

000 001 002 003 004 005 LLM-IQA: STANDARD-GUIDED MLLM FOR MIX- 006 GRAINED IMAGE QUALITY ASSESSMENT 007 008 009 010 011

005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011

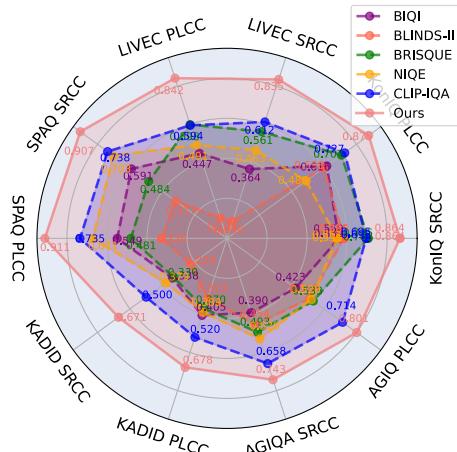
ABSTRACT

012 Image quality assessment (IQA) serves as the golden standard for all models' performance in nearly all computer vision fields. However, it still suffers from poor 013 out-of-distribution generalization ability and expensive training costs. To address 014 these problems, we propose **LLM-IQA**, a standard-guided zero-shot mix-grained 015 IQA method, which is training-free and utilizes the exceptional prior knowledge 016 of multimodal large language models (MLLMs). To obtain accurate IQA scores, 017 namely scores consistent with humans, we design an MLLM-based inference 018 pipeline that imitates human experts. In detail, LLM-IQA applies two techniques. 019 **First**, LLM-IQA objectively scores with specific standards that utilize MLLM's 020 behavior pattern and minimize the influence of subjective factors. **Second**, LLM- 021 IQA comprehensively takes local semantic objects and the whole image as input 022 and aggregates their scores, leveraging local and global information. Our proposed 023 LLM-IQA achieves state-of-the-art (SOTA) performance compared with training- 024 free methods, and competitive performance compared with training-based methods 025 in cross-dataset scenarios. Our code will be released soon.
026
027

1 INTRODUCTION

029 Image quality assessment (IQA) aims to provide accurate quality scores that align with human mean 030 opinion scores (MOS). With the booming of digital 031 technology, the explosion of visual content calls for 032 advanced IQA methods in all fields including communication (Zhou & Wang, 2022), entertainment (Wu 033 et al., 2024e), professional use (Chow & Parames- 034 ran, 2016; Fang et al., 2020), and recently popular 035 AI-generated content (Kirstain et al., 2023; Li et al., 036 2023). Over time, significant contributions have been 037 made in this domain, evolving from traditional hand- 038 crafted feature-based approaches (Wang et al., 2004; 039 Mittal et al., 2012b) to deep neural network (DNN)- 040 based methods (Talebi & Milanfar, 2018; Ying et al., 041 2020; Qin et al., 2023; Saha et al., 2023), bringing 042 steady improvements in IQA accuracy and efficiency.
043

044 Nonetheless, these IQA methods still suffer from 045 poor out-of-distribution (OOD) generalization abil- 046 ity (You et al., 2024) and expensive training costs (Wu 047 et al., 2024a). One potential solution to the OOD issue involves training DNNs on a combination of 048 multiple IQA datasets. Though sounds promising, this approach fails due to inconsistent standards 049 used during dataset construction, leading to distribution mismatches across datasets. For instance, an 050 image rated high quality in one dataset may receive a low-quality score in another, ultimately degrad- 051 ing model performance. Another approach is to create a larger, more diverse dataset representing 052 a wide range of distortions. However, aside from the increased training costs, the scoring process 053 is labor-intensive and time-consuming, making this approach impractical. As a result, poor OOD performance remains an open problem for current IQA area.



044 Figure 1: Comparison between LLM-IQA
045 and existing training-free IQA SOTAs, ex-
046 hibiting LLM-IQA's excellent zero-shot IQA
047 ability.
048
049
050
051
052
053

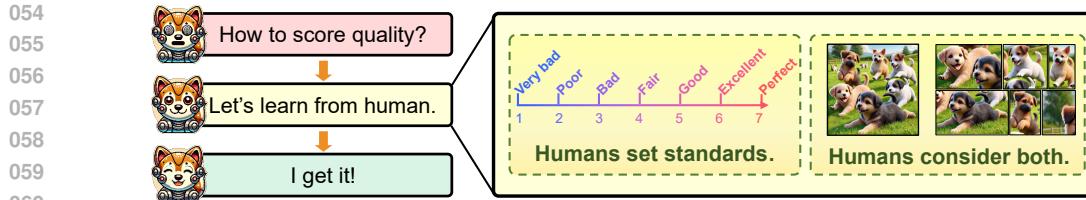


Figure 2: The idea of LLM-IQA is inspired by the human evaluator’s scoring procedures. When scoring, human evaluators are provided with standards mapping the quality to scores. Then they start with the global quality and zoom in on objects to grasp local quality. We integrate these key procedures and switch their form according to MLLM’s behavior pattern, formulating LLM-IQA.

Recently, MLLMs have shown impressive zero-shot capabilities across various computer vision tasks, including classification (Radford et al., 2021), segmentation (Li et al., 2024; He et al., 2024), detection (Zhang et al., 2023a), and restoration (Chen et al., 2023; Zhao et al., 2024). Thanks to their extensive training on large datasets and vast model sizes (Liu et al., 2024c; Awadalla et al., 2023), MLLMs possess rich prior knowledge and are closely aligned with human perceptual understanding (Yin et al., 2023). As the MLLM has not been trained on IQA-related datasets, previous related research (Wu et al., 2024a;c) mainly focuses on training or fine-tuning. These studies have demonstrated remarkable accuracy, suggesting that MLLMs hold great potential for driving the next wave of IQA advancements (see Figure 1). However, while fine-tuning significantly enhances accuracy, it introduces additional computational costs and complexity. Therefore, we aim to fully exploit MLLMs’ potential **without resorting to fine-tuning or task-specific training**.

Our approach is inspired by the human evaluators’ scoring process and the MLLMs’ behavior pattern (Yin et al., 2023). Thus, we design an inference pipeline mimicking human image scoring which is shown in Figure 2. Our key designs stem from the following observations. **First**, when human score images, they are typically provided with a clear standard for each quality level (Wu et al., 2024b). Without such a standard, discrepancies arise—for example, one may interpret a score of 60 as merely passing, while another views 50 as average. By providing a consistent scoring standard, evaluators are more likely to agree on quality assessments. **Second**, when humans assess image quality, they consider both global and local quality (Navon, 1977; Gerlach & Poirel, 2018), often zooming in to evaluate specific areas (Förster, 2012). Notably, these zoomed-in evaluations are typically centered on objects within the image rather than being performed randomly. **Additionally**, MLLMs generate outputs in token form, making it difficult for them to produce precise scores, such as float number 86.5, which would require generating multiple tokens for 8, 6, dot and 5.

