalized words. 567

• The caption must include at least 2 stop 568

words, filtered using NLTK parser (Loper and 569

Bird, 2002). 570

• The ratio of stop words to all the words in a 571

captions must not exceed 20%. 572

The remaining 50 samples in our dataset are se- 573

lected randomly to include more “raw” captions 574

as well. For all captions in our benchmark, we 575

also apply NSFW filtering and make sure the cap- 576

tion do not include offensive or personal content. 577
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(a) Before Normalization (b) After Normalization

Figure 4: Normalizing by caption length. We show the reconstruction similarity scores of SBA for each caption
length before normalization (in 4a) and after normalization (in 4b).

We show all the captions in Figure 7, sorted ac-578

cording to the annotated concreteness scores. As579

illustrated in the figure, we were able to achieve580

a relatively good coverage of various abstraction581

levels using the aforementioned sampling process.582

We note that LAION-400M has an open access583

license, and we will release our benchmark to fa-584

cilitate further research in the direction of quanti-585

fying caption concreteness.586

A.7 Zero-Shot CLIP Concreteness Score587

We adapt the Stroop Probing method (Alper et al.,588

2023) that is originally designed to assess the con-589

creteness of words, to captions. We follow the590

same procedure used when measuring concrete-591

ness of words, but replace the empty slot in the592

prompts with a caption rather than a single word,593

and use only the prompts that fit the context of594

caption in the black spot (i.e., we don’t use the595

captions “Alice giving the [*] to Bob” and “Bob596

giving the [*] to Alice” as they aren’t appropriate597

when using a caption to replace the empty slot [*]).598

A.8 aveCLIP Word Concreteness599

Since aveCLIP requires generating many images600

per word, we found that running aveCLIP over601

the entire word concreteness dataset is not feasible602

due to runtime constraints. Therefore, we sample603

150 words from the dataset, and verified that it is604

statistically significant by measuring the p-values605

of the different statistical coefficients, which were606

all approximately 0.607

A.9 Training Hyperparameters and 608

Additional Information 609

SBA. We train the linear layer of the SBA using 610

gradient accumulation with an effective batch-size 611

of 128, learning rate of 2e-3 with cosine scheduler 612

and a warm-up ratio of 0.03, and train for a single 613

epoch over a single Nvidia-A6000 GPU. All other 614

hyperparameters are set to the default of Hugging- 615

Face Trainer. 616

VBA For the image generation in VBA, we use 617

guidance scale of 9 and 20 inference steps. When 618

generating captions, we decode using beam search 619

with 5 beams. 620

Distillations. For the distillation, we use batch 621

size of 128, learning rate of 1e-4 with a cosine 622

scheduler, and a warm-up ratio of 0.03 for 2 623

epochs using a single Nvidia-A6000 GPU. All 624

other hyperparameters are set to the default of 625

HuggingFace Trainer. 626

A.10 Model Checkpoints Used 627

We detail here all the checkpoints that were used in 628

our experiments. All model checkpoints are taken 629

from the Hugging Face Model Hub1. For the SBA, 630

we used: 631

• openai/clip-vit-large-patch14 (only 632

the text encoder) 633

• meta-llama/Llama-2-7b 634

For the VBA, we used: 635

• stabilityai/stable-diffusion-2 636

• Salesforce/blip2-opt-2.7b 637

For the distilled model, we used: 638

1https://www.huggingface.co/models
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Sentence Conc.

Method ρ ρs τ

LLM with N=3 0.17 0.16 0.15
LLM with N=5 0.19 0.21 0.19
LLM with N=10 0.25 0.25 0.22
ICC 0.69 0.67 0.54

Table 4: Concreteness evaluation of captions using
an LLM with different prompts. We report the Pear-
son ρ, Spearman ρs, and Kendall τ correlation coeffi-
cients. N denotes the concreteness range of possible
scores given in the prompt (range of 1-N).

