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ABSTRACT

Image quality assessment (IQA) serves as the golden standard for all models’
performance in nearly all computer vision fields. However, it still suffers from poor
out-of-distribution generalization ability and expensive training costs. To address
these problems, we propose LLM-IQA, a standard-guided zero-shot mix-grained
IQA method, which is training-free and utilizes the exceptional prior knowledge
of multimodal large language models (MLLMs). To obtain accurate IQA scores,
namely scores consistent with humans, we design an MLLM-based inference
pipeline that imitates human experts. In detail, LLM-IQA applies two techniques.
First, LLM-IQA objectively scores with specific standards that utilize MLLM’s
behavior pattern and minimize the influence of subjective factors. Second, LLM-
IQA comprehensively takes local semantic objects and the whole image as input
and aggregates their scores, leveraging local and global information. Our proposed
LLM-IQA achieves state-of-the-art (SOTA) performance compared with training-
free methods, and competitive performance compared with training-based methods

in cross-dataset scenarios. Our code will be released soon.

1 INTRODUCTION

Image quality assessment (IQA) aims to provide ac-
curate quality scores that align with human mean
opinion scores (MOS). With the booming of digital
technology, the explosion of visual content calls for
advanced IQA methods in all fields including commu-
nication (Zhou & Wang} [2022), entertainment (Wu
et al., [2024e), professional use (Chow & Parames-
ran, 2016 Fang et al., |2020), and recently popular
Al-generated content (Kirstain et al., [2023; |Li et al.,
2023). Over time, significant contributions have been
made in this domain, evolving from traditional hand-
crafted feature-based approaches (Wang et al., 2004;
Mittal et al., | 2012b) to deep neural network (DNN)-
based methods (Talebi & Milanfar, [2018};|Ying et al.,
2020; |Qin et al., 2023} Saha et al., [2023), bringing
steady improvements in IQA accuracy and efficiency.

Nonetheless, these IQA methods still suffer from
poor out-of-distribution (OOD) generalization abil-
ity (You et al.|[2024) and expensive training costs (Wu
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Figure 1: Comparison between LLM-IQA
and existing training-free IQA SOTAs, ex-
hibiting LLM-IQA’s excellent zero-shot IQA
ability.

et al.| 20244). One potential solution to the OOD issue involves training DNNs on a combination of
multiple IQA datasets. Though sounds promising, this approach fails due to inconsistent standards
used during dataset construction, leading to distribution mismatches across datasets. For instance, an
image rated high quality in one dataset may receive a low-quality score in another, ultimately degrad-
ing model performance. Another approach is to create a larger, more diverse dataset representing
a wide range of distortions. However, aside from the increased training costs, the scoring process
is labor-intensive and time-consuming, making this approach impractical. As a result, poor OOD
performance remains an open problem for current IQA area.
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Figure 2: The idea of LLM-IQA is inspired by the human evaluator’s scoring procedures. When
scoring, human evaluators are provided with standards mapping the quality to scores. Then they
start with the global quality and zoom in on objects to grasp local quality. We integrate these key
procedures and switch their form according to MLLM’s behavior pattern, formulating LLM-IQA.

Recently, MLLMs have shown impressive zero-shot capabilities across various computer vision
tasks, including classification (Radford et al., [2021), segmentation (Li et al., 2024; He et al.| 2024),
detection (Zhang et al., 2023a)), and restoration (Chen et al., 2023 [Zhao et al., 2024)). Thanks
to their extensive training on large datasets and vast model sizes (Liu et al.| |2024c; [Awadalla
et al., 2023)), MLLMs possess rich prior knowledge and are closely aligned with human perceptual
understanding (Yin et al.;2023). As the MLLM has not been trained on IQA-related datasets, previous
related research (Wu et al.| 2024ajc)) mainly focuses on training or fine-tuning. These studies have
demonstrated remarkable accuracy, suggesting that MLLMs hold great potential for driving the
next wave of IQA advancements (see Figure[I). However, while fine-tuning significantly enhances
accuracy, it introduces additional computational costs and complexity. Therefore, we aim to fully
exploit MLLMs’ potential without resorting to fine-tuning or task-specific training.

