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EZIGEN: ENHANCING ZERO-SHOT SUBJECT-DRIVEN
IMAGE GENERATION WITH PRECISE SUBJECT ENCOD-
ING AND DECOUPLED GUIDANCE

Anonymous authors
Paper under double-blind review

Figure 1: Our model demonstrates remarkable zero-shot performances in generating high-quality
images on subject-driven generation and editing tasks.

ABSTRACT

Zero-shot subject-driven image generation aims to produce images that incorpo-
rate a subject from a given example image. The challenge lies in preserving the
subject’s identity while aligning with the text prompt which often requires modi-
fying certain aspects of the subject’s appearance. Despite advancements in diffu-
sion model based methods, existing approaches still struggle to balance identity
preservation with text prompt alignment. In this study, we conducted an in-depth
investigation into this issue and uncovered key insights for achieving effective
identity preservation while maintaining a strong balance. Our key findings in-
clude: (1) the design of the subject image encoder significantly impacts identity
preservation quality, and (2) separating text and subject guidance is crucial for
both text alignment and identity preservation. Building on these insights, we in-
troduce a new approach called EZIGen, which employs two main strategies: a
carefully crafted subject image Encoder based on the pretrained UNet of the Sta-
ble Diffusion model to ensure high-quality identity transfer, following a process
that decouples the guidance stages and iteratively refines the initial image lay-
out. Through these strategies, EZIGen achieves state-of-the-art results on multiple
subject-driven benchmarks with a unified model and 100 times less training data.
Anonymous demo page is available at: Demo Page.

1 INTRODUCTION

Subject-driven generation methods enable users to create images by combining text prompts with
subject images, following the principle of ’my subject’ following ’my instructions.’ Existing solu-
tions fall into two categories: test-time tuning-based(Gal et al. (2022); Ruiz et al. (2023); Avrahami
et al. (2023); Kumari et al. (2023); Li et al. (2024a); Hao et al. (2023)) and zero-shot inference-
based(Wei et al. (2023); Ma et al. (2023); Purushwalkam et al. (2024); Chen et al. (2024)). Test-
time tuning involves fine-tuning model parameters and introducing subject tokens, allowing detailed
control but requiring time-consuming re-training. In contrast, zero-shot methods generate images
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Figure 2: Suboptimal encoding. BootPIG’s encoder design may lead to suboptimal performance
compared to our own. “Ours” means replacing BootPIG’s encoder with our encoder design.

Figure 3: Conflicting guidance. Existing methods struggle to strike a good balance between identity
preservation and text prompt alignment.

directly from the given subjects without re-training, offering greater efficiency. This paper focuses
on improving zero-shot methods.

Existing zero-shot methods (Wei et al. (2023); Chen et al. (2024); Purushwalkam et al. (2024);
Ma et al. (2023)) predominantly focus on the transfer of a reference subject’s appearance into the
generated image. These methods typically first encode the subject image and then integrate the
encoded features into the UNet of the diffusion model. There are several existing options for subject
image encoders. ELITE (Wei et al. (2023)) and Subject Diffusion (Ma et al. (2023)) utilize CLIP
image encoders, while AnyDoor (Chen et al. (2024)) adopts DINOv2 to achieve better feature map
extraction. BootPIG (Purushwalkam et al. (2024)) employs a Reference UNet model (Hu (2024)) as
a subject feature extractor, reasoning that the feature space of a UNet would be more aligned with
the feature space used in image generation. Although this approach is reasonable, it leaves many
design aspects unexplored, such as which time step to use and how to inject the Reference UNet
features into the generation UNet. Our research reveals that those aspects might have a big impact
at the identity preservation capability.

An often overlooked challenge in existing methods is balancing the parallel user inputs: subject
image and text prompt. Although these guidances appear independent—where the subject image fo-
cuses on preserving identity and the text prompt directs the model to follow user instructions—they
frequently interfere with one another. For instance, as shown in Fig. 3, both the text prompt “a dog in
police outfit” and the subject dog image define the dog’s appearance to some extent simultaneously.
In such cases, prior works either prioritize identity preservation at the expense of text coherence (Ma
et al. (2023)), successfully follow the text but struggle to maintain subject identity (Purushwalkam
et al. (2024)), or perform suboptimally in both aspects (Wei et al. (2023); Li et al. (2024a)).