• distilroberta-base639

For training a captioning model, we used:640

• microsoft/swin-base-patch4641

-window7-224-in22k642

• gpt2643

For training a dual-encoder model, we used:644

• bert-base-uncased645

• google/vit-base-patch16-224646

Appendix B Additional Experiments and647

Ablations648

B.1 LLM-based Concreteness Score649

We experiment with an additional method for650

quantifying concreteness of caption by prompting651

a Large Language Model (LLaMa-70B-chat Tou-652

vron et al., 2023). In order to probe a zero-shot653

LLM to provide concreteness scores, we used a654

prompt of the following form:655

“You are a visual expert and you need656

to provide visual scores for captions657

according to how concrete they are. You658

answer only using a single integer number659

on a scale of 1-N when 1 means the caption660

is highly abstract and N is a highly661

concrete caption.662

Input caption: ‘⟨caption⟩’663

Concretenss score is ”664

We ablate over three different values of N and665

report the values and corresponding correlations666

in Table 4. As illustrated in the table, our method667

significantly outperforms LLM-based prompting.668

We use greedy decoding for all prompts.669

B.2 Ablation over the Intermediate Scores670

We further verify the importance of using both671

scores by ablating the effect of filtering with each672

Data B@4 M R C S BSc

LA+SBA 4.4 8.5 20.6 13.0 46 -0.5
LA+VBA 6.4 11.5 27.6 21.5 70 0.31
LA+ICC 6.8 12.0 28.6 24.2 75 0.32

Table 5: Score Ablations We ablate the importance of
using both scores obtained from the two pipelines, over
1M samples of LAION (LA) with similar settings to
captioning model training in Table 6.

score in isolation compared to filtering with them 673

combined (ICC) on downstream captioning model 674

training. We show the results in Table 5. These 675

results verify that our combined ICC score outper- 676

forms each score used in isolation. 677

We also visually show examples of each of the 678

scores’ weaknesses and the way they compliment 679

each other. In Figure 5, we show examples of con- 680

crete captions, the reconstructed captions by VBA 681

and SBA, and the different scores of each of them. 682

The first four rows exemplify why VBA may fail 683

to reconstruct some concrete captions. For in- 684

stance, the caption “a nurse mopping a surgeon’s 685

brow during an operation in an operation pub” was 686

reconstructed to “two people in protective gear” 687

which bears relatively low semantic similarity to 688

the original caption. The main reason these cases 689

happen is due to the inherent difficulty of recon- 690

structing (through a captioning model) from an im- 691

age the exact caption from which the image was 692

generated, as there may be many possible such 693

captions. In this case, the use of SBA helps de- 694

termining that the caption is concrete. 695

In a complementary way, we show in Figure 6 696

examples of abstract captions. In this figure, the 697

first four rows demonstrate that using SBA alone 698

is also not enough, as it is sometimes able to re- 699

construct abstract captions due to the higher se- 700

mantic information that is contained in the CLIP 701

embeddings. In this scenario, VBA covers up for 702

these failures, as it is very unlikely to reconstruct 703

abstract text. 704

These qualitative examples further illustrate the 705

benefit of using both VBA and SBA. Indeed, in 706

both Figure 5 and 6, it can be observed that ICC 707

learns to take the best of both worlds, generating 708

low scores for abstract captions, and high scores 709

to concrete ones in a consistent manner. 710
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COCO Captioning COCO Flickr

Data # samples B@4 M R C S BSc R@1 R@5 R@10 R@1 R@5 R@10

LA 100k 0.8 4.2 11.1 3.6 18 -0.95 1.7 6.3 10.4 3.0 9.9 16.7
LA+CLIP 100k 0 2.7 7.6 0 2 -0.32 0.2 1.0 1.8 0.5 2.1 3.9
LA+CA 100k 0.4 7.4 18.2 0.9 18 0.18 2.0 7.9 13.2 4.8 15.7 25.4
LA+ICC 100k 5.1 11.3 31.8 9.7 45 0.39 5.0 15.9 24.4 13.1 34.6 47.2

LA 500k 0.5 4.8 12.9 1.9 14 -0.04 4.5 15.0 23.0 9.6 27.7 40.5
LA+CLIP 500k 0.2 4.0 11.0 1.1 9 -0.07 2.2 8.0 13.1 4.9 15.1 23.1
LA+CA 500k 0.2 3.9 10.7 1.0 9 -0.07 6.5 19.7 29.3 16.3 40.5 55.2
LA+ICC 500k 7.8 12.2 30.5 21.2 72 0.35 10.0 27.1 38.4 21.7 49.6 62.4

LA 1M 0.8 4.2 11.1 3.6 18 -0.95 6.8 19.9 29.2 14.0 38.1 50.6
LA+CLIP 1M 1.0 5.4 12.7 2.8 23 -0.47 5.0 15.3 23.2 9.9 29.0 41.2
LA+CA 1M 0.5 2.5 4.9 1.8 9 -3.9 9.2 25.2 36.0 20.9 49.8 63.4
LA+ICC 1M 6.8 12.0 28.6 24.2 75 0.32 12.2 31.3 42.8 26.4 55.5 67.5

Table 6: Ablation over different dataset sizes. We perform evaluation over MS-COCO dataset for captioning
as well as text-to-image retrieval over MS-COCO and Flickr for different filtering schemes with varying dataset
sizes. Data denotes the training dataset; LA indicates LAION-400M. We compare our performance (+ICC) to two
filtering baselines; +CLIP indicates filtering by top CLIPScore and +CA indicates Complexity and Action filtering.
We also report performance obtained by randomly selecting 100k, 500k and 1M samples. B@4, M, R, C, S and
BSc denote BLEU-4, METEOR, Rouge-L, CIDEr, SPICE, and BERTScore metrics respectively, evaluated on MS-
COCO Karpathy test split. Best results are in bold.