Our approach is inspired by the human evaluators’ scoring process and the MLLMs’ behavior
pattern (Yin et al.| 2023)). Thus, we design an inference pipeline mimicking human image scoring
which is shown in Figure 2] Our key designs stem from the following observations. First, when
human score images, they are typically provided with a clear standard for each quality level (Wu
et al.| [2024b)). Without such a standard, discrepancies arise—for example, one may interpret a score
of 60 as merely passing, while another views 50 as average. By providing a consistent scoring
standard, evaluators are more likely to agree on quality assessments. Second, when humans assess
image quality, they consider both global and local quality (Navon, |1977}|Gerlach & Poirel, [2018]),
often zooming in to evaluate specific areas (Forster, 2012). Notably, these zoomed-in evaluations are
typically centered on objects within the image rather than being performed randomly. Additionally,
MLLMs generate outputs in token form, making it difficult for them to produce precise scores, such
as float number 86.5, which would require generating multiple tokens for 8, 6, dot and 5.

Building on these observations, we propose two novel techniques. First, we develop a standard-
guided scoring system that aims to establish a clear mapping between quality levels and scores and
restrict the MLLM to scoring within a predefined range {1, 2, ..., K'}. The mapping and restriction
ensure the model’s understanding of the quality scale. Second, we utilize segmentation models to
provide MLLM with the whole image and object-centered sub-images. We aggregate the scores using
an area-weighted average approach. Our contributions can be summarized as follows:

* We propose LLM-IQA, a standard-guided mix-grained IQA framework that does not
require any task-specific training or fine-tuning. LLM-IQA fully leverages the inherent
capabilities of pre-trained MLLM and segmentation model to provide accurate IQA scores.
Our LLM-IQA serves as a new paradigm for training-free approaches in IQA tasks.

* We design two key mechanisms to enhance performance. The standard-guided scoring
mechanism ensures consistent and objective quality evaluation by aligning scores with
predefined standards. The mix-grained aggregation mechanism refines the final quality score
by aggregating global and object-centered sub-image quality scores.

* We conduct extensive experiments and compare LLM-IQA against SOTA IQA methods
across multiple datasets. The main experiments show that our proposed LLM-IQA achieves
SOTA performance compared with training-free methods, and competitive performance
compared with training-based methods in cross-dataset scenarios.
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<System>: You are a helpful assistant
to evaluate image quality. You will be
given standards for each quality level.
The quality standard is as follows:

7: Perfect, 6: Excellent, 5: Good, 4:
Fair, 3: Bad, 2: Poor, 1: Very Bad.
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Figure 3: The overall pipeline for our proposed LLM-IQA. It can be divided into three stages, i.e.,
segmentation, standard guided scoring, and score aggregation. The input image is segmented into
multiple sub-images centered on objects. Then, MLLM scores with quality standards. After the
area-weighted average, the scores from various models are aggregated as the final quality score,
which falls in [1, 7].

2 RELATED WORKS

Training-Free IQA. Training-free IQA is a critical approach in the field of image processing,
allowing for the evaluation of image quality without the need for distortion-specific or human-rated
training data. Traditional training-free IQA methods are often based on the statistical properties of
images, focusing on full-reference (FR) metrics such as PSNR and SSIM 2004). As for
no-reference (NR) training-free IQA, NIQE (Mittal et al.} 2012D)) assesses image quality through the
analysis of natural scene statistics features and provides robust but less precise results. In recent years,
CLIP (Radford et al} [2021)), a multimodal model, has emerged as a significant player, providing
robust training-free performance support for prevalent deep-learning-based IQA. CLIP-IQA
explores the capabilities of CLIP for assessing image quality and aesthetic perception
and pioneers the use of contrastive prompt strategies for scoring. ZEN-IQA 2024) and
GRepQ (Srinath et al, [2024) also harness CLIP, with ZEN-IQA utilizing antonym prompts and
GRepQ combining low-level and high-level feature representations for IQA. While these inspiring
developments represent a substantial leap forward, there is still huge potential for enhancing the
performance of training-free IQA models in accuracy.

MLLMs for IQA. High-performance MLLMs, such as mPLUG-Owl1 (Ye et al., 2023}, 2024 bfa
LLaVA (Liu et al., 2024cfai]b), and InternLM-XComposer (Zhang et al.| 2023b; Dong et al., 2024),

can be exceptionally utilized to align IQA tasks with human perception. Based on a comprehensive
study (Wu et al., 2024d), recent efforts concentrate on benchmarking and fine-tuning MLLMs for
IQA. Q-Bench (Wu et al.| 2023) and DepictQA 2024) establish evaluation benchmarks

for the perceptual, descriptive, comparative, and evaluative capabilities of MLLMs in low-level

vision. Based on these works, Q-Instruct (Wu et al.,[2024a) and Co-Instruct 2024c) further

advance the low-level perceptual and descriptive capabilities of MLLMs by introducing large-scale

datasets and conducting pre-training. Q-Align (Wu et al.,[2024b)) categorizes image quality into five
tiers, enabling more precise quality score regression. However, the cost of fine-tuning large models is

substantial, prompting the consideration of more efficient approaches.

