
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS EFFICIENT CONSTRAINT HANDLING
IN NEURAL SOLVERS FOR ROUTING PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural solvers have achieved impressive progress in addressing simple routing prob-
lems, particularly excelling in computational efficiency. However, their advantages
under complex constraints remain nascent, for which current constraint-handling
schemes via feasibility masking or implicit feasibility awareness can be inefficient
or inapplicable for hard constraints. In this paper, we present Construct-and-Refine
(CaR), the first general and efficient constraint-handling framework for neural
routing solvers based on explicit learning-based feasibility refinement. Unlike prior
construction-search hybrids that target reducing optimality gaps through heavy
improvements yet still struggle with hard constraints, CaR achieves efficient con-
straint handling by designing a joint training framework that guides the construction
module to generate diverse and high-quality solutions well-suited for a lightweight
improvement process, e.g., 10 steps versus 5k steps in prior work. Moreover, CaR
presents the first use of construction-improvement-shared representation, enabling
potential knowledge sharing across paradigms by unifying the encoder, especially
in more complex constrained scenarios. We evaluate CaR on typical hard routing
constraints to showcase its broader applicability. Results demonstrate that CaR
achieves superior feasibility, solution quality, and efficiency compared to both
classical and neural state-of-the-art solvers.

1 INTRODUCTION

Vehicle Routing Problems (VRPs) often involve complex real-world constraints (Wu et al., 2023).
Classic VRP solvers, such as LKH-3 (Helsgaun, 2017) and OR-Tools (Furnon & Perron, 2024), have
relied on heuristics carefully designed by human experts to handle these constraints and approximate
near-optimal solutions. Recently, Neural Combinatorial Optimization (NCO) methods (Bengio et al.,
2021) have offered a different path: they automate solver design with deep learning and exploit GPU-
batched inference for high efficiency while ensuring solution quality (Kwon et al., 2020). However,
recent work has primarily targeted simple variants, leaving their potential on hard-constrained VRPs
underexplored. In those more complex settings, where hand-crafted heuristics often leave certain
research gaps, reinforcement learning (RL)-based methods may offer a promising alternative by
learning to navigate constraints directly from data. This makes effective constraint handling a key
challenge in advancing the broader applicability of NCO to real-world VRPs.

Most RL-based NCO solvers handle constraints via two schemes: feasibility masking and implicit
feasibility awareness. Feasibility masking enforces constraints by excluding invalid actions in the
Markov Decision Process (MDP). While effective for simple MDPs, it becomes intractable in complex
cases where computing mask itself is NP-hard, e.g., with complex local search operators in neural
improvement solvers (Ma et al., 2023), or with interdependent constraints in neural construction
solvers (Bi et al., 2024), as in Traveling Salesman Problem with Time Windows (TSPTW). Moreover,
even when computable, the impact of strict masking in multi-constraint VRPs is often overlooked. As
shown in Section 4.1, enforcing strict masks in Capacitated VRP with backhaul, duration, and time-
window constraints (CVRPBLTW) can largely hinder RL convergence to a better policy. A recent line
of work instead explores feasibility awareness, implicitly informing MDP decisions via constraint-
related features (Chen et al., 2024), reward shaping (Ma et al., 2023), or approximated learnable
masks (Bi et al., 2024). However, they still remain limited: to our knowledge, no single method is
generic to be effective across typical hard VRPs (e.g., TSPTW and CVRPBLTW), feasibility and
optimality gaps persist, and they often incur substantial inference overheads that undermine the
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efficiency. This motivates a practical research question: Can we develop a neural constraint handling
framework that is simple, general, and crucially, preserves the efficiency of the NCO solvers?

To address this, we emphasize learning-based feasibility refinement that has been overlooked for
neural solvers: rather than purely focusing on enforcing feasibility via masking or implicitly learning
feasibility signals by features or reward, we ask whether RL can explicitly refine infeasible solutions
in very few post-construction steps while preserving optimality. To realize this, one may consider
leveraging existing search techniques, such as random reconstruction (RRC) (Luo et al., 2023),
efficient active search (EAS) (Hottung et al., 2022), or hybrid frameworks like collaborative policies
(LCP) (Kim et al., 2021), RL4CO (Berto et al., 2025), and NCS (Kong et al., 2024). However, these
methods are designed and evaluated to reduce optimality gaps on simple VRPs. When applied to
hard VRPs, they can yield 100% infeasibility or rely on a prolonged improvement process that runs
for hours and often fails when search steps are reduced during training or inference (see Table 2).

In this paper, we present Construct-and-Refine (CaR), a simple yet effective feasibility refinement
framework as a first step toward a general neural approach for efficient constraint handling. CaR
introduces an end-to-end joint training framework that unifies a neural construction module with a
neural improvement module. By design, it unites the complementary strengths of both paradigms
while targeting efficiency: construction provides diverse and high-quality solutions conducive to fast
refinement guided by our tailored loss function. Unlike prior hybrids that rely on heavy improvement
to reduce optimality gaps, CaR uses fewer refinement steps, which can reduce runtime from hours to
minutes or seconds. Moreover, the proposed feasibility refinement scheme inherently motivates a novel
form of synergized feasibility awareness. CaR thus further considers a construction-improvement
shared encoder for realizing the cross-paradigm representation learning, enabling potential knowledge
sharing, thereby improving performance, particularly for more complex constrained scenarios.

We demonstrate the effectiveness of CaR on VRPs with diverse constraints, with particular emphasis
on hard-constrained settings. When feasibility masking is NP-hard (e.g., TSPTW), CaR achieves
6-8× speedups over state-of-the-art neural baselines while improving feasibility and solution quality,
even finding feasible solutions that the strong classic solver LKH-3 fails to produce. When masking is
tractable but overly restrictive (e.g., multi-constraint CVRPBLTW), CaR shows dominant superiority
over both neural and classic solvers. We also provide detailed analysis and ablation studies.

Our contributions are as follows: 1) We comprehensively analyze the limitations of existing feasibility
masking and implicit feasibility awareness schemes, and introduce the learning-based feasibility
refinement scheme for efficient constraint handling; 2) We present Construct-and-Refine (CaR), a
simple, general, efficiency-preserving framework that performs feasibility refinement via end-to-end
joint training that constructs diverse and high-quality solutions well-suited for rapid refinement guided
by our tailored losses; 3) CaR enables novel synergized feasibility awareness via cross-paradigm
representation learning that further boosts the constraint handling especially in complex cases; 4)
Experiments showcase that CaR can be potentially applicable to enhance most RL-based construction
and improvement solvers in solving various hard-constrained VRPs, delivering superior feasibility,
solution quality, and efficiency compared to classical and neural state-of-the-art solvers.

2 LITERATURE REVIEW

We highlight the difference between CaR and existing neural solvers in Table 1: most existing neural
solvers emphasize masking-based feasibility handling, whereas CaR integrates three complementary
schemes for broader and more effective constraint handling.

Table 1: Comparison between CaR and other existing neural solvers. CaR is the first to cover
both simple and complex VRPs by combining flexible† masking, shared-representation to implicitly
enhance feasibility awareness, and explicit feasibility refinement.

Methods
VRP applicability Research focus Feasibility Feasibility Awareness Feasibility
Simple Complex Optimality Feasibility Masking Penalty Features Shared Rep. Refinement

Most existing neural solvers
✓ × ✓ × ✓ × × × ×(e.g. POMO, UDC, LCP, RL4CO, NCS)

NeuOpt-GIRE (Ma et al., 2023) ✓ × ✓ × ✓ × ✓ × ×
Tang et al. (2022) × ✓ ✓ ✓ ✓ ✓ × × ×

MUSLA (Chen et al., 2024) × ✓ ✓ ✓ ✓ × ✓ × ×
PIP (Bi et al., 2024) × ✓ ✓ ✓ ✓ ✓ × × ×

CaR (Ours) ✓ ✓ ✓ ✓ ✓† ✓ ✓ ✓ ✓
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Neural VRP solvers. End-to-end neural VRP solvers mainly fall into two paradigms: 1) Construction
solvers learn to construct solutions from scratch in an autoregressive (AR) fashion. Among them,
Attention Model (AM) (Kool et al., 2018) is a milestone for VRPs. POMO (Kwon et al., 2020)
further improved AM using diverse rollouts inspired by VRP symmetries. Subsequent studies have
advanced AR solvers in inference strategies (Hottung et al., 2022; Choo et al., 2022; Sun et al., 2023),
training paradigms (Kim et al., 2022; Drakulic et al., 2023; Chalumeau et al., 2023; Grinsztajn et al.,
2023; Hottung et al., 2025; Luo et al., 2025), scalability (Zong et al., 2022; Jin et al., 2023; Hou et al.,
2023; Fitzpatrick et al., 2024), robustness (Geisler et al., 2022; Xiao et al., 2024), and generalization
over different distributions (Zhang et al., 2022; Bi et al., 2022; Jiang et al., 2022), scales (Zhou et al.,
2023; Gao et al., 2024; Fang et al., 2024), and constraints (Lu et al., 2023; Wang & Yu, 2023; Zhou
et al., 2024; Liu et al., 2024a; Berto et al., 2024; Lin et al., 2024); 2) Improvement solvers learn to
iteratively improve initial solutions, inspired by classic local search such as k-opt (Costa et al., 2020;
Ma et al., 2023) , ruin-and-repair (Hottung & Tierney, 2022; Ma et al., 2022), and crossover (Kim
et al., 2023). In general, they achieve near-optimal solutions with prolonged searches. Overall, either
construction or improvement solvers mainly focus on simple VRP benchmarks, leaving complex
constraint handling underexplored. See Appendix A for further discussion.

Constraint handling for VRPs. Existing neural solvers handle constraints mainly through two
schemes: feasibility masking and implicit feasibility awareness. Most methods enforce constraint
satisfaction by excluding invalid actions, such as local search moves in neural improvement solvers
or node selection in neural construction solvers, via strict feasibility masking. While effective in
simple VRPs, masking becomes intractable or ineffective in complex ones (e.g., TSPTW, CVRP-
BLTW; see Section 4.1). Recent works have thus explored implicit feasibility awareness, enhancing
neural policies via reward/penalty-based guidance or feature augmentation, such as Lagrangian
reformulation (Tang et al., 2022), reward shaping for infeasible-region exploration (Ma et al., 2023),
constraint-related features (Chen et al., 2024), or approximated learnable masks (Bi et al., 2024).
However, they often incur high computational cost and still yield high infeasibility. Overall, even
with these two constraint handling schemes, no existing solvers is generic enough to be effective
across both simple and complex VRPs, motivating a new perspective: explicit feasibility refinement.

Hybrid neural solvers. Recent works have explored hybridizing construction with policy search
or heavy improvement. One line extends construction with additional search, e.g., active search
(EAS) (Hottung et al., 2022) or beam search (SGBS) (Choo et al., 2022), but these remain confined
to the underlying construction policy and struggle with complex constraints. Another line employs
reconstruction or decomposition, such as random reconstruction (RRC) (Luo et al., 2023) and
collaborative policies (LCP) (Kim et al., 2021). While effective on simple VRPs, these methods
often break feasibility when reconstructing or decomposing solutions, simlilar as other divide-and-
conquer frameworks (Ye et al., 2024b; Zheng et al., 2024), leading to high infeasibility even with
penalties. Another line combines construction with heavy improvement (e.g., thousands of steps).
RL4CO (Berto et al., 2025) couples pretrained POMO (Kwon et al., 2020) and NeuOpt (Ma et al.,
2023) only at inference, while NCS (Kong et al., 2024) integrates them via a shared critic. However,
both remain limited on hard-constrained VRPs, with NCS yielding 100% infeasibility on TSPTW in
our tests. We differ from them in three key aspects: 1) we jointly targets feasibility and optimality,
rather than only focusing on optimality; 2) we tightly couples construction and refinement via joint
training and shared representation learning, enabling knowledge transfer, instead of treating both
paradigms separately (Berto et al., 2025) or loosely coupled (Kong et al., 2024); 3) we promote
efficient and precise refinement rather than lengthy improvement (e.g., from 5k to 10 steps).

3 PRELIMINARIES

VRP definitions. We define VRP on a directed graph G = (V, E), where V consists of n customer
nodes {v1, . . . , vn} and a depot v0 (except TSP variants). Each edge e(vi → vj) (or eij) ∈ E
connects node vi to vj (i ̸= j) with weight given by the 2D Euclidean distance. The objective
is to minimize the total cost of a solution subject to variant-specific constraints. Empirically, we
distinguish between simple VRPs (e.g., CVRP), where feasibility masking is tractable and effective,
and complex VRPs (e.g., CVRPBLTW with multiple constraints or TSPTW where computing masks
is NP-hard since future time-feasibility must be evaluated for all possible actions), where masking is
ineffective or intractable. See Appendix B for problem definitions and instance generation details.