In this paper, we present a novel subject-driven generation method, EZIGen, addressing the chal-
lenges of identity preservation and text alignment. Building on Purushwalkam et al. (2024), we
employ a Reference UNet as an extractor to achieve good feature alignment between subject and
generated images. However, our unique contribution lies in identifying the ‘devils in the details’:
we discovered that using a fixed timestep, a frozen UNet, and coupling an adaptor for injecting
identity information significantly enhances identity preservation compared to the approach used by
BootPIG Purushwalkam et al. (2024). To better balance subject identity and text adherence, we de-
couple the generation process into two distinct stages: the Layout Generation Process, which forms
a coarse layout from text prompts, and the Appearance Transfer Process, which injects the encoded
subject details via the adapter. This decoupling explicitly separates guidance signals. Additionally,
we observe that the initial layout can impact the quality of identity injection—a layout closer to the
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subject tends to produce better results. Therefore, we introduce an iterative pipeline that converts
the generated image back into an editable noisy latent, refining the layout with subject guidance.

With the aforementioned designs, our model delivers exceptional performance in subject identity
preservation while maintaining excellent text-following capabilities in subject-driven image gen-
eration tasks, offering outstanding abilities in generating images with various subject poses and
versatile attribute modifications. Furthermore, our model consistently performs remarkably well
even in domains for which it was not specifically trained or fine-tuned. For instance, it can effort-
lessly generate highly detailed human facial content without any dedicated pre-training or domain-
specific adjustments. Through extensive analysis, rigorous testing, and comprehensive experiments,
we demonstrate that our design consistently surpasses previous methods across various benchmarks
and tasks, achieving superior and reliable results with a unified, efficient approach.

2 RELATED WORKS

2.1 TEXT-TO-IMAGE GENERATION.

Generative models are designed to synthesize samples from a data distribution based on a set of
training examples. These models include Generative Adversarial Networks (GANs) (Karras et al.
(2021); Goodfellow et al. (2020); Brock et al. (2018)), Variational Autoencoders (VAEs) (Kingma
& Welling (2013)), autoregressive models (Esser et al. (2021); Razavi et al. (2019); Tian et al.
(2024); Sun et al. (2024a)), and diffusion models (Ho et al. (2020); Song et al. (2020); Dhariwal &
Nichol (2021); Betker et al. (2023)). While each of these approaches has demonstrated remarkable
capabilities in generating high-quality and diverse images, their inputs are typically restricted to
text instructions or predefined conditions. In contrast, our work significantly enhances pre-trained
diffusion models by enabling them to incorporate additional image guidance alongside text prompts,
ultimately providing a more comprehensive, versatile, and flexible approach to image generation
across a wider range of applications and contexts.

2.2 TUNNING-BASED SUBJECT-DRIVEN IMAGE GENERATION.

Tuning-based subject-driven image generation (Ruiz et al. (2023); Hao et al. (2023); Gal et al.
(2022); Nam et al. (2024); Ding et al. (2024); Kumari et al. (2023); Avrahami et al. (2024); Chen
et al. (2023); Liu et al. (2023)) typically adjusts sets of parameters to extend traditional text-driven
methods, allowing them to incorporate additional subject images alongside text prompts, thereby
enabling more personalized, detailed, and flexible image synthesis. Some approaches focus on tun-
ing text embeddings to represent the subject accurately, such as TextualInversion (Gal et al. (2022)),
which simply adjusts a learnable text embedding, and DreamBooth (Ruiz et al. (2023)), which fine-
tunes both text embeddings and model parameters for more precise and effective control. ViCo (Hao
et al. (2023)) and CustomDiffusion (Kumari et al. (2023)) further improve performance by addition-
ally tuning cross-attention layers, enhancing subject appearance integration. Despite these advance-
ments, these methods require re-training for each individual subject, making them time-consuming,
and unsuitable for productivity in large-scale applications or practical deployments.