B.3 Ablation over Dataset Sizes711

In Table 6, we provide ablations over different712

dataset sizes for both captioning and representa-713

tion learning tasks. As is seen there, ICC-based fil-714

tering outperforms competing methods over 100k,715

500k and 1M training samples, further demonstrat-716

ing the robustness of our method.717
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Input caption SBA reconstructed
caption

VBA re-
constructed
caption

VBA bot-
tleneck
image

SBA VBA ICC

a nurse mopping a sur-
geon’s brow during an
operation in an opera-
tion pub

a nurse wiping the
brow of a surgeon
during an operation
in an operating room

two people in
protective gear

0.77 0.25 0.72

bougainvillea climb-
ing up the wall of a
villa

bougainvillea climb-
ing on a wall of a
villa

a house cov-
ered in pink
flowers

0.72 0.26 0.81

table top shot of many
vegetables and mexi-
can bugs on a table

close up shot of veg-
etables and bugs on a
table

vegetables
arranged in
the shape of a
human head

0.70 0.25 0.76

silhouette of a man
with a gun in poses
royalty

silhouette of a man
holding a gun in
poses royalty

a group of peo-
ple silhouettes
on a white
background

0.82 0.26 0.93

small flock of sheep in
winter snow on a hill-
top

small flock of sheep
in snow on a hill

a herd of sheep
in the snow

0.72 0.95 1.0

small blue and white
airplane parked on the
ramp with a control
tower in the distance

small blue and white
airplane parked on
the tarmac next to a
control tower

a blue and
white airplane
parked on the
tarmac

0.96 0.95 1.0

a young girl runs
through a field of
cabbages

a young girl runs
through a field of
cabbages

a girl walking
through a field
of cabbage

0.96 0.95 1.0

a red post box and
a telephone box stand
together in a village

a red telephone box
and a post box stand
together in a village

a red post box
next to a stone
wall

0.84 0.89 0.92

Figure 5: Qualitative Examples for Highly Concrete Captions. We demonstrate reconstructions of highly con-
crete captions and the final distilled ICC scores. We mark by red low reconstruction scores which correspond to
unsuccesfull detection of the concrete captions. As illustrated above, VBA yields generally less consistent scores
for concrete captions (see the text for further discussion). Nonetheless, our final distilled scores correctly identify
these captions as concrete ones, obtaining high ICC scores over these captions.
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Input caption SBA reconstructed cap-
tion

VBA recon-
structed
caption

VBA bot-
tleneck
image

SBA VBA ICC

keep an eye on the ball
when it comes to in-
vestments

keep an eye on the ball
when it comes to invest-
ments

a soccer ball
on a green
field

0.91 0.19 0.1

what ’s the best thing
about having a best
friend of the opposite
gender ?

the best thing about having
a friend of the opposite gen-
der

two young
women sitting
on a bench

0.89 0.16 0.1

film character : would
you like to bet on these
shares this christmas ?

which film character would
you like to see in your
shares this christmas?

santa claus,
santa claus
and sant

0.79 0.1 0

this is located in my
home town !

this is located in my home-
town!

a sign in front
of a statue

0.75 0.28 0

chaotic systems are
sometimes described
using fractal patterns

fractals are patterns that
can be found in many
forms, such as chaotic sys-
tems and natural structures.

a black and
white tunnel

0.22 0.19 0

on an average , the
sloth travels feet a day

a sloth spends most of the
day on its feet

a sloth hang-
ing from a
branch

0.17 0.27 0

get tips for biologi-
cal genus , more com-
monly known as air
plants , in your home

learn how to care for air
plants, one of

a bunch of air
plants on a
brown surface

0.32 0.25 0

versatile and highly ca-
pable , there ’s more to
this tiny camera than
its giant zoom

