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ABSTRACT

High-stakes, infrequent consumer decisions, such as housing selection, challenge
conventional recommender systems due to sparse interaction signals, heteroge-
neous multi-criteria objectives, and high-dimensional feature spaces. This work
presents an interactive preference elicitation framework that utilizes preferential
Bayesian optimization (PBO) to learn the unknown utility function of a user from
pairwise comparisons that are observed and integrated in real-time. To increase
efficiency in a complex feature space, we learn the preference model in the latent
space of an autoencoder (AE). Additionally, to mitigate cold start, we obtain a
personalized probabilistic prior through an automated user interview with a large
language model (LLM). We evaluate the developed method on rental real estate
datasets from two major European cities. The results show that executing PBO
in the AE latent space improves final pairwise ranking accuracy by 12%. For
LLM-based preference prior generation, we find that direct, LLM-driven weight
specification is outperformed by a static prior, while probabilistic weight priors
that use LLMs only to rank feature importance achieve 25% better pairwise accu-
racy than a direct approach.

1 INTRODUCTION

User-tailored recommendations form a cornerstone of modern markets and online platforms, aiming
to surface the most relevant options to reduce decision paralysis and increase click-through rates.
Traditional recommendation approaches excel in entertainment or e-commerce domains, where user
behavior generates abundant implicit feedback through clicks, purchases, and ratings. However,
they struggle in sparse-feedback environments where users interact with only a handful of options
before committing to one, motivating strategies for eliciting preferences in an interactive manner
with as few interactions as possible. Such environments often correspond to high-stakes infrequent
decisions characterized by complex heterogeneous multi-dimensional preference spaces, and have
received little attention in the recommender system literature. We focus on the real estate market as
an exemplary case study of an underexplored domain (Gharahighehi et al., 2021).

1.1 RELATED WORK

Classical Preference Elicitation Traditional preference elicitation methods include conjoint anal-
ysis for estimating utilities over multi-attribute items (Arora & Huber, 2001) and multi-armed bandit
approaches that balance exploration and exploitation (Parapar & Radlinski, 2021). Recent MAB
extensions incorporate knowledge graphs to model inter-item relations and improve elicitation ef-
ficiency (Zhao et al., 2022). Preferential Bayesian optimization (PBO) adapts Bayesian optimiza-
tion (BO) principles to scenarios lacking explicit objective functions, instead using implicit feedback
like pairwise comparisons (González et al., 2017). Subsequent work has focused on developing ac-
quisition functions that account for uncertainty in both model predictions and user responses (As-
tudillo & Frazier, 2020; Astudillo et al., 2023).

Preference Elicitation with LLMs Large Language Model (LLM)-based preference elicitation
follows two main approaches. Conversational methods enable dynamic natural language dialogue,
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with methods like GATE allowing models to actively elicit user intent through open-ended interac-
tions (Li et al., 2023; Andukuri et al., 2024). Structured approaches integrate LLMs within prob-
abilistic frameworks, combining language models with Bayesian methods. One type of structured
elicitation uses LLMs for user interaction and Bayesian methods for maintaining preference beliefs
(Handa et al., 2024; Austin et al., 2024). Similar approaches fine-tune LLMs in a supervised man-
ner with probabilistic models, yielding improved conversational preference elicitators (Piriyakulkij
et al., 2023; Qiu et al., 2025). Here, Bayesian methods are only used for fine-tuning the model
and do not directly aid in question selection and recommendation. Related work explores LLMs
for decision support, constructing utility functions from stated user goals (Liu et al., 2024). It does
not incorporate Bayesian methods but relies on Monte Carlo simulations for expected utility maxi-
mization. Existing work has focused on discrete feature spaces, such as category labels. For feature
spaces with several continuous numerical dimensions, natural language representations are ineffi-
cient. To still leverage LLMs, we propose the use of open-ended conversations solely to generate
personalized priors for downstream PBO tasks.

Bayesian Optimization in High-Dimensional Spaces Real-world recommendation scenarios fre-
quently involve high-dimensional feature spaces that challenge conventional PBO approaches, as the
search space grows exponentially with each additional dimension (Bellman, 1966). Two strategies
address the curse of dimensionality in BO. The first explores lower-dimensional subspaces iter-
atively via one-dimensional subspace exploration for high-dimensional PBO (Tucker et al., 2020;
Cheng et al., 2020). The second strategy performs optimization in learned low-dimensional latent
spaces, such as combining preferential embeddings with BO to optimize only preference-relevant
(ϵ-effective) dimensions (Zhang et al., 2023). The embedding is facilitated through a randomly
generated matrix before the main optimization loop. Another variant learns a low-dimensional fea-
ture space jointly with the response surface and a reconstruction mapping (Moriconi et al., 2020).
The non-linear feature mapping is learned using Gaussian processs (GPs), thus achieving improved
data efficiency. Lastly, variational autoencoders (AEs) have been used for molecular design with
constraints to avoid invalid regions (Griffiths & Hernández-Lobato, 2020). The flexible degree of
information compression via AEs is particularly valuable in high-dimensional feature spaces with a
high degree of interdependence; however, to the best of our knowledge, the use of AEs has not been
investigated in the context of interactive preference elicitation.

1.2 CONTRIBUTIONS

This work addresses the challenge of efficiently learning user preferences in high-dimensional, com-
plex recommendation domains where direct preference specification is difficult, interaction data is
sparse, and new data becomes available over time. We propose a comprehensive framework that
couples PBO with user-specific LLM-based warm-start prior elicitation, and AE-based feature em-
beddings. This facilitates preference learning in a low-dimensional latent space while user interac-
tion happens in a full-dimensional presentation space.

We evaluate our approach in the context of rental real estate recommendations. While this serves as
an example for a challenging high-stakes domain, our approach generalizes to other domains with
similar characteristics, such as the automotive or financial services markets. Based on LLM-based
and statistics-based user simulations, we demonstrate that our framework outperforms vanilla PBO
on two real-world datasets of the real estate markets in Madrid, Spain, and Munich, Germany, and
the computation time meets real-time interactivity constraints.

The remainder of this paper is organized as follows. After introducing some preliminaries (Sec. 2),
we pose our problem statement (Sec. 3.1) and detail the proposed framework (Sec. 3.2). This is
followed by the evaluation of our case study (Sec. 4) and, finally, the conclusion (Sec. 5).

