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Abstract

In supervised learning — for instance in image classification — modern massive datasets
are commonly labeled by a crowd of workers. The obtained labels in this crowdsourcing
setting are then aggregated for training, generally leveraging a per-worker trust score. Yet,
such workers oriented approaches discard the tasks’ ambiguity. Ambiguous tasks might fool
expert workers, which often impacts the learning step. In standard supervised learning set-
tings — with one label per task — the Area Under the Margin (AUM) was tailored to identify
mislabeled data. We adapt the AUM to identify ambiguous tasks in crowdsourced learning
scenarios, introducing the Weighted Areas Under the Margin (WAUM). The WAUM is an
average of AUMs weighted according to task-dependent scores. We show that the WAUM
can help discarding ambiguous tasks from the training set, leading to better generalization
performance. We report improvements over existing strategies for learning with a crowd,
both on simulated settings, and on real datasets such as CIFAR-10H (a crowdsourced dataset
with a high number of answered labels), LabelMe and Music (two datasets with few answered
votes).

1 Introduction

Crowdsourcing labels for supervised learning has become quite common in the last two decades, notably
for image classification datasets. Using a crowd of workers is fast, simple (see Figure [1)) and less expensive
than using experts. Furthermore, aggregating crowdsourced labels instead of working directly with a single
one enables modeling the sources of possible ambiguities and directly taking them into account at training
(Aitchisonl [2021)). With deep neural networks nowadays common in many applications, both the architectures
and data quality have a direct impact on the model performance (Miiller et al., [2019; |Northcutt et al., 2021a))
and on calibration (Guo et al., [2017). Yet, depending on the crowd and platform’s control mechanisms, the
quality of the labels might be low, with possibly many mislabeled instances (Miller & Markert} 2019), hence,
degrading generalization (Snow et al., [2008)).

Popular label aggregation schemes take into account the uncertainty related to workers’ abilities: for example
by estimating confusions between classes, or using a latent variable representing each worker trust (Dawid
& Skene, 1979; [Kim & Ghahramani, [2012; Sinha et al.| [2018; |Camilleri & Williams, 2019). This leads to
scoring workers without taking into account the inherent difficulty of the tasks at stake. Inspired by the Item
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Figure 1: Learning with crowdsourcing labels: from label collection with a crowd to training on a pruned
dataset. High ambiguity from either crowd workers or tasks intrinsic difficulty can lead to mislabeled data
and harm generalization performance. To illustrate our notation, here the set of tasks annotated by worker
ws is T (w3) = {1,3} while the set of workers annotating task z3 is A(z3) = {1, 3,4}.

Response Theory (IRT) introduced in 11968)), the authors of (Whitehill et al.,[2009) have combined
both the task difficulty and the worker’s ability in a feature-blind fashion for label aggregation. Other feature-
blind aggregation strategies exist using (rank-one) matrix completion techniques (Ma & Olshevsky} [2020;
or pairwise co-occurrences ([brahim et al.,[2019). Both rely on the work by Dawid & Skene
and take into account worker abilities but neglect the task difficulty. All the feature-blind strategies
only leverage the labels but discard the associated features to evaluate workers performance. For instance,
GLAD (Whitehill et al.| [2009) estimates a task difficulty without the actual task: its estimation only relies on
the collected labels and not on the tasks themselves (in image-classification settings, this means the images
are not considered for evaluating the task difficulty). Neglecting such task difficulty might become critical
when the number of labels collected per task is small.

In this work, we aim at identifying ambiguous tasks from their associated features, hence discarding hurtful
tasks (such as the ones illustrated on Figureand Figure. Recent works on data-cleaning in supervised
learning (Han et all, [2019; [Pleiss et al. 2020 [Northcutt et all [2021Db)) have shown that some images might
be too corrupted or too ambiguous to be labeled by humans. Hence, one should not consider these tasks
for label aggregation or learning since they might reduce generalization power; see for instance (Pleiss et al.
2020). Throughout this work, we consider the ambiguity of a task with the informal definition proposed
by that fit standard learning frameworks: “Difficult exzamples are those which obstruct the
learning process or mislead the learning algorithm or those which are impossible to reconcile with the rest of
the examples”. This definition links back to with how [Pleiss et al.| (2020)) detect corrupted samples using
the area under the margin (AUM) during the training steps of a machine learning classifier. However, it is
important to notice that, in this context, the task ambiguity is inherent to the classifier architecture, and
thus might not exactly overlap with human-level difficulty.

In this work, we combine task difficulty scores with worker abilities scores, but we measure the task difficulty
by incorporating feature information. We thus introduce the Weighted Area Under the Margin (WAUM), a
generalization to the crowdsourcing setting of the Area Under the Margin (AUM) by (Pleiss et al., [2020)).
The AUM is a confidence indicator in an assigned label defined for each training task. It is computed as an
average of margins over scores obtained along the learning steps. The AUM reflects how a learning procedure
struggles to classify a task to an assigned labeﬂ The AUM is well suited when training a neural network
(where the steps are training epochs) or other iterative methods. For instance, it has led to better network
calibration (Park & Carageal, 2022) using MixUp strategy (Zhang et al., 2018), i.e., mixing tasks identified
as simple and difficult by the AUM. The WAUM, our extension of the AUM, aims at identifying ambiguous
data points in crowdsourced datasets, so one can prune ambiguous tasks that degrade the generalization. It
is a weighted average of workers AUM, where the weights reflect trust scores based on task difficulty and
workers’ ability.

1See the Linear SVC in Figure @to visualize how the AUM is connected to the classical margin from the kernel literature.
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(a) Label airplane is easy to identify  (b) Label deer is meaningless here, and  (c) Label cat often confused with horns
(unanimity among workers). workers are confused with all other la- of a wild deer
bels.

Figure 2: Three images from CIFAR-10H dataset (Peterson et al., [2019), with the empirical distribution of
workers’ labels (soft labels): the airplane image (a) is easy, while the landscape (b) is ambiguous due to the
image’s poor quality. The last image (c) looks like a black cat face often perceived as the horns of a deer.

2 Related Work

Inferring a learning consensus from a crowd is a challenging task. In this work, we do not consider methods
with prior knowledge on the workers, since most platforms do not provide this informatiorﬂ Likewise, we
do not rely on ground-truth knowledge for any tasks. Hence, trapping-set or control-items-based algorithms
like ELICE or CLUBS do not match our framework. Some algorithms rely on self-reported
confidence: they directly ask workers their answering confidence and integrate it into the model
[2012} |Oyama et al., [2013} Hoang et al.,[2021]). We discard such cases for several reasons. First, self-reported
confidence might not be beneficial without a reject option (Li & Varshney, 2017). Second, workers have a
tendency to be under or overconfident, raising questions on how to present self-evaluation and assessing own
scores (Draws et al., [2021]).

To reach a consensus in the labeling process, the most common aggregation step is majority voting (MV),
where one selects the label most often answered. MV does not infer any trust score on workers and does
not leverage workers’ abilities. MV is also very sensitive to under-performing workers (Gao & Zhou, [2013;
|Zhou et all 2015), to biased workers (Kamar et al., [2015), to spammers (Raykar & Yu, 2011)), or lack of
experts for hard tasks (James, [1998;|Gao & Zhou, 2013; |Germain et al.l [2015). Closely related to MV, naive
soft (NS) labeling goes beyond hard labels (also referred to as one-hot labels) by computing the frequency
of answers per label, yield a distribution over labels, often referred to as soft-labels. In practice, training a
neural network with soft labels improves calibration (Guo et al., [2017) w.r.t. using hard labels. However,
both MV and NS are sensitive to spammers (e.g., workers answer all tasks randomly) or workers’ biases
(e.g., workers who answer some tasks randomly). Hence, the noise induced by workers’ labeling might not
be representative of the actual task difficulty (Jamison & Gurevychl 2015]).

Another class of methods leverages latent variables, defining a probabilistic model on workers’ responses.
The most popular one, proposed by (Dawid & Skenel 1979) (DS), estimates a single confusion matrix per
worker, as a measure of workers’ expertise. The underlying model assumes that a worker answers according
to a multinomial distribution, yielding a joint estimation procedure of the confusion matrices and the soft
labels through Expectation-Maximization (EM). Variants of the DS algorithm include accelerated
2018)), sparse (Servajean et al) [2017)), and clustered versions (Imamura et al), 2018) among others.
DS strategy can also be used to create weights for a weighted MV (WMV) strategy. Indeed, each worker
weight can be considered as how accurate they are at labeling the correct class, i.e. the sum of the diagonal
of their confusion matrix.