3
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MDP formulations. We consider neural solvers trained with reinforcement learning (RL), where
construction and improvement are formulated as Constrained Markov Decision Process (CMDP),
defined by the tuple (S,A,P,R, C), with S as the state space, A as the action space, P : S×A×S→
[0, 1] as the state transition probability, R : S×A→R as the reward function, and C : S×A→Rm

as the constraint function penalizing violations of m constraints. The goal is to learn a policy
πθ : S→P(A) that maximizes the reward while satisfiying the constraint(s), i.e.,

max
θ

J (πθ) = Eτ∼πθ
[R (τ |G)] , s.t. πθ ∈ ΠF , ΠF = {π ∈ Π |JC(πθ) = 0m}, (1)

where J and JC are the expected returns of the reward and constraint function for m constraints,
respectively; and ΠF represents a feasible space for the policy. Construction solvers construct
solutions sequentially from scratch: state st includes the partial solution, vehicle status (e.g., load,
time), and unvisited node representations; action at selects the next node; and the reward R is
the negative tour cost at completion, R(τ |G) = −C(τ). Improvement solvers learn to refine an
existing solution. At step t, the state st includes the current solution τt, the best-so-far solution
τ∗t , and instance features; the action at applies an operator (e.g., flexible k-opt (Ma et al., 2023),
remove-and-reinsert (Ma et al., 2022); see Appendix C). Following the convention (Chen & Tian,
2019), the reward is the cost reduction in the best-so-far solution, i.e., Rt = min[C(τ∗t−1)−C(τt), 0].

Relaxation of CMDP. Following Bi et al. (2024), we apply Lagrangian relaxation to train the
construction policy by penalizing constraint violations, adding a cost term to the objective in Eq. (1):

C(τ) =
∑
eij∈τ

[
CL (eij)+

m∑
η=1

Cη
V (eij)

]
, (2)

where CL and CV represent the objective cost (i.e., tour length) and the constraint violations,
respectively. For example, if the arrival time tj to node vj exceeds the time window ends uj , the
node-level cost for time window violation is calculated as CV (eij)= tj − uj . The total violation cost
CV also accounts for the number of nodes with constraint violations to enhance constraint awareness.

4 METHODOLOGY

We revisit existing constraint-handling schemes for neural solvers and then introduce our CaR
framework, which proposes a new perspective via feasibility refinement and further explores shared
representations across construction and refinement to enhance feasibility awareness.

4.1 DISCUSSION OF EXISTING CONSTRAINT HANDLING SCHEMES

Feasibility masking excludes invalid actions at each node-selection step in construction MDPs and
each local-search step in improvement MDPs. It is widely used in prevailing neural solvers and works
well when VRP constraints are simple. For instance, Table 12 shows that removing masking in CVRP
increases POMO’s optimality gap from 0.86% to 0.92%, confirming its effectiveness. However,
masking faces two fundamental challenges in complex VRPs. First, mask computation itself can be
intractable. For example, in TSPTW evaluating time-interdependent feasibility at each construction
step requires checking all future actions, which is NP-hard (Bi et al., 2024); similarly, computing
feasible moves for local search operators such as k-opt is intractable in improvement solvers (Ma
et al., 2023). Second, even when tractable, masks can be overly restrictive in multi-constraint VRPs.
In CVRPBLTW, for instance, strict masking filters out more than 60% of nodes (Figure 6), severely
limiting the search space and hindering RL convergence toward a high-quality policy (more discussion
in Appendix E.1). In these complex VRPs, approximate mask (Bi et al., 2024) or relaxed masks (as
seen in POMO* vs. POMO in Table 2) provide partial relief but cannot fully resolve these issues:
they may still fail to guarantee feasibility, introduce computational inefficiency, or degrade solution
quality. Beyond masking, recent works have turned to feasibility awareness, implicitly guiding MDP
decisions via rewards/penalties or constraint-related features. However, the former has been shown
in Bi et al. (2024) to lose effectiveness in complex VRPs, while the latter serves only as an auxiliary
signal for policy learning. This motivates the need for alternative schemes that explicitly handle
feasibility through refinement.

4
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Figure 1: Overall framework of CaR, where the construction module provides diverse and high-
quality solutions for the refinement module to generate better solutions.

4.2 JOINT TRAINING FEASIBILITY REFINEMENT WITH A CONSTRUCTION MODULE

To enable efficient feasibility refinement, we leverage the efficiency of construction and propose our
CaR framework. CaR jointly trains construction and refinement by guiding construction module
to generate diverse, high-quality solutions that are well-suited for rapid refinement with tailored
losses. To integrate construction and refinement effectively, we design a joint training framework
that optimizes both processes simultaneously in each gradient step, allowing them to co-evolve.
As illustrated in Figure 1, for each batch of training instances G, the construction module first
generates a small set of diverse, high-quality initial solutions in parallel. These solutions are then
refined by a lightweight neural improvement process within TR steps (i.e., TR = 10 vs. 5k in classic
improvement methods), enabling rapid enhancement of high-potential candidates. The refined outputs
then supervise construction, promoting collaborative correction of infeasibility and sub-optimality.

Construction policy loss. The policy πC
θ is trained by REINFORCE (Williams, 1992) with loss:

LC
RL =

1

S

S∑
i=1

R(τi)−
1

S

S∑
j=1

R(τj)

 log πC
θ (τi)

 , (3)

where the solution probability is factorized as πC
θ (τ) =

∏|τ |
t=1 π

C
θ (et | τ<t), with τ<t denoting the

partial solution prior to selecting edge et at step t. We employ a group baseline with diverse rollouts
to reduce the variance. For simpler variants like CVRP, S solutions are generated via POMO’s
multi-start strategy (Kwon et al., 2020), while for time-constrained variants (e.g., TSPTW and
CVRPBLTW), we sample S solutions to avoid infeasibility (Hottung et al., 2025; Bi et al., 2024).

Tailored losses in construction module. To compensate for reduced diversity due to the removal of
the multi-start mechanism and to enhance the diversity of initial constructed solutions for refinement,
we introduce an auxiliary entropy-based diversity loss:

LDIV = −
|τ |∑
t=1

πC
θ (et | τ<t) log π

C
θ (et | τ<t), (4)

which largely encourages policy exploration during RL training. To avoid inefficiency, we evaluate
candidates using the cost in Eq. (2), and only feed the top p high-quality candidates to subsequent
refinement. If the refinement module improves a constructed solution (indicated by I = 1), the
best-refined solution τ∗ is used as a pseudo ground truth to supervise πC

θ :

LSL = −I ·
|τ∗|∑
t=1

log πC
θ (e

∗
t | τ∗<t), (5)

where I indicates whether such refinement led to improvement of the feasibility and objective. The
final construction loss integrates three components, i.e., L(θC) = LC

RL + α1LDIV + α2LSL.

Relaxation of short-horizon CMDP for efficient refinement. Building on the success of relaxed
CMDP formulations for construction (Bi et al., 2024), we extend it to the refinement process as
well. Unlike prior work (Kong et al., 2024; Ma et al., 2023), which models improvement as an
infinite-horizon MDP under the assumption that prolonged runtime is acceptable (more discussion of

5
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Figure 2: Overview of the unified network architecture in CaR. Blue dashed arrows indicate informa-
tion flow specific to refinement, while purple dashed arrows indicate flow exclusive to construction.

short-horizon MDP design in Appendix E.5), we adopt a short-horizon rollout limit TR, treating each
step equally, consistent with CaR’s efficient refinement design.

Refinement policy loss. The refinement policy πR
θ iteratively improves solutions over TR steps,

with probability of the refined solution at step t is factorized as πR
θ (τt) =

∏K
κ=1 π

R
θ (aκ|a<κ, τt−1),

where K denotes the total number of sequential refinement moves/actions, with further details in
Appendix C. The RL loss LR

RL(t) for refinement is computed at each step t using the REINFORCE
algorithm in Eq. (3), where S is replaced by p, since only p solutions are refined. The final refinement
loss is defined as the average across all TR steps: L(θR) = 1

TR

∑TR

t=1 LR
RL(t), encouraging each

refinement step to contribute meaningfully and improving overall refinement efficiency. The joint
training loss combines the above two losses, i.e., L(θ) = L(θC) + ωL(θR), where ω balances their
scales. Such joint loss promotes information exchange between modules, enhancing synergy in
collaboratively handling complex constraints.

4.3 CROSS-PARADIGM REPRESENTATION LEARNING FOR FEASIBILITY AWARENESS

Beyond implicit feasibility awareness via features or rewards/penalties, our feasibility refinement
naturally strengthens awareness through cross-paradigm representation learning. To further re-
duce overhead and promote synergy, we explore shared encoders for knowledge transfer between
construction and refinement, especially in hard-constrained VRPs.

Shared representation across paradigms via a unified encoder. Given an instance batch {Gi}Bi=1,
both paradigms learns to obtain high-dimensional node embeddings hi via encoders. For CVRPBLTW,
each node vi is represented by its coordinates, demand (i.e., linehaul or backhaul), time window,
and duration limit, i.e., f n

i = {xi, yi, qi, li, ui, ℓ}. Unlike construction, refinement also incorporates
solution features by encoding the sequential structure via positional information. To support both
paradigms, we use a shared 6-layer Transformer encoder (Kwon et al., 2020) with multi-head attention.
Positional encoding, required only in refinement, is injected using cyclic positional encoding via the
synthesis attention mechanism (Ma et al., 2022). As shown in Figure 2, a multi-layer perceptron
(MLP) fuses node-level attention scores an and solution-level scores as from positional embedding
vectors via element-wise aggregation.

Decoder. The decoder generates action probabilities from node representations, selecting the next
node for construction or the modification for refinement. In CaR, we retain the original neural solver
designs when applied to one construction and one improvement at a time. To validate generality,
we experiment with two construction backbones, POMO (Kwon et al., 2020) and PIP (Bi et al.,
2024), and two refinement backbones, NeuOpt (Ma et al., 2023) and N2S (Ma et al., 2022). To
adapt improvement solvers for new variants (e.g., TSPTW, CVRPBLTW), we follow their original
design and introduce variant-specific features, such as refinement history and node-level feasibility
information (see Appendix C for details), to enhance constraint awareness. While we also explored
a unified decoder, results in Figure 8 show degraded performance, suggesting that while a shared
encoder benefits representation learning, separate decoders remain important for paradigm-specific
optimization – an insight for future reference.
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Table 2: Results on complex VRPs: best are bolded; best within 1 min are shaded to show solver efficiency.

Method #Params Paradigm §
n=50 n=100

Obj. ↓ Gap ↓ Infsb% ↓ Time Obj. ↓ Gap ↓ Infsb% ↓ Time
T

SP
T

W
LKH-3 (max trials = 100) / I 25.590 0.004% 11.88% 7m 46.625 0.103% 31.05% 27m
LKH-3 (max trials = 10000) / I 25.611 ⋄ 0.12% 7h 46.858 ⋄ 0.13% 1.4d
OR-Tools† / I 25.763 -0.001% 65.72% 2.4h 46.424 0.026% 97.45% 12m
Greedy-L / C / / 100.00% 21.8s / / 100.00% 1m
Greedy-C / C 26.394 1.534% 72.55% 4.5s 51.945 9.651% 99.85% 11.4s

POMO 1.25M L2C-S / / 100.00% 4s / / 100.00% 14s
POMO* 1.25M L2C-S 26.222 1.635% 37.27% 4s 47.249 1.959% 38.22% 14s
POMO* + PIP (greedy) 1.25M L2C-S 25.657 0.177% 2.67% 7s 47.372 1.223% 6.96% 32s
POMO* + PIP (sample 10) 1.25M L2C-S 25.650 0.152% 1.87% 1m 47.291 1.026% 4.47% 4.7m
UDC* (RRC = 250) 1.56M L2C-S / / 100.00% 2.4h / / 100.00% 4.9h
NeuOpt-GIRE ∗‡ (T = 1k) 0.69M L2I-S 25.627 0.061% 0.19% 2.3m 47.011 0.336% 0.13% 5.9m
NeuOpt-GIRE ∗‡ (T = 2k) 0.69M L2I-S 25.621 0.044% 0.04% 4.6m 46.955 0.215% 0.06% 11.8m
NeuOpt-GIRE ∗‡ (T = 5k) 0.69M L2I-S 25.617 0.028% 0.02% 11.6m 46.913 0.123% 0.02% 30m
NCS ∗‡ 1.64M L2(C+I)-S / / 100.00% 11.6m / / 100.00% 30m