Building on these observations, we propose two novel techniques. **First**, we develop a standard-guided scoring system that aims to establish a clear mapping between quality levels and scores and restrict the MLLM to scoring within a predefined range $\{1, 2, \dots, K\}$. The mapping and restriction ensure the model’s understanding of the quality scale. **Second**, we utilize segmentation models to provide MLLM with the whole image and object-centered sub-images. We aggregate the scores using an area-weighted average approach. Our contributions can be summarized as follows:

- We propose **LLM-IQA**, a standard-guided mix-grained IQA framework that does not require any task-specific training or fine-tuning. LLM-IQA fully leverages the inherent capabilities of pre-trained MLLM and segmentation model to provide accurate IQA scores. Our LLM-IQA serves as a new paradigm for training-free approaches in IQA tasks.
- We design two key mechanisms to enhance performance. The standard-guided scoring mechanism ensures consistent and objective quality evaluation by aligning scores with predefined standards. The mix-grained aggregation mechanism refines the final quality score by aggregating global and object-centered sub-image quality scores.
- We conduct extensive experiments and compare LLM-IQA against SOTA IQA methods across multiple datasets. The main experiments show that our proposed LLM-IQA achieves SOTA performance compared with training-free methods, and competitive performance compared with training-based methods in cross-dataset scenarios.

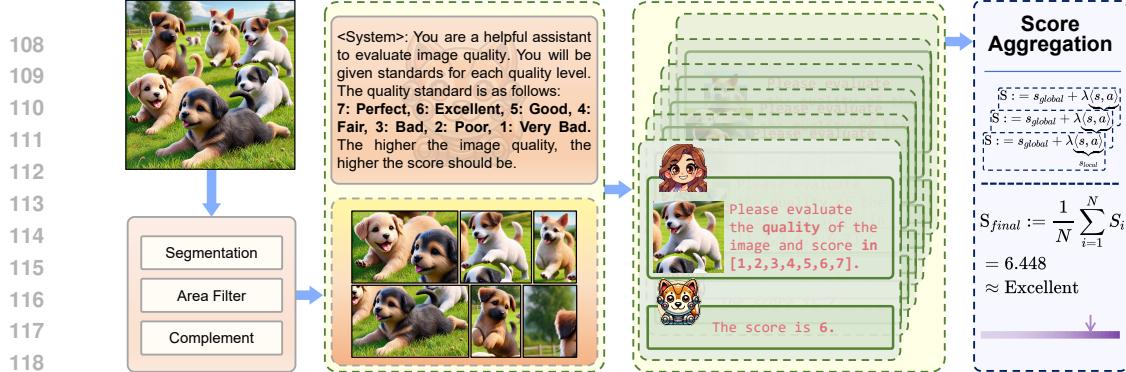


Figure 3: The overall pipeline for our proposed LLM-IQA. It can be divided into three stages, *i.e.*, segmentation, standard guided scoring, and score aggregation. The input image is segmented into multiple sub-images centered on objects. Then, MLLM scores with quality standards. After the area-weighted average, the scores from various models are aggregated as the final quality score, which falls in [1, 7].

2 RELATED WORKS

Training-Free IQA. Training-free IQA is a critical approach in the field of image processing, allowing for the evaluation of image quality without the need for distortion-specific or human-rated training data. Traditional training-free IQA methods are often based on the statistical properties of images, focusing on full-reference (FR) metrics such as PSNR and SSIM (Wang et al., 2004). As for no-reference (NR) training-free IQA, NIQE (Mittal et al., 2012b) assesses image quality through the analysis of natural scene statistics features and provides robust but less precise results. In recent years, CLIP (Radford et al., 2021), a multimodal model, has emerged as a significant player, providing robust training-free performance support for prevalent deep-learning-based IQA. CLIP-IQA (Wang et al., 2023) explores the capabilities of CLIP for assessing image quality and aesthetic perception and pioneers the use of contrastive prompt strategies for scoring. ZEN-IQA (Miyata, 2024) and GRepQ (Srinath et al., 2024) also harness CLIP, with ZEN-IQA utilizing antonym prompts and GRepQ combining low-level and high-level feature representations for IQA. While these inspiring developments represent a substantial leap forward, there is still huge potential for enhancing the performance of training-free IQA models in accuracy.

MLLMs for IQA. High-performance MLLMs, such as mPLUG-Owl (Ye et al., 2023; 2024b;a), LLaVA (Liu et al., 2024c;a;b), and InternLM-XComposer (Zhang et al., 2023b; Dong et al., 2024), can be exceptionally utilized to align IQA tasks with human perception. Based on a comprehensive study (Wu et al., 2024d), recent efforts concentrate on benchmarking and fine-tuning MLLMs for IQA. Q-Bench (Wu et al., 2023) and DepictQA (You et al., 2024) establish evaluation benchmarks for the perceptual, descriptive, comparative, and evaluative capabilities of MLLMs in low-level vision. Based on these works, Q-Instruct (Wu et al., 2024a) and Co-Instruct (Wu et al., 2024c) further advance the low-level perceptual and descriptive capabilities of MLLMs by introducing large-scale datasets and conducting pre-training. Q-Align (Wu et al., 2024b) categorizes image quality into five tiers, enabling more precise quality score regression. However, the cost of fine-tuning large models is substantial, prompting the consideration of more efficient approaches.

3 METHODOLOGY

We provide a comprehensive explanation of our proposed LLM-IQA method. The overall pipeline of our proposed LLM-IQA is shown in Figure 3. The input image is segmented into multiple sub-images with the segmentation process pipeline. Given a detailed standard, the MLLM rates the whole image and sub-images with scores in $\{1, 2, \dots, 7\}$. These scores will be finally aggregated to form the final number. Specifically, we first propose the standard-guided scoring mechanism, which effectively leverages its prior knowledge and its behavior pattern. Second, we discuss the mix-grained aggregation mechanism, which consists of the process of obtaining suitable sub-images and the aggregation of scores. The rationale behind using segmentation is also included.