Since DS only models workers’ abilities, (Whitehill et al.l 2009) have introduced the Generative model of
Labels, Abilities, and Difficulties (GLAD) to exploit task difficulties to improve confusion estimation. While
DS estimates a matrix of pairwise label confusion per worker, GLAD considers also an EM procedure to
estimate one ability score per worker, and one difficulty score per task. It is inspired by the IRT (Birnbaum

2For instance, by default Amazon Mechanical Turk https://www.mturk.com/| does not provide it.
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, modeling the workers’ probability to answer the true label with a logistic transform of the product
of these scores. Following IRT, the difficulty is inferred as a latent variable given the answers: as for DS,
the underlying tasks are discarded. Other methods based on probabilistic models or objective optimization
have been developed. [Platanios et al| (2014) defines a setting to estimate the accuracy of a set of classifiers
(workers) with unlabeled data based on their agreement/error rates. This could later be used as a set of
worker weights in a different weighted majority vote, in a setting with dependent workers. Their agreement
rate (AR) approach is based on binary classifications output, and the adaptation to multiple classes needs to
be split into binary problems to optimize. Each of those optimization problems depends exponentially on the
number of workers and thus is limited for our crowdsourced datasets as is. In [Platanios et al (2017), they
later proposed a new probabilistic-logic approach for the same accuracy inference problem. They infer the
output based on classifier (workers) outputs and a set of logical constraints. Multiclass classification fits this
setting using mutual exclusion class constraints. They achieve competitive performance against probabilistic
strategies and could in practice be combined with the pruning method presented in this paper.

Finally, following deep learning progresses, end-to-end strategies have emerged that do not produce aggre-
gated labels but allow to train classifiers from crowdsourced labels. Rodrigues & Pereira (2018) introduced
CrowdLayer adding a new layer inside the network mimicking confusion matrices per worker. Later,
have generalized this setting with CoNAL, adding an element encoding global confusion.

Here, we propose the WAUM to combine the information from a confusion matrix per worker and a mea-
sure of relative difficulty between tasks. It refines the judging system and identifies data points harming
generalization that should be pruned. Data pruning has been shown to improve generalization by removing
mislabeled data (Angelova et all 2005; [Pleiss et al., 2020), possibly dynamically along the learning phase
(Raju et al.l 2021)) or by defining a forgetfulness score (Paul et al.| [2021)). Recent work on data pruning in
crowdsourcing (Xing et al., [2023)) separates label errors (the tasks are useful for learning as their ambiguity
is relevant) from label noise (tasks are too ambiguous for learning) in binary classification setting. They also
consider the model scores for each task and the given label to estimate the probability for a given label to
be the true label. And from these estimates, they rank the tasks and prune the most unreliable ones. In this
paper, however, we only consider multiclass classification and can not consider as-is this concurrent strategy.
[Sorscher et al.| (2022) have highlighted that data pruning strategies are highly impacted by the labeling in
supervised settings and we confirm its relevance to the crowdsourcing framework. It is also a flexible tool
that can be combined with most existing methods, using the pruning as a preliminary step.
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(a) CIFAR-10H dataset. (b) LabelMe dataset. (c) Music dataset.

Figure 3: Entropy of votes vs. WAUM for CIFAR-10H, LabelMe, and Music, each point representing a
task/image. When large amounts of votes per task are available, WAUM and entropy ranking coincide well,
as in (a). Yet, when votes are scarce, as in (b) and (c), entropy becomes irrelevant while our introduced
WAUM remains useful. Indeed, tasks with few votes can benefit from feedback obtained for a similar one.
And for the LabelMe dataset in particular, there are only up to three votes available per task, thus only four
different values of the entropy possible, making it irrelevant in such cases for modeling task difficulty.

3 Weighted Area Under the Margin

3.1 Definitions and Notation

General notation. We consider classical multi-class learning notation, with input in X and labels
in [K] = {1,...,K}. The set of tasks is written as Xirain = {Z1,...,%n..}, and we assume
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{(@1,97), s (T U, )} ATC Ngagy 0.4.d tasks and labels, with underlying distribution denoted by P. The
true labels (Y} )ign,.,] are unobserved but crowdsourced labels are provided by nyorker WOrkers (w;) jemuomer]-
We write A(z;) = {j € [Nuorker] : worker w; labeled task z;} the annotators set of a task z; and
T(w;) = {i € [nask] : worker w; answered task x;} the tasks set for a worker w;. For a task z; and
each j € A(z;), we denote ygj Ve [K] the label answered by worker w;. Given an aggregation strat-
egy agg (such as MV, DS or GLAD), we call estimated soft label §7%¢ the obtained label. Note that
for MV, the aggregated label gMV € [K] and for other strategies, §:%¢ lies in the standard simplex
Ag_1 = {p € RE ,Zkzl pr = 1,pr > 0}. For any set S, we write |S| for its cardinality. Examples of
annotators set and tasks set are provided in Figure [l The training set has task-wise and worker-wise
formulations:

Dirain = U { zi, (47)) forjeA(xi)} = U {(:cz,(yf”)) foriGT(wj)} . (1)

Jj=1

D)

train

DS model notation. The Dawid and Skene (DS) model (Dawid & Skenel [1979) aggregates answers and
evaluates the workers’ confusion matrix to observe where their expertise lies. The confusion matrix of worker

€ REXE and reflects individual error-rates between pairs of labels: wéjlz = ]P’(y(j ) =

w; is denoted by 77 ;
kly; = ¢) represents the probability that worker w; gives label k to a task whose true label is £. The model
assumes that the probablhty for a task x; to have true label y* = ¢ follows a multinomial distribution
with probabilities ﬂ'é] for each worker, independently of Xyrain (feature-blind). In practice, DS estimates
are obtained thanks to the EM algorlthm to output estimated confusion matrices (7(7) )j€ineorner]- Lhe full
likelihood is given in Equation (§] Appendlxm Once DS confusion matrices are estimated, it is possible
to use the diagonal terms as Welghts in a majority voting strategy. We denote this Weighted DS vote by
WDS, and give more details in Appendix [A74] Essentially, the WDS strategy produces soft labels as NS,
and also takes into account the estimated worker ability to recognize a task whose true label is indeed the
voted one.

3.2 Ambiguous tasks identification with the AUM

To identify labeling errors and evaluate task difficulties, [Pleiss et al.| (2020) have introduced the AUM in
the standard learning setting (i.e., when |A(z;)| = 1 for all i € [nyasx]). Given a training task and a label
(z,9), let 2 (z) € RX be the logit score vector at epoch ¢ < T when learning a neural network (where 7T is
the number of training epochs). We use the notation z(lt) () > > z[([t()] (z) for sorting (zgt) (@), ..., z%) (2))
in non-increasing order. Let us denote o® (x) := U(zM gx)) the softmax output of the scores at epoch t.
Sorting the probabilities in decreasing order such that 0[1]) () > > a[(K)]( ), the AUM reads:

’ﬂ

AUM (2, Deasn) = S [0 () — o) )] (2)

t:l

We write AUM (z,y) instead of AUM (z,y; Dirain) When the training set is clear from the context. [Pleiss
et al.[(2020) use an average of margins over logit scores, while we rather consider the average of margin after a
softmax step in Equation , to temper scaling issues, as advocated by [Ju et al.|(2018) in ensemble learning.
Moreover, we consider the margin introduced by [Yang & Koyejo| (2020)) since the corresponding hinge loss
has better theoretical properties than the one used in the original AUM, especially in top-k settingsﬂ (Lapin
et al., [2016; [Yang & Koyejo), [2020; |Garcin et all |2022). However, one could easily consider the original
margin with few differences in practice for top-1 classification (see Appendix .

During the training phase, the AUM keeps track of the difference between the score assigned to the proposed
label and the score assigned to the second-largest one. It has been introduced to detect mislabeled obser-
vations in a dataset: The higher the AUM, the more likely the network confirms the given label. And, the
lower the AUM, the harder it is for the network to differentiate the given label from (at least) another class.

3For top-k, consider g[(li)+1] (z) instead of U[(Qt]) (z) in equation
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Finally, note that the AUM computation depends on the chosen neural network and on its initialization:
pre-trained architectures could be used, yet any present bias would transfer to the AUM computation.

To generalize the AUM from Equation to the crowdsourcing setting, a difficulty lies in the term aét)(x)
as, in this context, the label y is unknown, as one observes several labels per task. A naive adaptation
of the AUM would be to use the majority voting strategy in order to recover a hard label to be used in
Equation . We denote such a strategy by AUMC (AUM for Crowdsourced data). More formally, this
writes as:

T
) Do _lz O () 0O (s
AUMC (xw {yz }jEA(x,y) aDtraln) - T | |:U:g£/lv (xl) 0[2] ('rz) . (3)

This naive approach can be refined by taking into account the whole distribution of labels, and not simply
its mode (with MV).

3.3 WAUM and data pruning

The AUM is defined in a standard supervised setting with (hard) labels. The naive adaptation AUMC
defined at equation [3] does not take into account the fact that workers may have different abilities. We
now adapt the AUM to crowdsourced frameworks to improve the identification of difficult tasks. Mirroring
the AUM, train a classifier network on Dyyain for a number 7' > 0 of epochs. Using this classifier, we can

compute the following. Let s)(x;) € [0,1] be a trust factor in the answer of worker w; for task x;. The
WAUM is then defined as:

Z s(j)(xi)AUM(mi,yz(j))
_ JEA(;)

Z PERIES)

Jj'eA(x;)

WAUM(z;) (4)

It is a weighted average of AUMs over each worker’s answer with a per task weighting score sU)(z;) based on
workers’ abilities. This score considers the impact of the AUM for each answer since it is more informative
if the AUM indicates uncertainty for an expert than for a non-expert.