2.3 ZERO-SHOT SUBJECT-DRIVEN IMAGE GENERATION

To tackle the aforementioned issues, some researchers introduced zero-shot methods that accept new
subjects without requiring retraining. Some attempts, such as InstantBooth (Shi et al. (2024)), Fast-
Composer (Xiao et al. (2023)), and PhotoMaker (Li et al. (2024b)), developed zero-shot generation
techniques specifically for domain-specific data, such as human faces or other constrained appli-
cations. For more general objects, ELITE (Wei et al. (2023)), BLIP-Diffusion (Li et al. (2024a)),
Subject Diffusion (Ma et al. (2023)), and BootPIG (Purushwalkam et al. (2024)) achieved high-
quality zero-shot generation by injecting detailed subject image features into diffusion spaces. Nev-
ertheless, these methods still struggle with issues like degraded subject-identity preservation due to
sub-optimal feature extractor utilization or poor balancing between the text and subject guidance
during the generation process.
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Figure 4: Illustration of the proposed system. We begin by Encoding and Injecting subject features
(Sec. 3.1). Next, we decouple the generation into the Layout Generation Process and Appearance
Transfer Process (Sec. 3.2). Finally, we introduce the Iterative Appearance Transfer mechanism
(Sec. 3.3) to fully transfer the subject appearance feature to the layout image.

3 METHODS

Our method comprises two main components: a technique to encode the subject image for the
generation process and a strategy to balance subject identity preservation with text alignment. We
will first elaborate on these components for subject-driven image generation and then extend the
discussion to subject-driven image editing.

3.1 ENCODING AND INJECTING SUBJECT IMAGE INFORMATION

The identity information of the subject image is extracted using an image encoder. Several options
exist in current methods, such as CLIP, utilized in Subject Diffusion (Ma et al. (2023)), DINO-V2,
as employed in AnyDoor (Chen et al. (2024)), and a Reference UNet initialized with the same pa-
rameters as Stable Diffusion, as seen in BootPIG (Purushwalkam et al. (2024)). The last option is
particularly appealing because the noisy latent of a diffusion model and the encoding of the sub-
ject image are processed by similar models, potentially resulting in a closer feature space. This
reduces the challenge of aligning the feature spaces of the subject image encoder and the diffusion
UNet. However, this design leaves several open questions regarding how to configure the feature
extractor and how to integrate the subject image encoding into the diffusion UNet. In BootPIG
(Purushwalkam et al. (2024)), all parameters in the Reference UNet are open for fine-tuning, and
the input image is progressively corrupted with noise at each timestep and then fed into the Refer-
ence UNet afterward, where the input subject image features are injected into the Main UNet at the
same timestep. Our work identifies potential issues with this approach: the overly-noised feature
may convey inaccurate information about the subject image, and tunning the Reference UNet would
disrupt the Stable Diffusion parameters, leading to suboptimal subject encoding(Fig. 2 shows some
examples). In this paper, we propose an alternative solution: inputting the image with light noise
into a fixed Reference UNet to ensure accurate subject representation and introducing a learnable
adapter to bridge discrepancies between latent representations from images with varying noise lev-
els. As shown in Table 5 and Figure 9, our approach significantly improves identity preservation
compared to existing methods.