162 3.1 STANDARD-GUIDED SCORING MECHANISM
163

164 The ultimate goal of image quality assessment (IQA) is to evaluate images in a manner that closely
165 mirrors human judgment. Thanks to their extensive training data and vast prior knowledge, MLLMs
166 are capable of perceiving images in a way that aligns with human perception (Wu et al., 2023), giving
167 them an inherent advantage for IQA tasks. However, expecting an MLLM to output precise quality
168 scores, such as 87.5, is impractical. This is because a score like 87.5 is not represented by a single
169 token, but by four separate tokens: 8, 7, dot, and 5 respectively. Typically, MLLMs can hardly grasp
170 the internal relationship between these tokens, making it difficult for them to associate these values
171 with image quality. These observations and analyses motivate us to **insight 1**:

172 *It is more effective to represent image quality using one single token to achieve an accurate score.*

173 Additionally, relying solely on numeric outputs may not be the most optimal approach for two key
174 reasons. First, numbers constitute only a small fraction of the data within the training set compared
175 to text. However, using only text is also not feasible, as we still need to extract a quantitative
176 score. Second, human interpretation of numeric scores can vary. For instance, some may consider
177 a score of 60 to be just passing, while others may view 50 as an average score. Therefore, when
178 human evaluators score image quality, they are often provided with clear standards for each level of
179 quality (Wu et al., 2024b). This observation brings us to **insight 2**:

180 *A combination of text and numbers is a more effective prompt format for MLLM IQA.*

181 In our proposed method, we integrate these two insights and design the prompt for LLM-IQA as
182 follows:

System: You are a helpful assistant to evaluate image quality. You will be given standards
for each quality level. The quality standard is listed as follows: 7: **Perfect**, 6: **Excellent**, 5:
Good, 4: **Fair**, 3: **Bad**, 2: **Poor**, 1: **Very Bad**. The higher the image quality is, the higher the
score should be.
User: Please evaluate the quality of the image and score in [1, 2, 3, 4, 5, 6, 7].

191 In LLM-IQA, MLLM only outputs discrete numbers
192 from 1 to 7. While this discrete scoring approach
193 may introduce a slight loss in precision compared to
194 continuous values, the impact is minimal. Denote
195 that integer score as $s \in \{s | s \in \mathbb{Z}^+ \wedge 1 \leq s \leq K\}$,
196 the ground truth MOS as s^* , and the maximal and
197 minimal value of s^* as Max_{gt} and Min_{gt} respectively.
198 We scale s^* to $\{0, 1, \dots, K-1\}$ and round it to the
199 nearest integer. The conversion formula is written as:

$$\hat{s}^* = \text{Round}(K(s^* - \text{Min}_{gt}) / (\text{Max}_{gt} - \text{Min}_{gt})). \quad (1)$$

200 As shown in Table 1, the performance upper bounds for different K demonstrate that even when
201 using a limited number of discrete levels, the results surpass those of existing methods. The precision
202 loss introduced by the conversion to discrete scores is minimal and can be safely ignored. However,
203 it is not the case that greater K brings better performance when considering MLLM and there is a
204 performance turning point. We will analyze this problem in Sec 4.4.

205 In conclusion, for each image X , MLLM processes its corresponding segmented masks M as input.
206 For each mask $m_k \in M$, MLLM will predict a score $s_k \in \{1, 2, \dots, K\}$. These individual scores
207 form a score list s_i , which is subsequently used to compute the final quality score.

209 3.2 MIX-GRAINED AGGREGATION MECHANISM
210

211 The mix-grained aggregation mechanism can be divided into two parts. The first part introduces the
212 segmentation pipeline, while the other presents the aggregation of multiple scores.

213 **Segmentation Process Pipeline.** When humans recognize an image, they start from the global
214 structure and gradually dive into the local parts (Navon, 1977; Förster, 2012; Gerlach & Poirel, 2018).
215 This hierarchical process also applies when assessing image quality. Therefore, under the assumption
that MLLMs share a similar perception process, it is essential to leverage meaningful sub-images

Table 1: The approximation of the $(SRCC + PLCC)/2$ upper bound of using only K integers to score.

K	SPAQ	KonIQ	LIVEC	AGIQA	KADID
3	0.912	0.830	0.915	0.923	0.942
5	0.968	0.946	0.964	0.973	0.980
7	0.983	0.967	0.982	0.986	0.988
9	0.990	0.979	0.989	0.991	0.993

216
 217 Table 2: Performance comparison of LLM-IQA with other **training-free** IQA models on KonIQ,
 218 LIVE Challenge, SPAQ, KADID-10k and AGIQA-3k. **Bold** font indicates the best performance.

Methods	KonIQ		LIVE Challenge		SPAQ		KADID-10k		AGIQA-3k	
	SRCC \uparrow	PLCC \uparrow								
BIQI (Moorthy & Bovik, 2010)	0.559	0.616	0.364	0.447	0.591	0.549	0.338	0.405	0.390	0.423
BLINDS-II (Saad et al., 2010)	0.585	0.598	0.090	0.107	0.317	0.326	0.224	0.313	0.454	0.510
BRISQUE (Mittal et al., 2012a)	0.705	0.707	0.561	0.598	0.484	0.481	0.330	0.370	0.493	0.533
NIQE (Mittal et al., 2012b)	0.551	0.488	0.463	0.491	0.703	0.671	0.379	0.389	0.529	0.520
CLIP-IQA (Wang et al., 2023)	0.695	0.727	0.612	0.594	0.738	0.735	0.500	0.520	0.658	0.714
LLM-IQA (Ours)	0.864	0.875	0.835	0.842	0.907	0.911	0.671	0.678	0.743	0.801

224 deliberately. Specifically, ‘meaningful’ means that these sub-images should not be obtained through
 225 random cropping but through semantic segmentation techniques.

226 The segmentation model is an excellent choice as it tends to segment the semantic objects out. The
 227 object segmented by the segmentation model is padded with zeros around. While this padding
 228 has minimal impact on human perception, as humans can easily recognize the black padding as
 229 meaningless and mentally disregard it, this is not the case for MLLMs. The visual encoder within
 230 the MLLM processes the padding as part of the actual image, leading the model to misinterpret the
 231 black regions as the real background. This misunderstanding can result in distinct errors, such as the
 232 MLLM perceiving low contrast when the foreground is dark or concluding that the background is too
 233 dark. Both cases can negatively affect image quality assessment’s accuracy.

234 To address the above issue, we adopt an alternative approach by padding the segmented areas with
 235 the original pixel values. Besides, the segmented results of most segmentation models are highly
 236 fine-grained. However, small objects tend to have lower image quality due to insufficient pixel density,
 237 making it difficult to display sharp details. To mitigate, we apply a coarser granularity and establish a
 238 minimum threshold t for mask size. A side effect of coarser granularity is that the masks may only
 239 cover a portion of the image. In some extreme cases, the segmentation model may fail to segment
 240 any objects from low-quality images. To compensate for this problem, we create a new mask for the
 241 uncovered portions of all previous masks. The detailed process of the segmentation pipeline is in
 242 Algorithm 1.