The scores s17) are obtained @ la Servajean et al.| (2017): each worker has an estimated confusion matrix
#) ¢ REXK Note that the vector diag(#?)) € R® represents the probability for worker w; to answer
correctly to each label. With a neural network classifier, we estimate the probability for the input x; € Xirain
to belong in each category by U(T)(:zz,;), i.e., the probability estimate at the last epoch. As a trust factor, we
propose the inner product between the diagonal of the confusion matrix and the softmax vector:

9 () = (diag(7D), 0D () € [0,1] . (5)

The scores control the weight of each worker in Equation . This choice of weight is inspired by the bilinear
scoring system of GLAD (Whitehill et al., [2009)), as detailed hereafter. The closer to one, the more we trust
the worker for the given task. The score s)(x;) can be seen as a multidimensional version of GLAD’s trust
score. Indeed, in GLAD, the trust score is modeled as the product «;f;, with a; € R (resp. §; € (0, +00))
representing worker ability (resp. task difficulty). In Equation , the diagonal of the confusion matrix #(/)
represents the worker’s ability and the softmax the task difficulty.

Dataset Pruning and hyperparameter tuning. Our procedure (Algorithm proceeds as follows. We
initialize our method by estimating the confusion matrices for all workers. For each worker w;, the AUM is
computed for its labeled tasks, and so is its worker-dependent trust scores s() (z;) with Equation during
the training phase of a classifier. The WAUM in Equation is then computed for each task. The most
ambiguous tasks, the ones whose WAUM are below a threshold, are then discarded, and the associated pruned
dataset Dpruned is output. We consider for the pruning threshold a quantile of order « € [0, 1] of the WAUM
scores. The hyperparameter o (proportion of training data points pruned) is calibrated on a validation
set, choosing « € {0.1,0.05,0.01} has led to satisfactory results in all our experiments. In general, dataset
annotated by humans have roughly between 1 and 5% of errors (Northcutt et al. |2021al) and the choice
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Algorithm 1 WAUM (Weighted Area Under the Margin).

Input: Diyain: tasks and crowdsourced labels, a € [0,1]: proportion of training points pruned, T' € N:
number of epochs, Est: Estimation procedure for the confusion matrices

Output: pruned dataset Dprunecd

1: Get confusion matrix {#)};cp,. . from Est
2: Train a classifier for T" epochs on (xi, ygj)) N
i,

for j € [Nworker) dO
Get AUM(x;, yi(j); Dirain) using Equation 1) for i € T (wj)
Get trust scores sU)(z;) using Equation () for i € T (w;)
end for
for each task x € Xipain do
Compute WAUM(z) using Equation
end for
10: Get go (WAUM(:))ign,.y], @-quantile threshold

11: Dpruned = { (-riv (yfj)>]€A(m7)) WAUM("I:’L) > Qo T; € Xtrain}

© P NP W

of a should reflect that. Note that the same pruning procedure can be applied to AUMC for comparison.
Both the AUMC and WAUM inherit the hyperparameter T' > 0 from the original AUM. Following the
recommendations from [Pleiss et al.| (2020), we need T large enough for stability and T' not too big to avoid
overfitting the data. In practice, a guideline given is to train until the first learning rate scheduler drop
to only keep the beginning of the scores trajectories without finetuning. The main assumptions to identify
ambiguous tasks is thus not to over-train the neural network in the WAUM (or AUMC) step, and be able
to run a DS-like algorithm to recover the diagonal of the confusion matrix for Equation .

Refined initialization: estimating confusion matrices. By default, we rely on the Est=DS algorithm
to get workers’ confusion matrices, but other estimates are possible: DS might suffer from the curse of
dimensionality when the number K of classes is large (K? coefficients needed per worker).

Training on the pruned dataset Once a pruned dataset Dpyyned has been obtained thanks to the WAUM,
one can create soft labels through an aggregation step, and use them to train a classifier. Aggregated soft
labels contain information regarding human uncertainty, and could often be less noisy than NS labels. They
can help improve model calibration (Wen et al.| 2021; Zhong et al.||2021])), a property useful for interpretation
(Jiang et al.,|2012; Kumar et al.;|2019)). Concerning the classifier training, note that it can differ from the one
used to compute the WAUM. We train a neural network whose architecture is adapted dataset per dataset
and that can differ from the one used in Algorithm [1] (it is the case for instance for the LabelMe dataset).
For an aggregation technique agg, we write the full training method on the pruned dataset created from the
WAUM: agg + WAUM and instantiate several choices in Section [l For comparison, we write agg + AUMC
the training method on the pruned dataset created from the AUMC.

4 Experiments

Our first experiments focus on multi-class classification datasets with a large number of votes per task. We
consider first a simulated dataset to investigate the WAUM and the pruning hyperparameter . Then, with
the real CIFAR-10H dataset from [Peterson et al. (2019) we compare label aggregation-based procedures with
and without pruning using the AUMC or the WAUM. Finally, we run our experiments on the LabelMe dataset
from |Rodrigues & Pereiral (2018)) and Music dataset from |[Rodrigues et al.,| (2014), both real crowdsourced
datasets with few labels answered per task. For each aggregation scheme considered, we train a neural
network on the soft labels (or hard labels for MV) obtained after the aggregation step. We compare our
WAUM scheme with several other strategies like GLAD (feature-blind) or CONAL (feature-aware) with and
without pruning from the AUMC identification step. For CoNAL, two regularization levels are considered:
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Figure 4: three_circles: one realization of simulated workers wi,ws,ws, with their AUM, normalized
trust scores s(7) (left) and WAUM distributions (right) for & = 0.1. Worker w; has less impact into the
final WAUM in the disagreement area. Note also that for worker w; (LinearSVC), the region with low AUM
values recovers the usual classifier’s margin around the decision boundary.

A =0and A = 107* (X controls the distance between the global and the individual confusion matrices).
More simulations and overview of the methods compared are available in Appendix

Metrics investigated After training, we report two performance metrics on a test set Dyiest: top-1 accu-
racy and expected calibration error (ECE) (with M = 15 bins as in |Guo et al.| (2017)). The ECE measures
the discrepancy between the predicted probabilities and the probabilities of the underlying distribution. For
ease of reporting results, we display the score 1 — ECE (hence, the higher the better, and the closer to 1,
the better the calibration); see Appendix |C| for more details. Reported errors represent standard deviations
over the repeated experiments (10 repetitions on simulated datasets and 3 for real datasets).

Implementation details For simulations, the training is performed with a three dense layers’ artificial
neural network (a MLP with three layers) (30,20, 20) with batch size set to 64. Workers are simulated with
scikit-learn (Pedregosa et al., [2011) classical classifiers. For CIFAR-10H the Resnet-18 (He et al., 2016)
architecture is chosen with batch size set to 64. We minimize the cross-entropy loss, and use when available
a validation step to avoid overfitting. For optimization, we consider an SGD solver with 150 training epochs,
an initial learning rate of 0.1, decreasing it by a factor 10 at epochs 50 and 100. The WAUM and AUMC
are computed with the same parameters for T' = 50 epochs. Other hyperparameters for Pytorch’s (Paszke
et al., |2019)) SGD are momentum=0.9 and weight_decay=5e-4. For the LabelMe and Music datasets, we use
the Adam optimizer with learning rate set to 0.005 and default hyperparameters. On these two datasets,
the WAUM and AUMC are computed using a more classical Resnet-50 for 7' = 500 epochs and the same
optimization settings. The architecture used for train and test steps is a pretrained VGG-16 combined
with two dense layers as described in [Rodrigues & Pereira| (2018) to reproduce original experiments on the
LabelMe dataset. This architecture differs from the one used to recover the pruned set. Indeed, contrary
to the modified VGG-16, the Resnet-50 could be fully pre-trained. The general stability of pre-trained
Resnets, thanks to the residuals connections, allows us to compute the WAUM and AUMC with way fewer
epochs (each being also with a lower computational cost) compared to VGGs (He et al., 2016). As there
are few tasks, we use data augmentation with random flipping, shearing and dropout (0.5) for 1000 epochs.
Experiments were executed with Nvidia RTX 2080 and Quadro T2000 GPUs. Appendix [B] presents more
details on the code used with the peerannot library. Source codes are available at https://github.com/
peerannot/peerannot. Evaluated strategies are at https://github.com/peerannot/peerannot/tree/
main/peerannot/models sorted according to whether they are aggregation-based, learning-based or only for
identification. The WAUM and AUMC sources are available in the identification module.
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Figure 5: Influence of o on the pruning step. Red dots indicate data points pruned from the training set, at
level g, in the WAUM (see line 10 in Algorithm . We consider (o € {1073,1072,1071,0.25}). The neural
network used for predictions is three dense layers’ (30, 20, 20), as for other simulated experiments. Training
labels are from the WDS + WAUM strategy with performance reported in Section [£.I] The more we prune
data, the worse the neural network can learn from the training dataset. However, removing the tasks with
high disagreement noise helps to generalize.