As depicted in the gray box in Fig. 4, we derive a Reference UNet from the original Stable Diffusion
model and employ it as a fixed offline subject encoder, denoted as Uref(·). To minimize background
interference, the subject image’s background is removed. For extracting subject representations, we
set the denoising timestep Tsub = 1 and add Gaussian noise ϵ to the subject image xsub, depending
on the Tsub and a noise scheduler ϕ:

x′
sub = xsub + ϕ(ϵ, Tsub), where ϵ ∼ N (0, σ2), Tsub = 1 (1)

This slightly noised image x′
sub and the timestep Tsub are then passed through Uref(·) to obtain the

latent representations from all N self-attention layers. These representations, collectively denoted
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as Fsub, capture the subject-specific features:

Fsub = {s1, s2, . . . , sN} = Uref(x
′
sub, Tsub) (2)

To integrate these subject features, we introduce an Adapter as an additional attention module situ-
ated between the self-attention and cross-attention blocks within each transformer block of the Main
UNet, resulting in a total of N Adapters. For each Adapter An, the Main UNet’s latent feature x′

is projected into query, key, and value matrices Q, K, and V , respectively. Meanwhile, the subject
feature sn is mapped into additional key Ksub and value Vsub matrices as follows:

Ksub = Wksn, Vsub = Wvsn (3)

The output feature Fn for each Adapter An is then computed by combining the Main UNet’s features
with the subject features through the following attention operation:

Fn = An(Q, [K;Ksub], [V ;Vsub]) (4)

Here, we have ∀n ∈ {1, 2, . . . , N}, [K;Ksub] and [V ;Vsub] represent the concatenation of feature
vector K with Ksub and V with Vsub along the token dimension.

Training the Adapter. We follow standard practices in the field to construct subject image pairs
from image/video datasets as training data. In each pair, one image serves as the subject guidance,
while the other is treated as the target. During training, all parts of the model are fixed except for the
Adapter, which learns to recover the noisy target image under the guidance of the subject features.

3.2 DECOUPLING TEXT AND SUBJECT GUIDANCE

As mentioned previously, existing methods (Wei et al. (2023); Ma et al. (2023); Purushwalkam
et al. (2024)) often struggle to balance subject ID preservation, i.e. subject guidance, with text
adherence, i.e. text guidance. While the design in Sec. 3.1 excels in preserving subject identity, it
still faces challenges in achieving this balance. We observe that injecting subject features alongside
text prompts at all timesteps tends to prioritize subject identity, overshadowing text-guided semantic
layouts and color patterns that are not fully established in the early stages, such as the “teacher’s
outfit.” Instead of using parallel guidance with scaling factors (Wei et al. (2023); Purushwalkam
et al. (2024); Ma et al. (2023)), which often compromises one aspect, we decouple the guidances to
let them dominate at different stages: text guidance in the early stages and subject guidance details
later. This leads to two distinct sub-processes: the Layout Generation and Appearance Transfer
Process.

Layout Generation Process. First, we take the original text prompt as text guidance and generate
a coarse layout using the Stable Diffusion model. Specifically, we interrupt the generation process
at a certain timestep Tlayout and regard the intermediate latent as the coarse layout latent, denoted as
x′, containing the overall semantic structure and rough color patterns of the image, as shown by the
last image of the orange box in Fig. 4.

Appearance Transfer Process. Then, as shown in the blue box in Fig. 4, we bring in subject feature
Fsub as subject guidance and transfer the subject appearance to the layout x′ using the adapters A.
Intuitively, we discover that the attention mechanism within the adaptor first establishes matching
(represented by the attention map) between subject image patches from the Reference UNet and the
noisy latents from the Main generation UNet, which define the scene’s initial layout. It then transfers
the content (encoded by the V values) from the subject patches to their corresponding locations in
the image being generated. This understanding can be illustrated in Fig. 4, given a rough layout
from the Layout Generation Process depicting “a dog in a teacher outfit”, our model will first match
between the subject dog and the dog in the rough latent layout, then transfer only the paired brown
furry skin and maintain the blue teacher’s outfit untouched.

3.3 ITERATIVE APPEARANCE TRANSFER

Based on the above analysis and empirical results, we observe that the initial layout can influence the
final subject-driven generation outcomes. When the initial layout resembles the subject image, the
transfer process improves as the adapter establishes better correspondence within the Main UNet’s
noisy latent space. To enhance this, we introduce an iterative generation scheme: after each transfer,
the generated image becomes the new noisy layout, with noise added according to timestep Tlayout
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for further editing, as shown in the bottom part of Fig. 4. This process repeats until the similarity be-
tween the newly generated image and the previous image exceeds a predefined threshold, indicating
that the appearance transfer is complete and no further information is added.