CaR-POMO (TR = 5) (Ours) 1.64M L2(C+I)-S 25.619 0.034% 0.02% 15s 47.278 1.065% 4.20% 36s
CaR-POMO (TR = 10) (Ours) 1.64M L2(C+I)-S 25.615 0.020% 0.01% 27s 47.074 0.581% 2.77% 1.1m
CaR-POMO (TR = 20) (Ours) 1.64M L2(C+I)-S 25.614 0.014% 0.01% 51s 47.001 0.406% 2.34% 2.1m
CaR-PIP (TR = 5) (Ours) 1.64M L2(C+I)-S 25.613 0.010% 0.02% 17s 47.000 0.315% 0.10% 58s
CaR-PIP (TR = 10) (Ours) 1.64M L2(C+I)-S 25.612 0.006% 0.01% 29s 46.945 0.191% 0.03% 1.4m
CaR-PIP (TR = 20) (Ours) 1.64M L2(C+I)-S 25.612 0.005% 0.00% 52s 46.923 0.146% 0.02% 2.4m

C
V

R
PB

LT
W

OR-Tools (short) / I 14.890 1.402% 0.00% 10.4m 25.979 2.518% 0.00% 20.8m
OR-Tools (long) / I 14.677 ⋄ 0.00% 1.7h 25.342 ⋄ 0.00% 3.5h

POMO 1.25M L2C-S 15.999 9.169% 0.00% 2s 27.046 7.004% 0.00% 4s
POMO-MTL 1.25M L2C-M 15.980 9.035% 0.00% 2s 27.247 7.746% 0.00% 7s
MVMoE 3.68M L2C-M 15.945 8.775% 0.00% 3s 27.142 7.332% 0.00% 10s
ReLD-MoEL 3.68M L2C-M 15.925 8.623% 0.00% 3s 27.044 6.915% 0.00% 9s
POMO+EAS+SGBS* (short) 1.25M L2C-S 15.386 4.831% 0.00% 25s 26.005 2.616% 0.00% 2.3m
POMO+EAS+SGBS* (long) 1.25M L2C-S 15.156 3.263% 0.00% 10.3m 25.558 0.854% 0.00% 1h
NeuOpt-GIRE ∗‡ (T = 1k) 0.69M L2I-S 14.521 1.329% 33.80% 1.1m 24.597 3.390% 51.20% 2.5m
NeuOpt-GIRE ∗‡ (T = 2k) 0.69M L2I-S 14.352 -0.031% 31.00% 2.2m 24.365 0.875% 44.50% 5.1m
NeuOpt-GIRE ∗‡ (T = 5k) 0.69M L2I-S 14.201 -1.163% 27.30% 5.5m 24.038 -1.541% 39.10% 12.7m

POMO* (Ours) 1.25M L2C-S 14.873 2.310% 0.00% 2s 24.592 -1.645% 0.00% 4s
CaR (k-opt) (TR = 5) (Ours) 1.64M L2(C+I)-S 14.872 2.271% 0.00% 3s 24.597 -1.674% 0.00% 5s
CaR (k-opt) (TR = 10) (Ours) 1.64M L2(C+I)-S 14.865 2.227% 0.00% 4s 24.589 -1.707% 0.00% 9s
CaR (k-opt) (TR = 20) (Ours) 1.64M L2(C+I)-S 14.844 2.114% 0.00% 8s 24.585 -1.724% 0.00% 17s
CaR (R&R) (TR = 5) (Ours) 1.72M L2(C+I)-S 14.725 1.328% 0.00% 3s 24.552 -1.835% 0.00% 6s
CaR (R&R) (TR = 10) (Ours) 1.72M L2(C+I)-S 14.661 0.878% 0.00% 5s 24.474 -2.149% 0.00% 10s
CaR (R&R) (TR = 20) (Ours) 1.72M L2(C+I)-S 14.601 0.463% 0.00% 10s 24.400 -2.448% 0.00% 19s

§ The abbreviations refer to: I – Improvement; L2C – Learning to Construct; L2I – Learning to Improve; S – Single-task solver; M – Multi-task solver.
† OR-Tools presolves before search; if it detects infeasibility, it terminates immediately, making runtime shorter than preset.

5 EXPERIMENTS

We now evaluate our proposed Construct-and-Refine (CaR) framework in handling hard-constrained
TSPTW and CVRPBLTW instances. We also provide detailed analysis and ablation studies.

Experimental settings. Training instances are generated on the fly as in (Zhou et al., 2024; Bi
et al., 2024) (see Appendix B). For TSPTW, we mainly focus on the hard variants in (Bi et al.,
2024). All experiments are conducted on problem sizes n = 50 and 100, following established
benchmarks (Kool et al., 2018; Wu et al., 2021). Models are trained with 20,000 instances per epoch
for 5,000 epochs with a batch size of 128 (Zhou et al., 2024). We set TR = 5 during training. During
inference, 8× augmentation (Kwon et al., 2020) is used to construct initial solutions, followed by
TR-step refinement. Hyper-parameters are detailed in Appendix D.1. All experiments are conducted
on servers equipped with NVIDIA GeForce RTX 4090 GPUs and Intel(R) Core i9-10940X CPUs at
3.30GHz. Our code, pre-trained models, and datasets will be publicly released upon acceptance.

Baseline. We compare our CaR framework with state-of-the-art (SoTA) classic and neural VRP
solvers. Classic solvers include 1) LKH-3 (Helsgaun, 2017); 2) OR-Tools (Furnon & Perron, 2024);
3) Greedy heuristics, minimizing stepwise tour length (L) and constraint violation (C); and 4) HGS
(Vidal et al., 2012). Neural solvers include 1) construction solvers such as the single-task solvers
AM (Kool et al., 2018), POMO (Kwon et al., 2020) (+EAS (Hottung et al., 2022) + SGBS (Choo
et al., 2022)), BQ-NCO (Drakulic et al., 2023), LEHD (+RRC) (Luo et al., 2023), UDC (+RRC)
(Zheng et al., 2024), InViT (Fang et al., 2024), PIP (Bi et al., 2024) and PolyNet (Hottung et al.,
2025), as well as the multi-task solvers POMO-MTL (Liu et al., 2024a), MVMoE (Zhou et al., 2024)
and ReLD-MoEL (Huang et al., 2025); 2) the improvement solver NeuOpt-GIRE (Ma et al., 2023);
and 3) hybrid solvers, including LCP (Kim et al., 2021). All construction and improvement methods
are trained for ∼780k (Zhou et al., 2024) (except UDC) and ∼600k gradient steps (Ma et al., 2023),
respectively, with all methods observed to be converged. For fair comparisons, we use pre-trained
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Figure 3: Performance over time on TSPTW-100 (left) and CVRPBLTW-100 (right). For CVRP-
BLTW, POMO+EAS+SGBS and CaR always achieve 0% infeasibility due to feasibility guarantee
by masking. Dots with black circles represent results reported in Table 2.

models. We note that many baselines were originally designed for simple VRPs (e.g., CVRP) and
are not directly applicable to complex variants such as TSPTW and CVRPBLTW. To ensure fair
comparison, we upgrade the SoTA neural solvers NeuOpt-GIRE (Ma et al., 2023), UDC (Zheng et al.,
2024), and POMO+EAS+SGBS (Choo et al., 2022) using our design enhancements: the relaxed
CMDP formulation in Eq. (2) (marked with *) and the proposed solution-level features (marked with
‡; Appendix C). Baseline selection and implementation details are provided in Appendix D.2.

Evaluation metrics. We evaluate performance using the metrics below: 1) average solution length
(Obj.), representing the mean length of the best feasible solutions; 2) average optimality gap (Gap),
measuring the difference between the best feasible solutions and (near-)optimal solutions obtained by
the best-performing classic solvers (LKH-3 for TSPTW, OR-Tools for CVRPBLTW, and HGS for
CVRP, marked with ⋄); 3) total inference time (Time) taken to solve 10,000 instances for TSPTW or
1,000 instances for CVRPBLTW and CVRP, parallelized on a single GPU; and 4) average infeasible
solution ratio (Infsb%) on the best solutions after construction and refinement per instance.

5.1 MODEL PERFORMANCE ON VRPS WITH VARYING CONSTRAINT COMPLEXITIES

TSPTW results. We first test CaR on TSPTW, where most neural solvers fail due to their reliance
but lack of feasibility masking. We use two construction backbones: the lightweight POMO* and the
heavier but more effective PIP, with CaR-POMO training 1.42× faster at n = 50 and 1.65× faster
at n = 100 than CaR-PIP. As shown in Table 2, CaR-POMO consistently outperforms PIP in both
solution quality and feasibility. On TSPTW-50, CaR reduces infeasibility to 0.00%, outperforming
the best construction baseline PIP (1.87%) and our upgraded SoTA improvement solver NeuOpt-
GIRE* (0.02%). In terms of optimality, CaR nearly matches LKH-3, achieving a minimal gap of
0.005%. On TSPTW-100, CaR lowers PIP’s 4.67% infeasibility to 0.02% and reduces the gap from
1.030% to 0.146%. While NeuOpt* improves with extended search (up to 30 minutes), CaR achieves
competitive results with an 8× speedup within a runtime budget of 10 minutes (Figure 3), which
aligns with CaR’s aim of efficiency. Notably, CaR surpasses LKH-3 and finds feasible solutions
even when it fails, highlighting CaR’s strength under complex constraints. Moreover, we present the
case study of CaR’s refinement trajectories in Appendix E.6 to show how CaR intelligently refines
solutions for feasibility and optimality.
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BQ-NCO

LEHD
INViT UDC

MVMoE CaR
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20

O
pt

im
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ity
 g

ap
 (%

)

Figure 4: CVRPLIB results.

CVRPBLTW results. On complex CVRPBLTW, feasibility
masking filters out over 60% of nodes, severely limiting the
search space (Figure 6). Interestingly, removing these masks and
applying the relaxed CMDP in POMO significantly improves
performance (e.g., CVRPBLTW-100: from 7.004% to -1.645%
in Table 2). Unlike TSPTW, NeuOpt* fails in CVRPBLTW with
27-51% infeasibility, while CaR guarantees feasibility as other
construction solvers. We compare CaR with the best single-
paradigm solvers in Figure 3. CaR achieves best area under the
curve, indicating superior efficiency and effectiveness. We also
validate CaR with k-opt and R&R, where R&R performs better
(-2.448% vs. -1.724%) due to a finer-grained search better suited
to multi-constraints variants. Lastly, we observe that the performance of multi-task neural solvers
is largely bottlenecked by their backbone (e.g., POMO), suggesting CaR can serve as a stronger
backbone for future NCO foundation models.
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Table 3: Results on TSPDL-50.

Method Gap↓ Infsb%↓ Time

PIP (greedy) 3.122% 2.12% 9s
PIP (sample) 2.630% 1.86% 60s
CaR-PIP 2.190% 0.26% 53s

Table 4: Results on SOP-50.

Method SOP Variant 1 SOP Variant 2
Obj. ↓ Gap↓ Obj. ↓ Gap ↓

LKH-3 14.732 ⋄ 16.302 ⋄
POMO 14.943 1.436% 16.376 0.463%

CaR 14.831 0.676% 16.316 0.084%

Table 5: Effects of joint training on TSPTW-50 under fixed bud-
get. Construction cannot be trained with LKH-3 or pretrained
improvement without extra design. See Appendix E.5 for more.

Joint train Construction Improvement Gap↓ Infsb%↓
× Random LKH-3 0.011% 60.66%
× Random Pretrained NeuOpt* (long) / 100.00%
× Random Trainable NeuOpt* (short) / 100.00%

× Pretrained PIP LKH-3 0.003% 0.20%
× Pretrained PIP Pretrained NeuOpt* (long) 0.134% 0.79%
× Pretrained PIP Trainable NeuOpt* (short) 0.172% 2.59%

✓ (CaR) Trainable PIP Trainable NeuOpt* (short) 0.005% 0.00%

Results on other VRP variants. We also evaluate CaR on TSP with draft limit (TSPDL), sequential
ordering problem (SOP) with discrete precedence constraints and CVRP. Results in Table 3, Table 4
and Appendix E.2 show that CaR consistently delivers competitive results while maintaining efficiency
of the neural solvers across different constrained VRPs. To test CaR’s generalization across scales,
distributions, and simpler VRP variants, we apply it to CVRP and evaluate on CVRPLIB. As shown
in Figure 4, CaR achieves strong performance and generalization. Notably, it is the first neural
solver to efficiently handle constraints of varying complexity, unlike prior solvers that are either
variant-specific (e.g., Bi et al. (2024)) or inefficient (e.g., Ma et al. (2023)).