4.1 Simulated multiclass dataset: three_circles.
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Figure 6: three_circles: One realization of Section varying the aggregation strategy. Training labels
are provided from Figure [4] and predictions on the test set are from three dense layers’ artificial neural
network (30, 20,20) trained on the aggregated soft labels. For ease of visualization, the color displayed for
each task represents the most likely class. Red points are pruned from training by WAUM with threshold
a = 0.1. Here, we have nyasx = 525. WAUM method as in Section Fi;fl uses WDS labels.

We simulate three cloud points (to represent K = 3 classes) using scikit-learn’s function two_circles; see
Figure @ The nyorker = 3 workers are standard classifiers: w; is a linear Support Vector Machine Classifier
(linear SVC), ws is an SVM with RBF kernel (SVC), and ws is a gradient boosted classifier (GBM). Data
is split between train (70%) and test (30%) for a total of 750 points and each simulated worker votes for
all tasks, i.e., for all * € Xirain, |A(X)| = Nyorker = 3, leading to niasx = 525 tasks (points).We do not use
a validation set to calibrate the hyperparameter « as this experiment is mostly for a pedagogical purpose.
The performance reported in Section [{1]is averaged over 10 repetitions using the peerannot library.

A disagreement area is identified in the northeast area of the dataset (see Figure . Section also shows
that pruning too little data (a small) or too much (« large) can mitigate the performance. In Figure [5| we
show the impact of the pruning hyperparameter c. The closer « is to 1, the more training tasks are pruned
from the training set (and the worse the performance).
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Strategy Acctest ECE

MV 0.734+0.03 0.13 +0.03
NS 0.70 £0.02  0.18 £0.02
DS 0.754+0.07  0.22£0.08
GLAD 0.58+0.02 0.36 £0.02
WDS 0.81+£0.04 0.17 £ 0.03
WDS + AUMC(a = 107 1) 0.81+£0.02 0.17£0.01
WDS + WAUM(a = 10~2) 0.80 £0.04  0.17 £ 0.01
WDS + WAUM(a = 10~ 1) 0.83+£0.03 0.19+0.04
WDS + WAUM(a = 0.25) 0.69+£0.02 0.19 £ 0.02

Table 1: three_circles: Aggregation and learning performance presented in Figure |§| (Ntask = 525 tasks,
|A(z)| = nyorker = 3, 10 repetitions). Errors represented are standard deviations. Note that the best worker,
ws, reaches 0.84 on test accuracy. We vary a € {0.01,0.1,0.25} to visualize the impact of pruning.

4.2 Real datasets

In this section, we investigate three popular crowdsourced datasets: CIFAR-10H, LabelMe and Music. The
first one, CIFAR-10H (Peterson et al., [2019), is a curated dataset with many votes per task while LabelMe
(Rodrigues & Pereiraj, 2018) and Music (Rodrigues et al., [2014) datasets are more challenging, having fewer
labels per task. This low number of votes per task, especially for LabelMe can lead to erroneous MV label
which then impact the quality of the AUMC. In this context, the label distribution’s entropy is also a poor
choice to identify hard tasks as can be seen in Figure [3] Indeed, with up to three labels, the entropy can
only take four different values and thus is no help in ranking the difficulty of 1000 tasks.

To prune only a few tasks, we have o = 1% for CIFAR-10H and LabelMe datasets. For the Music dataset,
a = 5% leads to better generalization performance; considering the dataset size and complexity, picking
a = 0.1 would lead to worse performance. This value for the hyperparameter a has been calibrated as
described in Section using the accuracy on the available validation set for a € {0.01,0.05,0.1}. Ablation
studies by architecture are performed on CIFAR-10H and LabelMe datasets in Figure [I12] to show consistent
improvement in performance by using the WAUM to prune ambiguous data.

Strategy Acctest (%) 1 - ECE

MV 69.53 + 0.84 0.825 4+ 0.00
MV + AUMC 71.12 £1.12 0.836 + 0.01
MV + WAUM 72.34 +£1.01 0.814 + 0.02
NS 72.14 £2.74 0.868 + 0.03
NS + AUMC 71.80 £ 2.12 0.838 4+ 0.00
NS + WAUM 72.21 +£1.82 0.829 4+ 0.00
DS 70.26 £+ 0.93 0.827 + 0.00
DS + AUMC 70.43 £ 1.10 0.833 +£0.02
DS + WAUM 72.71 +£0.98 0.814 + 0.02
GLAD 70.28 £ 0.88 0.838 +0.01
GLAD + AUMC 70.42 +1.23 0.830 4+ 0.01
GLAD + WAUM 71.93+1.12 0.812 + 0.02
‘WDS 72.49 £ 0.48 0.868 + 0.00
WDS + AUMC 72.47 £ 0.45 0.866 4+ 0.00
WDS + WAUM 72.67+0.59 0.868 +0.00

Table 2: CIFAR-10H: performance of a ResNet-18 by label-aggregation crowdsourcing strategy (o = 0.01).
Errors represented are standard deviations.

CIFAR-10H dataset. The training part of CIFAR-10H consists of the 10000 tasks extracted from the test
set of the classical CIFAR-10 dataset (Krizhevsky & Hinton, [2009)), and K = 10. A total of nyorker = 2571
workers participated on the Amazon Mechanical Turk platform, each labeling 200 images (20 from each
original class), leading to approximately 50 answers per task. We have randomly extracted 500 tasks for a
validation set (hence nirain = 9500). The test set of CIFAR-10H is comprised of the train set of CIFAR-10 (see
more details in Appendix . This dataset is notoriously more curated (Aitchison, |2021)) than a common
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dataset in the field: most difficult tasks were identified and removed at the creation of the CIFAR-10 dataset,
resulting in few ambiguities (Krizhevsky & Hinton| [2009). Section [£.2] shows that in this simple setting, our
data pruning strategy is still relevant, with the choice & = 0.01. Images with worst WAUM for each class
are presented in Figure [7]

Furthermore, the WAUM leads to better generalization performance than the vanilla DS model and the
pruning with AUMC. Overall, we show that there is a gain in performance to obtain by using a pruning
pre-processing step compared to training the classifier on the aggregated labels for the full training set.
There is consistently an improvement on using the WAUM pruning — which weights the margins by worker
and tasks — over the naive AUMC which does not use reweighing.
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Figure 7: CIFAR-10H: 10 worst images for WAUM scores, by labels given in CIFAR-10. The rows represent
the labels airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Images in red can
be particularly hard to classify as they are not typical examples of their label. Comparison with the AUMC
and the AUM are available in Figure [T6] Appendix

WAUM=0.72 WAUM=0.72

s

CIFAR-10H is a relatively well-curated dataset, and we observe in Section that in this case, simple
aggregation methods already perform well, in particular NS. Over the 2571 workers, less than 20 are identified
as spammers using [Raykar & Yu| (2011) but note that most difficult tasks were removed when creating
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the original CIFAR-10 dataset. We refer to the "labeler instruction sheet” of |Krizhevsky & Hinton| (2009,
Appendix C) for more information about the directives given to workers.
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Figure 8: Ablation study on LabelMe using the VGG backbone: a = 0.01. Errors are Gaussian confidence
intervals at 95%. Numeric tables are available in Appendix

LabelMe dataset. This dataset consists in classifying 1000 images in K = 8 categories. In total 77 workers
are reported in the dataset (though only 59 of them answered any task at all). Each task has between 1 and
3 labels. A validation set of 500 images and a test set of 1188 images are available.

We observe in Figure [§] that the WAUM improves the final test accuracy when combined with the CoNAL
network with regularization. Note that the LabelMe dataset has classes that overlap and thus lead to
intrinsic ambiguities. This is the reason why the CoNAL strategy was introduced by [Chu et al.| (2021)):
modeling common confusions help the network’s decision, so it was expected for the CoNAL to perform well.
Combined with our WAUM, additional gains are obtained on both metrics. The vanilla strategy, either for
aggregation or learning, can be improved using a pruning preprocessing step. However, between the AUMC
and the WAUM, we show a consistent improvement on using the WAUM that considers weights for the
workers individually. For example, the classes highway, insidecity, street and tallbuilding (in rows)
are overlapping for some tasks: some cities have streets with tall buildings, leading to confusion as shown in

Figure [10]

Music dataset. This dataset differs from LabelMe and CIFAR-10H as it consists in classifying 1000 record-
ings of 30 seconds into K = 10 music genres. All the 44 workers involved voted for at least one music,
resulting in up to 7 labels per task. Instead of classifying the original audio files, we use the associated
Mel spectrograms following the methodology considered by to retrieve an image classification
setting. Though the benefits are not as striking as before on test accuracy, the ECE is slightly improved by
combining our WAUM with CoNAL as can be seen in Table[6] Moreover, we show constant improvement of
the test generalization performance using the WAUM preprocessing either in accuracy or in calibration.