243 **Assessment Score Aggregation.** For a **Algorithm 1: Segmentation Process Pipeline**

244 given image X_i , after obtaining its global **Data:** Dataset $\mathcal{D} = \{X_i\}_{i=1}^N$, area threshold t ,

245 score s_{global} , segmented masks M_i , and pretrained SAM2 S

246 their corresponding scores s_i , we proceed to **Result:** Masks $\mathcal{M} = \{M_i\}_{i=1}^N$

247 compute the final predicted score. A simple $\mathcal{M} \leftarrow []$;

248 approach of averaging s to determine the **foreach** image X_i in D **do**

249 final score for X_i yields poor performance.

250 This is because some blurred objects are too
 251 small to be perceptible to humans but are dis-
 252 proportionately penalized by MLLMs, lead-
 253 ing to an unfairly low score.

254 To address this, we propose a weighted
 255 average of the scores, where the area of
 256 the corresponding masks determines the
 257 weights. Mathematically, this can be written
 258 as $s_{local} = \langle s, a \rangle$, where $\langle \cdot, \cdot \rangle$ is in-
 259 ner product and a is the vector of the areas
 260 of the masks in M . This approach aligns
 261 more closely with human perception, as the

```

raw_masks  $\leftarrow S(X_i)$ , final_masks  $\leftarrow []$ ;
foreach mask  $m$  in raw_masks do
  if  $m.area \geq t$  then
    | final_masks.append(mask);
  end
end
remain_mask  $= \bigcap \{\neg final\_masks\}$ ;
if  $remain\_mask.area \geq t$  then
  | final_masks.append(remain_mask);
end
M.append(final_masks);
return  $\mathcal{M}$ ;

```

262 dominant object in an image typically occupies the largest region, which represents the image’s
 263 quality. Therefore, for one MLLM k , the score is given by $s_k = s_{global} + \lambda s_{local}$. Consequently, we
 264 apply model ensemble to aggregate scores from various MLLMs by $s_{Dog} = \sum_{k=1}^{N_{model}} s_k / N_{model}$,
 265 where N_{model} is the number of MLLMs.

266

4 EXPERIMENTS

267

4.1 EXPERIMENTAL SETTINGS

268 **Datasets.** We select the following datasets to evaluate our IQA method: KonIQ (Hosu et al., 2020),
 269 LIVE Challenge (Ghadiyaram & Bovik, 2015), SPAQ (Fang et al., 2020), KADID (Lin et al., 2019),

270 and AGIQA (Li et al., 2023). KonIQ and SPAQ are large in-the-wild IQA datasets with more than
 271 10k images. LIVE Challenge is a smaller in-the-wild dataset with 1.1k images. KADID-10k is a
 272 large synthetic dataset, while AGIQA-3k focuses on AI-generated images. Together, these datasets
 273 provide a comprehensive range of image types and quality variations for accurate model evaluation.
 274

275 **State-of-the-art Methods.** We compare our training-free LLM-IQA’s performance against two
 276 categories of approaches. The first category is training-free methods, including BIQI (Moorthy
 277 & Bovik, 2010), BLINDS-II (Saad et al., 2010), BRISQUE (Mittal et al., 2012a), NIQE (Mittal
 278 et al., 2012b), and CLIP-IQA (Wang et al., 2023). The second is training-based methods such
 279 as NIMA (Talebi & Milanfar, 2018), DBCNN (Zhang et al., 2020), HyperIQA (Su et al., 2020),
 280 MUSIQ (Ke et al., 2021), CLIP-IQA+ (Wang et al., 2023), LIQE (Zhang et al., 2023c), and Q-
 281 Align (Wu et al., 2024b). CLIP-IQA and Q-Align are currently the SOTA IQA models without and
 282 with training respectively.

283 **Evaluation.** All methods are evaluated in cross-dataset scenarios to demonstrate their zero-shot
 284 capabilities. Comparing training-free methods with training-based methods may seem unfair due
 285 to the latter’s systematic training on quality assessment. We still perform these comparisons to
 286 showcase the robustness and competitive zero-shot performance of our approach. The evaluation
 287 metrics used are Spearman’s rank correlation coefficient (SRCC) and Pearson’s linear correlation
 288 coefficient (PLCC). Both metrics are widely used in IQA to assess the correlation between the model’s
 289 predictions and human judgments, typically represented by MOS (Telecom, 2000).

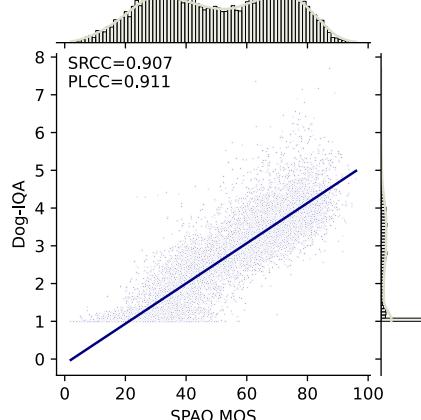
290 **Implementation Details.** We select the pre-trained SAM2 (Ravi et al., 2024) as the segmentation
 291 model and mPLUG-Owl3 (Ye et al., 2024a) as the MLLM. The hyperparameters of SAM2 are adjusted
 292 to achieve the desired segmentation granularity, with detailed configurations in the supplementary
 293 material. Using these hyperparameters, the average number of masks generated for the SPAQ
 294 dataset is 7.22. For mPLUG-Owl3, we limit the output length to 1 token and utilize its default
 295 hyperparameters across all test sets. The number of standard words is set as $K = 7$. Our code is
 296 written with PyTorch (Paszke et al., 2019) and runs with NVIDIA RTX A6000 GPU.
 297

298 4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

299 We conduct extensive experiments to evaluate the
 300 performance of our proposed LLM-IQA model. The
 301 comparisons with SOTA methods are divided into
 302 two categories: training-free methods, shown in Ta-
 303 ble 2, and training-based methods, as presented in
 304 Table 5. Both comparisons highlight our excellent
 305 performance on zero-shot IQA.

306 **Training-Free methods.** Training-free methods can
 307 be broadly categorized into two types. The first cat-
 308 egory includes CLIP-IQA, which leverages the prior
 309 knowledge of CLIP and generates scores based on
 310 the similarity between text and image embeddings.
 311 The second category consists of models such as BIQI,
 312 BLINDS-II, BRISQUE, and NIQE, which rely on
 313 hand-crafted features. As shown in Table 2, the tra-
 314 ditional hand-crafted features often fail to score accu-
 315 rately due to the complex nature of human opinions
 316 on image quality. CLIP-IQA benefits from its prior
 317 knowledge and demonstrates higher accuracy than
 318 hand-crafted feature-based methods. Our LLM-IQA
 319 model consistently achieves superior performance
 320 outperforming existing training-free methods.