3 METHODOLOGY

We provide a comprehensive explanation of our proposed LLM-IQA method. The overall pipeline
of our proposed LLM-IQA is shown in Figure 3] The input image is segmented into multiple sub-
images with the segmentation process pipeline. Given a detailed standard, the MLLM rates the
whole image and sub-images with scores in {1, 2, ..., 7}. These scores will be finally aggregated
to form the final number. Specifically, we first propose the standard-guided scoring mechanism,
which effectively leverages its prior knowledge and its behavior pattern. Second, we discuss the
mix-grained aggregation mechanism, which consists of the process of obtaining suitable sub-images
and the aggregation of scores. The rationale behind using segmentation is also included.
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3.1 STANDARD-GUIDED SCORING MECHANISM

The ultimate goal of image quality assessment (IQA) is to evaluate images in a manner that closely
mirrors human judgment. Thanks to their extensive training data and vast prior knowledge, MLLMs
are capable of perceiving images in a way that aligns with human perception (Wu et al}[2023), giving
them an inherent advantage for IQA tasks. However, expecting an MLLM to output precise quality
scores, such as 87.5, is impractical. This is because a score like 87.5 is not represented by a single
token, but by four separate tokens: 8, 7, dot, and 5 respectively. Typically, MLLMs can hardly grasp
the internal relationship between these tokens, making it difficult for them to associate these values
with image quality. These observations and analyses motivate us to insight 1:

It is more effective to represent image quality using one single token to achieve an accurate score.

Additionally, relying solely on numeric outputs may not be the most optimal approach for two key
reasons. First, numbers constitute only a small fraction of the data within the training set compared
to text. However, using only text is also not feasible, as we still need to extract a quantitative
score. Second, human interpretation of numeric scores can vary. For instance, some may consider
a score of 60 to be just passing, while others may view 50 as an average score. Therefore, when
human evaluators score image quality, they are often provided with clear standards for each level of
quality (Wu et al.| 2024b). This observation brings us to insight 2:

A combination of text and numbers is a more effective prompt format for MLLM IQA.

In our proposed method, we integrate these two insights and design the prompt for LLM-IQA as
follows:

# System:You are a helpful assistant to evaluate image quality. You will be given standards
for each quality level. The quality standard is listed as follows: 7: Perfect, 6: Excellent, 5:
Good, 4: Fair, 3: Bad, 2: Poor, 1: Very Bad. The higher the image quality is, the higher the
score should be.

# User: <img> Please evaluate the quality of the image and score in[1, 2, 3, 4, 5, 6, 7].

In LLM-IQA, MLLM only outputs discrete numbers Table 1: The approximation of the (SRCC +
from 1 to 7. While this discrete scoring approach PLCC')/2 upper bound of using only K inte-
may introduce a slight loss in precision compared to  gers to score.
continuous values, the impact is minimal. Denote SPAQ KonlQ LIVEC AGIQA KADID
that integer score as s € {s|]s € ZT A1 < s < K},
the ground truth MOS as s*, and the maximal and 09120830 0915 0923 0.942
minimal value of s* as Max4; and Ming, respectively. gggg 832? 832; gggg 8323
We scale s* to {0,1,..., K — 1} and round it to the 0990 0979 00989 0991 0993
nearest integer. The conversion formula is written as:
§* = Round(K (s* — Ming,)/(Max,, — Ming)). )
As shown in Table (1] the performance upper bounds for different K demonstrate that even when
using a limited number of discrete levels, the results surpass those of existing methods. The precision
loss introduced by the conversion to discrete scores is minimal and can be safely ignored. However,
it is not the case that greater K brings better performance when considering MLLM and there is a
performance turning point. We will analyze this problem in Sec[4.4]

NeREN IV, JON]

In conclusion, for each image X, MLLM processes its corresponding segmented masks M as input.
For each mask my, € M, MLLM will predict a score sy, € {1,2,..., K}. These individual scores
form a score list s;, which is subsequently used to compute the final quality score.

3.2 MiXx-GRAINED AGGREGATION MECHANISM

The mix-grained aggregation mechanism can be divided into two parts. The first part introduces the
segmentation pipeline, while the other presents the aggregation of multiple scores.

