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Abstract001

The performance of information retrieval (IR)002
systems is heavily influenced by the quality of003
training data. Manually labeled datasets often004
contain errors due to subjective biases of anno-005
tators, and limitations of retrieval models. To006
address these challenges, we propose CLEAR,007
a novel framework that leverages large lan-008
guage models (LLMs) to automatically cor-009
rect incorrect labels and extract more accu-010
rate and true positive documents. CLEAR es-011
timates the reliability of existing annotations012
using LLMs and rectifies potential labeling er-013
rors, thereby improving overall data quality.014
Furthermore, we conduct a systematic investi-015
gation of how utilizing true positive documents016
affects retrieval model performance. We evalu-017
ate CLEAR on several widely-used IR bench-018
marks, including MS MARCO Passage, MS019
MARCO Document, Natural Questions, and020
TriviaQA. Experimental results demonstrate021
that CLEAR consistently outperforms existing022
baseline models, validating the effectiveness of023
the proposed approach.024

1 Introduction025

Natural language processing (NLP) tasks, such as026

question answering (QA) and information retrieval027

(IR), typically rely on manually annotated datasets.028

However, the manual annotation process is inher-029

ently susceptible to labeling errors and noise, aris-030

ing from various factors such as annotator subjec-031

tivity, ambiguous annotation guidelines, cognitive032

biases, and occasional lapses in attention (North-033

cutt et al., 2021; Sheng et al., 2008; Snow et al.,034

2008; Paullada et al., 2021).035

The issue becomes even more pronounced in036

crowd-sourced annotations involving non-expert037

workers, where label noise and inconsistencies are038

substantially more prevalent compared to expert-039

generated annotations (Zhang et al., 2025; Jamison040

and Gurevych, 2015). In tasks such as informa-041

tion retrieval (IR), which require relevance judg-042

Query : aacn average starting salary of rns

Answer : $66,620

The starting salary of a Registered Nurse can range from around $28,000-

$50,000 per year on average. The starting hourly wage of an RN can range 

from $16.50-26.00 per hour. This salary will increase over time, as nurses 
gain experience, certifications, and specialize in a specific area.Registered 

nurses can also advance their career to managment postions, in addition to 
regular raises offered by employers.ccording to the Bureau of Labor 

Statistics lastest data, the average salary of a registered nurse in the United 

States is $69,790. The average hourly wage of a registered nurse is $33.55.

American Association of Colleges of Nursing (AACN) statistics from 

January 2014 revealed that the average salary for an RN was $66,620, while 

the average for BSN-educated RNs was $75,484.0590. 78060. Salaries for 
RNs with BSNs vary according to the industry in which they are employed, 

reported the Bureau of Labor Statistics. As of May 2013, RNs in the U.S. 
earned an annual, mean salary of $68,910, with the top 10 percent earning 

more than $96,320.
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Figure 1: An example from the MS MARCO dataset
comparing human-annotated and LLM-annotated posi-
tive documents for the query "AACN average starting
salary of RNs." The ground truth answer is $66,620.
The human-annotated document provides general salary
ranges for registered nurses but does not explicitly
mention the exact answer. In contrast, the LLM-
annotated document explicitly states the answer, ref-
erencing AACN statistics.

ments, crowd workers often apply divergent crite- 043

ria, leading to highly inconsistent labeling (Guo 044

et al., 2023). Numerous studies have demonstrated 045

that crowd-sourced annotations are significantly 046

noisier than those produced by trained assessors 047

(Chong et al., 2022). Furthermore, several widely 048

used benchmark datasets have been shown to con- 049

tain a non-negligible number of incorrect labels. 050

Therefore, enhancing dataset quality is essential 051

for the development of robust and reliable natu- 052

ral language processing (NLP) and information 053
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Figure 2: The CLEAR pipeline is designed to improve retriever training through LLM-based re-labeling. The process
consists of five stages: (1) fine-tuning an initial retriever using human-labeled training data, (2) running inference
on training queries, (3) filtering potential false negatives, (4) LLM-based re-labeling of retrieved documents, and
(5) fine-tuning the retriever with the LLM-labeled dataset. The CLEAR framework enhances retrieval quality by
correcting label errors and refining training data.