321 **Training-Based methods.** Table 5 summarizes the performance of various training-based methods
 322 in cross-dataset evaluations. These experiments test the OOD generalization ability of the models,
 323 which is crucial for IQA. For these comparisons, we select KonIQ and SPAQ as training sets due to
 324 their large size and in-the-wild characteristics. Notably, our LLM-IQA method requires **no training**
 325 or **fine-tuning**, making its strong performance even more remarkable.



326 Figure 4: Correlation between MOS and
 327 LLM-IQA’s scores on SPAQ. The points
 328 (s^*, s_{Dog}) are scattered in the center. And
 329 the marginal hist plots show the distribution
 330 of GT and LLM-IQA’s scores.

331 across all metrics and datasets, significantly

324

325 Figure 5: Performance comparison of our model with **training-based** IQA models. The best and second-best performance is
 326 indicated by **bold** and underlined respectively.
 327

328 Training: KonIQ	329 → Testing Set:	330 SPAQ	331 AGIQA-3k	332 KADID-10k
333 Method	334 Training-free?	335 SRCC ↑ PLCC ↑	336 SRCC ↑ PLCC ↑	337 SRCC ↑ PLCC ↑
NIMA	×	0.856	0.838	0.654
DBCNN	×	0.806	0.812	0.641
HyperIQA	×	0.788	0.791	0.640
MUSIQ	×	0.863	0.868	0.630
CLIP-IQA+	×	0.864	0.866	0.685
LIQE	×	0.833	0.846	0.708
Q-Align	×	0.887	0.886	0.735
LLM-IQA (Ours)	✓	0.907	0.911	0.743
				0.801
				0.671
				0.678

338 Training: SPAQ	339 → Testing Set:	340 KonIQ	341 AGIQA-3k	342 KADID-10k
343 Method	344 Training-free?	345 SRCC ↑ PLCC ↑	346 SRCC ↑ PLCC ↑	347 SRCC ↑ PLCC ↑
NIMA	×	0.733	0.788	0.534
DBCNN	×	0.731	0.758	0.459
HyperIQA	×	0.714	0.742	0.570
MUSIQ	×	0.753	0.680	0.564
CLIP-IQA+	×	0.753	0.777	0.577
LIQE	×	0.826	0.847	0.672
Q-Align	×	0.848	0.879	0.723
LLM-IQA (Ours)	✓	0.864	0.875	0.743
				0.801
				0.671
				0.678

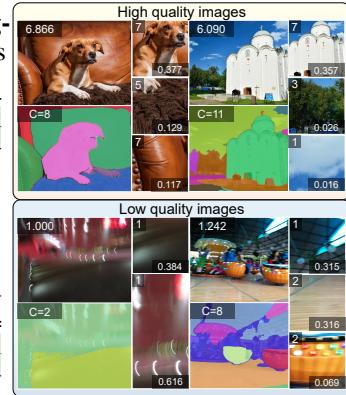
342 Table 3: Ablation study of our proposed LLM-IQA on SPAQ, AGIQA-3k, and LIVE Challenge. We
 343 test the influence of the aggregation method, segmentation method, and standard given to MLLM.
 344 Our key designs are significant in improving MLLM scoring accuracy.

345 Exp index	346 Settings		347 SPAQ		348 AGIQA-3k		349 LIVE Challenge		350 Average	
	351 Aggregation	352 Segmentation	353 Standard	354 SRCC ↑	355 PLCC ↑	356 SRCC ↑	357 PLCC ↑	358 SRCC ↑	359 PLCC ↑	360 Average
1	N/A	Whole	Without	0.616	0.649	0.693	0.752	0.663	0.651	0.671
2	Area	BBox	Number	0.680	0.624	0.443	0.464	0.349	0.319	0.480
3	Area	BBox	Sentence	0.793	0.761	0.592	0.615	0.619	0.598	0.663
4	Mean	BBox	Word	0.866	0.831	0.652	0.624	0.687	0.638	0.716
5	Area	Mask	Word	0.632	0.540	0.510	0.431	0.454	0.395	0.494
6	N/A	Whole	Word	0.891	0.883	0.680	0.684	0.708	0.707	0.759
7	Area	BBox	Word	0.851	0.792	0.659	0.642	0.667	0.628	0.707
8	Area	BBox+Whole	Word	0.886	0.885	0.687	0.689	0.739	0.718	0.767
9	Area+Ensemble	BBox+Whole	Word	0.907	0.911	0.703	0.801	0.835	0.842	0.833

355 Training-based methods show variability depending on the dataset used for training. For example,
 356 SRCC and PLCC scores of Q-Along on KADID-10k drop significantly when switching the training set
 357 from KonIQ to SPAQ, despite both being in-the-wild datasets. In contrast, LLM-IQA demonstrates
 358 stable performance without any training, highlighting its advantage in terms of generalization and
 359 cost-efficiency. Moreover, scoring AI-generated images has become increasingly critical in the current
 360 era of AI. LLM-IQA gains the best performance on AGIQA-3k dataset, exhibiting its superiority on
 361 AI-generated content. Moreover, in the KonIQ → SPAQ scenario, LLM-IQA achieves the highest
 362 SRCC (0.907) and PLCC (0.911), clearly outperforming the second-best model, which only achieves
 363 0.887 SRCC. This result underscores the superiority of LLM-IQA in cross-dataset evaluations.
 364 However, LLM-IQA's performance is relatively low in KADID-10k. This may be due to the fact
 365 that KADID is a synthetic dataset and its distribution is significantly different from other datasets.
 366 Despite this, LLM-IQA still secures the second-best performance, highlighting its robustness. In
 367 conclusion, LLM-IQA's consistently ranks at the top or near the top positions across all datasets,
 368 which demonstrates its robustness and effectiveness as a training-free IQA approach.

369 4.3 VISUALIZATOIN

370 **Example Images.** Figure 6 shows example segmentations and scoring results. We have selected both
 371 high-quality and low-quality images. For each image, the following figures are provided: the full
 372 image, the segmented image, and three exemplary masks. Then we will introduce the meaning of
 373 the numbers around the corners of each image. The upper left corner of the full image displays the
 374 final score predicted by our LLM-IQA model. Directly below the full image, the segmentation results
 375 are shown, with the mask count indicated in the upper left. On the right, three masks of varying
 376 quality are presented. Furthermore, each mask is annotated with their corresponding scores (upper
 377 left) and area weights (lower right). From these example figures, we can directly perceive the model's
 378 segmentation results and thus come to the following conclusions.



379 Figure 6: Examples are selected
 380 to present **LLM-IQA**'s ability.
 381 Scores are on the upper left,
 382 and the area on the lower right.
 383 Zooming in for a better view.