5.2 EFFECTS OF THE JOINT TRAINING FRAMEWORK

We assess combinations of different construction (random or pretrained PIP) and improvement
methods (LKH-3, pretrained long-horizon NeuOpt, and our short-horizon NeuOpt). Table 5 shows
that naive combinations yield only marginal gains over PIP alone (0.172% vs. 0.177% gap; 2.59%
vs. 2.67% infeasibility). Thus, simply substituting random initialization with a high-quality one is
insufficient. However, CaR’s joint training unlocks significant performance gains. Despite similar
construction quality between pretrained PIP and CaR-PIP (results not shown), the latter exhibits
markedly superior refinement. This confirms a non-trivial synergy in CaR, where initialization is
specifically tailored for the subsequent refinement.

5.3 EFFECTS OF THE DIVERSIFICATION SIGNAL LDIV

Table 6: Effects of LDIV.

Problem LDIV Gap ↓ Infsb% ↓

CVRP × 0.325% 0.00%
✓ 0.259% 0.00%

TSPTW × 0.421% 0.58%
✓ 0.014% 0.01%

We investigate the impact of the diversity loss (Eq. 4) in
our joint training framework. Recall that while multi-start
mechanisms improve performance on simpler problems like
CVRP (as shown in Table 12), they often degrade performance
on complex constraints like time windows (Bi et al., 2024).
Hence, we sample S start nodes to calculate the group baseline
in the construction module rather than enumerating all nodes.
To compensate for the resulting loss of diversity, we introduce
LDIV. Results in Table 6 show that adding LDIV improves overall performance, even when multi-start
is enabled in simple CVRP. To verify the diversity increment, we quantify the solution diversity
between the constructed solutions of CaR (trained with LDIV) and PIP (without LDIV). As shown in
Appendix E.3, adding LDIV increases the diversity of CaR’s constructed solutions by ∼15% over the
backbone, confirming that LDIV effectively increases solution diversity and enhances performance.

5.4 EFFECTS OF THE SUPERVISED SIGNAL LSL

We evaluate the impact of the supervised loss LSL (Eq. 5) in CaR using two construction backbones:
POMO and PIP. Results in Table 7 indicate that the efficacy of the supervised loss depends on
the strength of the underlying backbone. For the strong backbone (PIP), which is already highly
optimized, with the gap of 0.177% and infeasibility rate of 2.67% (as in Table 2), adding LSL
yields only marginal gains; specifically, the gap improves slightly from 0.006% to 0.005%, and the
infeasibility rate improves from 0.01% to 0.00%. In contrast, for the weaker backbone (POMO*),
where the standalone model performs poorly, with the optimality gap of 1.959% and infeasibility rate
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Table 7: Effects of LSL.

Backbones LSL Gap ↓ Infsb%↓
CaR-POMO × 0.136% 0.29%
CaR-POMO ✓ 0.014% 0.01%

CaR-PIP × 0.006% 0.01%
CaR-PIP ✓ 0.005% 0.00%

Table 8: Effects of shared representation on TSPTW.

Shared Rep. #Params
TSPTW-50 Hard TSPTW-100 Medium
Gap ↓ Infsb% ↓ Gap ↓ Infsb% ↓

× 2.8M 0.199% 0.68% 7.589% 0.00%
✓ 1.6M 0.014% 0.01% 5.815% 0.00%

Table 9: Generalization results on CVRPBLTW-200. The runtime for OR-Tools is 1.8h.

Method Train Scale Test Scale Gap ↓ Infsb% ↓ Time

POMO*+EAS+SGBS (Choo et al., 2022) 100 200 4.51% 0.00% 2.1m
NeuOpt* (Ma et al., 2023) 100 200 6.37% 75.78% 17m

CaR (R&R, TR = 20) 100 200 2.09% 0.00% 10s

Table 10: Generalization results on TSPTW-100 Hard with different time windows tightness.

Method Train Test Gap ↓ Infsb% ↓ Time

PIP (sample 5) tight tight 0.26% 4.62% 2.3m
PIP (sample 5) loose tight 0.03% 31.37% 2.3m
CaR-PIP (TR = 20) loose tight 0.02% 3.52% 2.3m

of 38.22%, the supervised signal is critical. In this case, joint training with LSL markedly improves
performance, reducing the gap from 0.136% to 0.014%, and the infeasibility from 0.29% to 0.01%.

5.5 EFFECTS OF THE SHARED REPRESENTATION

We study the effect of our shared representation via a unified encoder. As shown in Table 8, CaR
with shared representation performs better on both hard-constrained cases (TSPTW-50 Hard and
TSPTW-100 Medium), indicating improved knowledge transfer across paradigms. Compared with
using separate encoders and decoders, which share only the constructed solutions, CaR also reduces
the number of learnable parameters. See Appendix E.4 for further analysis.

5.6 GENERALIZATION RESULTS

We now evaluate CaR’s generalization performance across problem scales and constraint hardness.
Regarding cross-scale generalization, where CaR is trained on CVRPBLTW-100 and tested on
CVRPBLTW-200, results show that CaR significantly outperforms other SoTA neural baselines,
maintaining 0% infeasibility and the lowest optimality gap within 10 seconds. Furthermore, for
cross-constraint generalization, Table 10 demonstrates that CaR trained on loose constraints even
outperforms PIP trained on tight constraints (see Appendix B.1 for data generation details).

6 CONCLUSION

This paper proposes Construct-and-Refine (CaR), the first neural framework to handle constraints
through a new explicit feasibility refinement scheme, extending beyond feasibility masking and
implicit feasibility awareness. CaR jointly learns to construct diverse, high-quality solutions and
refine them with a lightweight improvement module, enabling efficient constraint satisfaction. We
also explore shared encoders for cross-paradigm representation learning. To best of our knowledge,
CaR is the first neural solvers applicable and effective on VRPs with varying constraint hardness.

Future work includes 1) integrating CaR with diverse backbone solvers, 2) applying to more con-
strained VRPs or even broader COPs, e.g. scheduling (Zhang et al., 2020; 2024), 3) improving scala-
bility, 4) studying its theoretical properties, e.g. learnability (Yuan et al., 2022), convergence (Agarwal
et al., 2021; Thoma et al., 2024), or generalization bound (Duan et al., 2021), and 5) developing
foundation NCO models based on the insights of cross-paradigm representation in this paper.
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REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. The datasets used in our
experiments are publicly available or generated following standard protocols, with all instance
generation details provided in Appendix B. The model architecture is described in Appendix C, with
hyperparameters and training/inference configurations detailed in Appendix D.1. Implementation
details and the selection criteria for baselines are provided in Appendix D.2. Additional ablation
studies and robustness checks are reported in Section 5 and Appendix E. Our code, pre-trained
models, and datasets will be publicly released under the MIT License upon acceptance.
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A DETAILED LITERATURE REVIEW: NEURAL VRP SOLVERS

Generally, neural VRP solvers can be broadly categorized into two paradigms: construction solvers
and improvement solvers.

1) Construction-based solvers learn to construct solutions from scratch in an end-to-end fashion.
Vinyals et al. (2015) introduced the Pointer Network (PtrNet), leveraging Recurrent Neural Networks
(RNN) to solve the Traveling Salesman Problem (TSP) in a supervised manner. Building on this,
Bello et al. (2017) explored reinforcement learning (RL) training for PtrNet. Nazari et al. (2018)
extended the approach to solve CVRP in an autoregressive (AR) way. Among AR solvers, the
Attention Model (AM) (Kool et al., 2018) stands out as a milestone to solve multiple VRPs. This was
further advanced by the Policy Optimization with Multiple Optima (POMO) (Kwon et al., 2020),
which leverages diverse rollouts inspired by the symmetry properties of VRP solutions. Subsequently,
numerous studies have advanced AR solvers in various perspectives, such as inference strategies
(Hottung et al., 2022; Choo et al., 2022; Sun et al., 2023), training paradigms (Kim et al., 2022;
Drakulic et al., 2023; Chalumeau et al., 2023; Grinsztajn et al., 2023; Luo et al., 2023; Hottung et al.,
2025; Luo et al., 2025), interpretability (Kikuta et al., 2024), scalability (Zong et al., 2022; Jin et al.,
2023; Hou et al., 2023; Fitzpatrick et al., 2024), robustness (Geisler et al., 2022; Xiao et al., 2024),
benchmarking (Thyssens et al., 2023), and generalization over different distributions (Zhang et al.,
2022; Bi et al., 2022; Jiang et al., 2022), scales (Zhou et al., 2023; Gao et al., 2024; Fang et al.,
2024), and constraints (Lu et al., 2023; Wang & Yu, 2023; Zhou et al., 2024; Liu et al., 2024a; Berto
et al., 2024; Lin et al., 2024). Beyond AR solvers, another line of research predicts heatmaps in a
non-autoregressive (NAR) manner to represent edge probabilities for optimal solutions (Joshi et al.,
2019; Hudson et al., 2022; Qiu et al., 2022; Sun & Yang, 2023; Min et al., 2023; Yu et al., 2024).
With the learned heatmap, these solvers can greatly reduce the search space. Despite showing better
scalability, NAR solvers often depend on post-search procedures, which can be either time-consuming
or ineffective in handling VRP constraints, even for the simple cases such as CVRP.

2) Improvement-based solvers learns to iteratively improve initial solutions, drawing inspiration from
classic (meta-)heuristics such as k-opt (e.g., 2-opt (Costa et al., 2020; Wu et al., 2021; Ma et al.,
2021), extended to flexible k-opt (Ma et al., 2023)), ruin-and-repair (Hottung & Tierney, 2022; Ma
et al., 2022), and crossover (Kim et al., 2023). In general, improvement-based methods can achieve
near-optimal solutions given prolonged search time, whereas construction-based methods typically
offer a more efficient trade-off between performance and runtime.

Moreover, there has been growing interest in exploring the potential of large language models (LLMs)
in generating solutions, algorithms, and formulations for VRPs. This emerging trend can be catego-
rized into three main approaches. The first approach focuses on designing advanced prompts that
enable LLMs to directly generate VRP solutions (Yang et al., 2024; Wang et al., 2024; Iklassov et al.,
2024; Huang et al., 2024; Abgaryan et al., 2024). While these methods demonstrate the preliminary
capability of LLMs in solving combinatorial optimization problems (COPs), they are currently limited
to small-scale instances (i.e., n < 30), restricting their practical applicability. The second approach
leverages the coding capabilities of LLMs to generate heuristics for COPs. AEL (Liu et al., 2023) and
FunSearch (Romera-Paredes et al., 2024) first showcased LLMs’ ability to generate core heuristic
components, successfully solving certain NP-hard mathematical problems. Later, EoH (Liu et al.,
2024b) introduced an evolution-based heuristic generation framework that iteratively improves initial
heuristics. Subsequent works have enhanced LLM-driven heuristic generation by incorporating addi-
tional information—such as reflective mechanisms (Ye et al., 2024a) and diversity information (Dat
et al., 2024)—as well as leveraging multi-agent frameworks (Sun et al., 2024), extending the approach
to multi-objective problems (Yao et al., 2024), and improving exploration efficiency (Zheng et al.,
2025). The third approach utilizes LLMs to translate problem descriptions from natural language into
mathematical formulations, streamlining downstream optimization tasks (Tang et al., 2024).

B PROBLEM SELECTION AND DATA GENERATION

As a single-task solver focused on constraint handling, our work aligns with prior single-task studies
that typically evaluate 2-3 representative VRPs. Specifically, we consider three representative VRPs:
complex constrained VRPs where feasibility masking is NP-hard thus intractable (TSPTW) or
tractable but ineffective (CVRPBLTW), and simpler constraints (CVRP) where feasibility masking
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is tractable and effective. Below we introduce the detailed data generation process. Following the
convention, all the node coordinates are generated under a uniform distribution, i.e., xi, yi ∼ U [0, 1].

B.1 TRAVELING SALESMAN PROBLEM WITH TIME WINDOW (TSPTW)

We primarily follow the settings of a recent study (Bi et al., 2024), which introduced TSPTW with
three difficulty levels: Easy (Chen et al., 2024), Medium, and Hard. Given our focus on complex
constrained VRPs, we report results on the Hard variant in the main tables, consistent with the
benchmark dataset in (Da Silva & Urrutia, 2010). Except for the experiment in Table 8, where we
use the Medium variant to show how CaR’s unified encoder works as constraint hardness changes, all
other TSPTW experiments default to the Hard setting.

NP-hardness of computing feasibility masking on TSPTW. During solution construction, neural
solvers typically apply feasibility masking to exclude actions that violate constraints. In TSPTW, for
instance, a node vj is masked out if its arrival time tj exceeds its time window end uj , i.e., tj > uj .
However, as highlighted in PIP (Bi et al., 2024), feasibility in TSPTW is not purely local: selecting
a node affects the current time, which in turn influences the feasibility of all future selections due
to interdependent time window constraints. For example, a node with a late time window might
be locally feasible, but choosing it can delay the tour such that earlier nodes become unreachable,
leading to irreversible infeasibility. Ensuring global feasibility thus requires evaluating whether a
current decision allows for any feasible completions, i.e., a process that involves simulating all future
possibilities. This renders feasibility masking itself NP-hard, compounding the inherent difficulty of
solving TSPTW.