2 PRELIMINARIES

Preference Learning Preference learning is a subfield of machine learning concerned with in-
ducing predictive models from empirical preference data. A preference can be conceptualized as a
”relaxed constraint which, if necessary, can be violated to some degree” (Fürnkranz & Hüllermeier,
2011). Common approaches range from approximating individual utility functions to applying
collaborative filtering across diverse user populations. Preference learning constitutes two pri-
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mary problem types: learning utility functions and learning preference relations (Fürnkranz &
Hüllermeier, 2011). A typical task involves learning a function that predicts preferences for an
unseen set of items, based on a known set of preferences. This work focuses on the object ranking
task. The objective is to learn a function that produces a total ordering of a set of objects without
access to explicit class labels – a form of unsupervised learning.

Bayesian Optimization BO provides a sample-efficient framework for global optimization of ex-
pensive, black-box functions. It places a probabilistic surrogate over the unknown objective and
uses an acquisition function to decide where to evaluate next, balancing exploration and exploitation
in a principled way (Frazier, 2018). We maximize an unknown function f : X → R over a compact
feature space X ⊂ Rd. At iteration n we observe noisy evaluations

yn = f(xn) + εn, εn ∼ N (0, σ2),

and collect data Dn = {(xi, yi)}ni=1. A common surrogate for the black-box function is a GP prior
f ∼ GP(m, k), which yields a Gaussian posterior at any x with mean µn(x) and variance σ2

n(x)
conditional on Dn. The kernel k encodes smoothness and correlations. The subsequent evaluation
maximizes an acquisition function αn(x) that quantifies the value of sampling at x. These acquisi-
tions should be cheap to evaluate, and several options have been proposed in the literature (Brochu
et al., 2010; Astudillo et al., 2023; González et al., 2017). The loop alternates between updating the
surrogate with Dn, maximizing αn(x) to choose xn+1, evaluating yn+1, and augmenting the data.
It terminates upon budget exhaustion or convergence, e.g., vanishing expected improvement. BO
excels in low to moderate dimensions and benefits from structural assumptions or dimensionality
reduction in high-dimensional spaces. Our framework builds on these foundations to incorporate
preference feedback.

Preference Bayesian Optimization Let f : X → R be a black-box function, defined on a
bounded subset X ⊆ Rd. PBO aims to find (González et al., 2017, Eq. 1)

xmin = argmin
x∈X

f(x). (1)

The assumption is that direct querying of f is infeasible, so we have to rely on pairwise comparisons
with two objects (xa,xb), so-called duels. In each duel, we receive binary feedback, indicating
which object was selected. This dueling process is repeated until the uncertainty is reduced to a
satisfying amount. Utilizing BO techniques reduces the number of duels needed, and utilizing a
trained PBO model enables ranking of previously unseen items (González et al., 2017).

Autoencoders AEs are neural networks that learn compact latent representations by training an
encoder gθ : Rd → Rr and a decoder hθ : Rr → Rd to reconstruct inputs, where r ≪ d is the
so-called latent dimension (Hinton & Salakhutdinov, 2006). Training minimizes a reconstruction
loss, such as mean squared error for continuous features or binary cross-entropy for binary features,
often with regularization (e.g., weight decay).

3 INTERACTIVE PREFERENCE ELICITATION FRAMEWORK

3.1 PROBLEM STATEMENT

We define u : X → R as the unknown utility function of a user, defined on the feature spaceX ⊂ Rd.
A corresponding pairwise preference function Fu : X × X → {0, 1} maps any pair of data points
(x, x′) to a binary response, indicating which option is preferable. Our goal is to obtain a proba-
bilistic model û∗ from a parametric class Uθ with a corresponding pairwise preference probability
distribution Fû, such that

û∗ = arg min
û∈Uθ

E(x,x′)∼X 2

[
L
(
Fu(x, x

′), Fû(x, x
′)
)]
, (2)

where L is an appropriate loss function. Note that our problem is intentionally framed as an object
ranking task, rather than finding an optimal feature vector. The reason is that only a finite number
of items, i.e., samples from the feature space, representing real assets, are selectable. Further, while
a set of items I = {x1, . . . , x|I|} is known at the time of preference elicitation, new options might
be unveiled over time. The learned preference model should also be able to rank these accurately.
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We assume a channel through which we can query the user by proposing pairwise comparisons and
obtaining binary feedback. In a realistic setting, the number of queries is limited by an unknown
budget N ∈ N. Therefore, we aim to model the utility function of the user as accurately as possible
with the fewest queries possible.

3.2 PREFERENCE BAYESIAN OPTIMIZATION IN THE LATENT SPACE

Our approach leverages AEs to decouple the optimization space from the presentation space in PBO,
by performing BO in the latent space of the AE, which provides a more efficient representation of
the original feature space. A well-trained encoder ideally removes correlated features, captures non-
linear relationships, and distills the input into its most relevant components. Optimization in this
reduced space should converge more rapidly while maintaining representational resolution. In sum-
mary, we learn a utility surrogate û : Z → R with the corresponding pairwise preference function

Fû(x, x
′) =

{
1 if û

(
gθ(x)

)
≥ û

(
gθ(x

′)
)
,

0 otherwise,
(3)

where gθ is the encoder of the AE trained on the set of available items I. The associated encoder
is denoted as hθ. The autoencoder is trained with normalized features, which is why we apply
normalization before passing a data point to the encoder and denormalization before displaying a
decoded item to the user. For clarity, we do not include these steps in our formalization. In addition
to the following textual description, our approach is formalized in Algorithm 1.

3.2.1 UTILITY PRIOR ESTIMATION USING LLMS

In PBO, selecting informative duels is particularly important during the early stages of elicitation
(Handa et al., 2024; Brochu et al., 2010), and an unsuitable starting point could waste valuable query
budget. To mitigate this cold-start issue, we aim to find a maximally informative prior to initialize
the preference model. This is achieved by evaluating M pairwise preference decisions based on a
synthetic utility function surrogate. We use a standard linear model usyn(x) = w⊤x, where the prior
weights w are obtained through an LLM-guided user interview instead of relying on a predefined
static weight vector.