Among other interesting discoveries, the WAUM helped us detect that the music Zydeco Honky Tonk by
Buckwheat Zydeco was labeled as classical, country or pop by the workers, though it is a blues standard.
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Figure 9: LabelMe dataset: Worst WAUM for classes (top) and the associated voting distribution for each
image (bottom). (a) Label street (b) Label tallbuilding. Even if the two tasks are very similar, because
the workers are different the associated proposed labels can differ and add noise during training.

Figure 10: LabelMe: top-10 worst images detected by the WAUM (with labels row-ordered from top to
bottom: highway, insidecity, street, tallbuilding). Overlapping classes lead to labeling confusion and
learning difficulties for both the workers and the neural network.

Another example is Caught in the middle by Dio classified (with the same number of votes) as rock, jazz,
or country though it is a metal song. One last example detected: the music Patches by Clarence Carter is
stored in the disco00020.wav file. The true label is supposed to be disco, while the workers have provided
the following labels: two have chosen rock, two blues, one pop and another one proposed country. The
actual genre of this music is country-soul, so both the true label and five out of six workers are incorrect.

WAUM sensitivity to the neural network architecture In the following, we explore the architecture’s
impact on the generalization performance using the WAUM preprocessing. We compare three architectures,
a VGG-16 with two dense layers added from Rodrigues & Pereira (2018)), a Resnet-18 and a Resnet-34. We
show in Figure [12] that depending on the network used, performance vary, but the WAUM step improves
generalization performance in most cases (and does not worsen it).

Limitations: computing the weights with many classes First, concerning the weights sgj ) (reflecting
the trust in the image/worker interaction), we rely on confusion matrices {#)};c[n.....;- The DS model
(]Dawid & SkeneL |1979D can be naturally used to estimate such matrices 7070 € RE*K for each worker wj.

Yet, the quadratic number of parameters (w.r.t. K) to be estimated for each worker can create convergence
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Figure 11: Ablation study on Music using the VGG backbone: a = 0.05. Errors are Gaussian confidence
intervals at 95%. Numeric tables are available in Appendix

issues for the vanilla DS model when K is large. But as stated in Section [3] any model that can estimate
confusion matrices can be considered for the WAUM’s computation. We detail below some possible variants,
that could help computing the confusion matrices used in the WAUM for the trust score computation.

[Sinha et al| (2018]) accelerated the vanilla DS by constraining the estimated labels’ distribution to
be a Dirac mass. Hence, predicted labels are hard labels. This leads to worse calibration errors than
vanilla DS but preserves the same accuracy.

o [Passonneau & Carpenter| (2014) introduced Dirichlet priors on the confusion matrices’ rows and the
prevalence p to incorporate previously known information on the workers in the model (e.g., from
other experiments).

[Servajean et al| (2017)) exploited the sparsity of the confusion matrices to cope with a large K.

o Imamura et al.| (2018) estimated with variational inference L < NMyorker clusters of workers, con-
straining at most L different confusion matrices. This reduces the number of parameters required
from K? X nyorker t0 K2 X L.

Pruning and i.i.d assumption For the pruning at preprocessing can induce a distortion in the training
data distribution. A usual assumption made on learning problems is that the task/label pairs are 4.i.d.
However, by removing some of the hardest tasks, the new dataset Dprunea contains tasks that are not
independent anymore. We should also keep in mind that [Tlyas et al.| (2022)) have shown that in the standard
datasets, the data is not i.7.d to begin with. Moreover, we should not set a too high as in imbalanced settings
this might cause even more imbalance.
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Figure 12: Performance obtained by training on the pruned dataset from the WAUM preprocessing step
on CIFAR-10H and LabelMe. We consider multiple neural network architectures — ResNet-18, ResNet-34
or VGG-16 with batch normalization and two supplementary dense layers. We show that performance in
accuracy are improved in most cases. Calibration performance in term of ECE fluctuate depending on
the architecture considered, especially for the CIFAR-10H dataset. Using the WAUM with CoNAL on the
LabelMe dataset, we obtain best performance both in accuracy and calibration.

5 Conclusion

In this paper, we investigate crowdsourcing aggregation models and how judging systems may impact gener-
alization performance. Most models consider the ambiguity from the workers’ perspective (very few consider
the difficulty of the task itself) and evaluate workers on hard tasks that might be too ambiguous to be
relevant, leading to a performance drop. Using a popular model (DS), we develop the WAUM, a flexi-
ble feature-aware metric that can identify hard tasks and improves generalization performance over vanilla
strategies and naive pruning AUMC. It also yields a fair evaluation of workers’ abilities and supports recent
research on data pruning in supervised datasets. Independently of pruning, the WAUM allows identifying
early the images that need extra labeling efforts or that are impossible to correctly label.

Extension of the WAUM to more general learning tasks (e.g., top-k classification, Appendix would be
natural, including sequential label. Indeed, the WAUM could help to identify tasks requiring additional
expertise and guide how to allocate more experts/workers for such identified tasks. Future works could
adapt the WAUM to imbalanced crowdsourced datasets to identify potentially too ambiguous images that
naturally occur in open platforms like Pl@ntNetEl And in this case, a class-dependent pruning threshold
quantile could be used to avoid a learning bias for classes with very few instances.

Last but not least, on the dataset side, we believe that the community would benefit from releasing a
challenging dataset (such as the one by |Garcin et al (2021) for instance) tailored to learn in crowdsourcing
settings. Indeed, a dataset with the following properties could greatly foster future research in the field: a

4nttps://plantnet.org/en/
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varying number of labels per worker, a high number of classes, and a subset with ground truth labels to test
generalization performance.

Broader Impact Statement

As this work proposes a method to prune tasks from training datasets based on human-derived data, we
remind that pruning based on learning difficulty can induce a learning bias for the model. To mitigate this,
only pruning a small portion of the dataset can help avoid any class with a small number of representatives
to be removed of the dataset. Also, in this paper, we only remove tasks that are difficult to classify, we do not
remove workers from the dataset. In particular, there is no repercussion on their pay, and by only evaluating
them on tasks that are not detected as ambiguous, we evaluate their abilities on fairer tasks. Finally,
during the entire procedure, all anonymity is conserved for workers, no other data than their anonymous
identification number is used.
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A Popular label aggregation techniques

Several aggregation techniques can transform crowdsourced labels into probability distributions (soft labels).
For any d € N and z € (0,00)¢, let Norm(z) € (0,00)? be the vector defined by Vi € [d], Norm(z); =

Zif Y 2
A.1 Naive soft (NS)

The naive soft (NS) labeling is simply the empirical distribution of the answered votes:

V(Ei S Dtraina gi\IS = Norm(gi), where gz = ( Z ]l{y(ﬂ) k}) €[K] . (6)
JjEA(x;)

A.2 Majority voting (MV)

Majority voting (MV) outputs the most answered label:

Vz; € Dirain, gi\dvzargmax< Z ]].{yfj)zk}). (7)
REIK] Yjea()

A.3 Dawid and Skene (DS)

The Dawid and Skene (Dawid & Skene, |[1979)) model aggregates answers and evaluates the workers’ confusion
matrix to observe where their expertise lies exactly. Let us introduce p, the prevalence of each label in the
dataset (i.e., P(y} = £)), the probability that a task drawn at random is labeled ¢ € [K]. Following standard
notations, we also write {7}, i € [nask]} the indicator variables for task ¢, that is T; , = 1 if the true label
for task ¢ is £ (i.e., y¥ = ¢) and zero otherwise. Finally, let 7T(] ) be the probability for worker j to select label
k when y* = /. The model’s likelihood reads:

I I e ®

1€ [Nrask] LE[K] J € [Nworker] KE[K]

To maximize the likelihood, we use the EM algorithm (Dempster et al., [1977)) to estimate the parameters
ngk and pg, using (75,.)ig[n,.,,] @S latent variables. Our implementation of the EM algorithm is given in
Algorlthm The convergence criterion we use in practice is that the likelihood has not decreased more than
€ > 0 between two iterations. By default, € is set to 1076, and the EM algorithm stops at iteration ¢t € N if

|Likelihood; — Likelihoody11 | < €.