Integrating the designs above, our model successfully balances subject identity preservation and text
adherance, ensuring comprehensive guidance-following without compromise.

3.4 SUBJECT-DRIVEN IMAGE EDITING

We discover that the Appearance Transfer Process can naturally function as an effective subject-
driven image editor. This is achieved by integrating an object mask and replacing noise addition
with image inversion (Lu et al. (2023)), which converts the generated image back into the latent
layout, preserving the background. Specifically, similar to the noise addition described in Sec. 3.3,
given a real image, we first partially invert it based on timestep Tlayout to obtain a coarse layout
latent x′

r. Next, we initiate the iterative appearance transfer process to inject the subject feature,
resulting in an incomplete edited latent x̂′

r. To maintain the original background, we separate the
edited foreground from x̂′

r and the background from x′
r using a user-provided foreground mask M :

xcomb
r = M ⊗ x̂′

r + (1−M)⊗ x′
r (5)

Here, xcomb
r combines both the static background and the desired edition result in the foreground,

we can then use xcomb
r as the starting point for the next iteration.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Benchmark and Evaluation. We evaluate our design on three benchmarks: DreamBench (Ruiz
et al. (2023)) for subject-driven image generation, DreamEdit (Li et al. (2023)) for subject-driven
image editing, and FastComposerBench (Xiao et al. (2023)) for human content generation. For
DreamBench and DreamEdit, we follow Subject Diffusion’s protocol, averaging scores over 6 ran-
dom runs. For human content generation, we use the FastComposer API. For DreamBench, we
report CLIP-T, CLIP-I, and DINO scores to assess text adherence and subject identity. For subject-
driven editing, we evaluate DINO/CLIP-sub for foreground similarities and DINO/CLIP-back for
background, using SAM (Kirillov et al. (2023)) for mask extraction. For the aforementioned tasks,
we take the DINO-related scores as the main metric for subject similarity, as it better depicts the de-
tailed patch-level differences between images. Finally, for human content generation, we calculate
ID preservation and prompt consistency, following Xiao et al. (2023).

Training Dataset Construction. We create training pairs from COCO2014 and YoutubeVIS. In
COCO2014, 1-4 objects are cropped from target image as subject images, while in YoutubeVIS, we
extract images of the same subject from different frames as pairs, following Chen et al. (2024). We
sampled 100k pairs from each dataset, totaling 200k pairs.

Experiment settings. We utilize Stable Diffusion V2.1-base, with the image resolution fixed at
512×512 for all experiments. The adapter is initialized from the self-attention module within each
transformer block to enhance compatibility. We train the model for 1 epoch using a batch size of 1,
with the Adam optimizer and a learning rate of 1e− 5. During inference, iterations are designed to
stop automatically when the newly generated image exhibits a sufficiently high similarity with the
image from the previous loop, ensuring efficient convergence and maintaining generation quality.

4.2 COMPARING WITH EXISTING SUBJECT-DRIVEN GENERATION METHODS

In Tab. 1, we compare our method with existing zero-shot subject-driven approaches on the Dream-
Bench dataset (Ruiz et al. (2023)), including tuning-based methods for reference. We also present
the number of reference images required for each subject and the training dataset size to highlight
the cost of each method. The overall results show that our base model achieves state-of-the-art
performance text-following, subject identity preservation, and balance among all methods. Com-
pared to the previous state-of-the-art, Subject Diffusion (Ma et al. (2023)), our model outperforms
in both CLIP-T (0.316 vs. 0.293) and DINO score (0.718 vs. 0.711), demonstrating superior flex-
ibility in generated images and higher subject identity preservation, without sacrificing balance.
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Method CLIP-T CLIP-I DINO # Sub TS DS ZS