User Interview The LLM is assigned the persona of a domain-specific interviewer. Apart from
reaching the query budget, the conversation can also conclude when the LLM determines it has
gathered sufficient information or when the user explicitly indicates they are finished. The obtained
preference information π either directly contains the utility model weights w = π or a ranking for the
probabilistic initialization explained below. Additionally, lower and upper bounds x, x of the feature
subspace that is acceptable for the user are returned by the LLM. Including hard constraints can
make the elicitation process significantly more efficient by ensuring that all presented comparisons
fall within the feasible decision space of the user. An example output of the LLM for the real estate
domain could look like the following:

1. Lower bounds on essential criteria, including the minimum floor level, required living area
in square meters, and available parking spaces.

2. Upper bounds for constraining criteria such as maximum acceptable total monthly rent
and maximum acceptable travel time to the workplace.

3. Feature importance weights representing the relative significance of each feature in the
decision-making process. The LLM estimates these weights based on the conversation.

Probabilistic Weight Initialization Instead of directly returning utility function weights, we em-
ploy an approach based on the work in (Handa et al., 2024) which asks the LLM to rank features in
order of importance – a task that aligns better with demonstrated strengths of LLMs in comparative
reasoning and ordinal relationships. This approach works by sampling feature weights from nor-
mal distributions whose parameters are informed by both the ranking of the LLM and the inherent
variance structure of the data. For each feature i with rank ri (where lower ranks indicate higher
importance), the weight wi is sampled from:

wi ∼ N

(
0, α · σ2

i

maxj∈{0,...,d}(σ
2
j )
· 1
ri

)
, (4)
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where σ2
i represents the variance of feature i before normalization, and α is a scaling factor that

controls the overall magnitude of the weights. The intuition behind this approach is that features
deemed more important by the user (receiving lower rank values) should have larger potential weight
magnitudes, while features with higher natural variance already exhibit significant influence on the
decision space and thus warrant proportionally scaled weights. Different from Handa et al. (2024),
we add 1

maxj∈{0,...,d}(σ
2
j )

as a normalization term ensuring that features with exceptionally large
variances do not receive disproportionately large weights regardless of their actual importance to the
user. The corresponding prompt for our case study is provided in the Appendix (Sec. A.3.3).

Warm-Start Dataset After the weights for the synthetic model usyn(x) have been determined, we
sample M item pairs from I uniformly at random. For each pair (x, x′)k, we evaluate the associated
pairwise preference function to obtain the binary feedback

yk = Fusyn(xk, x
′
k) =

{
1 if usyn(x) ≥ usyn(x

′),

0 otherwise.
(5)

Since the probabilistic preference model is trained in the latent space, we compute the dataset of
embedded observations

D =
{(

gθ(xk), gθ(x
′
k), yk

)}M

k=0
(6)

as well as the embedded lower and upper bounds of the feasible feature subspace z = gθ(x), z =
gθ(x).

3.2.2 ELICITATION LOOP

Denoting the nth update of the probabilistic utility model û based on new observation data B as
ûn = Fit(ûn−1,B), we initialize û using the warm-start dataset as ûM = Fit(û0,D), where
û0 ∼ GP(·, ·) represents an arbitrary naive prior distribution. From hereon, the approach fol-
lows the principle of PBO. Until the query budget N is reached, we determine each new query
(zk, z

′
k) by maximizing an acquisition function αk(zk, z

′
k). The user is shown the decoded query

(hθ(zk), hθ(z
′
k)) in the presentation space and their preference choice yk is recorded. The prefer-

ence model is then updated as ûk = Fit(ûk−1, {(zk, z′k, yk)}). In the following two paragraphs,
we describe the utility model update and the acquisition function optimization in more detail.

Utility Model Update The probabilistic utility surrogate û(z) is modeled by a specialized GP
model based on the work in (Chu & Ghahramani, 2005). Since users interact in the presentation
space, they express preferences over reconstructions of latent items x̂ = hθ(z). When a user ex-
presses a preference for an item x̂ over x̂′, the model interprets this as evidence that u(x) > u(x′).
The likelihood of this preference is modeled using a probit function:

Pr(x ≻ x′) = Φ

(
û(z)− û(z′)

σ

)
, (7)

where σ captures user preference inconsistency as well as noise from the AE reconstruction error,
and Φ is the cumulative distribution function of a standard normal distribution. The theoretical basis
for this noise model is discussed in the Appendix (Sec. A.1). The resulting posterior distribution
is not analytically tractable since the probit likelihood is non-conjugate with the Gaussian process
prior. Therefore, the model employs a Laplace approximation that finds the maximum a posteri-
ori estimate of the latent utility values and then forms a Gaussian approximation to the posterior
centered at this mode (Chu & Ghahramani, 2005).

Acquisition Function Optimization In BO, each sample, i.e., user query, is determined by an
acquisition function, optimizing the value gained through the corresponding observation. For our
approach, we choose the expected utility of the best option (qEUBO) acquisition function, which is
defined as (Astudillo et al., 2023, Sec. 4.1)

qEUBOn(z, z
′) = En

[
max

{
û(z), û(z′)

}]
, (8)

where En denotes the conditional expectation given our observations of user preference choices after
n queries. Since û is modeled as a Gaussian distribution, qEUBOn can be efficiently maximized
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via a single-sample approximation (Lin et al., 2022, Sec. 4.3). While this, in principle, supports the
integration of arbitrary feature space constraints (Balandat et al., 2020), we focus on feature-wise
lower and upper bounds z ∈ [z, z] that can efficiently be extracted during our LLM-based prior
estimation (see Sec. 3.2.1).

3.3 EXTENSION FOR CONTINUAL AE IMPROVEMENT

In a scenario in which new items might become available over time, one might want to leverage
the opportunity to retrain and improve the used AE with an expanded input dataset. We outline a
corresponding continual approach in the following: Consider the trained AE with encoder gθ and
decoder hθ, initially trained on a set of items I. During elicitation, the AE is used in generating a
user-feedback dataset Dθ = {(z0, z′0, y0), . . . } for the construction of the utility function surrogate
ûθ. When training a new AE, we obtain an updated encoder gθ◦ and decoder hθ◦ on an expanded
dataset I◦ ⊃ I. To avoid losing previously collected feedback, we re-embed the user-feedback
dataset by mapping the old latent representations through the old decoder and the new encoder:
Dθ◦ = {(gθ◦(hθ(z0)), gθ◦(hθ(z

′
0)), y0), . . . }. This re-embedded dataset enables us to rerun the

PBO flow, yielding an updated utility function surrogate ûθ◦ .