A.4 Weighted Dawid and Skene (WDS)

Let us run the DS model to get estimated confusion matrices #0) € REXK for j € [nyorker]. Now, remind

that for a given worker j € [nyorker] and a class k € [K], the term 71'(3 ) estimate the probability for worker
w; to recognize a task whose true label is k. We use this term as a trust score and define the WDS soft label

as
Vz; € Dirain, QZVVDS Norm(gi)v with Ui = ( Z ﬂ-kk {U(J) k}) K] . (9)
JEA(zs)

A.5 Generative model of Labels, Abilities, and Difficulties (GLAD)

We recall the GLAD (Whitehill et al., [2009) algorithm in the binary setting. A modeling assumption is that
the j-th worker labels correctly the i-th task with probability given by
1

P(yz(j) =y |y, Bi) = 15 =B (10)
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Algorithm 2 DS (EM version)

Input: Diyain: crowdsourced dataset

Output: (4P%)icinn] = (T3 )icinen: estimated soft labels and {70} cp,. . o
ces

estimated confusion matri-

1: Initialization: Vi € [ntask],VK S [K], Ti,@ = lei)\szA(zi) ]l{ygj):e}
2: while Likelihood not converged do

3. Get 7 and p assuming T's are known

() Zig[ntask] Ti’[‘ﬂ{ygj):k}

%
¢ Zk’E[K] Zq‘,’e[
5: Ve e [K], ﬁ/(ﬁLZ Aif

TNtask £=1€ [Nrask] T,

6:  Estimate T's knowing # and 0

. 2 &
4. VY k) e [K)?, 7 T
] NG {y,f/]):k/}

Ttask

o @)
HJGA(mi)er[K] ﬁ@-(fr%i) vy =k}

. 1 1(]"):
2veiie rencen T po-(wG0) 10

7 Y(i,0), € [Nas] X [K], Tje

8: end while

Algorithm 3 GLAD (EM version)
Input: Dipain: crowdsourced dataset
Output:a = {a;}jcimme): Worker abilities, 8 = {Bi}icn,.,: task difficulties, aggregated la-
bels
1: while Likelihood not converged do
2:  Estimate probability of y;
3 Vi€ sasd, Pyrl{u b o0 8) o By T1 P i 00 51)
4:  Maximization step
5. Maximize auxiliary function Q(«, ) in Equation w.r.t. o and 8
6: end while

with a; € R the worker’s expertise: a; < 0 implies misunderstanding, o; = 0 an impossibility to separate
the two classes and «; > 0 a valuable expertise. The coefficient 1/5; € Ry represents the task’s intrinsic
difficulty: if 1/8; — 0 the task is trivial; on the other side when 1/8; — 400 the task is very ambiguous.
Parameters (0)) jefmnuome] a0 (Bi)ic[nee] are estimated using an EM algorithm as described in Algorithm

The auxiliary function for the binary GLAD model is:
Q(a, B) = Eflog P({y" 5. (w3l = D Ellog P(y?)] + > Ellog P(y” [yF, ;. 1)) - (11)

j
An extension to the multiclass setting is given by |[Whitehill et al.| (2009) under the following assumption:

the distribution over all incorrect labels is supposed uniform. In this setting, the model assumption from
Equation still holds and

X , 1 1
vk £ i, Py = klay, 8) = _1 (1 - 1_1_6_%3)

However, this is not verified in many practical cases, as can be seen for example in Figure where
the cat label is only mistaken deer and not with other ones. We have used the implementation from
https://github.com/notani/python-glad to evaluate the GLAD performance in our experiments. The
maximization of the function @ w.r.t. « and g is performed using a conjugate gradient solver. The initial
parameters are all set to 1.

A.6 CrowdLayer and its matrix weights strategy (MW)

From (Rodrigues & Pereiral, [2018), CrowdLayer is an end-to-end strategy in the crowdsourcing setting.
From the output of a neural network, a new layer called crowd layer is added to take into account worker
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specificities. The main classifier thus becomes globally shared, and the new layer is the only worker-aware
layer. As multiple variants of CrowdLayer can exist, we only considered in this paper the matrix weights
(MW) strategy that is akin to the DS model. Denoting z = f(z;) the output of the neural network classifier
[ for a given task z; labeled by a worker w;, the added layer multiplies z by a matrix of weights W9 € RE*X,
This matrix of weights per worker takes into account the local confusion of each worker. In practice, the
forward pass F on a task z; annotated by worker w; using CrowdLayer computes F(z;,w;) = Wio(f(z;)).

A.7 Common Noise Adaptation Layers (CoNAL)

CrowdLayer takes into account worker-specific confusion matrices. CoNAL (Chu et al., 2021)) generalizes
this setting by creating a global confusion matrix W9 € RX>X in addition to the local ones W7 € REXK
for j € [Nuorker] Working all together with the classifier f. Given a worker w;, the confusion is global with
weight wf and local with weight 1 — wg . The final distribution output used to compute the loss is given by:

Pout (T, w5) = wI W f () + (1 — w! )W f(x)

Asis, CoNAL local matrices tend to aggregate themselves onto the global matrix. To avoid this phenomenon,
a regularization term in the loss can be added as leading to the final loss:

>o B powlaw)) =X DT (W=,

1€ [Ntask] J € [Nuorker] € [nyorker]

1

Ntask

['(qu {W] }jG[nuorker]) =

with A the regularization hyperparameter and H the crossentropy loss. The larger A, the farther local
confusion weights are from the shared confusion.

B AUM and WAUM additional details

Algorithm 4 worker-wise WAUM.

1: Input: Diain: tasks and crowdsourced labels, « € [0,1]: proportion of training points pruned, T € N:
number of epochs, Est: Estimation procedure for the confusion matrices

2: Initialization: Get confusion matrices {#(V};cp,....1 from Est (= DS by default)
3: for j € [nyorker] do

4:  for T epochs do

5: Train a neural network for T' epochs on Dt(f;in = {(wi, yfj)) for i € T(wj)}
6: end for A A

7. Get AUM(z,, yi(j);Dt(ﬁ;in) using Equation 1)

8. Get trust scores s\)(z;) using Equation (5]

9: end for

10: for each task x € X ain do

11:  Compute WAUM(z) using Equation

12: end for

13: Get g, the quantile threshold of order o of (WAUM(z))ign,.i]

14: Define Dpruned = {(x“ (y’gj))jeA(m)> : WAUM(z;) > g, for i € [ntask}}

B.1 Unstacking workers answers in the WAUM: the worker-wise WAUM

In Algorithm [I} the WAUM requires training a classifier directly from all votes. If the crowdsourcing
experiment generates many answers per worker, for example when each worker answers all the tasks, we can
modify Algorithm [I] to train one classifier per worker for T" epochs instead of a single one d la [Guan et al.
(2017). This means that each classifier is only trained on DU) := {(x;, ygj))}ie[ntask] to compute the AUM of
the tasks answered. We refer to this as the worker-wise WAUM and give the full algorithm in Algorithm
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By doing so, the network trained for a given worker is not influenced by the answers of the other workers.
Hence, the AUM computed by this worker-wise WAUM is independent across workers (assuming workers are
answering independently). One downside of this worker-wise application is its training cost that increases
drastically. Where the vanilla WAUM adds a cost of T' epochs before training to identify ambiguous tasks,
worker-wise WAUM adds a cost of T' X Nyorker €pochs.

In the simulated examples we propose, we provide the results for the worker-wise WAUM, yet in such
simulated cases with many labels per task, the results do not differ much from the WAUM; see for instance
Table [l

B.2 AUM computation in practice.

We recall in Algorithm [5] how to compute the AUM in practice for a given training set Diyain. This step
is used within the WAUM (label aggregation step). Overall, w.r.t. training a model, computing the AUM
requires an additional cost: T training epochs are needed to record the margins’ evolution for each task. This
usually represents less than twice the original time budget. We recall that ¢(*) (z;) is the softmax output of
the predicted scores for the task z; at iteration ¢.

Algorithm 5 AUM algorithm

Input: Dirain = (T4, ¥i)ic[n..]: training set with nea.ex task/label couples, T' € N: number of epochs
fort=1,...,7 do
Train the neural network for the ¢*" epoch, using Diain
for i € [nyaex) do
Record softmax output a(t)(mi) € Axg_1

Compute margin M (z;, ;) = 03(,?(331») — O'[(;]) (x;)

end for
end for

Vi € [ntask]a AUM(LL'“ Yis Dtrain) = % ZtE[T] M(t) (xi> yz)

C Reminder on the calibration of neural networks

Hereafter, we propose a reminder on neural networks calibration metric defined in |Guo et al.| (2017)). Cal-
ibration measures the discrepancy between the accuracy and the confidence of a network. In this con-
text, we say that a neural network is perfectly calibrated if it is as accurate as it is confident. For
each task ¢ € Xyain = {z1,...,%n..}, let us recall that an associated predicted probability distri-
bution is provided by o(xz) € Ag_;. Let us split the prediction interval [0,1] into M = 15 bins
L, ..., Iy of size 1/M: I, = (mT;l, i7], where m = 1,..., M. Following |Guo et al.| (2017), we denote
By = {x € Xiain © opy(w) € I} the task whose predicted probability is in the m-th birﬂ We recall
that the accuracy of the network for the samples in B,, is given by acc(B,,) the empirical confidence by
conf(By,):

1 1
ace(Bm) = 15 > Lopo—y) and  conf(By) = B > oulei) -
1€B,, 1€B,,

Finally, the expected calibration error (ECE) reads:

M
| B
ECE = Z P lace(B,y,) — conf(B,,)| - (12)
m=1

A neural network is said perfectly calibrated if ECE = 0, thus if the accuracy equals the confidence for each
subset B,,.

5Remember that with our notation o) (%) = argmax¢ ) (0(z)),, with ties broken at random.
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D Datasets description

D.1 Synthetic dataset

In this section, we present simulated datasets to showcase the specificities and possible limitations of the
WAUM. Here is a summary of the experiments detailed in the following sub-sections:

1. The three_circles dataset: we explain further how the simulations in Section [4] were conducted

2. The two_moons dataset: we showcase a setting where the ambiguous tasks should be kept and not
pruned. No simulated worker was able to get past the intrinsic difficulty of the dataset.