378 By incorporating image segmentation, MLLM is capable of capturing local distortions within the
 379 object-centered images. This allows assigning scores to different regions that correspond to their
 380 quality, rather than relying on a single overall score. This enables MLLM to achieve human-aligned
 381 quality perception. In conclusion, LLM-IQA provides accurate scores for different quality levels.

382 **Score Distribution.** We also visualize the scores predicted by humans and our proposed LLM-IQA
 383 on SPAQ datasets in Figure 4. The range of the final score varies between 1 and 7 and most of the
 384 scores are not integers. This is because the final score consists of the area-weighted average of scores
 385 and the number of masks. As the scores from MLLM are discrete, the final scores are denser around
 386 the integer values. The area average mechanism helps the continuous-like distribution.

387 4.4 ABLATION STUDY

388 The ablation studies provided in Tables 3, 4 highlight the significance of various components in our
 389 proposed LLM-IQA model. By systematically altering key aspects of the model, the experiment
 390 evaluates how each component affects performance on two datasets: SPAQ and AGIQA-3k. We
 391 examine components including 1) the number of tokens, 2) the standard given to MLLM, 3) the
 392 selection of the mask and bounding box, 4) the aggregation method, 5) the influence of global and
 393 local quality, 6) the number of words, and 7) the impact of segmentation pipeline. The experiment
 394 results are shown in Tables 3, 4, and 5. Next, we will analyze the influence of each component.

395 **Single Token.** Experiment 1 in Table 3 asks MLLM to output float numbers to judge the quality
 396 of images, while experiment 6 takes one token for each image. This pair of experiments shows
 397 the significant improvement when limiting the output of MLLM to a single token. MLLM usually
 398 performs poorly when describing float numbers with multiple tokens. This pair strongly supports our
 399 insight 1, which says it is more effective to represent image quality using one single token to achieve
 400 an accurate score.

401 **Standard.** Standard-guided scoring is a critical aspect of LLM-IQA. We compare three forms of
 402 standards, namely number, word, and sentence. The number standard asks the MLLM to rate image
 403 quality in the range $\{1, 2, \dots, K\}$. The word standard adds descriptive adjectives, such as *excellent*
 404 and *bad*, to each score. The sentence standard assigns a sentence describing quality.

405 As shown in experiments 2, 3, and 7 in Table 3, the word-based standard yields the best performance
 406 as it provides an accurate mapping between number and quality. While sentences offer more detailed
 407 context than numbers, they can introduce abstract terms (e.g., *some*, *certain*) that may distract the
 408 model, resulting in slightly lower performance. Numbers, on the other hand, perform poorly because
 409 the MLLM struggles to understand their relationship to image quality without additional context. In
 410 conclusion, associating a word with each score effectively enhances accuracy.

411 **Mask and Bounding Box.** When scoring sub-images, we test three kinds of input formats: masks
 412 (semantic object coverings), bounding boxes (enclosing the masks), and the entire image. As shown
 413 in experiments 5, 6, and 7 in Table 3, using masks significantly degrades performance. This is
 414 mainly because the constant padding applied to masked areas is still interpreted by the MLLM’s
 415 visual encoder, negatively influencing the score. Conversely, using the entire image as input provides
 416 moderate results, though still inferior to bounding boxes. Bounding boxes improve performance
 417 without computational overhead as the padding is always calculated by the visual encoder and adds
 418 no more tokens for LLM. Therefore, applying bounding boxes as a segmentation method is necessary
 419 for maximizing LLM-IQA’s accuracy.

420 **Score Aggregation.** We evaluate two score aggregation methods: simple average and area-weighted
 421 average. Considering that the summation of the area should be the area of the image, we use the mask
 422 area instead of the sub-image area. As experiments 4 and 7 in Table 3 indicate, there is a significant
 423 improvement in both datasets with area-weighted average. This can be explained by the attention
 424 scheme. There are plenty of small objects that are often scored with low quality because of a lack of
 425 pixels. However, the quality of the image is always represented by the main object, which usually has
 426 a larger area. So more attention should be put on larger objects, namely taking the area-weighted
 427 average on quality scores of sub-images, which is more consistent with humans. In conclusion,
 428 leveraging the area-weighted average effectively improves LLM-IQA’s accuracy.

429 **Global and Local Quality.** To validate the significance of local quality versus global quality, we
 430 conduct experiments 6, 7, and 8, with results presented in Table 3. From the experimental results,
 431 we can draw two critical conclusions. **First**, the overall information exceeds the sum of the quality
 432 information from various local sources. Global quality gains higher SRCC (0.891) on SPAQ than

local quality (0.851). This observation highlights the effectiveness of our fine-grained evaluation methodology and the innovative design of our score aggregation process. **Second**, although neither the local scores nor the overall score reaches 0.9 SRCC, the summation of the two can still further enhance the model’s accuracy. For simplicity, we take the summation of global and local scores. In summary, the experimental results strongly support the notion that the integration of both global and local quality, namely mix-grained, yields superior results compared to the isolated performance of each.

Number of Words. As discussed before, after applying a discrete scoring form, the number of levels decides the performance upper bound of IQA models. So we test the performance of our proposed LLM-IQA with 3, 5, 7, and 9 words. All numbers are odd because there needs to be a level representing medium to conform to human evaluation. The result is shown in Table 4. Only three words are not enough to gain excellent performance while it still surpasses most of the previous training-free methods (see Table 2). Interestingly, the results also indicate that increasing the number of levels beyond a certain point does not necessarily lead to better performance. Specifically, using 7 words yields the best results in most scenarios and the second-best in the remaining cases. In summary, 7 appears to be the optimal number of word levels to accurately assess image quality.

Segmentation. In Table 5, we present the performance of LLM-IQA with default setting, a much smaller SAM, and no complement mask. The default setting provides segmented masks with too fine granularity, which results in lower performance and much longer inference time. The tiny SAM version leads to coarser segmentation around the boundary. However, as we leverage the bounding box to fill the mask, the boundary is not that important. If we remove the complement part in the segmentation pipeline, the results degrade a lot. Therefore, we adjust SAM parameters to reduce the number of masks and its impact on performance is minor. However, the design of the complement mask is necessary to achieve accurate IQA.

5 LIMITATIONS AND DISCUSSIONS

MLLM Inference Speed. Because the MLLM must evaluate the quality of each mask, the inference speed of LLM-IQA is relatively slow compared to models that require only a single inference. On average, LLM-IQA processes 7.22 masks and the entire image, resulting in $7 \times$ longer inference time. After testing on a single NVIDIA RTX A6000 GPU, our proposed LLM-IQA can segment the whole SPAQ dataset with 10k images in 30 minutes and score each mask and the total data within 8 hours. The resolution of most images are around and above 1024×1024 . This process can be performed with data parallel, which means it takes around 1.5 hours to obtain the final result when running on 4 GPUs. While the text embeddings can be pre-calculated and reused, allowing for the omission of the text encoder, the total inference time remains longer than single forward inference.