Segmentation Process Pipeline. When humans recognize an image, they start from the global
structure and gradually dive into the local parts (Navon, |1977} [Forster, 2012} |Gerlach & Poirel, 2018)).
This hierarchical process also applies when assessing image quality. Therefore, under the assumption
that MLLMs share a similar perception process, it is essential to leverage meaningful sub-images
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Table 2: Performance comparison of LLM-IQA with other training-free IQA models on KonlQ,
LIVE Challenge, SPAQ, KADID-10k and AGIQA-3k. Bold font indicates the best performance.

Methods KonIQ LIVE Challenge SPAQ KADID-10k AGIQA-3k

SRCC{ PLCCt SRCCtT PLCCt SRCCt PLCCY SRCCt PLCCY SRCCY  PLCC 1
BIQI (Moorthy & Bovikl][2010] | 0559  0.616 0364 0447 0591 0549 0338 0405 0390 0423
BLIINDS-I[ (Saad et al.||2010) | 0.585 0598  0.090  0.107 0317 0326 0224 0313 0454  0.510
BRISQUE (Mittal et al12012a) | 0705 0707 0561 0598 0484 0481 0330 0370 0493  0.533
NIQE (Mittal et al.J[2012b} 0551 0488 0463 0491 0703 0671 0379 0389  0.529  0.520
CLIP-IQA (Wang et ali2023] | 0.695 0727 0612 0594 0738 0735 0500 0520 0658 0714
LLM-IQA (Ours) 0.864  0.875  0.835 0842 0907 0911 0671 _ 0.678 0743 0.801

deliberately. Specifically, ‘meaningful’ means that these sub-images should not be obtained through
random cropping but through semantic segmentation techniques.

The segmentation model is an excellent choice as it tends to segment the semantic objects out. The
object segmented by the segmentation model is padded with zeros around. While this padding
has minimal impact on human perception, as humans can easily recognize the black padding as
meaningless and mentally disregard it, this is not the case for MLLMs. The visual encoder within
the MLLM processes the padding as part of the actual image, leading the model to misinterpret the
black regions as the real background. This misunderstanding can result in distinct errors, such as the
MLLM perceiving low contrast when the foreground is dark or concluding that the background is too
dark. Both cases can negatively affect image quality assessment’s accuracy.

To address the above issue, we adopt an alternative approach by padding the segmented areas with
the original pixel values. Besides, the segmented results of most segmentation models are highly
fine-grained. However, small objects tend to have lower image quality due to insufficient pixel density,
making it difficult to display sharp details. To mitigate, we apply a coarser granularity and establish a
minimum threshold ¢ for mask size. A side effect of coarser granularity is that the masks may only
cover a portion of the image. In some extreme cases, the segmentation model may fail to segment
any objects from low-quality images. To compensate for this problem, we create a new mask for the
uncovered portions of all previous masks. The detailed process of the segmentation pipeline is in
Algorithm 1]

Assessment Score Aggregation. For a
given image X, after obtaining its global Data: Dataset D = {X;}}¥ ,, area threshold ¢,
score Sgiobal, segmented masks M;, and pretrained SAM2 S

their corresponding scores s;, we proceed to Result: Masks M = {M;} ¥ |

compute the final predicted score. A simple M + [|;

approach of averaging s to determine the foreach image X; in D do

Algorithm 1: Segmentation Process Pipeline

final score for X; yields poor performance. | raw_masks < S(X;), final_masks < [J;
This is because some blurred objects are too foreach mask m in raw_masks do
small to be perceptible to humans but are dis- if m.area > t then
proportionately penalized by MLLMs, lead- | final_-masks.append(mask);
ing to an unfairly low score. end
end

To address this, we propose a weighted
average of the scores, where the area of
the corresponding masks determines the
weights. Mathematically, this can be written
as Sjpcql =< S,a >, where < -, > is in-
ner product and a is the vector of the areas
of the masks in M. This approach aligns
more closely with human perception, as the
dominant object in an image typically occupies the largest region, which represents the image’s

quality. Therefore, for one MLLM £, the score is given by s; = Sgiopal + ASiocat- Consequently, we

apply model ensemble to aggregate scores from various MLLMs by spoq = ]kV;”1°dE‘ Sk/Nmodel»

where N,,,04¢; 18 the number of MLLMs.

remain_mask = [{—final_masks};
if remain_mask.area > t then
| final_-masks.append(remain_mask);
end
M.append(final_masks);

end
return M;

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We select the following datasets to evaluate our IQA method: KonlIQ (Hosu et al., 2020),
LIVE Challenge (Ghadiyaram & Bovik, 2015), SPAQ (Fang et al.,[2020), KADID (Lin et al., 2019),
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and AGIQA (Li et al.,|2023). KonlQ and SPAQ are large in-the-wild IQA datasets with more than
10k images. LIVE Challenge is a smaller in-the-wild dataset with 1.1k images. KADID-10k is a
large synthetic dataset, while AGIQA-3k focuses on Al-generated images. Together, these datasets
provide a comprehensive range of image types and quality variations for accurate model evaluation.