TSPTW Hard. We first generate a random permutation τ of the node set and sequentially as-
sign time windows to ensure the existence of a feasible solution for each instance. The time
windows are drawn from a uniform distribution, where the lower and upper bounds are given by
li ∼ U [CL(τ

′
i)− η, CL(τ

′
i)] , ui ∼ U [CL(τ

′
i), CL(τ

′
i) + η], where CL(τ

′
i) denotes the cumulative

tour length of the partial sequence τ ′ up to step i, and η controls the time window width. To adap-
tively scale time windows with problem size, we set η = n, offering greater flexibility than the fixed
value of 50 used in (Bi et al., 2024). Concretely, in PIP (Bi et al., 2024), the time window width
for TSPTW-Hard decreases as the problem size increases. To scale time windows adaptively with
instance size, we set instead of using PIP’s fixed value of 50, resulting in a different setting, i.e., a
looser time window for TSPTW-100. We note that we evaluate our CaR trained on this new adaptive
setting in most of the tables in this work, except Table 10, which uses the original TSPTW-100
dataset from PIP (with significantly tighter time window constraints than our training set). Time
windows are then normalized following (Kool et al., 2018) to facilitate neural network training.
Since TSP solutions form a Hamiltonian cycle, it is equivalent to setting any node as the starting
point. Thus, we designate a specific starting node for TSPTW by redefining its upper bound u0 as
u0 = max (ui + CL(e(vi, v0))) , i ∈ [1, n].

TSPTW Medium. We generate the lower and upper bounds of the time windows following a
uniform distribution: li ∼ U [0, TN ], where TN estimates the expected tour length for the given
problem scale (e.g., T20 ≈ 10.9 (Chen et al., 2024)). The upper bound ui is derived from li as
ui ∼ li + TN · U [0.1, 0.2]. While this data generation rule does not guarantee instance feasibility,
preliminary results show that the time windows overlap significantly, leading to a high feasibility rate
in the generated instances.

For all the TSPTW instances, we normalize all li and ui by u0 to ensure their values fall within
[0, 1]. Training data is generated on the fly, while inference uses the dataset from (Bi et al., 2024)
for fair comparison. As noted in (Bi et al., 2024), all test instances are verified to be feasible, either
empirically or theoretically.

B.2 CAPACITATED VRP WITH BACKHAUL, DURATION LIMIT, AND TIME WINDOW
CONSTRAINTS (CVRPBLTW)

CVRPBLTW follows the setting in (Zhou et al., 2024; Liu et al., 2024a; Li et al., 2021) and includes
four key constraints: 1) Capacity (C). Each node’s demand qi is sampled from U(1, . . . , 9), and
the vehicle’s capacity Q varies by problem scale, with Q50 = 40 and Q100 = 50. 2) Backhaul (B).
Node demands are sampled from a discrete uniform distribution {1, . . . , 9}, with 20% of customers
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randomly designated as backhauls. Routes include both linehauls and backhauls without strict
precedence constraints. 3) Duration Limit (L). The maximum route length is set to ℓ = 3, ensuring
feasible solutions in the unit square space U(0, 1). 4) Time Window (TW). The depot time window
is defined as [l0, u0] = [0, 3], and each customer node has a service time of si = 0.2. The time
window for node vi is computed as follows: the center is sampled as γi ∼ U(l0+CL(e(v0, vi)), u0−
CL(e(vi, v0)) − si), where CL(e(v0, vi)) = CL(e(vi, v0)) represents the travel time between the
depot v0 and node vi. The half-width is drawn from wi ∼ U( si2 ,

u0

3 ) = U(0.1, 1). Finally, the time
window is set as [li, ui] = [max(l0, γi − wi),min(u0, γi + wi)]. Training data is generated on the
fly, while inference uses the 1k-instance dataset from (Zhou et al., 2024) for fair comparison.

B.3 CAPACITATED VEHICLE ROUTING PROBLEM (CVRP)

We follow the standard setting (Kool et al., 2018; Ma et al., 2021; Kwon et al., 2020). Each node’s
demand qi is sampled from U(1, . . . , 9), with vehicle capacities set to Q50 = 40 and Q100 = 50.
Training data is generated on the fly, while inference uses the dataset from (Zhou et al., 2024) for fair
comparison.

B.4 TRAVELING SALESMAN PROBLEM WITH DRAFT LIMIT (TSPDL)

TSPDL arises in marine transportation, where vessel capacity constraints must be considered. Each
node corresponds to a port with a demand qi and a draft limit di. Instances are generated from a
TSP by assigning σ% of nodes draft limits smaller than the total demand, i.e., di ∼ [qi,

∑n
j=0 qj ],

while the remaining nodes are set to di =
∑n

j=0 qj . Feasible solutions are guaranteed during instance
generation. Following Bi et al. (2024), we adopt the Hard setting with σ = 90, and during inference
we directly use the datasets from Bi et al. (2024) for fair comparison.

B.5 SEQUENTIAL ORDERING PROBLEM (SOP)

SOP (Montemanni et al., 2008) is a routing problem defined by precedence constraints. It can be
defined on a graph G = {V, E}. The objective is to find a permutation τ = {v1, · · · , vn} with fixed
start and end nodes v1 and vn that minimizes the total travel cost, subject to all precedence constraints
(vi, vj) ∈ P , i.e., vi must precede vj . To ensure feasibility, we sample a random valid permutation,
identifying all implied precedence pairs. We then randomly sample h% of these pairs as constraints
using a mixture of pairwise Euclidean distance (weight g) and random noise (weight 1 − g). We
evaluate CaR on two SOP variants: Variant 1 (h = 20, g = 0.3) and Variant 2 (h = 20, g = 0.8).

C NETWORK ARCHITECTURE

The network architectures of mainstream neural construction and improvement solvers are typically
based on a Transformer encoder with an attention-based decoder, enabling unification across both
paradigms. In this paper, we adopt a unified encoder shared by the construction and refinement
decoders. Specifically, we use a 6-layer Transformer encoder, following POMO (Kwon et al., 2020),
while retaining the original decoders from NeuOpt (Ma et al., 2023) and N2S (Ma et al., 2022),
corresponding to two representative local search operators: flexible k-opt (Ma et al., 2023) and
remove-and-reinsertion (R&R) (Ma et al., 2022), respectively. For the unexplored variants TSPTW
and CVRPBLTW, we design new constraint-related features analogous to the contextual features
used in the original decoders. The concrete forward processes are introduced below.

C.1 ENCODER

As shown in Figure 2, the construction module first takes node features f n
i —including coordinates

(xi, yi) and constraint-related features (e.g., time windows [li, ui] and demand qi)—as input. For
each node vi, these features are projected into a d-dimensional embedding h

(0)
i ∈ Rd (d = 128) via

a linear layer. The initial embedding is then passed through a 6-layer Transformer network (Kwon
et al., 2020). At each layer j (j = 1, · · · , 6), the embedding h

(j−1)
i is projected into query, key, and

value vectors:
q
(j)
i = W (j)

q h
(j−1)
i , k

(j)
i = W

(j)
k h

(j−1)
i , v

(j)
i = W (j)

v h
(j−1)
i , (6)
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where W
(j)
q ,W

(j)
k ,W

(j)
v ∈ Rd×d. These are fed into a multi-head attention (MHA) layer, whose

output is:

h̃
(j)
i = Softmax

(
(q

(j)
i )⊤k

(j)
i√

d

)
v
(j)
i . (7)

The MHA output is then linearly transformed:

ĥi(j) = W
(j)
MHAh̃i

(j), (8)

where WMHA(j) ∈ Rd×d. This passes through instance normalization with residual connection:

h′(j)
i = IN

(
ĥ
(j)
i + h

(j−1)
i

)
. (9)

Next, a feed-forward (FF) layer refines the output:

h′′(j)
i = W

(j)
2 · ReLU

(
W

(j)
1 h′(j)

i

)
, (10)

where W
(j)
1 ∈ Rd×d′

, W (j)
2 ∈ Rd′×d, and d′ = 512 as in (Kwon et al., 2020). The final embedding

at layer j is:
h
(j)
i = IN

(
h′′(j)

i + h′(j)
i

)
. (11)

Thereafter, this process is repeated for 6 layers, and the final encoder output is hi = h
(6)
i .

When it comes to the refinement module, the input changes from a node feature set to a linked list (i.e.,
the solution), which consists of the original node features plus positional information and a pointer
to the next node in the solution. Notably, for CVRP variants, the depot node may appear multiple
times, with each occurrence treated as a distinct node due to its different position. The refinement
module shares the same operations as the construction module, except for Eq. (7). Specifically, we
first incorporate the cyclic positional encoding (CPE) from (Ma et al., 2021) to obtain the positional
embedding pi ∈ Rd. We then apply a self-attention mechanism:

p̃i = (W p
q pi)

⊤(W p
k pi), (12)

where W p
q ,W

p
k ∈ Rd×d, to compute the positional attention matrix as. We replace Eq. (7) from the

construction module with:

h̃
(j)
i = Softmax

MLP
([

(q
(j)
i )⊤k

(j)
i , p̃i

])
√
d

v
(j)
i , (13)

where the MLP reduces the dimension of the concatenated attention scores, i.e., [an, as] in Figure 2,
from 2 to 1, following the Syn-Att mechanism proposed in (Ma et al., 2022).

C.2 DECODER

The construction decoder primarily employs an MHA layer, where the key and value vectors are
linearly transformed from the node embedding hi. The query vector is computed using contextual
information from the construction process, including: 1) the embedding of the partial solution hs (i.e.,
the node embedding of the last node in the partial solution), and 2) the step-wise solution features
f s, which include the vehicle’s remaining load, current time, and current sub-tour length. The MHA
output is calculated as:

a =

n∑
i=0

Softmax
(
q⊤i ki√

d
+ ξi

)
vi, (14)

where ξi is the feasibility mask for node vi. We mask out visited nodes to ensure solution validity
across all variants. For CVRP, as discussed in Appendix E.1, we also mask nodes that violate capacity
constraints at each construction step. The output of each head is then passed through a linear layer
parameterized by Wo, yielding ha = Woa. Finally, the decoder computes selection probabilities for
all candidate nodes using a single-head attention layer:

pi = Softmax
(
ζ · tanh

(
h⊤
a hi√
d

)
+ ξi

)
, (15)
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where ζ scales the logits to encourage exploration (Kwon et al., 2020).

The refinement decoder follows the original design in the NeuOpt (Ma et al., 2023) and N2S (Ma et al.,
2022), which performs two representative local search operators: the flexible k-opt1 and remove-and-
reinsertion (R&R), respectively. Figure 5 illustrates the detailed improvement process in a single time
step for different local search operators, where each node selection corresponds to a full computation
of the network decoder. Note that although the original NeuOpt and N2S decoders adopt different
architectures, their input and output formats are similar. At each refinement step t = 1, . . . , TR, the
inputs include: (i) the updated node embedding ht

i derived from the previous solution τt−1 (with
τ0 as the top-p initial construction solutions); (ii) refinement features encoding feasibility transition
history for k-opt or removal action history for R&R; and (iii) refinement embedding of the last action
node, analogous to the solution embedding in construction. The output is the selection probability
over candidate nodes for the next refinement operation (e.g., k-opt, removal, or insertion).

To adapt improvement solvers to new variants (e.g., TSPTW, CVRPBLTW), we follow their original
design principles while integrating variant-specific features, such as refinement history and node-level
feasibility information. Specifically, when using the NeuOpt decoder, we encode the feasibility of the
most recent three refinement steps as a binary vector to represent refinement history and incorporate
node-level feasibility features to enhance constraint awareness. For TSPTW, these features include
the arrival time at each node, time window violation value, last node arrival time, and an indicator of
whether the solution becomes infeasible after visiting the current node. For CVRPBLTW, node-level
feasibility features include binary indicators for depot and backhaul nodes, violation values for each
constraint, constraint-related attributes (e.g., arrival time and cumulative distance/demand), and
infeasibility markers indicating whether the solution becomes infeasible before or after visiting the
current node. Adapted NeuOpt variants are marked with ‡ in the main tables.
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Figure 5: Illustration of actions and operations in k-opt (top) and remove-and-reinsertion (bottom).