3. The make_classication_many_workers dataset: we showcase a setting with many workers and
few labels per task. In this case, it is more relevant to consider the WAUM instead of the
worker-wise WAUM.

D.1.1 The three_circles dataset

This dataset was presented in Section [d] we give additional details here. We simulate three cloud points using
scikit-learn’s function two_circles. Each of the nia.gx = 525 points represents a task. The nyorker = 3
workers are standard classifiers: wy is a linear Support Vector Machine Classifier (linear SVC), ws is an SVM
with RBF kernel (SVC), and ws is a gradient boosted classifier (GBM) with five estimators. To induce more
ambiguity (and avoid too similar workers), the SVC has a maximum iteration set to 1 in the learning phase.
Other hyperparameters are set to scikit-learn’s default Valuesﬂ Data is split between train (70%) and
test (30%) and each simulated worker votes for each task, i.e., for all € Xyain, |A(Z)| = Nyorker = 3. The
disagreement area is identified in the northeast area of the dataset as can be seen in Figure ] Section 1]
also shows that pruning too little data (« small) or too much (« large) can mitigate the performance.

D.1.2 The two_moons dataset

This dataset is introduced as a case where pruning is not recommended, to illustrate the limitations of
the worker-wise WAUM method. The two_moons simulation framework showcases the difference between
relevant ambiguity in a dataset and an artificial one. This dataset is created using make_moons function
from scikit-learn. We simulate ni.sx = 500 points, a noise € = 0.2 and use a test split of 0.3.

w1 w2 w3
Ground truth  Linear SVC SvVC GBM WAUM
Ry PR . PR worker-wise
. qdo.1
) 1
. : ] |
et 2 R [P—— |
= 0'5i - s o 05040608 1"
0
0.5 PR » 0.8
I~ ,ﬁ. ._i:’d."g.”%_:: . ﬁg 7 & B 0.6
= 0.25 i » esq,sf SR | | a"@,ﬁv 0.4
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Figure 13: two_moons dataset: simulated workers with associated AUM and normalized trust scores. The
hyperparameter « is set to 0.1 for the worker-wise WAUM. Notice that the SVC classifier is mostly wrong
(since we only train for one epoch for this worker), inducing a lower trust score overall.

As can be observed with Figure [13] and Figure the difficulty of this dataset comes from the two shapes
leaning into one another. However, this intrinsic difficulty is not due to noise but is inherent to the data.

6For instance, the squared-hinge is penalized with an ¢2 regularization parameter set to 1 for linear SVC and SVC, GBM
uses as loss the multinomial deviance, and the maximum depth equals to 3 (default).
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Figure 14: two_moons dataset: One realization of Table Varying the aggregation strategy. Label predictions
on train/test sets provided by a three dense layers’ artificial neural network (30,20, 20) trained on smooth
labeled obtained by after aggregating the crowdsourced labels (as in Figure . Points in red are pruned
from the training set in the worker-wise WAUM aggregation. The a hyperparameter is set to 0.1. Each point
represents a task x;, and its color is the probability to belong in class 1. One can visualize the ambiguity
in the soft training aggregated labels, but also in the resulting predictions by the neural network. Errors
represented are standard deviations.

Table 3: Training and test accuracy depending on the aggregation method used for the two_moons’s dataset
with nage = 500 points used for training a three dense layers’ artificial neural network (30, 20,20). For
reference, the best worker is ws with a training accuracy of 0.923 and a test accuracy of 0.900.

Aggregation AcCiest ECE

MV 0.894 + 0.002 0.098 + 0.004
NS 0.887 +0.002  0.217 £0.010
DS 0.867 = 0.000  0.126 £ 0.001
GLAD 0.8724+0.006  0.107 £ 0.004

worker-wise WAUM (o = 1073)  0.8754+0.002  0.088 & 0.012
worker-wise WAUM (o = 1072)  0.87440.002  0.092 4 0.011
worker-wise WAUM(a = 1071)  0.870 £0.003  0.101 £ 0.020
worker-wise WAUM(a = 0.25)  0.829 £0.006  0.135 £ 0.011

In this case, removing the hardest tasks means removing points at the edges of the crescents, and those
are important in the data’s structure. From Table [3] we observe that learning on naive soft labeling leads
to better performance than other aggregations. But with these workers, no aggregation produced labels
capturing the shape of the data.

D.1.3 The make_classification_many_workers dataset

We simulate n,, = 150 workers who answer tasks from a dataset with K = 4 classes simulated using
scikit-learn’s function make_classification. In this setting, the WAUM has the same performance as
the worker-wise WAUM, with a much lower computational cost (as we do not train nyerker networks but
a single one). All simulated tasks are labeled by up to five workers among Linear SVCs, SVCs or Gradient
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Boosted Classifiers (GBM) chosen uniformly. To simulate multiple workers with some dissimilarities, we
randomly assign hyperparameters for each classifier as follows.

Each Linear SVC has a margin C chosen in a linear grid of 20 points from 1072 to 3, a maximum number of
iterations between 1 and 100, and either hinge or squared_hinge as loss function. Each SVC has a poly
(with degree 3), rbf or sigmoid kernel and a maximum number of iterations between 1 and 100. Finally, each
GBM has a learning rate of 0.01, 0.1 or 0.5, a given number of base estimators in {1, 2, 5, 10, 15, 20, 30, 50, 100}
and a maximum number of iterations between 1 and 100. All simulated workers are also initialized using
different seeds. All hyperparameters are drawn uniformly at random from their respective set of possible
values.

Table 4: The make_classification_many_workers dataset: Performance metrics by aggregation method.
The number of tasks is ngasx = 250 tasks per classes and 1 < |A(z)| < 5. Errors represented are standard
deviations.

Aggregation AccCiest ECE

NS 0.851 +0.00 0.146 + 0.023
DS 0.849 +0.004 0.242 +0.011
GLAD 0.842 +0.002  0.196 =+ 0.004
worker-wise WAUM (o = 1071)  0.849 £0.006 0.137 & 0.034
WAUM(a = 1071) 0.861 + 0.007 0.156 £ 0.023

D.2 Real datasets

The datasets we consider are all decomposed into three parts: train (Dirain), validation (Dya), and test
(Dtest). They are described in the following subsections. In particular, we provide for the training set of each
dataset (see Figures and three visualizations: the feedback effort per task distribution (|.A(z)|),
the load per worker distribution ([WW(z)|), and the naive soft labels entropy distribution, i.e., the entropy
distribution for each task in the training set, defined by: Va; € Xivain, Ent(z:) = — 34 c(x) (G55 log (929 %)

We have conducted experiments on three real datasets. The CIFAR-10H dataset has been proposed to reflect
human perceptual uncertainty in (a subpart of) the classical CIFAR-10 dataset. Each worker has annotated a
large number of (seemingly easy) tasks, thus leading to few disagreements. The LabelMe and Music datasets
have very few votes per task, leading to more ambiguous votes distributions.

D.2.1 The CIFAR-10H dataset
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Figure 15: CIFAR-10H: dataset visualization

Introduced by [Peterson et al.| (2019)), the crowdsourced dataset CIFAR-10H attempts to recapture the human
labeling noise present when creating the dataset. We have transformed this dataset, mainly by creating a
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validation set. Hence, the training set for our version of CIFAR-10H consists of the first 9500 test images from
CIFAR-10, hence |Dyyain| = 9500. The validation set is then composed of the last 500 images from the training
set of CIFAR-10 meaning |Diest| = 500. The test set consists of the whole training set from CIFAR-10, so
| Dtest| = 50000. The crowdsourcing experimentation involved nyorrer = 2571 workers on Amazon Mechanical
Turk. Workers had to choose one label for each presented image among the K = 10 labels of CIFAR-10:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. Each worker labeled 200 tasks
(and was paid $1.50 for that): 20 for each original category. Answering time was also measured for each
workerﬂ The CIFAR-10H annotating effort is balanced: each task has been labeled by 50 workers on average.
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Figure 16: Comparison of the worse images detected by the WAUM, AUMC and classical AUM preprocessing
step. Identification was computed with a ResNet-18 for 50 epochs using the parameters described in Section[4]
Each row represents the class given by the unobserved ground truth label from the CIFAR-10 dataset. Only
the AUM uses the ground truth label, other methods are based on the crowdsourced labels only. Images
framed in red can be hard to classify.

D.2.2 The LabelMe dataset

Another real dataset in the crowdsourced image classification field that can be used is the LabelMe crowd-
sourced dataset created by [Rodrigues & Pereiral (2018)). This dataset consists of n¢,gx = 1000 training images

"Note that attention checks occurred every 20 trial for each worker, for tasks whose labels were known. They have been
removed from the dataset since the corresponding images are not available.
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Figure 17: LabelMe: dataset visualization

dispatched among K = 8 classes: highway, insidecity, tallbuilding, street, forest, coast, mountain
or open country. The validation set has 500 images and the test set has 1188 images. The whole training
tasks have been labeled by nyorker = 59 workers, each task having between one and three given (crowd-
sourced) labels. In particular, 42 tasks have been labeled only once, 369 tasks have been labeled twice and
589 received three labels. This is a way sparser labeling setting than the CIFAR-10H dataset.