4 EVALUATION

4.1 DATASETS

We evaluate our method using the Idealista18 open-source real-estate dataset (Rey-Blanco et al.,
2024). It comprises geo-referenced data of residential real-estate listings from the year 2018
for Spain’s three largest cities – Madrid (94,815 listings), Barcelona (61,486), and Valencia
(33,622). Each listing is accompanied by property attributes (e.g., price, unit price, number of
rooms/baths, constructed area, presence of a terrace, lift, pool, garden, etc.), spatial coordinates (lat-
itude/longitude, with modest anonymization), and supplemental data drawn from cadastral records
(building quality, construction year, dwelling counts, etc.). The dataset also includes neighborhood
polygons for each city with official boundaries and a set of point of interests (POIs) per city: coordi-
nates of the city center, main streets, and metro stations. For the sake of this evaluation, we utilize all
Madrid listings with a manual selection of 12 features, focusing on property attributes. A detailed
overview is given in Appendix A.4, (Table 4). All analyses and results presented in Section 4.3,
are based on this publicly available dataset. In addition, we created a comparable dataset for the
city of Munich, Germany. It contains about 1,500 rental real-estate listings with their corresponding
metadata, alongside free-text information from the descriptions. Additionally, we utilize geospatial
analysis to compute additional information, such as proximity to the nearest public transport stop
or the average surrounding noise level. While we are unable to publish the dataset at this point due
to licensing restrictions, we report our evaluation results in Appendix A.4, Table 6. Notably, these
results are in line with the findings reported in Section 4.3.

4.2 SETUP

AE Training We employ robust scaling techniques that use interquartile ranges rather than mean
and standard deviation, making the normalization less sensitive to outliers. Additionally, median
value imputation handles missing or malformed values, and outliers are removed by clipping the
data at the 1st and 99th percentiles. The tuned architecture has two hidden layers in both the encoder
and decoder and six latent features. We use hyperbolic tangent (tanh) as the activation function. The
full set of hyperparameters is provided in Appendix A.5, Table 8.

User Simulation Generating responses that approximate human preferences well is a challenging
task. Specifically for content recommendation, it was found that biographical sketches of hypotheti-
cal people are well-suited for simulating human decision makers (Li et al., 2023) with LLMs. Based
on these findings, we prompt a state-of-the-art LLM with thinking capabilities to choose which of
two properties, represented by a textual representation of their feature vectors, it prefers, given the
description of a persona. In order to cover the complete elicitation process, the LLM is also used
to acquire probable strict constraints (lower or upper bounds of features) as well as a feature weight

6
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prior. Our primary evaluation uses the closed-source model Gemini-2.5-Flash-Lite1 and
we conduct an ablation experiment using the open-source model gpt-oss-120b OpenAI et al.
(2025). The utilized prompt is provided in Appendix A.3.3.

In addition to simulating human responses using LLMs, we implement a more analytical approach
based on a linear utility function model ûθ. Here, a weight vector θ ∈ [−1, 1]d, ∥θi∥1 = 1 is used to
approximate the preferences of a user. We use a range of preset profiles, which are then randomized
using uniformly sampled offsets, between -0.5 and 0.5, added to each specified weight. We use the
obtained model to make pairwise comparison decisions based on the Bradley-Terry model of human
preferences (van Berkum, 1997; Hunter, 2004). Accordingly, the likelihood of a property x being
preferred over a property x′ is defined by

Pr(x ≻ x′ | uθ) =
1

1 + e(uθ(x′)−uθ(x))
.

The statistical profiles and LLM personas have been chosen such that they roughly represent the
same preferences and tendencies. For example, the budget-conscious profile and the student persona
encode the same preference for an ideally low rent and proximity to the city center. Personas and
profiles are derived from survey studies Walker & Li (2007); Lee et al. (2019) and confirmed by
domain experts to be relevant classes of stakeholders in the rental real estate market. The detailed
weights and persona prompts are provided in the Appendix (A.3.4). The static prior is hand-crafted
to represent a reasonable preference profile and provided in Table 3.

Evaluation Parameters For both variations of the benchmark – LLM-based and statistics-based –
we use a randomly generated test set to serve as ground truth for evaluating the model performance
after every training step. This test set consists of n = 50 randomly sampled items from our data set,
serving as the items to be ranked. The test set is reused for all runs of the same persona or profile
across one evaluation. The learned preference model is never given access to the test set, since we
only use the posterior of the model for evaluation. Every result is reported based on 200 evaluation
runs, split into using either the LLM-based or statistics-based user simulation. Every persona or
profile is chosen equally, equating to 25 runs per persona or profile, as we define four personas and
four profiles for our scenario. For one evaluation run, we select an initialization budget of M = 5
and a query budget of N = 25. Additionally, we test a totally random prediction strategy to establish
a baseline.

We use two primary metrics to measure the performance of the elicitation methods. First, we calcu-
late the pairwise accuracy, which is the fraction of correctly ordered pairs between the predicted and
ground-truth preferences. Secondly, we employ normalized discounted cumulative gain (NDCG), a
utility-dependent measure of ranking quality that gives more weight to items ranked higher in the
list Järvelin & Kekäläinen (2002). It is defined based on the discounted cumulative gain (DCG) at
position k:

DCG@k =

k∑
i=1

reli
log2(i+ 1)

, (9)

where reli is the relevance score of the item at position i in the predicted ranking. DCG@k is nor-
malized by the ideal discounted cumulative gain (IDCG@k), which is the DCG score of a perfectly
sorted list, to obtain

NDCG@k =
DCG@k
IDCG@k

. (10)

Essentially, NDCG@k measures how much of the maximum possible utility was captured in the
top k positions, relative to an ideal ranking for that query. We generally report the mean and 95%
parametric confidence intervals across all runs.

4.3 RESULTS

Figure 1 visualizes the performance differences between our proposed approach (combining PBO
with AEs and LLMs), the random ranking baseline, and vanilla PBO. Our method requires LLM-

1https://storage.googleapis.com/deepmind-media/Model-Cards/
Gemini-2-5-Flash-Lite-Model-Card.pdf
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(b) Aggregate NDCG@10 scores.