6 CONCLUSION

In this work, we propose LLM-IQA, a standard-guided zero-shot mix-grained IQA method, which is training-free and utilizes the exceptional prior knowledge of MLLMs. With the combination of SAM2 and mPLUG-Owl3, we propose two key mechanisms to enhance IQA performance. The standard-guided scoring mechanism ensures consistent and objective quality evaluation by aligning scores with predefined standards. The mix-grained aggregation mechanism refines the final quality score by aggregating global and object-centered sub-image quality scores. We conduct extensive experiments across a variety of datasets, benchmarking our proposed LLM-IQA against SOTA methods. The results demonstrate that LLM-IQA outperforms all previous training-free approaches and achieves competitive performance relative to training-based methods, which strongly supports the novelty and robustness of our proposed mechanisms. Future research will target reducing the computational costs associated with inferences and enhancing pixel-level quality assessments.

Table 4: Number of words (K).

K	SPAQ		KADID-10k		AGIQA-3k		Average
	SRCC ↑	PLCC ↑	SRCC ↑	PLCC ↑	SRCC ↑	PLCC ↑	
3	0.731	0.722	0.447	0.473	0.747	0.757	0.646
5	0.853	0.860	0.572	0.576	0.808	0.797	<u>0.744</u>
7	0.885	0.875	<u>0.580</u>	0.589	<u>0.800</u>	<u>0.779</u>	0.751
9	0.875	0.840	0.583	<u>0.586</u>	0.743	0.753	0.730

Table 5: Segmentation Setting.

Setting	SPAQ		AGIQA-3k		LIVE Challenge		Average
	SRCC ↑	PLCC ↑	SRCC ↑	PLCC ↑	SRCC ↑	PLCC ↑	
Default	0.875	0.883	0.686	0.689	0.706	0.718	0.760
SAM Tiny	0.879	0.884	0.687	0.685	0.742	0.717	0.766
No Complement	0.675	0.637	0.488	0.488	0.425	0.428	0.524
Our Setting	0.886	0.885	0.687	0.689	0.739	0.718	0.767

486 **A ETHICS STATEMENT**
487488 The research conducted in the paper conforms, in every respect, with the ICLR Code of Ethics.
489490 **B REPRODUCIBILITY STATEMENT**
491492 We have provided implementation details in Sec. 4. We will also release all the code and models.
493494 **C LLM USAGE STATEMENT**
495496 Large Language Models (LLMs) were used solely for polishing writing. They did not contribute to
497 the research content or scientific findings of this work.
498500 **REFERENCES**
501

502 Anas Awadalla, Irena Gao, Josh Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe,
503 Yonatan Bitton, Samir Gadre, Shiori Sagawa, et al. Openflamingo: An open-source framework for
504 training large autoregressive vision-language models. *Arxiv*, 2023.

505 Zheng Chen, Yulun Zhang, Jinjin Gu, Xin Yuan, Linghe Kong, Guihai Chen, and Xiaokang Yang.
506 Image super-resolution with text prompt diffusion. *Arxiv*, 2023.

507 Li Sze Chow and Raveendran Paramesran. Review of medical image quality assessment. *BSPC*,
508 2016.

509 Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Bin Wang, Linke Ouyang, Xilin Wei, Songyang
510 Zhang, Haodong Duan, Maosong Cao, et al. Internlm-xcomposer2: Mastering free-form text-image
511 composition and comprehension in vision-language large model. *Arxiv*, 2024.

512 Yuming Fang, Hanwei Zhu, Yan Zeng, Kede Ma, and Zhou Wang. Perceptual quality assessment of
513 smartphone photography. In *CVPR*, 2020.

514 Jens Förster. Glomosys: The how and why of global and local processing. *CDPS*, 2012.

515 Christian Gerlach and Nicolas Poirel. Navon’s classical paradigm concerning local and global
516 processing relates systematically to visual object classification performance. *Scientific reports*,
517 2018.

518 Deepti Ghadiyaram and Alan C Bovik. Massive online crowdsourced study of subjective and objective
519 picture quality. *IEEE TIP*, 2015.

520 Chunming He, Kai Li, Yachao Zhang, Guoxia Xu, Longxiang Tang, Yulun Zhang, Zhenhua Guo, and
521 Xiu Li. Weakly-supervised concealed object segmentation with sam-based pseudo labeling and
522 multi-scale feature grouping. *NeurIPS*, 2024.

523 Vlad Hosu, Hanhe Lin, Tamas Sziranyi, and Dietmar Saupe. Koniq-10k: An ecologically valid
524 database for deep learning of blind image quality assessment. *IEEE TIP*, 2020.

525 Junjie Ke, Qifei Wang, Yilin Wang, Peyman Milanfar, and Feng Yang. Musiq: Multi-scale image
526 quality transformer. In *ICCV*, 2021.

527 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-a-
528 pic: An open dataset of user preferences for text-to-image generation. *NeurIPS*, 2023.

529 Chunyi Li, Zicheng Zhang, Haoning Wu, Wei Sun, Xiongkuo Min, Xiaohong Liu, Guangtao Zhai,
530 and Weisi Lin. Agiqa-3k: An open database for ai-generated image quality assessment. *IEEE
531 TCSVT*, 2023.

532 Zhaowei Li, Qi Xu, Dong Zhang, Hang Song, Yiqing Cai, Qi Qi, Ran Zhou, Junting Pan, Zefeng Li,
533 Vu Tu, et al. Groundinggpt: Language enhanced multi-modal grounding model. In *ACL*, 2024.

540 Hanhe Lin, Vlad Hosu, and Dietmar Saupe. Kadid-10k: A large-scale artificially distorted iqa
 541 database. In *QoMEX*, 2019.

542

543 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 544 tuning. In *CVPR*, 2024a.

545 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 546 Llava-next: Improved reasoning, ocr, and world knowledge, 2024b.

547

548 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *NeurIPS*,
 549 2024c.

550 Anish Mittal, Anush Krishna Moorthy, and Alan Conrad Bovik. No-reference image quality assess-
 551 ment in the spatial domain. *IEEE TIP*, 2012a.

552

553 Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Making a “completely blind” image quality
 554 analyzer. *IEEE SPL*, 2012b.

555 Takamichi Miyata. Zen-iqa: Zero-shot explainable and no-reference image quality assessment with
 556 vision language model. *IEEE Access*, 2024.

557

558 Anush Krishna Moorthy and Alan Conrad Bovik. A two-step framework for constructing blind image
 559 quality indices. *IEEE SPL*, 2010.