State-of-the-art Methods. We compare our training-free LLM-IQA’s performance against two
categories of approaches. The first category is training-free methods, including BIQI (Moorthy
& Bovik, 2010), BLINDS-II (Saad et al., 2010), BRISQUE (Mittal et al.| 2012a), NIQE (Mittal
et al.l 2012b), and CLIP-IQA (Wang et al., 2023). The second is training-based methods such
as NIMA (Talebi & Milantar, |2018)), DBCNN (Zhang et al., 2020), HyperIQA (Su et al.|, [2020),
MUSIQ (Ke et al) 2021), CLIP-IQA+ (Wang et al.l 2023), LIQE (Zhang et al., [2023c), and Q-
Align (Wu et al., 2024b)). CLIP-IQA and Q-Align are currently the SOTA IQA models without and
with training respectively.

Evaluation. All methods are evaluated in cross-dataset scenarios to demonstrate their zero-shot
capabilities. Comparing training-free methods with training-based methods may seem unfair due
to the latter’s systematic training on quality assessment. We still perform these comparisons to
showcase the robustness and competitive zero-shot performance of our approach. The evaluation
metrics used are Spearman’s rank correlation coefficient (SRCC) and Pearson’s linear correlation
coefficient (PLCC). Both metrics are widely used in IQA to assess the correlation between the model’s
predictions and human judgments, typically represented by MOS (Telecom) 2000).

Implementation Details. We select the pre-trained SAM?2 (Ravi et al.| [2024) as the segmentation
model and mPLUG-Ow13 (Ye et al.,|2024a)) as the MLLM. The hyperparameters of SAM?2 are adjusted
to achieve the desired segmentation granularity, with detailed configurations in the supplementary
material. Using these hyperparameters, the average number of masks generated for the SPAQ
dataset is 7.22. For mPLUG-Owl13, we limit the output length to 1 token and utilize its default
hyperparameters across all test sets. The number of standard words is set as K = 7. Our code is
written with PyTorch (Paszke et al.,|2019) and runs with NVIDIA RTX A6000 GPU.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We conduct extensive experiments to evaluate the
performance of our proposed LLM-IQA model. The
comparisons with SOTA methods are divided into 8

. - . SRCC=0.907
two categories: training-free methods, shown in Ta- | PLCC=0.911
ble 2] and training-based methods, as presented in
Table [5] Both comparisons highlight our excellent 61
performance on zero-shot IQA. 5

<
Training-Free methods. Training-free methods can %’, 41
be broadly categorized into two types. The first cat- 83
egory includes CLIP-IQA, which leverages the prior
knowledge of CLIP and generates scores based on
the similarity between text and image embeddings.
The second category consists of models such as BIQI, 01 :
BLINDS-II, BRISQUE, and NIQE, which rely on (') 2'0 4'0 6'0 3'0 1(')0
hand-crafted features. As shown in Table[2] the tra- SPAQ MOS
ditional hand-crafted features often fail to score accu- Figure 4: Correlation between MOS and
rately due to the complex nature of human opinions LLM-IQA’s scores on SPAQ. The points
on image quality. CLIP-IQA benefits from its prior (s*, spoy) are scattered in the center. And
knowledge and demonstrates higher accuracy than the marginal hist plots show the distribution
hand-crafted feature-based methods. Our LLM-IQA of GT and LLM-IQA’s scores.
model consistently achieves superior performance across all metrics and datasets, significantly
outperforming existing training-free methods.