Figure 1: Aggregated scores over time for random ranking, vanilla PBO (both user simulation types),
and our proposed approach. Shaded areas represent 95% confidence intervals over 200 runs each.
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(a) Prior comparison for pairwise ranking accuracy.
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Figure 2: Comparison of PBO+AE performance using three different prior initialization methods.
The probabilistic LLM-based prior slightly outperforms the static prior, while the direct LLM-based
prior yields the worst results.

based simulation for evaluation, as it elicits probabilistic priors from simulated users. Vanilla PBO
accommodates both simulation approaches. PBO runs with statistical simulation achieve higher
initial scores but experience rapid decline after a few iterations. This strong initial performance
is likely the result of overlap between profile weights and the default static prior used in evalu-
ation. Under LLM-based simulation with noisier signals, our approach consistently outperforms
vanilla PBO. Our method achieves average final pairwise accuracy of 0.613 ± 0.024 and average
NDCG@10 score of 0.706 ± 0.034. These results represent 13.7% and 13.5% improvements over
vanilla PBO under LLM-based simulation, respectively. A noteworthy observation in Figure 1 is
that vanilla PBO in the statistical simulation shows the counterintuitive behavior of an initial rapid
increase in accuracy followed by a monotone decrease until the end of the elicitation loop. This
indicates overfitting to a certain region of the feature space, which is likely a consequence of the
high dimensionality and associated issues of overconfident estimates and premature exploitation.

The performance improvement incurs an average overhead of 358ms per optimization step compared
to vanilla PBO. Additionally, we measure candidate diversity to ensure the decoder output does not
collapse to similar objects. We define candidate diversity as the mean feature-wise standard devia-
tions across candidates generated during acquisition function optimization, measured in presentation
space. We observe no significant difference between PBO and PBO+AE methods. Table 1 presents
detailed aggregated evaluation results.

A similar performance pattern emerges when applying our method to the Munich rental real estate
dataset (Appendix A.4: Tables 5, 6). Although the pairwise ranking accuracy is slightly lower on
this smaller dataset, the NDCG@10 scores are comparable. Crucially, PBO+AE again demonstrates
better predictive performance over vanilla PBO. This suggests that our approach effectively learns

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Comparison of evaluation metrics across all approaches and user simulation variants.

Pairwise Acc. NDCG@10 Cand. Diversity Runtime/iter (ms)
Method Simulation Prior

PBO LLM Static 0.539 ± 0.014 0.622 ± 0.026 0.775 ± 0.116 518 ± 10
Statistical Random 0.492 ± 0.017 0.489 ± 0.038 1.078 ± 0.040 0 ± 0

Static 0.510 ± 0.017 0.658 ± 0.037 0.633 ± 0.060 304 ± 12
PBO + AE LLM Direct Elicit 0.488 ± 0.024 0.573 ± 0.036 0.664 ± 0.057 641 ± 65

Prob Elicit 0.613 ± 0.024 0.706 ± 0.034 0.596 ± 0.066 876 ± 216
Static 0.605 ± 0.024 0.685 ± 0.033 0.611 ± 0.064 723 ± 99

Statistical Static 0.556 ± 0.025 0.584 ± 0.037 0.613 ± 0.039 465 ± 84

preferences even for high-dimensional datasets of a smaller size. Additionally, we provide the ag-
gregated results from utilizing the open-source LLM in Appendix A.4, Table 7. While we observe
generally worse performance of all variants compared to the closed-source LLM, our approach still
outperforms vanilla PBO. Further, the usefulness of warm starting is demonstrated in Appendix A.4,
Figure 4, which shows that PBO+AE with cold start quickly plateaus and performs worse than our
proposed approach at the end of the elicitation process.

LLM Prior Impact Figure 2 ablates all three initialization strategies for PBO+AE: a fixed static
prior, a directly elicited LLM prior (point estimate), and a probabilistically elicited LLM prior that
samples weights from a distribution informed by an LLM-produced feature ranking (Sec. 3.2.1). The
first five queries use synthetic comparisons generated under the respective prior (vertical marker), af-
ter which the model observes simulated user feedback. Feature-wise bounds are active and identical
across the LLM-based variants. The static prior runs use wider dataset-level bounds instead. Across
200 runs for all personas, the probabilistic prior yields the best sample efficiency and the highest
final performance on pairwise accuracy and NDCG@10. The direct prior shows an early drop –
consistent with overconfident misspecification – and never closes the gap. At the query budget limit,
PBO+AE with probabilistic elicitation achieves 0.613± 0.024 pairwise accuracy and 0.706± 0.034
NDCG@10, slightly but consistently outperforming the static prior and clearly surpassing the direct
prior. These results indicate that an uncertainty-aware prior based on LLM guidance is more robust
and provides a sustained advantage once real user feedback arrives. We hypothesize that the static
prior shows comparatively strong results because it is likely a good fit for most personas. For exam-
ple, the relatively strong preference for a lower price encoded in the static weight prior is likely to
match the preferences of every persona. This effect is unlikely to generalize to a larger population
of users.

4.4 LIMITATIONS

Our evaluation has several limitations. The LLM-based personas used in our simulations may not
accurately reflect authentic human decision-making, and they represent only a limited number of
stereotypical users. LLM responses are not fully consistent across queries, even with low tempera-
ture settings. Our datasets are from two major European cities, which limits their generalizability to
other geographic markets or cultural contexts. The selected features (e.g., bikeability scores, public
transport access) reflect local urban characteristics that may not be applicable to different settings
or recommendation domains, such as automotive purchases. Additionally, our reliance on pairwise
accuracy as the primary evaluation metric may not fully capture user satisfaction, as real users often
value factors beyond ranking accuracy, such as diversity, novelty, or serendipity.