D IMPLEMENTATION DETAILS

D.1 EXPERIMENTAL SETTINGS

We preset refinement steps TR = 5 during training. Models are trained using Adam with a learning
rate of 1×10−4, weight decay of 1×10−6. Follow the setting of (Kwon et al., 2020), we use instance
normalization in the MHA and set the embedding dimension to 128. To prevent out-of-memory
issues early in training, refinement is activated after a ∼10-epoch warmup of the construction module.
To optimize GPU memory utilization, we adjust the number of refined solutions p separately for each
problem size during training. We set α1 = 0.01 and α2 = 1 in the construction loss, and set ω = 100

1Following (Ma et al., 2023), we set k ≤ 4.
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for TSPTW and CVRP, and 10 for CVRPBLTW based on the relative loss scales between modules
observed during warm-up epochs. During inference, TSPTW and CVRPBLTW results are obtained
without multi-starting, consistent with the training setup. For each augmented instance, we sample
one solution for TSPTW and greedily generate one for CVRPBLTW (p = 1), which are then passed
to the refinement module. For CVRP, Table 12 shows that multi-starting improves performance, so
we apply it during construction but refine only the top p solutions for efficiency, setting p = 2 for
n = 50 and p = 1 for n = 100 due to the GPU memory constraint. We use only one GPU for all
problem sizes during inference to ensure fair comparison across variants.

D.2 BASELINE

We compare our CaR framework with state-of-the-art classic and neural VRP solvers. Since CaR
is positioned as a single-task solver, we primarily compare it against the best-performing single-
task, single-paradigm methods, namely, construction, improvement, and post-construction search
approaches2, for the unexplored hard-constrained problems TSPTW and CVRPBLTW. For com-
pleteness, we also include comparisons with recent multi-task solvers, particularly on benchmark
problems like CVRP and CVRPBLTW. Below, we detail the baseline selection for each problem.

1) TSPTW: We primarily compare against PIP, the SoTA construction solver. No improvement or
post-search methods have been implemented on TSPTW in prior work, so we adapt the single-task
SoTA improvement solver NeuOpt (Ma et al., 2023) (denoted as NeuOpt*‡) and the strongest post-
search method UDC+RRC (Zheng et al., 2024) by incorporating our Lagrangian-relaxed reward and
constraint-related features. This allows us to highlight CaR’s cross-paradigm advantage over all types
of single-paradigm methods. Multi-task solvers are excluded, as they rely on feasibility masking,
which is intractable for TSPTW.

2) CVRPBLTW: As this variant has only been addressed by multi-task solvers in prior work, we
primarily compare against them. Among single-task methods, POMO (Kwon et al., 2020), as
implemented in MVMoE (Zhou et al., 2024), is the best-performing construction solver. No single-
task improvement or post-search methods have been applied to CVRPBLTW, so we adapt the
SoTA improvement solver NeuOpt (Ma et al., 2023) (denoted as NeuOpt*‡) and the strongest post-
search method UDC+RRC (Zheng et al., 2024) by incorporating our Lagrangian-relaxed reward and
constraint-related features. However, UDC cannot handle multiple constraints simultaneously, so we
instead adapt the relaxed reward to SGBS (Choo et al., 2022) on top of POMO.

3) CVRP: CVRP is a well-studied variant that most of the neural VRP solvers have implemented on.
For comprehensiveness, we compare with multiple recent baselines listed in Table 11.

Table 11: Neural baselines for CVRP result comparison.

Type Paradigm Neural baselines

Single-task Construction AM (Kool et al., 2018), POMO (Kwon et al., 2020), BQ-NCO (Drakulic et al., 2023), LEHD (Luo et al., 2023),
UDC (Zheng et al., 2024), InViT (Fang et al., 2024), PolyNet (Hottung et al., 2025)

Single-task Construction + Post-search SGBS (Choo et al., 2022) (on top of POMO+EAS (Hottung et al., 2022)),
RRC (Luo et al., 2023) (on top of LEHD and UDC)

Multi-task Construction POMO-MTL (Liu et al., 2024a), MVMoE (Zhou et al., 2024), ReLD-MoEL (Huang et al., 2025)
Single-task Improvement NeuOpt-GIRE (Ma et al., 2023)
Single-task Construction + Improvement AM+LCP (Kim et al., 2021)

We then introduce the implementation details for each baseline.

1) Classic solvers:
• LKH-3 (Helsgaun, 2017), a strong solver capable of handling multiple VRP variants, run

with a maximum of 10,000 trials and 1 run as in (Kool et al., 2018). We apply LKH-3 to
CVRP and TSPTW; however, it is not used for CVRPBLTW due to lack of support.

• OR-Tools (Furnon & Perron, 2024), an open-source combinatorial optimization suite, where
we use cheapest insertion strategies for initialization and guided local search under time
limits of 20/40 (short) and 200/400 (long) seconds for n =50/100, following (Zhou et al.,

2We do not consider post-construction search methods (e.g., fine-tuning via EAS (Hottung et al., 2022), beam
search via SGBS (Choo et al., 2022), and random reconstruction via RRC (Luo et al., 2023)) as cross-paradigm
like CaR, since they rely on the construction policy. These approaches face inherent limitations for constraint
handling.
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2024; Bi et al., 2024). We apply it to TSPTW and CVRPBLTW due to the absence of
strong classic solvers for these variants.

• Greedy Heuristic, a hand-crafted heuristic selecting the nearest node (Greedy-L) or the
node with the soonest time window end (Greedy-C) during construction. We apply it only
to TSPTW following (Bi et al., 2024).

• HGS (Vidal et al., 2012), a state-of-the-art heuristic solver for CVRP. We directly cite the
results of HGS on CVRP and CVRPBLTW from MVMoE (Zhou et al., 2024), as we use
the same test dataset.

2) Neural construction solvers:
• AM (Kool et al., 2018), a classical neural construction method that first introduced the

Transformer architecture for solving various VRP variants via reinforcement learning. We
evaluate it only on CVRP (Table 14) due to its inferior performance on constrained VRPs
and page limits. Pretrained models are used for evaluation.

• POMO (Kwon et al., 2020), an enhanced version of AM, widely adapted for multiple
VRPs—CVRP (Kwon et al., 2020), TSPTW (Bi et al., 2024), and CVRPBLTW (Zhou
et al., 2024). We retrain POMO on all variants to match CaR’s gradient steps for fair
comparison.

• BQ-NCO (Drakulic et al., 2023), a generic framework that reformulates the MDP using
bisimulation quotienting to reduce the state space and exploit problem symmetries. We
report its greedy decoding results on CVRPLIB for comparison.

• LEHD (Luo et al., 2023), a novel framework that rethinks conventional architectures by
adopting a light encoder and heavy decoder design, trained via supervised learning. We
evaluate it only on CVRP, as extending it to new domains would require extensive label
generation.

• UDC (Zheng et al., 2024), a recent unified divide-and-conquer framework designed for
large-scale VRPs. For TSPTW, we retrain UDC with our relaxed objective (Table 2).
For CVRPBLTW, applying relaxed CMDP is impractical due to the difficulty in defining
a consistent objective across sub-tours under multiple constraints, which goes beyond
UDC’s intended design. For CVRP, we use the released pretrained model trained on
n = 500–1000, adapting sub-tour lengths to 25 for n = 50 and 50 for n = 100 (Table 14).

• InViT (Fang et al., 2024), a generalizable solver employing a nested-view Transformer
encoder to capture multi-scale local structures while enforcing permutation invariance. We
compare with its pretrained model on CVRP.

• PolyNet (Hottung et al., 2025), a fine-tuning method that introduces random vectors into
the decoder to enhance solution diversity. Due to the unavailability of source code, we
directly cite its performance on CVRP from the original paper for comparison.

• EAS (Hottung et al., 2022), a fine-tuning approach that adapts pretrained model parameters
per instance. We use the POMO+EAS version as the base model of SGBS for comparison.

• SGBS (Choo et al., 2022), or simulation-guided beam search, integrates neural construction
with simulation rollouts. For CVRPBLTW, we adapt it with the relaxed reward (*); for
CVRP, we use the released pretrained model. As the default 28-iteration setup is time-
consuming, we also report a single-iteration version (short) for fair comparison with
CaR.

• POMO-MTL (Liu et al., 2024a), a multi-task solver designed to handle multiple VRP
variants with a single model. We directly cite its results on CVRP and CVRPBLTW from
MVMoE (Zhou et al., 2024), as we use the same test dataset.

• MVMoE (Zhou et al., 2024), a multi-task solver enhanced by a mixture-of-experts mecha-
nism and implemented on 16 VRP variants. We evaluate it using the released pretrained
models.

• ReLD-MoEL (Huang et al., 2025), a multi-task solver that enriches contextual information
during auto-regressive solution construction. Due to the unavailability of code, we directly
cite its reported performance on CVRP and CVRPBLTW from the original paper for
comparison.

• PIP (Bi et al., 2024), a novel framework that learns approximate feasibility masking for
complex VRPs with interdependent constraints, such as TSPTW. We retrain the model
under our settings to ensure fair comparison.
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3) Neural improvement solvers:

• NeuOpt-GIRE (Ma et al., 2023), the SoTA single-task improvement method that uses
neural networks to perform flexible k-opt operations. GIRE explores infeasible regions to
enhance performance. We follow its default settings for training and testing. For CVRP, we
directly evaluate using its pretrained model. For TSPTW and CVRPBLTW, which are not
implemented in the original paper, we adapt the method with the relaxed reward function
(*) and our tailored constraint-related features (‡), denoted as NeuOpt-GIRE*‡. For all
variants, we report results with 1k, 2k, and 5k improvement iterations using random initial
solutions.

4) Neural hybrid solvers:

• LCP (Kim et al., 2021), a single-task cross-paradigm method where the seeder constructs
initial solutions, decomposes them into sub-tours, and the reviser independently refines and
merges them into complete solutions. Due to the unavailability of source code, we directly
cite its reported performance on top of AM for CVRP from the original paper.

• NCS (Kong et al., 2024), a single-task cross-paradigm method where the improvement
policy is trained with a construction policy via a shared critic pipeline. It is implemented
on the pickup and delivery problems (PDP) and still rely on heavy improvement. To
maximize comparison, we adapt it to TSPTW using our constraint-related features and
penalty guided.

E ADDITIONAL EXPERIMENTS AND DISCUSSION

E.1 DISCUSSION OF THE EXISTING FEASIBILITY MASKING

We now present our insights into the limitations of existing feasibility masking mechanisms. As
shown in Table 12, removing feasibility masking for CVRP hampers its performance, in contrast
to more complex problems like CVRPBLTW, where its removal leads to improved results (see
results of POMO* vs. POMO in Table 2). To further investigate this, we compare the two model
variants with and without masking on CVRPBLTW-100. Figure 7 shows that the mode with strict
feasibility masking (red) converges rapidly in terms of training loss (saturating after 2k epochs)
but yields noticeably lower-quality solutions, while the one without masking (blue) converges more
gradually but ultimately attains significantly better solution quality. This finding is consistent with
prior works (Mani et al., 2025; Zhang et al., 2023), which shows that excessive action-space pruning
leads to conservative policy behavior and degraded learning performance These results suggest
that while existing feasibility masking is sufficient for simple problems, it is far from a silver bullet
for handling complex constraints. In fact, for highly constrained problems, feasibility masking is
often intractable (e.g., TSPTW) or ineffective (e.g., CVRPBLTW), resulting in infeasibility and
sub-optimality.

Table 12: Effects of the multi-starting and feasibility masking during construction on

w. multi-start w. mask Obj.↓ Gap↓ Infsb%↓

× × 10.550 2.093% 0.00%

× ✓ 10.520 1.793% 0.00%

✓ × 10.431 0.921% 0.00%

✓ ✓ 10.424 0.857% 0.00%

To address these challenges, we propose the CaR framework. For TSPTW, CaR leverages refinement
to correct infeasibility and improve solution quality. For CVRPBLTW, we found that removing this
restrictive mask significantly improves the performance (Gap: 9.17% vs. 2.31%), but it leads to
unexpected infeasibility (2.6%). CaR addresses this by applying refinement, which further reduces
infeasibility and improves solution quality. However, a small fraction of infeasible solutions can
still remain. Since feasibility can ultimately be guaranteed through masking, we apply a final
reconstruction step with feasibility masking during inference to ensure all reported solutions are valid
(see Table 13). This strategy allows CaR to relax constraints during construction and refinement to
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Figure 7: Curve of training loss (left) and optimality gap (right).

enhance quality while maintaining overall feasibility through targeted post-processing. Note that in
this paper, “without masks” does not imply removing all masks. All VRP variants must satisfy the
fundamental constraint that each node (except depots) is visited exactly once. To ensure the validity
of the generated solutions, we retain the masking of visited nodes during the construction process.