L
T

Training-Based methods. Table [5|summarizes the performance of various training-based methods
in cross-dataset evaluations. These experiments test the OOD generalization ability of the models,
which is crucial for IQA. For these comparisons, we select KonlQ and SPAQ as training sets due to
their large size and in-the-wild characteristics. Notably, our LLM-IQA method requires no training
or fine-tuning, making its strong performance even more remarkable.
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i i ; P High quality i
Figure 5: Performance comparison of our model with training- TH e UL
based IQA models. The best and second-best performance is & = o
indicated by bold and underlined respectively. 3,

Training: KonlQ | —Testing Set: SPAQ AGIQA-3k KADID-10k

Method Training-free?| SRCC T PLCC T SRCC T PLCC T SRCC T PLCC T

NIMA X 0.856 0838 0.654 0715 0535 0532

DBCNN X 0.806 0.812 0.641 0730 0484 0497

HyperlQA x 0788 0791 0.640 0702 0.468  0.506

MUSIQ x 0.863 0.868 0.630 0722 0556 0575

CLIP-IQA+ X 0.864 0.866 0.685 0736 0.654 0.653

LIQE x 0.833  0.846 0.708 0772 0.662 0.667

Q-Align x 0.887 0.886 0.735 0772 0.684 0.671

LLM-IQA (Ours) v 0.907 0911 0.743 0801 0671 0.678

Training: SPAQ | —Testing Set: KonIQ AGIQA-3k KADID-10k ( e
Method Training-free?| SRCC T PLCC T SRCC T PLCC T SRCC T PLCC T :

NIMA X 0733 0788 0534 0630 0399 0.480 Mﬁe
DBCNN X 0731 0758 0459 0518 0490 0.508

HyperIQA X 0.714 0.742 0570 0.649 0.381 0.448 Figure 6: Examples are selected
MUSIQ x 0753  0.680 0564 0.675 0349 0.429 ) oy
CLIP-IQA+ x 0753 0777 0577 0614 0633 o063 (0 present LLM-IQA’s ability.
LIQE x 0826 0847 0672 0772 0639 0627 Scores are on the upper left,
Q-Align x 0848 0879 0723 0786 0743 0740 4nd the area on the lower richt
LLM-IQA (Ours) v 0.864 0875 0.743 0801 0671 0.678 ght.

Zooming in for a better view.
Table 3: Ablation study of our proposed LLM-IQA on SPAQ, AGIQA-3k, and LIVE Challenge. We

test the influence of the aggregation method, segmentation method, and standard given to MLLM.
Our key designs are significant in improving MLLM scoring accuracy.

Settings SPAQ AGIQA-3k LIVE Challenge Average

Expindex  Aggregation  Segmentation Standard SRCC{ PLCC{ SRCC{ PLCCT SRCC{ PLCC
T N/A I Whole 1 Without 1 0.616 0.649 0.693 0.752 0.663  0.651 1 0.671
2 | Area |, BBox | Number, 0.680 0624 0443 0464 0349 0319 | 0.480
30 Area I BBox ISentence! 0.793 0.761 0592 0.615 0.619 0.598 1| 0.663
4 | Mean |, BBox |, Word | 0.866 0831 0652 0624 0687 0638 | 0716
5 0 Area I Mask 1 Word 1 0.632 0.540 0510 0431 0454 0395 1 0.494
6 | N/A | Whole | Word | 0.891 03883 0680 0684 0708 0707 | 0.759
7 I Area I BBox I Word 1 0.851 0.792 0.659 0.642 0.667 0.628 1 0.707
S Area | BBox+Whole | Word | 0.886 0.885 0687 0689 0739 0718 | 0.767
9 | Area+Ensemble | BBox+Whole 1 Word 1 0.907 0.911 0.703 0.801 0.835 0.842 1 0.833

Training-based methods show variability depending on the dataset used for training. For example,
SRCC and PLCC scores of Q-Aling on KADID-10k drop significantly when switching the training set
from KonIQ to SPAQ, despite both being in-the-wild datasets. In contrast, LLM-IQA demonstrates
stable performance without any training, highlighting its advantage in terms of generalization and
cost-efficiency. Moreover, scoring Al-generated images has become increasingly critical in the current
era of Al. LLM-IQA gains the best performance on AGIQA-3k dataset, exhibiting its superiority on
Al-generated content. Moreover, in the KonlQ — SPAQ scenario, LLM-IQA achieves the highest
SRCC (0.907) and PLCC (0.911), clearly outperforming the second-best model, which only achieves
0.887 SRCC. This result underscores the superiority of LLM-IQA in cross-dataset evaluations.
However, LLM-IQA’s performance is relatively low in KADID-10k. This may be due to the fact
that KADID is a synthetic dataset and its distribution is significantly different from other datasets.
Despite this, LLM-IQA still secures the second-best performance, highlighting its robustness. In
conclusion, LLM-IQA’s consistently ranks at the top or near the top positions across all datasets,
which demonstrates its robustness and effectiveness as a training-free IQA approach.