this little camera packs a
big punch with its zoom
lens and 2

a camera on a
wooden table

0.25 0.24 0

Figure 6: Qualitative Examples for Highly Abstract Captions. We demonstrate reconstructions of highly ab-
stract captions and the final distilled ICC scores. We mark by red captions which were reconstructed well (note
that in the case of abstract captions, high scores correspond to unsuccessful detections of the abstract captions). As
illustrated above, SBA yields generally less consistent scores for abstract captions (see the text for further discus-
sion). Nonetheless, our final distilled scores correctly identify these captions as abstract ones, obtaining low ICC
scores over these captions.
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time to explain. Just put on the hats and act casual. | His last at-bat, a pop fly to center field. #garrettreade #littleleague #thatsmyboy | Higher consumption of sugary beverages
linked with increased risk of mortality | Words of Gymnastics Terminology w/ Monogram Drawstring Bag | Zaanse Schans, Netherlands - May 5, 2015: Tourist Visit Windmills
And Rural Houses In Zaanse Schans | Losing out: BP will temporarily be locked out of lucrative deals, including contracts to supply the US military with fuel. | QuickBooks -
Access | "Cranberry Chevron Rug - Deep red hues cut a rug here. The chevron is a ""go with anything"" pattern and | Bomag reports that their single direction vibratory plate
compactors are great tools for contractors’ day-to-day use in soil and asphalt | "Augustabernard bias-cut satin evening gown, c.1930. Label: ""Augustabernard"" with a stamped
couture number on the back." | How to graduate as a successful edupreneur | garland for stairs christmas house tour decorating ideas how decorate for | This Mexican Layer Dip
is easy to make and full of flavor! With layers of spicy black bean dip, homemade | what is a research process paper The term research paper may also refer to a scholarly article
that contains the | Ammonia is often used in cleaning products because it reacts with grease making this easier to remove | They do not take ownership of valuable deposited with
them? | Can i push out my wall to get an 8x8 bathroom leave me for Small bathroom design 5 x 8 | Making one of these wall hangings is a great way to use up old yarn ... | 6 Pack
- 16 Ounce Grolsch Bottles with Easy Cap Flip Top Caps for Brewing Beer, Kombucha, Kefir, Water, Thick | Annual: The event, celebrated every year to herald good monsoon
rains for increased rice harvest, prosperity and goodluck, is one | Graphic on Australia’s Tasmanian Devils, rare carnivorous marsupials in a battle for survival against a contagious
facial cancer. It’s been | remodeling small bathroom ideas on a budget small bathroom remodel on a budget brown ceramic tile floor walk | When a 17-year-old Sharapova burst
onto the scene in 2004 by winning Wimbledon, she was an immediate hit. Sure, her | The course has a convenient location in the community of Fernie. | Famous burj al arab
hotel dubai 6 said to be the for Dubai world famous hotel | Among Us. (Innersloth) | Download car and vehicles decal graphics kit designs ready to print and cut for vinyl | GSM
Functionality GSM Technology is a special design which can be used in conjunction with a variety of signallers depending | Kendal Town Council are calling for a bypass to solve
traffic problems after Storm Desmond | Are You Am I - Faira Dress **white | interior home design also with a interior wall design also with a | One reason Millennials book cruises
is the low cost - contrary to popular belief | Containers have grabbed a large share of the intermodal freight business, and here’s a miniature trainload of them at the | be a donor be a
hero | "Operation Surf Santa Cruz is an annual event that honors active duty military soldiers through ""an epic life-changing surfing experience.""Many | hyster h40 h forklift will
not go forward or backward stuck brakes | Nominated banks roles and responsibilities under a letter of credit transaction. | Kingsbrook animal hospitals blog preferred veterinary
care in two beloved basenjis kylie and cricket in a house fire in april | Example of TRAM:Cross-Domain-Solution | Skip the recycling. Use your soda cans to make bracelet cuffs
instead! | They rise in quite an interesting way as well. Keep an eye on them so they don’t burn, and make | "15 Thanksgiving Day Ideas for Couples. Holidays get so busy we
sometimes forget our priorities. Keep your spouse at the | Tao Xiangli gets out of his homemade submarine after operating it in a lake on the outskirts of Beijing September |
Professionally edit your voiceover, audiobook or podcast | "Eli struggling to find cell service ""under the biggest cell phone tower in Paris""" | Don’t have time to shampoo your
hair, but still want to look glam? Me too! And that’s why I love | Vivid Vision for Success | Rich Karlgaard | The pistol 01 concept is a very precise and reliable sidearm! | buy a
domain name | Tate Stevens - Winner of 2012 X Factor, Simon Cowell Stock Photo | Click this cover for a(n) eBook sample of Choke Point | FI Week #5 #6 #7 : Let the new digital
influencers shine | Travertine is a perfect partner2 | STF has arrested the wanted accused who recruited fake teachers | SUMMER HITS 2016 Mixed by DJ Golan | Springet fra Big
Business til Smaller Business (Starting Over) | Banque De Francs, French Banknote Assortment, ca. 1945-1961. | tarek christina tarek and christina el moussa s divorce affects
their | Phoenix Suns are changing their perception to the basketball world | Tan Cartoon Doctor Man Carrying His - African American... | 2013 New arribal digital holly quran mp4
player wholesale price and 28 language translation(China (Mainland)) | Your spa decor should reflect your target market’s preferences. | hwaseong-fortress-suwon-part-2 | Salman
and Sonakshi in Dabangg 2 |

Figure 7: Manually Annotated Captions. The captions are sorted according to concreteness, where captions with
thehighest score illustrated in the top cluster and lowest at the bottom cluster. We truncate captions that are longer
than 20 words, and separate captions by |.
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