Textual Inversion ‡ 0.261 0.772 0.561 3-6 N/A N/A ✗

DreamBooth ‡ 0.306 0.792 0.672 4-6 N/A N/A ✗

Elite ‡ 0.296 0.772 0.647 1 multi 0.125M ✓

BLIP-Diffusion ‡ 0.298 0.779 0.589 1 multi ∼2M ✓

BootPIG (4-6 ref) † 0.311 0.797 0.674 4-6 single 0.2M ✓

Subject Diffusion † 0.293 0.789 0.711 1 single ∼76M ✓

Ours 0.316 0.782 0.718 1 single 0.2M ✓

Table 1: Quantitative comparison on DreamBooth benchmark. “# Sub” means the number of images
of the same subject required for training and inference, “TS” for training stages, “DS” for Dataset
Size, and “ZS” for zero-shot inference. ‡ indicates that the results are taken from the Subject Diffu-
sion (Ma et al. (2023)) paper, † are from the original paper.

Figure 5: Comparison with existing subject-driven generation methods. Since Subject Diffusion is
not publically available, we take resultant images from the original paper.

Moreover, this was accomplished with 100× less training data, which we attribute to our simplified
design and the use of the Reference UNet. These results highlight the advantages of using a Ref-
erence UNet over CLIP for feature extraction, alongside our decoupling design that improves text
coherence. When compared with BootPIG (Purushwalkam et al. (2024)), our method surpasses it
in text-following ability (0.316 vs. 0.311) and significantly outperforms in DINO score (0.718 vs.
0.674), while requiring fewer subject images. This is due to our more advanced utilization of the
Reference UNet. Additionally, our method outperforms previous open-source zero-shot methods
(Wei et al. (2023); Li et al. (2024a)) across all evaluation metrics.

4.3 VALIDATION ON SUBJECT-DRIVEN EDITING TASK

As outlined in Sec. 3.4, our method adapts well to subject-driven image editing by replacing noise
addition with image inversion (Lu et al. (2023)) in the Appearance Transfer Process. We com-
pare our model against previous state-of-the-art methods on the DreamEdit benchmark, as shown
in Tab. 2 and Fig. 6(1). Using DINO-sub as the main metric for subject fidelity, our method sig-
nificantly outperforms others, primarily due to our advanced subject feature utilization, where the
Reference UNet extracts high-quality, detailed features, and the Adapter accurately matches subject
appearances to the layout. Additionally, our approach achieves superior background preservation,
thanks to the explicit separation of foreground and background, which effectively confines inversion
errors and pixel alterations strictly to the foreground, leaving the background entirely intact.

1 We follow DreamEdit to take the result images from ImageHub evaluation platform.
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Method DINO
sub

DINO
back

CLIP-I
sub

CLIP-I
back

DreamBooth‡ 0.640 0.427 0.811 0.736
PhotoSwap‡ 0.494 0.797 0.751 0.889
DreamEdit‡ 0.627 0.574 0.784 0.821
Ours 0.650 0.792 0.782 0.889

Table 2: Scores on DreamEditBench. The scores
show the effectiveness of our subject encoding. Re-
sults with ‡ are referenced from DreamEdit.

Method ID
Preser.

Prompt
Consis.

DreamBooth‡ 0.273 0.239
FastComposer‡ 0.514 0.243
SubjectDiffusion‡ 0.605 0.228
Ours 0.592 0.236

Table 3: Performances on single-subject hu-
man image generation. Results with ‡ are
referenced from Subject Diffusion.

Figure 6: Comparing on 1) subject-driven editing1 and 2) human content generation tasks.

4.4 EVALUATING PERFORMANCES ON HUMAN CONTENT GENERATION TASK.

We demonstrate the effectiveness of our method for subject-driven human image generation. Unlike
FastComposer (Xiao et al. (2023)), which relies on domain-specific datasets, or Subject Diffusion
(Ma et al. (2023)), which requires large-scale pretraining, our model achieves high-quality results
using only a normal-scale open-domain dataset. As shown in Tab. 3, our approach delivers very
competitive results. In terms of subject ID preservation, we match Subject Diffusion and outper-
form FastComposer. While our prompt consistency lags behind FastComposer and DreamBooth,
it still exceeds Subject Diffusion. These findings are also reflected in Fig. 6(2), where our method
accurately captures facial details, such as shape, hair, and facial landmarks.