4.3  VISUALIZATOIN

Example Images. Figure [6]shows example segmentations and scoring results. We have selected both
high-quality and low-quality images. For each image, the following figures are provided: the full
image, the segmented image, and three exemplary masks. Then we will introduce the meaning of
the numbers around the corners of each image. The upper left corner of the full image displays the
final score predicted by our LLM-IQA model. Directly below the full image, the segmentation results
are shown, with the mask count indicated in the upper left. On the right, three masks of varying
quality are presented. Furthermore, each mask is annotated with their corresponding scores (upper
left) and area weights (lower right). From these example figures, we can directly perceive the model’s
segmentation results and thus come to the following conclusions.
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By incorporating image segmentation, MLLM is capable of capturing local distortions within the
object-centered images. This allows assigning scores to different regions that correspond to their
quality, rather than relying on a single overall score. This enables MLLM to achieve human-aligned
quality perception. In conclusion, LLM-IQA provides accurate scores for different quality levels.

Score Distribution. We also visualize the scores predicted by humans and our proposed LLM-IQA
on SPAQ datasets in Figure 4] The range of the final score varies between 1 and 7 and most of the
scores are not integers. This is because the final score consists of the area-weighted average of scores
and the number of masks. As the scores from MLLM are discrete, the final scores are denser around
the integer values. The area average mechanism helps the continuous-like distribution.

4.4 ABLATION STUDY

The ablation studies provided in Tables [3] @] highlight the significance of various components in our
proposed LLM-IQA model. By systematically altering key aspects of the model, the experiment
evaluates how each component affects performance on two datasets: SPAQ and AGIQA-3k. We
examine components including 1) the number of tokens, 2) the standard given to MLLM, 3) the
selection of the mask and bounding box, 4) the aggregation method, 5) the influence of global and
local quality, 6) the number of words, and 7) the impact of segmentation pipeline. The experiment
results are shown in Tables[3] [] and[5] Next, we will analyze the influence of each component.

Single Token. Experiment 1 in Table [3|asks MLLM to output float numbers to judge the quality
of images, while experiment 6 takes one token for each image. This pair of experiments shows
the significant improvement when limiting the output of MLLM to a single token. MLLM usually
performs poorly when describing float numbers with multiple tokens. This pair strongly supports our
insight 1, which says it is more effective to represent image quality using one single token to achieve
an accurate score.

Standard. Standard-guided scoring is a critical aspect of LLM-IQA. We compare three forms of
standards, namely number, word, and sentence. The number standard asks the MLLM to rate image
quality in the range {1,2,..., K}. The word standard adds descriptive adjectives, such as excellent
and bad, to each score. The sentence standard assigns a sentence describing quality.

As shown in experiments 2, 3, and 7 in Table 3] the word-based standard yields the best performance
as it provides an accurate mapping between number and quality. While sentences offer more detailed
context than numbers, they can introduce abstract terms (e.g., some, certain) that may distract the
model, resulting in slightly lower performance. Numbers, on the other hand, perform poorly because
the MLLM struggles to understand their relationship to image quality without additional context. In
conclusion, associating a word with each score effectively enhances accuracy.

Mask and Bounding Box. When scoring sub-images, we test three kinds of input formats: masks
(semantic object coverings), bounding boxes (enclosing the masks), and the entire image. As shown
in experiments 5, 6, and 7 in Table [3| using masks significantly degrades performance. This is
mainly because the constant padding applied to masked areas is still interpreted by the MLLM’s
visual encoder, negatively influencing the score. Conversely, using the entire image as input provides
moderate results, though still inferior to bounding boxes. Bounding boxes improve performance
without computational overhead as the padding is always calculated by the visual encoder and adds
no more tokens for LLM. Therefore, applying bounding boxes as a segmentation method is necessary
for maximizing LLM-IQA’s accuracy.

Score Aggregation. We evaluate two score aggregation methods: simple average and area-weighted
average. Considering that the summation of the area should be the area of the image, we use the mask
area instead of the sub-image area. As experiments 4 and 7 in Table [3|indicate, there is a significant
improvement in both datasets with area-weighted average. This can be explained by the attention
scheme. There are plenty of small objects that are often scored with low quality because of a lack of
pixels. However, the quality of the image is always represented by the main object, which usually has
a larger area. So more attention should be put on larger objects, namely taking the area-weighted
average on quality scores of sub-images, which is more consistent with humans. In conclusion,
leveraging the area-weighted average effectively improves LLM-IQA’s accuracy.