5 CONCLUSION

This work demonstrates that combining preferential Bayesian optimization with LLM-guided pri-
ors and autoencoder-based dimensionality reduction effectively addresses preference learning chal-
lenges in high-stakes, sparse-interaction domains. Our approach achieves substantial accuracy im-
provements compared to vanilla preferential Bayesian optimization on rental market datasets from
two European cities. This framework has immediate applications for online real estate platforms,
where it could reduce user fatigue by minimizing the number of property comparisons needed to
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identify suitable options. Beyond rental real estate, further real-world applications are high-stakes
decisions, e.g., job searches or major purchases, where sparse interaction data limits traditional
recommender systems. Key directions for future work include multi-stakeholder preference aggre-
gation (e.g., couples searching together), temporal adaptation for evolving preferences, investigation
of other decision domains, and empirical validation with human users.
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A APPENDIX

A.1 MOTIVATION OF RECONSTRUCTED PREFERENCE LIKELIHOOD

We would like to stress that the utility model in equation 7 does not require any assumptions on the
utility function of the user or the AE accuracy. If the underlying noise from user preferences and AE
reconstruction errors is not Gaussian, we may obtain a biased or less accurate model, which, how-
ever, may still perform well on ranking tasks. In the following, we discuss under which assumptions
the noise introduced by learning in the latent space instead of the presentation space can be modeled
as being absorbed in a distribution learned in the presentation space.

We make two assumptions. First, the AE reconstruction error can be modeled as unbiased Gaussian
noise, i.e., x̂ = hθ(gθ(x)) = x + ϵ where ϵ ∼ N (0,Σϵ). This should be the case for a sufficiently
well-trained model. Second, the reconstruction error affects the utility function of the user locally
approximately linearly, such that

u(x) ≈ u(x̂)−∇u(x̂)⊤ϵ.

If we did not use any embedding mechanism, users would give their feedback in the presentation
space, and the preference likelihood would be modeled directly as (Chu & Ghahramani, 2005, Sec.
2.1.2)

Pr(x ≻ x′ | u) = Φ

(
u(x)− u(x′)

σpref

)
.

where σpref represents the intrinsic preference noise. To establish the connection to the latent space,
we apply the first-order Taylor expansion around two items x and x′ and obtain

u(x)− u(x′) ≈ u(x̂)− u(x̂′)−∇u(x̂)⊤ϵ+∇u(x̂′)⊤ϵ′.

The noise term η(x̂, x̂′) = ∇u(x̂)⊤ϵ − ∇u(x̂′)⊤ϵ′ is heteroscedastic, since it depends on local
gradients. However, conditional on x̂ and x̂′ it is a linear combination of independent Gaus-
sian variables, such that η | x̂, x̂′ ∼ N (0, σ2

recon(x̂, x̂
′)), where the conditional variance is

σ2
recon(x̂, x̂

′) = ∇u(x̂)⊤Σϵ∇u(x̂) +∇u(x̂′)⊤Σϵ∇u(x̂′) assuming independence between ϵ, ϵ′. For
the sake of computational efficiency, we regard the varying conditional variance as a constant
σ2

recon = Ex̂,x̂′ [σ2
recon(x̂, x̂

′)], yielding η ∼ N (0, σ2
recon). The preference likelihood then becomes:

Pr(x ≻ x′ | û) = Pr(u(x)− u(x′) > 0)

≈ Pr([u(x̂)− u(x̂′)]− η > 0)

= Pr([û(z)− û(z′)]− η > 0)

= Φ

(
û(z)− û(z′)

σ

)
,

where the total observation noise is σ2 = σ2
pref + σ2

recon.

Collapsing the heteroscedasticity of the noise introduced by the autoencoder is the core simplifica-
tion of the above argument. We support the validity of this step by empirically investigating how
the reconstruction error of an item depends its position in the feature space. Figure 3 shows the
reconstruction error of each data point across two principal components of the feature space after
a principal component analysis. We observe that the error remains relatively constant over a wide
range of the data, with higher errors primarily occurring near the edges of the feature space. A
more sophisticated model of PBO explicitly considering heteroscedastic noise has, to the best of our
knowledge, not been formulated and presents interesting potential for future work.
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Figure 3: Autoencoder reconstruction error of each data point across two principal components of
the latent space after a principal component analysis.

A.2 ALGORITHM

Algorithm 1 Preferential Bayesian Optimization in the Latent Space

Require: Item dataset I = {x1, . . . , x|I|}, where xi ∈ X ⊆ Rd

Require: Trained encoder gθ : X → Z , trained decoder hθ : Z → X , where Z ⊆ Rr and r << d
Require: Initialization budget M ∈ N, query budget N ∈ N
Ensure: Learned utility function surrogate û : Z → R

Elicit user-specific feature weights and bounds:
π, x, x← runLLMConversation()
σ2 ← calcFeatureVariances(I)
w ← sampleWeightsFromRanking(π, σ2, α = 1)
Initialize model: ▷ 3.2.1
D ← ∅ ▷ Set of observations based on pairwise comparisons
usyn(x)← w⊤x ▷ Synthetic linear utility in presentation space
for k ∈ {1, . . . ,M} do

Sample random pair (xk, x
′
k) from I

if usyn(xk) > usyn(x
′
k) then

yk ← 1
else

yk ← 0
end if
zk ← gθ(xk), z

′
k ← gθ(x

′
k) ▷ Encode from presentation to latent space

D ← D ∪ {(zk, z′k, yk)}
end for
ûM = Fit(û0,D), where û0 ∼ GP(·, ·) ▷ Fit initial GP model
Interactive elicitation: ▷ 3.2.2
for k ∈ {M + 1, . . . ,M +N} do

Active candidate selection:
(zk, z

′
k)← argmaxz,z′∈[gθ(x),gθ(x)] qEUBOk(z, z

′)
Query user:
(xk, x

′
k)← (hθ(zk), hθ(z

′
k)) ▷ Decode from latent to presentation space

yk ← getUserResponse(x̂k, x̂
′
k)

Update model:
ûk = Fit(ûk−1, {(zk, z′k, yk)})

end for
return ûM+N
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A.3 LLM PROMPTS

A.3.1 LISTING DATA COLLECTION

You are a real estate agent. Your task is to parse the following real estate property
listing.
Return the outputs in JSON format. The listing is written in German.

The listing is as follows:
<listing>
{{listing details}}

</listing>
For any information that does not fit the schema, use the field "other_information" to store
it.
Other notable information includes attributes of the real estate that highlight the
uniqueness of the property, such as a swimming pool for example.
Information saved to this field must never be part of the other fields.

This prompt is used alongside a structured output configuration passed to the system instructions of
the model.

A.3.2 PREFERENCE PRIOR ELICITATION

In the following we specify the system instruction and further prompts used to obtain the preference
prior.