4.5 ABLATION STUDY

We conducted ablation studies to evaluate the effects of various components in our method, including
the Subject Encoding and Injection module, the naive single-stage Appearance Transfer, and the
Iterative Appearance Transfer process. The results are reported correspondingly in Tab. 4 and Fig. 7,
with markings from 1) to 4).

Effectiveness of UNet-based Subject Encoding and Injection. To evaluate the quality of the
encoded subject feature, we start with a fully noised layout image (or random noise) and apply
subject guidance at all timesteps. As shown in experiments 1) and 2), compared to the original text-
guided generation, the encoded subject representation demonstrates strong identity preservation,
achieving a DINO score of 0.762 and a CLIP-I score of 0.808. However, the strong subject features
tend to override the weaker layout latent in early timesteps, leading to serve copy-paste effect and a
lower CLIP-T score of 0.286.

Decoupling the generation process. The experiment in 3) confirms the effectiveness of separating
the Layout Generation Process from Appearance Transfer, in which the CLIP-T score improves
significantly from 0.286 to 0.321, as this design explicitly maintains the layout. However, when
there is a large discrepancy between the layout content and the subject, the appearance transfer can
be incomplete, resulting in reduced subject similarity scores compared to experiment 1), where the
DINO score drops from 0.762 to 0.560.

Effectiveness of Iterative Appearance Transfer. Experiment 4) indicates a successful appearance
transfer after introducing the iterative process. Such gentle refinement to the incomplete generated
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#ID Encode & Inject
Decoupled

Generation Process
Iterative

App. Transfer CLIP-T CLIP-I DINO

1 0.327 0.658 0.362
2 ✓ 0.286 0.808 0.762
3 ✓ ✓ 0.321 0.714 0.560
4 ✓ ✓ ✓ 0.316 0.782 0.718

Table 4: Quatitative ablation study on DreamBench dataset.

Figure 7: Qualitative result of the ablation study.

image leads to substantial improvements in subject appearance similarity: CLIP-I improved from
0.714 to 0.782, DINO score from 0.560 to 0.718, while the text-guided semantics of the generation
images are slightly disrupted during the iterative process, and thus the CLIP-T score drop marginally
from 0.321 to 0.316, our model reaches the best balance between two guidance under this setting.

4.6 SUPERIORITY OF OUR REFERENCE UNET DESIGN AMONG OTHER ALTERNATIVES

We evaluate the effectiveness and efficiency of our Reference UNet subject extractor compared
to CLIP, DINO, and alternative Reference UNet configurations. We use three baseline meth-
ods—Subject Diffusion (Ma et al. (2023)), AnyDoor (Chen et al. (2024)), and BootPIG (Purush-
walkam et al. (2024))—as the current best practices for feature extraction. To ensure a fair com-
parison, we ablate the models for AnyDoor and Subject Diffusion (lines 2 and 4) so that subject
information is derived solely from the feature extractor.