560

561 David Navon. Forest before trees: The precedence of global features in visual perception. *CP*, 1977.

562

563 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 564 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 565 high-performance deep learning library. *NeurIPS*, 2019.

566

567 Guanyi Qin, Runze Hu, Yutao Liu, Xiawu Zheng, Haotian Liu, Xiu Li, and Yan Zhang. Data-efficient
 568 image quality assessment with attention-panel decoder. In *AAAI*, 2023.

569

570 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 571 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 572 models from natural language supervision. In *ICML*, 2021.

573

574 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 575 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
 576 and videos. *Arxiv*, 2024.

577

578 Michele A Saad, Alan C Bovik, and Christophe Charrier. A dct statistics-based blind image quality
 579 index. *IEEE SPL*, 2010.

580

581 Avinab Saha, Sandeep Mishra, and Alan C Bovik. Re-iqa: Unsupervised learning for image quality
 582 assessment in the wild. In *CVPR*, 2023.

583

584 Suhas Srinath, Shankhanil Mitra, Shika Rao, and Rajiv Soundararajan. Learning generalizable
 585 perceptual representations for data-efficient no-reference image quality assessment. In *WACV*,
 586 2024.

587

588 Shaolin Su, Qingsen Yan, Yu Zhu, Cheng Zhang, Xin Ge, Jinqiu Sun, and Yanning Zhang. Blindly
 589 assess image quality in the wild guided by a self-adaptive hyper network. In *CVPR*, 2020.

590

591 Hossein Talebi and Peyman Milanfar. Nima: Neural image assessment. *IEEE TIP*, 2018.

592

593 I Telecom. Recommendation 500-10: Methodology for the subjective assessment of the quality of
 594 television pictures. *ITU-R Rec. BT*, 2000.

595

596 Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and feel
 597 of images. In *AAAI*, 2023.

598

599 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
 600 error visibility to structural similarity. *IEEE TIP*, 2004.

594 Haoning Wu, Zicheng Zhang, Erli Zhang, Chaofeng Chen, Liang Liao, Annan Wang, Chunyi Li,
 595 Wenxiu Sun, Qiong Yan, Guangtao Zhai, et al. Q-bench: A benchmark for general-purpose
 596 foundation models on low-level vision. In *ICLR*, 2023.

597

598 Haoning Wu, Zicheng Zhang, Erli Zhang, Chaofeng Chen, Liang Liao, Annan Wang, Kaixin Xu,
 599 Chunyi Li, Jingwen Hou, Guangtao Zhai, et al. Q-instruct: Improving low-level visual abilities for
 600 multi-modality foundation models. In *CVPR*, 2024a.

601 Haoning Wu, Zicheng Zhang, Weixia Zhang, Chaofeng Chen, Liang Liao, Chunyi Li, Yixuan Gao,
 602 Annan Wang, Erli Zhang, Wenxiu Sun, et al. Q-align: Teaching lmms for visual scoring via
 603 discrete text-defined levels. In *ICML*, 2024b.

604 Haoning Wu, Hanwei Zhu, Zicheng Zhang, Erli Zhang, Chaofeng Chen, Liang Liao, Chunyi Li,
 605 Annan Wang, Wenxiu Sun, Qiong Yan, et al. Towards open-ended visual quality comparison. In
 606 *ECCV*, 2024c.

607

608 Tianhe Wu, Kede Ma, Jie Liang, Yujiu Yang, and Lei Zhang. A comprehensive study of multimodal
 609 large language models for image quality assessment. In *ECCV*, 2024d.

610 Tianhe Wu, Shuwei Shi, Haoming Cai, Mingdeng Cao, Jing Xiao, Yinqiang Zheng, and Yujiu
 611 Yang. Assessor360: Multi-sequence network for blind omnidirectional image quality assessment.
 612 *NeurIPS*, 2024e.

613

614 Jiabo Ye, Haiyang Xu, Haowei Liu, Anwen Hu, Ming Yan, Qi Qian, Ji Zhang, Fei Huang, and Jingren
 615 Zhou. mplug-owl3: Towards long image-sequence understanding in multi-modal large language
 616 models. *Arxiv*, 2024a.

617 Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang, Anwen Hu,
 618 Pengcheng Shi, Yaya Shi, et al. mplug-owl: Modularization empowers large language models with
 619 multimodality. *Arxiv*, 2023.

620

621 Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, Anwen Hu, Haowei Liu, Qi Qian, Ji Zhang, and
 622 Fei Huang. mplug-owl2: Revolutionizing multi-modal large language model with modality
 623 collaboration. In *CVPR*, 2024b.

624 Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
 625 multimodal large language models. *Arxiv*, 2023.

626

627 Zhenqiang Ying, Haoran Niu, Praful Gupta, Dhruv Mahajan, Deepti Ghadiyaram, and Alan Bovik.
 628 From patches to pictures (paq-2-piq): Mapping the perceptual space of picture quality. In *CVPR*,
 629 2020.

630

631 Zhiyuan You, Jinjin Gu, Zheyuan Li, Xin Cai, Kaiwen Zhu, Tianfan Xue, and Chao Dong. Descriptive
 632 image quality assessment in the wild. In *ECCV*, 2024.

633

634 Jiaqing Zhang, Jie Lei, Weiyi Xie, Zhenman Fang, Yunsong Li, and Qian Du. Superyolo: Super
 635 resolution assisted object detection in multimodal remote sensing imagery. *IEEE TGRS*, 2023a.

636

637 Pan Zhang, Xiaoyi Dong Bin Wang, Yuhang Cao, Chao Xu, Linke Ouyang, Zhiyuan Zhao, Shuangrui
 638 Ding, Songyang Zhang, Haodong Duan, Hang Yan, et al. Internlm-xcomposer: A vision-language
 639 large model for advanced text-image comprehension and composition. *Arxiv*, 2023b.

640

641 Weixia Zhang, Kede Ma, Jia Yan, Dexiang Deng, and Zhou Wang. Blind image quality assessment
 642 using a deep bilinear convolutional neural network. *IEEE TCSVT*, 2020.

643

644 Weixia Zhang, Guangtao Zhai, Ying Wei, Xiaokang Yang, and Kede Ma. Blind image quality
 645 assessment via vision-language correspondence: A multitask learning perspective. In *CVPR*,
 646 2023c.

647

648 Zixiang Zhao, Haowen Bai, Jiangshe Zhang, Yulun Zhang, Kai Zhang, Shuang Xu, Dongdong Chen,
 649 Radu Timofte, and Luc Van Gool. Equivariant multi-modality image fusion. In *CVPR*, 2024.

650

651 Wei Zhou and Zhou Wang. Quality assessment of image super-resolution: Balancing deterministic
 652 and statistical fidelity. In *ACM MM*, 2022.