Global and Local Quality. To validate the significance of local quality versus global quality, we
conduct experiments 6, 7, and 8, with results presented in Table E} From the experimental results,
we can draw two critical conclusions. First, the overall information exceeds the sum of the quality
information from various local sources. Global quality gains higher SRCC (0.891) on SPAQ than
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local quality (0.851). This observation highlights the effectiveness of our fine-grained evaluation
methodology and the innovative design of our score aggregation process. Second, although neither the
local scores nor the overall score reaches 0.9 SRCC, the summation of the two can still further enhance
the model’s accuracy. For simplicity, we take the summation of global and local scores. In summary,
the experimental results strongly support the notion that the integration of both global and local
quality, namely mix-grained, yields superior results compared to the isolated performance of each.

Table 4: Number of words (K).

Number of Words. As discussed before, after

. . . PA( KADID-10k AGIQA-3k Average
applying a Q1screte scoring form, the number K SRC CST 1?L cCt SROCH PLg C1 SR CSTQPSC 1t g
of levels decides the performance upper bound 5175557072 0447 0473 0747 0757 0.646
of IQA models. So we test the performance 5| 0853 0860 0572 0576 0808 0797 0.744
of our proposed LLM-IQA with 3,5,7,and9 7| 0885 0875 0580 058 0800 0779 0.751
words. All numbers are odd because there needs 9| 0875 0.840 0.583 0586 0743 0753  0.730

to be a level representing medium to conform

to human evaluation. The result is shown in Table ] Only three words are not enough to gain
excellent performance while it still surpasses most of the previous training-free methods (see Table [2)).
Interestingly, the results also indicate that increasing the number of levels beyond a certain point
does not necessarily lead to better performance. Specifically, using 7 words yields the best results in
most scenarios and the second-best in the remaining cases. In summary, 7 appears to be the optimal
number of word levels to accurately assess image quality.

Segmentation. In Table[5] we present Table 5: Segmentation Setting.

the performance of LLM-IQA with Sett SPAQ AGIQA-3k  LIVE Challenge Average

default setting, a much smaller SAM, N SRCC 1 PLCCt SRCC T PLCC t SRCC t PLCC ¢

and no complement mask. The default ~ Default 0875 0883 0.686 0.689 0706 0718 0.760

setting provides segmented masks ~SAMTiny 0879 0884 0.687 0685 0742 0717 0766
ith too fine eranularity. which re. NoComplement| 0.675 0637 0488 0488 0425 0428 0524

wit g ¥ Our Setting 0.886 0885 0.687 0.689 0739 0718  0.767

sults in lower performance and much
longer inference time. The tiny SAM version leads to coarser segmentation around the boundary.
However, as we leverage the bounding box to fill the mask, the boundary is not that important. If
we remove the complement part in the segmentation pipeline, the results degrade a lot. Therefore,
we adjust SAM parameters to reduce the number of masks and its impact on performance is minor.
However, the design of the complement mask is necessary to achieve accurate IQA.

5 LIMITATIONS AND DISCUSSIONS

MLLM Inference Speed. Because the MLLM must evaluate the quality of each mask, the inference
speed of LLM-IQA is relatively slow compared to models that require only a single inference. On
average, LLM-IQA processes 7.22 masks and the entire image, resulting in 7 x longer inference time.
After testing on a single NVIDIA RTX A6000 GPU, our proposed LLM-IQA can segment the whole
SPAQ dataset with 10k images in 30 minutes and score each mask and the total data within 8 hours.
The resolution of most images are around and above 1024 x 1024. This process can be performed
with data parallel, which means it takes around 1.5 hours to obtain the final result when running on 4
GPUs. While the text embeddings can be pre-calculated and reused, allowing for the omission of the
text encoder, the total inference time remains longer than single forward inference.

6 CONCLUSION

In this work, we propose LLM-IQA, a standard-guided zero-shot mix-grained IQA method, which
is training-free and utilizes the exceptional prior knowledge of MLLMs. With the combination of
SAM?2 and mPLUG-OwI3, we propose two key mechanisms to enhance IQA performance. The
standard-guided scoring mechanism ensures consistent and objective quality evaluation by aligning
scores with predefined standards. The mix-grained aggregation mechanism refines the final quality
score by aggregating global and object-centered sub-image quality scores. We conduct extensive
experiments across a variety of datasets, benchmarking our proposed LLM-IQA against SOTA
methods. The results demonstrate that LLM-IQA outperforms all previous training-free approaches
and achieves competitive performance relative to training-based methods, which strongly supports
the novelty and robustness of our proposed mechanisms. Future research will target reducing the
computational costs associated with inferences and enhancing pixel-level quality assessments.
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The research conducted in the paper conforms, in every respect, with the ICLR Code of Ethics.
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