Table 13: CaR module impact on CVRPBLTW feasibility and quality (Bold: reported in Table 2).

Method Module
n=50 n=100

Obj.↓ Gap↓ Infsb%↓ Obj.↓ Gap↓ Infsb%↓
Construction (w/o mask) 14.798 2.116% 3.50% 24.404 -2.050% 2.80%

CaR Refinement (k-opt) 14.759 1.682% 2.50% 24.360 -2.285% 2.60%
Re-construction (w. mask) 14.844 2.114% 0.00% 24.585 -1.724% 0.00%

Construction (w/o mask) 14.843 2.235% 2.60% 24.460 -1.715% 3.10%
CaR Refinement (R&R) 14.567 0.221% 1.10% 24.215 -2.886% 1.90%

Re-construction (w. mask) 14.601 0.463% 0.00% 24.400 -2.448% 0.00%

E.2 RESULTS ON CVRP

To assess CaR’s extendability, we evaluate it on the simple CVRP, where feasibility masking is
tractable and effective. In this setting, CaR shifts focus toward optimizing solution quality while
still benefiting from limited exploration of infeasible regions. Table 14 compares CaR with classic,
single-paradigm, and cross-paradigm methods. CaR delivers strong performance within a short
inference time, for example, achieving a 0.889% optimality gap on CVRP-100 in 20s using only 20
refinement steps, whereas NeuOpt-GIRE requires over 5 minutes with 5,000 steps. When combined
with EAS, CaR further outperforms all baselines, achieving the SoTA results.

We validate CaR’s generalization under distributional shift on the real-world CVRPLIB dataset (Uchoa
et al., 2017), as shown in Figure 4. Since 1) extensive post-search affects the evaluation of gener-
alization performance, and 2) prolonged search is impractical for deployment, we test all baselines
using a greedy strategy for fair comparison. CaR likewise uses TR = 20 with a greedy strategy,
consistent with Table 14. POMO is retrained under the same conditions (epochs and batch size)
as CaR. As shown in Table 15, CaR achieves a gap of 5.00%, outperforming the best prior neural
method MvMoE (Zhou et al., 2024) with the optimality gap: 6.88%, showing that CaR’s extendability
on simple constrained CVRP and good generalization performance.

E.3 QUANTIFICATION FOR THE DIVERSITY OF THE CONSTRUCTED INITIAL SOLUTIONS

We now provide a quantitative analysis across a large set of instances. Specifically, we evaluate the
average pairwise diversity among the eight constructed solutions for 10,000 instances, comparing
CaR (trained with diversity loss) and PIP (without diversity loss). For each instance, we calculate
the following diversity metrics across solution pairs (higher values indicate greater diversity): 1)
Hamming Distance (HD), which measures how many positions differ between two solutions, 2)
Positional Jaccard Distance (PJD), which measures the proportion of overlapping node positions
across all permutations, and 3) Kendall’s Tau Distance (KTD), which measures how many node
pairs (i.e., edges) have different relative orderings. As shown in Table 16, CaR’s diversity-driven
sampling strategy significantly improves the diversity of the constructed solutions compared to the
SoTA constructive baseline (PIP), across multiple diversity metrics.
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Table 14: Results on CVRP: best are bolded; best within 1 min / 2min (n = 50/100) shaded.

Method #Params Paradigm§ n = 50 n = 100
Obj.↓ Gap↓ Time Obj.↓ Gap↓ Time

HGS / I 10.334 ⋄ 4.6m 15.504 ⋄ 9.1m
LKH-3 / I 10.346 0.115% 9.9m 15.590 0.556% 18.0m

OR-Tools (short) / I 10.540 1.962% 10.4m 16.381 5.652% 20.8m
OR-Tools (long) / I 10.418 0.788% 1.7h 15.935 2.751% 3.5h

AM 0.68M L2C-S 10.590 2.478% 17s 16.139 4.098% 1.1m
POMO 1.25M L2C-S 10.424 0.867% 1s 15.741 1.532% 5s

LEHD (greedy) 1.42M L2C-S 10.861 5.102% 1.2s 16.148 4.154% 2s
InViT 1.74M L2C-S 10.827 4.773% 6.3m 16.452 6.117% 9.6m

PolyNet # / L2C-S / / / 15.640 0.490% 5m
POMO-MTL 1.25M L2C-M 10.437 0.987% 2s 15.790 1.846% 7s

MVMoE 3.68M L2C-M 10.428 0.896% 3s 15.760 1.653% 10s
ReLD-MoEL 3.68M L2C-M 10.425 0.866% 3s 15.713 1.354% 9s

POMO+EAS+SGBS (short) 1.25M L2C-S 10.364 0.293% 15s 15.619 0.744% 1.3m
POMO+EAS+SGBS (long) 1.25M L2C-S 10.340 0.056% 6.5m 15.530 0.170% 34m

LEHD (RRC=50) 1.42M L2C-S 10.419 0.821% 28s 15.674 1.096% 36s
LEHD (RRC=500) 1.42M L2C-S 10.367 0.315% 3.5m 15.581 0.497% 6.5m
UDC (RRC=50) † 1.50M L2C-S 10.722 3.755% 2.8m 16.212 4.567% 9.8m
UDC (RRC=250) † 1.50M L2C-S 10.639 2.953% 12.2m 16.038 3.442% 46m

NeuOpt-GIRE (T = 1k) 0.69M L2I-S 10.411 0.749% 33s 15.809 1.969% 1.4m
NeuOpt-GIRE (T = 2k) 0.69M L2I-S 10.377 0.414% 1.1m 15.724 1.417% 2.7m
NeuOpt-GIRE (T = 5k) 0.69M L2I-S 10.355 0.203% 2.8m 15.640 0.878% 6.8m

AM+LCP # / L2C+L2I-S 10.520 1.380% 5.2m 15.980 2.110% 29m

CaR (TR = 5) 1.64M L2C+L2I-S 10.372 0.360% 4s 15.673 1.085% 9s
CaR (TR = 10) 1.64M L2C+L2I-S 10.366 0.305% 7s 15.651 0.943% 14s
CaR (TR = 20) 1.64M L2C+L2I-S 10.362 0.259% 13s 15.642 0.889% 23s

CaR (sample 4, TR = 20) 1.64M L2C+L2I-S 10.350 0.150% 54s 15.604 0.639% 1.7m
CaR (sample 16, TR = 20) 1.64M L2C+L2I-S 10.344 0.096% 3.6m 15.578 0.476% 6.6m

CaR (TR = 20) + EAS 1.64M L2C+L2I-S 10.341 0.063% 7.8m 15.540 0.230% 25m
CaR (sample 4, TR = 20) + EAS 1.64M L2C+L2I-S 10.338 0.034% 31m 15.527 0.148% 1.7h
# Due to the unavailability of the source code, we directly copy their results from the original paper for comparison.

Table 15: Results on CVRPLIB instances. Best results are bolded.

Instance Opt
POMO (greedy) BQ-NCO (greedy) LEHD (greedy) INViT (greedy) UDC (RRC=2) MVMoE (greedy) CaR (greedy, TR = 20)
Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

X-n101-k25 27591 30138 9.23% 33617 21.84% 31445 13.97% 28311 2.61% 33466 21.29% 29361 6.42% 28518 3.36%
X-n106-k14 26362 39322 49.16% 28221 7.05% 27351 3.75% 27614 4.75% 28681 8.80% 27278 3.47% 27703 5.09%
X-n110-k13 14971 15223 1.68% 15718 4.99% 15252 1.88% 15729 5.06% 16665 11.32% 15089 0.79% 15232 1.74%
X-n115-k10 12747 16113 26.41% 15266 19.76% 13950 9.44% 13744 7.82% 16056 25.96% 13847 8.63% 13097 2.75%
X-n120-k6 13332 14085 5.65% 15524 16.44% 13851 3.89% 14363 7.73% 16618 24.65% 14089 5.68% 13483 1.13%

X-n125-k30 55539 58513 5.35% 62820 13.11% 65475 17.89% 59527 7.18% 61745 11.17% 58944 6.13% 57937 4.32%
X-n129-k18 28940 29246 1.06% 30665 5.96% 30100 4.01% 31038 7.25% 32203 11.28% 29802 2.98% 29299 1.24%
X-n134-k13 10916 11302 3.54% 11989 9.83% 11892 8.94% 11524 5.57% 11951 9.48% 11353 4.00% 11232 2.89%
X-n139-k10 13590 14035 3.27% 14843 9.22% 14009 3.08% 14395 5.92% 15336 12.85% 13825 1.73% 13724 0.99%
X-n143-k7 15700 16131 2.75% 17805 13.41% 17900 14.01% 17028 8.46% 18253 16.26% 16125 2.71% 16017 2.02%

X-n148-k46 43448 49328 13.53% 47815 10.05% 60384 38.98% 45342 4.36% 50167 15.46% 46758 7.62% 44603 2.66%
X-n153-k22 21220 32476 53.04% 28481 34.22% 27359 28.93% 23686 11.62% 25621 20.74% 23793 12.13% 23270 9.66%
X-n157-k13 16876 17660 4.65% 18496 9.60% 17673 4.72% 17875 5.92% 18419 9.14% 17650 4.59% 17720 5.00%
X-n162-k11 14138 14889 5.31% 15475 9.46% 14629 3.47% 14958 5.80% 17581 24.35% 14654 3.65% 14580 3.13%
X-n167-k10 20557 21822 6.15% 23334 13.51% 21591 5.03% 21690 5.51% 25806 25.53% 21340 3.81% 21205 3.15%
X-n172-k51 45607 49556 8.66% 52393 14.88% 60785 33.28% 49525 8.59% 53915 18.22% 51292 12.47% 47830 4.87%
X-n176-k26 47812 54197 13.35% 57647 20.57% 60721 27.00% 50131 4.85% 59378 24.19% 55520 16.12% 51971 8.70%
X-n181-k23 25569 37311 45.92% 27052 5.80% 25937 1.44% 27676 8.24% 28968 13.29% 26258 2.69% 26530 3.76%
X-n186-k15 24145 25222 4.46% 26419 9.42% 25024 3.64% 25724 6.54% 29963 24.10% 25182 4.29% 24710 2.34%
X-n190-k8 16980 18315 7.86% 18629 9.71% 17899 5.41% 18062 6.37% 19756 16.35% 18327 7.93% 18203 7.20%

X-n195-k51 44225 49158 11.15% 54286 22.75% 51067 15.47% 48528 9.73% 55152 24.71% 49984 13.02% 46839 5.91%
X-n200-k36 58578 64618 10.31% 65684 12.13% 64588 10.26% 61870 5.62% 63398 8.23% 61530 5.04% 62754 7.13%
X-n209-k16 30656 32212 5.08% 33608 9.63% 31845 3.88% 33084 7.92% 35692 16.43% 32033 4.49% 31801 3.73%
X-n219-k73 117595 133545 13.56% 128214 9.03% 135834 15.51% 120370 2.36% 128751 9.49% 121046 2.93% 134143 14.07%
X-n228-k23 25742 48689 89.14% 31668 23.02% 29451 14.41% 27881 8.31% 31405 22.00% 31054 20.64% 27773 7.89%
X-n237-k14 27042 29893 10.54% 27978 3.46% 28140 4.06% 30306 12.07% 35192 30.14% 28550 5.58% 28926 6.97%
X-n247-k50 37274 56167 50.69% 47644 27.82% 54017 44.92% 42548 14.15% 45746 22.73% 43673 17.17% 42408 13.77%
X-n251-k28 38684 40263 4.08% 40448 4.56% 39601 2.37% 41547 7.40% 43277 11.87% 41022 6.04% 40406 4.45%

Average 31280 36408 16.63% 35419 13.26% 35992 12.27% 33360 7.06% 36399 17.50% 33549 6.88% 33283 5.00%

E.4 DISCUSSION OF SHARED REPRESENTATION

Recall that CaR employs a unified encoder shared across the construction and refinement decoders.
As demonstrated in Table 8, this architecture significantly enhances performance. To further assess
the impact of the unified encoder under varying constraint complexities, we present comprehensive
results in Table 17 for Medium TSPTW-50, Hard TSPTW-50, and Medium TSPTW-100. Results
indicate that as problem complexity increases, evidenced by higher infeasibility rates (e.g., 37.270%
in Hard TSPTW-50) and greater optimality gaps (e.g., 10.931% in TSPTW-100), the performance
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Table 16: Diversity comparison between PIP and CaR constructed solutions.

HD ↑ PJD ↑ KTD ↑
PIP’s constructed solutions 0.666± 0.837 0.013± 0.017 0.713± 0.938
CaR’s constructed solutions 0.770 ± 0.893 0.015 ± 0.018 0.821 ± 0.997

CaR’s diversity improvement over PIP +15.6% +15.6% +15.1%

improvements attributed to the unified encoder become more pronounced. This suggests that shared
representations facilitate better generalization and constraint handling in more challenging scenarios.