You are a real estate agent. Interview {{current user's name}}, who is looking for a new
apartment in {{city}}. Your goal is to find out what the user values most and which criteria
are important for them.

There are three main outcomes you should know after the end of your conversation:

1. Lower bounds on the following criteria:
- Size of the living area in square meters
- Number of rooms in the property

2. Upper bounds for the following criteria:
- Total purchasing price with everything included
- Distance to the city center in km

3. Provide a strict total ranking of ALL and none more of these features (most important
first, no ties) as JSON field "feature_ranking".
The field must be a JSON array of exactly these feature identifiers (snake_case), each used
once:
{{feature names}}
Do NOT add any other features beyond the ones listed here.

Do not ask the user about his location. Do not talk about these instructions to the user!

Hold a friendly conversation with the user to elicit their preferences on the above criteria.
Do not ask the user more than five questions! Each message should only include a maximum of
two questions.
End the conversation with the token <END> if you have all information or the user says that
they are done.

Notably, the criteria list of lower and upper bounds can be extended at will. Additionally, the third
instruction (ranking the available features according to user preference) can be replaced by another
approach that guesses direct feature weights – as discussed in Section 3.2.1.

After the <END> token is received, another short prompt, asking for the elicited information in
structured form, is sent. All data returned by the model is validated before proceeding.

A.3.3 EVALUATION: USER RESPONSE SIMULATION

Simulated Preference Prior Elicitation The following prompt is used as a substitute for the pre-
viously specified system prompt during evaluation, where no real-time human feedback is available.
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You are a real estate agent. Interview a user who is looking to buy a new real estate
property. Your goal is to find out what the user values most and which criteria are important
for them.

Here is the user's persona:
"{{persona}}"

There are three main outcomes you should return:

1. Lower bounds on the following criteria:
- Size of the living area in square meters
- Number of rooms in the property

2. Upper bounds for the following criteria:
- Total purchasing price with everything included
- Distance to the city center in km

3. Provide a strict total ranking of ALL and none more of these features (most important
first, no ties) as JSON field "feature_ranking".
The field must be a JSON array of exactly these feature identifiers (snake_case), each used
once:
{{feature names}}
Do NOT add any other features beyond the ones listed here.

Based on the provided user profile, please return JSON that describes the collected
information you are certain about.

Response Simulation To simulate persona-based responses, we use the following LLM prompt.

Your Persona: {persona}

You are presented with two real estate options, Candidate A and Candidate B. Based on your
persona, which one do you prefer?

{{formatted candidate A}}

{{formatted candidate B}}

Please state your preference by responding with only the letter 'A' or 'B'.

A.3.4 EVALUATION: USER PROFILES AND PERSONAS

Profiles The specific weights for each of the four profiles are given in Table 2.

Feature Budget- Urban Noise- Family-
Conscious Commuter Averse Friendly

Price -0.50 – -0.10 -0.10
Unit Price – -0.10 – –
Living Area (sqm) 0.10 0.05 – 0.30
Number of Rooms 0.05 – – 0.20
Number of Bathrooms – – – 0.10
Building Age (years) – – -0.10 –
Max Building Floor – – – -0.05
Dwelling Count – 0.05 – –
Distance to City Center (km) -0.10 -0.30 0.10 -0.10
Distance to Metro (km) -0.20 -0.30 -0.20 –
Distance to Castellana (km) -0.05 – 0.40 0.05

Table 2: Weight assignments for user profiles used in the evaluation.

Personas
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Family ”You are the head of a family with two young children. You prioritize space, multiple
rooms and bathrooms, and high-quality housing. You value properties with more floors in
the building for better amenities. You can afford higher prices but want good value per
square meter. Distance to city center is less important than living space.”

Student ”You are a university student on a tight budget. Low price is your absolute top priority,
and you’re willing to accept smaller space and fewer rooms. You prefer being close to the
city center and metro stations for easy access to university and nightlife. You don’t mind
older buildings if it means lower costs.”

Young Professional ”You are a young professional who values convenience and modern living.
You prioritize proximity to metro stations and reasonable distance to city center for your
commute. You prefer newer buildings with good quality, and you’re willing to pay higher
prices per square meter for better location and quality. Moderate space requirements are
sufficient.”

Noise-Averse ”You prioritize peaceful living and prefer properties farther from the busy city center
and metro stations to avoid noise. You value higher floors in buildings for reduced street
noise, and you’re willing to pay premium prices for tranquil locations. Living area size is
important, but distance from transportation hubs is preferred for quieter environment.”

Static Weight Prior The static weight prior used for model initialization for runs where no LLM-
based weight initialization is utilized, is defined as follows.

Feature Weight
Total Rent -0.30
Unit Price 0.00
Constructed Area (sqm) 0.20
Number of Rooms 0.10
Number of Bathrooms 0.05
Building Age -0.10
Max Building Floors 0.01
Dwelling Count -0.01
Distance to City Center -0.10
Distance to Metro -0.10
Distance to Castellana -0.03
Cadastral Quality 0.00

Table 3: Static weight prior for model initialization, used with the Idealista18 dataset.

A.4 EVALUATION

Idealista Dataset Table 4 describes the subset of the Idealista18 dataset we use to evaluate our
proposed approach.
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Count Mean Std Min Max

Price [C] 94815.00 396110.11 417074.41 21000.00 8133000.00
Unit Price [C/m2] 94815.00 3661.05 1700.50 805.31 9997.56
Constructed Area [m2] 94815.00 101.40 67.08 21.00 985.00
Number of Rooms 94815.00 2.58 1.24 0.00 93.00
Number of Bathrooms 94815.00 1.59 0.84 0.00 20.00
Age [y] 94815.00 59.30 29.11 7.00 402.00
Max Building Floor 94815.00 6.38 2.85 0.00 26.00
Dwelling Count 94815.00 39.19 54.25 1.00 1499.00
Distance To City Center [km] 94815.00 4.49 2.99 0.01 415.75
Distance To Metro [km] 94815.00 0.48 1.43 0.00 399.48
Distance To Castellana [km] 94815.00 2.68 2.58 0.00 412.80
Cadastral Quality ID 94815.00 4.85 1.46 0.00 9.00

Table 4: Overview of the 12 selected columns from the Idealista18 dataset.