Comparing with CLIP- and DINO-based methods. First, to evaluate the efficiency of using
Reference UNet versus CLIP and DINO, we directly replaced our “Reference UNet + Adapter”
combination with “CLIP/DINO + Projector + Adapter” and compared performances under identical
training settings. As shown in Tab. 5 lines (a) and (c), this replacement led to trivial solutions, as
the Adapter struggled to establish attention between misaligned feature maps, causing the model
to rely primarily on the text prompt for reconstruction. To address this, additional regularization is
typically required to overcome feature space misalignment and force the model to follow the subject
guidance. For example, Subject Diffusion employs location control as regularization, while Any-
Door replaces text tokens with image tokens and crops a scene image for the subject feature to fill.
However, even with regularization, the required dataset sizes remain substantial, at approximately
76M and 9M image pairs, respectively. In contrast, with closer feature spaces, our method completes
training with only 0.2M image pairs. Second, to validate the effectiveness of our design over CLIP
and DINO extractors in encoding subject information, we report the DINO and CLIP-I scores on the
DreamBench dataset using the same evaluation protocol, as shown in Tab. 5 lines (b) and (d), and
Fig. 8, our Reference UNet significantly outperforms both DINO- and CLIP-based configurations.
This suggests that, although CLIP and DINO are highly effective for high-fidelity image representa-
tion across various downstream tasks (Liu et al. (2024); Zhou et al. (2023); Sun et al. (2024b)), the
Stable Diffusion UNet is more suitable for providing features for high-quality image generation, as
it was specifically designed.

Evaluating alternative Reference UNet configurations. We examined the impact of tuning Ref-
erence UNet parameters and adding varying levels of noise to subject images, as shown in Fig. 9.
The table on the left lists the experiment settings and their performances, where check marks/cross
marks indicate whether the Reference UNet is trained or frozen. “Adaptive” means that the Ref-
erence UNet shares the same denoising timestep as the Main UNet, while arguments starting with
”Tsub” indicate the level of noise we add to the subject image. From lines (a) and (b), we find that
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Feature Extractor Training Strategies CLIP-I DINO Dataset Size

DINO
a) DINO + Projector 0.661 0.421 0.2M
b) AnyDoor w/o high-freq map † 0.775 0.710 ∼9M

CLIP
c) CLIP + Projector 0.682 0.433 0.2M
d) Subject Diff. w/o image CLS token † 0.719 0.637 ∼76M

Fixed Ref UNet e) Ours w/ all-step transfer 0.808 0.762 0.2M

Table 5: Comparing extractor designs. Results with † are taken from the original paper.

Figure 8: Comparison with state-of-the-art CLIP-based and DINO-based methods Subject Diffusion
(Ma et al. (2023)) and AnyDoor (Chen et al. (2024)).

#ID Train
Ref. UNet

Ref. UNet
Timestep CLIP-I DINO

a) BootPIG* ✓ Adaptive 0.764 0.589
b) ✗ Adaptive 0.771 0.615
c) ✓ Tsub=1 0.778 0.668
d) ✗ Tsub=800 0.427 0.427
e) ✗ Tsub=500 0.679 0.598
f) ✗ Tsub=300 0.789 0.661
g) ✗ Tsub=100 0.789 0.725
h) Ours ✗ Tsub=1 0.808 0.762

Figure 9: Evalutating subject ID preservation under different UNet configurations. We obtain the
best result when we fix the Reference UNet parameters and assign it with a small denoising timestep
Tsub. “BootPIG*” indicates BootPIG’s training strategy.

tuning the Reference UNet disrupts the original denoising capabilities of Stable Diffusion, resulting
in a performance drop compared to freezing it. Lines (a) and (c) show that fixing the denoising
timestep of the Reference UNet to a small Tsub produces better subject identity with clearer feature
maps. By fixing the Reference UNet and adjusting Tsub, we validated its importance; as shown in
lines (d) to (h), subject identity scores increase as Tsub decreases. This aligns with the intuition that
the Reference UNet encodes clearer features in the final timesteps of the generation process.

5 CONCLUSION

In this work, we introduced EZIGen, a novel framework for zero-shot subject-driven image genera-
tion. By adopting a carefully designed Reference UNet from the Stable Diffusion model, our method
excels in subject feature extraction, allowing for superior subject identity preservation. Then, by ex-
plicitly separating text and subject guidances and proposing the Iterative Appearance Transfer Pro-
cess, we demonstrated how our approach balances identity preservation with text-prompt coherence,
surpassing the limitations of prior methods that often struggle to achieve this balance. With exten-
sive experiments across multiple benchmarks and on inner-model analysis, our model demonstrates
its ability to serve as a robust and versatile solution for subject-driven image generation tasks.
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