Also, note that the LabelMe dataset has classes that overlap and thus lead to intrinsic ambiguities. This is
the reason why the CoNAL strategy was introduced by [Chu et al (2021)), see details in Appendix [A.7 For
example, the classes highway, insidecity, street and tallbuilding (in rows) are overlapping for some
tasks: some cities have streets with tall buildings, leading to confusion as shown in Figure[I0] The proposed

feature aware aggregation using the WAUM leads to better performance in test accuracy and calibration as
illustrated in Table

D.2.3 The Music dataset
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Figure 18: Music: dataset visualization

[Rodrigues et al.| (2014)) released a crowdsourced dataset of audio files. The goal of this classification task was
to decide the genre of 30 seconds musical excerpts. Number of tasks is nyasx = 700. The nyorker = 44 workers
had K = 10 possible labels: blues, classical, country, disco, hiphop, jazz, metal, pop and reggae.
Each audio file was labeled by between 1 and 7 workers. To test the results, a dataset of 299 labeled clips
is used (originally 300, but one file is known to be corrupted). Instead of working with the original audio

files, we have used Mel spectrograms, openly availableﬂ to rely on standard neural networks architecture for
image classification.

8https ://www.kaggle.com/datasets/andradaolteanu/gtzan-dataset-music-genre-classification?datasetId=568973
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Strategy Accrest (%) 1 — ECE Strategy Accrest (%) 1 - ECE

MV 85.4+ 1.0 0.864 +£0.01 MV 59.9 +1.23 0.631 +0.01
MV + AUMC 86.0 + 1.1 0.859 + 0.01 MV + AUMC 62.0+1.23 0.650+0.02
MV + WAUM 86.1+0.9 0.858 + 0.02 MV + WAUM 61.1+2.35 0.624 + 0.02
NS 86.1 £ 1.0 0.862 + 0.01 NS 59.9 + 1.40 0.624 + 0.02
NS + AUMC 87.2£0.8 0.882 + 0.01 NS + AUMC 59.9+1.41 0.640 £ 0.02
NS + WAUM 88.1+1.0 0.890 £ 0.02 NS + WAUM 62.1 -2.18 0.642+0.01
DS 86.8 + 0.5 0.877 £0.01 DS 62.9+1.72 0.661+0.01
DS + AUMC 86.3 £ 0.5 0.841 + 0.02 DS + AUMC 61.5 +2.22 0.659 4+ 0.01
DS + WAUM 87.24+0.6 0.862 + 0.02 DS + WAUM 62.1 £+ 2.81 0.640 + 0.02
GLAD 87.1+£0.9 0.881 + 0.01 GLAD 61.5+1.72 0.639 + 0.01
GLAD + AUMC 87.6 £ 1.1 0.861 + 0.03 GLAD + AUMC 61.6 +0.93 0.664 +0.01
GLAD + WAUM 88.2+0.8 0.885+0.02 GLAD + WAUM 61.5+1.23 0.645 £+ 0.01
WDS 85.6 + 0.7 0.838 + 0.02 WDS 60.2 + 1.66 0.652 + 0.01
WDS + AUMC 86.7 + 0.7 0.862 + 0.02 WDS + AUMC 62.9 + 2.67 0.647 + 0.03
WDS + WAUM 87.1 0.8 0.871 £0.01 WDS + WAUM 63.1 +0.91 0.660 + 0.02
CrowdLayer 85.44+4.2 0.858 £ 0.04 CrowdLayer 63.24+1.34 0.615 £ 0.02
CrowdLayer + AUMC 87.1+£3.5 0.809 + 0.05 CrowdLayer + AUMC 63.3 +2.54 0.617 + 0.04
CrowdLayer + WAUM 87.5+3.2 0.860+0.03 CrowdLayer + WAUM 63.2 £ 2.46 0.680 + 0.03
CoNAL(A =0) 88.1£1.0 0.881 +0.01 CoNAL(A =0) 64.2 +£0.91 0.660 + 0.02
CoNAL(0) + AUMC 89.1+1.1 0.903 +£0.02 CoNAL(0) + AUMC 64.3 +0.88 0.735 +0.01
CoNAL(0) + WAUM 89.2+1.0 0.892 + 0.01 CoNAL(0) + WAUM 64.5+0.76 0.735+0.01
CoNAL(X = 10—4) 86.2+£6.4  0.865+0.06 CoNAL(X = 10—4) 64.2+£055  0.639 + 0.06
CoNAL(10~%) + AUMC  88.4+23  0.88440.04 CoNAL(10~%) + AUMC  64.14+0.74  0.745 + 0.02
CONAL(10_4) +WAUM 90.0+0.8 0.901 +0.01 CONAL(10_4) + WAUM 64.4+0.78 0.726 + 0.02

Table 5: Ablation study on LabelMe using the VGG Table 6: Ablation study on Music using the VGG
backbone: o = 0.01. Errors represented are standard backbone: o = 0.05. Errors represented are standard
deviations. deviations.

E Algorithmic details on the neural network training

Experiments can be reproduced using the code available at https://github.com/peerannot/peerannot
from the peerannot library, which is briefly described below:

e The identification module is used to explore datasets tasks and workers. Tasks can be explored
thanks to the entropy of the label distribution, the WAUM or the AUMC. Workers can be evaluated
thanks to the Spam-score of [Raykar & Yul (2011)), the trace of the DS estimated matrices, GLAD’s
parameters among other.

o The aggregate module is used to produce aggregated labels from multiple answered labels. The
labels can then be used for training a neural network architecture from Pytorch using the train
module.

o The aggregate-deep module is used for the CoNAL and CrowdLayer strategies. A neural network
is directly learning from the crowdsourced tasks and labels without the aggregation step.

e Multiple datasets are ready to use, including CIFAR-10H, LabelMe and Music.
The documentation of the library is at https://peerannot.github.io/.

F Results on LabelMe and Music datasets

In this section, we provide the raw results tables of the forest plots (Figure [8] and Figure the real
datasets in Table[5]on the LabelMe and in Table[6] for the Music datasets. The errors presented are standard
deviations.
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G Margin comparison

In the AUM, AUMC and WAUM formulae, we consider a margin from [Yang & Koyejo| (2020) (denoted 95 in
the original article) that has better theoretical properties for top-k classification but that is not the margin
proposed in [Pleiss et al.| (2020) (¢)1). Indeed, our margin in the AUM is written as:

o (@:) — afy) (@:)

instead of o

oy, (i) = max oy (:)
Using the CIFAR-10H dataset, we can compare the identified tasks using each margin. Note that in the
library used (and briefly described in Appendix [E)) switching from the original margin to the top-k based
margin is executed with the argument use_pleiss=True or use_pleiss=False with the WAUM, AUM and
AUMC. A comparison of the images with lowest AUM is provided in Figure Similar visual comparison
on the CIFAR-10H dataset is provided in Figure

S

Figure 19: Lowest AUM with 7 margin Figure 20: Lowest AUM with 5 margin

Figure 21: Comparison of the images with lowest AUM in CIFAR-10H dataset using the margin from
(2020) (1) or the margin for top-1 classification from [Yang & Koyejo| (2020)) (¢5). Both margins yield
similar results.

Furthermore, we provide an ablation study on top-2 accuracy scores using the WAUM with ¢y or ¥5 margin
on the LabelMe dataset in Table [/} We use the crossentropy loss during the training phase. With 5, the
top-2 margin writes ag(,i) (x;) — 0[(;] (x;) as indicated in Section We compute the top-2 accuracy i.e. the
accuracy in recovering the true label as the first or second predicted label by the classifier. However, note
that this dataset has K = 8 classes, hence we do not report top-5 accuracy as all strategies perform similarly.
We notice that performance on this dataset are similar for most strategies between the two margins used for
pruning.
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Figure 24: Comparison of the images with lowest WAUM in CIFAR-10H dataset using the margin from
(2020) (¢01) or the margin for top-1 classification from Yang & Koyejo| (2020) (¢5). Both margins also
lead to similar results.

Table 7: Top-2 Accuracy comparison on the LabelMe dataset using the modified VGG-16 backbone and
the same hyperparameters as in Section Results are averaged over 5 repetitions, errors are standard
deviations.

Strategy Top-2 no pruning Top-2 WAUM(¢;) Top-2 WAUM(¢5)
MV 91.25 + 2.01 91.17 £ 2.12 92.02 £ 2.08
NS 90.92 + 1.53 90.41 £ 2.77 89.91 £1.08
DS 89.98 +1.12 90.24 £0.92 91.41 £0.99
GLAD 90.78 +0.98 91.34 £ 1.59 90.49 +0.38
WDS 89.56 + 1.76 90.82 £1.81 91.16 + 2.78
CrowdLayer 87.45 £+ 2.03 88.33 +1.49 88.57 + 2.51
CoNAL(X =0) 92.34 £ 0.74 89.49 £+ 0.53 94.30 £1.32
CoNAL(X = 107%) 91.68 +1.01 94.10+0.9 94.93 +0.76
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