Munich Dataset While we are currently unable to publish the complete dataset for the Munich
metropolitan region, we describe the most relevant statistics in Table 5. All observed real estate
properties were offered for rent. Travel time is calculated using the open-source OTP22 router with
preference to walking for shorter distances and public transport for longer distances. Scores are
determined based on a custom geospatial scoring framework.

Count Mean Std Min Max

Total Rent [C] 1561.00 1753.86 853.14 29.00 13900.00
Floor 1561.00 2.32 2.03 0.00 17.00
Living Area [m2] 1561.00 61.12 30.77 10.00 270.00
Parking Spaces 1561.00 0.43 1.39 0.00 8.00
Outdoor Leisure Score 1561.00 0.40 0.05 0.25 0.98
Recreation Dining Score 1561.00 0.53 0.07 0.00 0.79
Bikeability Score 1561.00 0.58 0.21 0.00 1.00
Noise Score 1561.00 0.92 0.17 0.20 1.00
Safety Score 1561.00 0.93 0.14 0.00 1.00
Travel Time to Public Transport [s] 1561.00 211.89 113.23 1.00 671.00
Travel Time to Grocery Store [s] 1561.00 309.62 180.47 2.00 896.00
Travel Time to Outdoor Leisure [s] 1561.00 333.77 173.38 2.00 1009.00
Travel Time to City Center [s] 1561.00 1690.39 759.04 311.00 3979.00

Table 5: Overview of our custom Munich dataset.

Table 6 shows the results we obtained after evaluating our approach on the Munich dataset.

Pairwise Acc. NDCG@10 Cand. Diversity Runtime/iter (ms)
Method Simulation Prior

PBO LLM Static 0.544 ± 0.011 0.697 ± 0.020 0.767 ± 0.028 419 ± 6

Statistical Random 0.498 ± 0.013 0.491 ± 0.043 0.989 ± 0.045 0 ± 0
Static 0.468 ± 0.016 0.721 ± 0.025 0.754 ± 0.027 146 ± 6

PBO + AE LLM Direct Elicit 0.476 ± 0.053 0.571 ± 0.057 0.753 ± 0.071 414 ± 7
Prob. Elicit 0.569 ± 0.037 0.651 ± 0.038 0.860 ± 0.039 442 ± 21
Static 0.492 ± 0.221 0.592 ± 0.221 0.772 ± 0.293 311 ± 4

Statistical Static 0.562 ± 0.022 0.732 ± 0.030 1.167 ± 0.074 203 ± 5

Table 6: Performance metrics for each model variant, aggregated per method and simulation type
(LLM-based or statistics-based) on the Munich dataset.

2OpenTripPlanner2. https://docs.opentripplanner.org/en/latest/
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(a) Warm vs. cold start on pairwise ranking accuracy.
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Figure 4: Comparison of our approach (PBO+AE with probabilistic LLM-based prior) and PBO+AE
with the static prior and without warm start period in LLM-based simulation.

Open-source LLM Table 7 shows the results we obtained after evaluating our approach on the
Idealista18 dataset using an open-source LLM.

Pairwise Acc. NDCG@10 Diversity Runtime/iter (ms)
Method Simulation Prior

PBO LLM Static 0.504 ± 0.019 0.610 ± 0.033 0.596 ± 0.050 1768 ± 56

PBO + AE LLM Direct Elicit 0.558 ± 0.031 0.578 ± 0.045 0.735 ± 0.101 2121 ± 153
Prob. Elicit 0.573 ± 0.026 0.615 ± 0.037 0.689 ± 0.076 2109 ± 102
Static 0.565 ± 0.026 0.575 ± 0.042 1.185 ± 0.104 989 ± 63

Table 7: Performance metrics for each model variant, aggregated per method and simulation type
(LLM-based or statistics-based) using the open-source gpt-oss-120bOpenAI et al. (2025) LLM
on the Idealista18 dataset.

Warm Start vs. Cold Start Figure 4 shows a comparison between our proposed approach
(PBO+AE with probabilistic LLM-based prior elicitation) and PBO+AE with the static prior and
cold start.

A.5 AE TRAINING

Parameter Value
Batch Size 64
Dropout Rate 0.01
Hidden Dim 1 11
Hidden Dim 2 9
Latent Dim 6
Learning Rate 0.0026
LR Scheduler Factor 0.8
Min LR 10−6

Scheduler Patience 100
Num Epochs 250
Weight Decay 0.0013

Table 8: AE hyperparameter configuration.
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B ETHICS STATEMENT

Our proposed elicitation framework warrants consideration of several ethical dimensions, primarily
concerning the use of LLMs for user simulation and the potential for unfairness in the real-estate
application domain.

First, our reliance on LLMs to generate user personas for evaluation introduces a risk of incorporat-
ing and amplifying societal biases. LLMs are trained on vast corpora of text from the internet, which
can contain stereotypical or prejudiced associations related to demographics, socioeconomic status,
and housing preferences. Consequently, the simulated personas may not represent a diverse and au-
thentic range of human decision-making, but instead reflect biased patterns. Optimizing our system
against these simulated preferences could inadvertently lead to a model that caters to stereotypes,
rather than genuine user needs.

Second, the application of this framework to real estate recommendations could raise fairness con-
cerns, particularly regarding some features used in our dataset. Metrics such as the safety score
and noise score are often derived from data that can act as proxies for the racial or socioeconomic
composition of a neighborhood. Using such features to guide recommendations risks perpetuating
residential segregation by steering certain users away from or towards specific areas. We recognize
the additional need for caution when working with this type of data. The recommendations gener-
ated by our system should not be interpreted as objective truths, but as outputs of a model trained on
potentially biased data.

C REPRODUCIBILITY STATEMENT

The Munich dataset is currently not publicly available due to licensing limitations. The Idealista18
dataset is publicly available at https://github.com/paezha/idealista18. The gpt-
oss-120b model is available at https://huggingface.co/openai/gpt-oss-120b. The
Python implementation of all experiments will be made publicly available on an appropriate plat-
form.

D STATEMENT ON THE USE OF LLMS

LLMs have been used as part of our methodology for prior generation (Sec. 3.2.1) and for user
simulation (Sec. 4.2). In the creation of this manuscript, LLMs have been used for the initial
literature search and editorial purposes.
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