Table 17: Effects of unified encoder on TSPTW.

Method
TSPTW-50 Medium TSPTW-50 Hard TSPTW-100 Medium
Infsb%↓ Gap↓ Infsb%↓ Gap↓ Infsb%↓ Gap↓

Construction-only 3.77% 5.230% 37.27% 1.635% 0.12% 10.931%

w/o Shared Rep. 0.01% 2.047% 0.68% 0.199% 0.00% 7.589%
w. Shared Rep. 0.00% 2.173% 0.01% 0.014% 0.00% 5.815%

Table 18: Model parameters and performance of
different unifications on TSPTW-50 Hard. ✓ indi-
cates shared representation.

Encoder Decoder #Params Infsb%↓ Gap↓

× × 2.8M 0.68% 0.199%

✓ ✓ 1.4M 0.01% 0.041%

✓ × 1.6M 0.01% 0.014%

#Params

Infsb%

Gap%

0.5 1.0 1.5 2.0 2.5

Unified Decoder
Separate Decoder (Ours)

Figure 8: Effects of separate decoder.

We further evaluate this design on CVRPBLTW-100, where using separate encoders reduces the
optimality gap slightly but increases model parameters by 1.7× compared to the unified encoder
version of CaR (2.9M vs. 1.7M). To balance performance and computational efficiency, we advocate
for the unified encoder design.

Moreover, we explore the unification of the encoder and decoder components. As shown in Table 18
and Figure 8, results on TSPTW-50 indicate that employing a separate decoder increases the number
of model parameters by 1.1×, yet it further reduces the optimality gap. Therefore, this paper adopts
an architecture with a unified encoder and separate decoders for each module.

We also examine the effect significance of shared representation compared to another learning
component, i.e., the supervised loss. Results show that shared representation is mostly critical.
Across all settings (regardless of the construction used, which is different from what we observe in
the impact of the supervised loss), the shared representation plays the dominant role. It enables the
necessary information synergy, allowing the refinement module to leverage structural context from
the construction phase to repair constraints effectively.

E.5 DISCUSSION OF THE SHORT-HORIZON DESIGN

To further validate CaR’s short-horizon design, we further retrain NeuOpt* by gradually decreasing
the training horizon of NeuOpt and evaluate its performance under two inference budgets: (1)
Ttest = 20 (same as CaR), and (2) Ttest = 1,000, which reflects the refinement length typically
required by neural improvement solvers. Results in Table 20 show that NeuOpt* cannot produce
any feasible solutions under a limited Ttest, regardless of whether its training horizon is short or
long, while CaR achieves strong performance, with an optimality gap of 0.005% and 0% infeasibility
within just 20 steps of refinement. This discrepancy arises because NeuOpt* is inherently unsuitable
for short-horizon refinement. Even when retrained with our designed constraint-related features
and constraint-aware penalty function in the MDP formulation, NeuOpt* relies on long rollouts to
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Table 19: Comparison of different backbones with shared encoder and supervised loss.

Backbones Shared Rep. LSL Gap ↓ Infsb%↓
POMO* (Construction-only) – – 1.959% 38.22%

CaR-POMO* × ✓ 0.136% 0.29%
CaR-POMO* ✓ × 0.199% 0.68%

CaR-POMO* (Ours) ✓ ✓ 0.014% 0.01%

PIP (Construction-only) – – 0.177% 2.67%

CaR-PIP × × 0.156% 1.85%
CaR-PIP × ✓ 0.175% 2.58%
CaR-PIP ✓ × 0.006% 0.01%

CaR-PIP (Ours) ✓ ✓ 0.005% 0.00%

gradually correct constraint violations and improve performance. In contrast, CaR is specifically
designed to enable rapid feasibility refinement and solution improvement within tight step budgets.
This highlights that short-horizon construct-and-refine is nontrivial and architecturally distinct from
standard improvement-only methods.

Table 20: Performance of NeuOpt* with different short-horizon settings during training.

Method Ttrain Ttest Gap Infsb%

5 (same as CaR) 20 / 100%
10 20 / 100%

NeuOpt* 20 20 / 100%
100 20 / 100%

200 (original NeuOpt) 20 / 100%

5 (same as CaR) 100 / 100%
10 100 1.314% 99.79%

NeuOpt* 20 100 0.397% 7.36%
100 100 0.145% 0.22%

200 (original NeuOpt) 100 0.061% 0.19%

CaR 5 20 0.005% 0.00%

E.6 ADDITIONAL RESULTS FOR THE PATTERN OF CAR’S REFINEMENT

During inference, we follow (Kwon et al., 2020) to augment each instance 8×, generating eight initial
solutions for refinement. All eight trajectories on a TSPTW instance are presented in Figure 9to
illustrate the diversity in initial solutions and their subsequent refinement. Moreover, to better
understand how CaR refines solutions for feasibility and optimality, we also visualize the objective
trajectories on other randomly generated TSPTW-50 instances in Figure 10. CaR dynamically
navigates both feasible and infeasible regions, adjusting its focus based on the current solution state.
For example, in the instance of Figure 10 (d), CaR begins with a near-feasible solution (t = 0),
achieves feasibility in one step (t = 1), explores infeasible regions (t = 2 - 12), and ultimately
improves optimality (t = 13). In contrast, in the instance of Figure 10 (c), the construction already
yields a feasible, high-quality solution, and refinement continues to enhance optimality efficiently.
These patterns illustrate CaR’s ability to balance feasibility and optimality by exploring both feasible
and infeasible spaces. By comparison, NeuOpt fails to escape infeasible regions within limited steps,
highlighting CaR’s advantage in constraint-aware refinement.

E.7 EFFECTS OF DIFFERENT NUMBERS OF INITIAL SOLUTIONS

Gap Infsb%0.0

0.1

0.2

0.3

0.4

Pe
rc

en
ta

ge
 (%

) p = 5
p = 10 (ours)

Figure 11: Effects of p.

Our CaR framework first samples S solutions per instance during con-
struction, then selects p solutions for refinement over TR steps. As shown
in Figure 11, reducing p from 10 to 5 on TSPTW-50 increases both in-
feasibility and optimality gap. In contrast, further increasing it from 10
to 20 slightly enhance the performance (the optimality gap reducing from
0.014% to 0.007%, and the infeasibility reducing from 0.01% to 0.00%).
This finding indicates that larger p yields better final performance, but the
gains become increasingly marginal as p grows. Since p is constrained
only by GPU memory (we use a single Nvidia RTX 4090), we select the
largest feasible p in practice (i.e., p=10). Nonetheless, even with a smaller
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Figure 9: CaR’s refinement on one TSPTW instance. Green dots and red crosses denote the feasible
and infeasible solutions, respectively. Green dashed lines mark the best-so-far feasible objective; the
red line indicates the best objective with data augmentation. CaR’s refinement process is shown over
time, with t = 0 representing the initially constructed solution.

0 5 10 15 20
Iteration

28.68

28.69

28.70

O
bj

.

CaR
Best-so-far (CaR)
POMO*

(a)

0 5 10 15 20
Iteration

25.25

25.50

25.75

26.00

26.25

O
bj

.

(b)

0 5 10 15 20
Iteration

20.00

21.00

22.00

O
bj

.

(c)

0 5 10 15 20
Iteration

25.50

26.00

26.50

27.00

O
bj

.

(d)

0 5 10 15 20
Iteration

28.00

29.00

30.00

O
bj

.

NeuOpt
Best-so-far (NeuOpt)
POMO*

(e)

0 5 10 15 20
Iteration

24.00

25.00

26.00

27.00

O
bj

.

(f)

0 5 10 15 20
Iteration

22.00

23.00

24.00

25.00

O
bj

.

(g)

0 5 10 15 20
Iteration

24.00

25.00

26.00

O
bj

.

(h)

Figure 10: Refinement efficiency of CaR (top) and NeuOpt (bottom) on typical TSPTW-50 instances.

p, CaR consistently outperforms the state-of-the-art neural solver PIP (Bi et al., 2024), as well as
classic heuristics, including LKH-3 with limited trials (100), ORTools, and greedy heuristics.

E.8 HYPERPARAMTER EXPERIMENTS

Table 21: Hyperparameter sensitivity.

Hyperparameters Gap ↓ Infsb% ↓
α1 = 0 0.421% 0.58%
α1 = 0.01 (Ours) 0.014% 0.01%
α1 = 0.1 1.483% 32.68%

α2 = 0 0.136% 0.29%
α2 = 1 (Ours) 0.014% 0.01%
α2 = 2 1.63% 32.12%

We initially set hyperparameters without extensive tuning,
focusing on validating the framework design. To assess
their effects, we ran CaR-POMO* on TSPTW-50. (1) For
diversity loss (α1), set at 0.01 to avoid dominating gradients,
removing it degrades performance while larger values (e.g.,
0.1) also harm learning. (2) For supervised loss (α2), set at
1, larger weights (e.g., 2) reduce performance by overem-
phasizing supervision. Overall, results show that CaR is
robust to hyperparameters, and improvements reflect the
framework’s inherent strength rather than aggressive tuning.

E.9 SENSITIVITY TO RANDOM SEEDS AND STATISTICAL SIGNIFICANCE

Sensitivity to random seeds. To assess the robustness of CaR, we evaluate its performance under
five different random seeds, i.e., 2023, 2024, 2025, 2026 and 2027, during inference. As shown in
Table 22, the standard deviations are small, indicating that CaR’s performance is stable with respect
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Figure 12: Boxplot of diverse methods on TSPTW-50.

to random initialization. Note that we use 2023 as the default random seed for inference across all
baselines to ensure consistency in performance comparison, following (Zhou et al., 2024).

Statistical significance. Figure 12 illustrates the distribution of optimality gaps for NeuOpt, CaR-
POMO, and CaR-PIP, corresponding to the results on TSPTW-50 in Table 2. We additionally conduct
significance tests, revealing that all pairwise differences are statistically significant (p < 0.001). This
suggest that CaR delivers a significant performance improvement over the representative baselines.

Table 22: Standard deviation of the results in Table 2 under five different random seeds.

Problem Method
n=50 n=100

Gap ↓ Infsb% ↓ Gap ↓ Infsb% ↓

TSPTW CaR-POMO (TR = 20) 0.016% ± 0.000% 0.01% ± 0.00% 0.401% ± 0.002% 2.33% ± 0.02%

CaR-PIP (TR = 20) 0.005% ± 0.000% 0.00% ± 0.01% 0.158% ± 0.001% 0.64% ± 0.06%

CVRPBLTW CaR (k-opt) (TR = 20) 2.166% ± 0.025% 0.00% ± 0.00% -1.697% ± 0.006% 0.00% ± 0.00%

CaR (R&R) (TR = 20) 0.454% ± 0.012% 0.00% ± 0.00% -2.473% ± 0.015% 0.00% ± 0.00%

E.10 DISCUSSION ON THEORETICAL ANALYSIS

While our primary contribution is empirical, we acknowledge the importance of establishing strong
theoretical foundations for NCO. In this section, we outline promising directions for analyzing the
learnability, convergence, and generalization bounds of the proposed CaR framework. 1) Learnabil-
ity: Since CaR jointly trains a construction module (policy πC) and a refinement module (policy
πR) with a shared encoder, a key theoretical question concerns the sample complexity or PAC-style
learnability of this joint policy class. Specifically, future work could investigate how many training
instances are required for the learned πC and πR to yield solutions within ϵ of the optimal cost with a
constraint-violation probability ≤ δ (with high probability). Such analyses could leverage established
results on policy gradient sample complexity Yuan et al. (2022). 2) Convergence: CaR employs
entropy-regularized policy gradients (to encourage diversity) within a short-horizon refinement pro-
cess. Consequently, convergence analysis could draw upon existing literature regarding smooth policy
gradient methods Agarwal et al. (2021) and two-stage or bilevel RL optimization Thoma et al. (2024).
These frameworks may help characterize the conditions under which joint updates to the shared
encoder converge to a stationary point. 3) Generalization Bounds: The generalization behavior of
CaR can be examined from multiple perspectives. One direction follows recent NCO generalization
analyses, studying how a learned policy transfers across diverse settings (e.g., varying instance sizes,
distributions, or constraint patterns). Alternatively, from the perspective of RL generalization theory,
one could derive Rademacher-complexity-style bounds Duan et al. (2021) to formally characterize
the gap between empirical and expected performance.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with ICLR policy, we disclose that LLMs were used solely to polish the writing and
improve readability. LLMs were not involved in research ideation, experimental design, or any part
of the scientific contributions of this work.
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