retrieval (IR) systems (Klie et al., 2023; Agro and054

Aldarmaki, 2023).055

Figure 1 illustrates a comparison between a mis-056

labeling example by a human annotator in the MS057

MARCO dataset (Bajaj et al., 2016) and the cor-058

rected labeling generated by the proposed CLEAR059

method. Whereas the human-annotated passage060

does not explicitly contain the correct answer, the061

passage labeled by CLEAR clearly provides a pre-062

cise and direct response to the query.063

Incorrect labels can significantly distort the eval-064

uation of retrieval models and impede the training065

of optimal models. Therefore, ensuring label accu-066

racy is a critical prerequisite for the development of067

reliable and effective retrieval models. To address068

this issue, we take inspiration from the human pro-069

cess of labeling documents. In manual annotation,070

annotators commonly select as positive the docu-071

ment that most clearly provides the correct answer072

to a given query among those retrieved by a search073

model. The labeling process can be interpreted074

as an assessment of how explicitly each document075

presents the answer to the query. Building on this076

insight, we propose CLEAR, a novel pipeline that077

leverages LLMs to efficiently and accurately iden-078

tify positive documents. CLEAR is designed to079

replicate the human labeling process while remain-080

ing model-agnostic and broadly applicable across081

diverse retrieval and LLM configurations.082

Recent advances in information retrieval have083

increasingly emphasized the use of hard negative084

documents to enhance model performance (Zhan085

et al., 2021; Xiong et al., 2020; Karpukhin et al.,086

2020; Ren et al., 2021). However, in real-world087

scenarios, a query is typically associated with 088

multiple relevant documents rather than a single 089

positive instance. This observation underscores the 090

importance of identifying and leveraging a diverse 091

set of positive documents during training (Dong 092

et al., 2024; Xu et al., 2019). In this study, we 093

investigate several training strategies designed to 094

effectively incorporate multiple positive documents 095

and conduct systematic experiments to evaluate 096

their impact on retrieval performance. Our findings 097

highlight the critical roles of both the quality and 098

diversity of positive samples, offering practical 099

insights into the development of more robust 100

learning paradigms for information retrieval 101

models. 102

103Our contributions are summarized as follows: 104

1051. We introduce CLEAR, a novel pipeline that 106

leverages LLMs to automatically correct noisy la- 107

bels in existing information retrieval datasets and 108

construct diverse sets of high quality positive doc- 109

uments. CLEAR emulates the human annotation 110

process to enhance both the accuracy and reliabil- 111

ity of training data, and it is designed to be readily 112

applicable across different models and retrieval set- 113

tings. 114

2. While prior research has predominantly fo- 115

cused on enhancing retrieval performance through 116

the selection of hard negative documents, we under- 117

score the complementary role of positive document 118

quality and diversity. We propose several training 119

strategies for the effective utilization of multiple 120

positive documents and demonstrate their efficacy 121

through systematic empirical evaluation. 122

3. We evaluate the effectiveness of CLEAR 123
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across a range of widely used benchmark datasets,124

including MS MARCO Passage, MS MARCO125

Document, Natural Questions, and TriviaQA. Ex-126

perimental results show that CLEAR consistently127

achieves competitive performance relative to strong128

baselines across all datasets.129

2 Our Method130

Figure 2 presents the overall pipeline of the pro-131

posed CLEAR methodology. The CLEAR frame-132

work consists of five sequential stages, each of133

which is described in detail in this section. We134

particularly emphasize the process of re-labeling135

Information Retrieval (IR) datasets utilizing LLMs,136

along with the training strategies designed to effec-137

tively leverage the re-labeled data for improving138

retrieval model performance.139

2.1 Stage 1: Fine-tuning using Human-labeled140

Train data141

In the first stage, we fine-tune a dense retrieval142

(DR) model using human-labeled data. Specifi-143

cally, the DR model is optimized via in-batch neg-144

ative sampling and the InfoNCE loss (Oord et al.,145

2018; Bertram et al., 2024; Wu et al., 2021). Con-146

trastive learning (CL), a widely adopted framework147

for training DR models, encourages the model to ef-148

fectively distinguish positive document pairs from149

negative ones. The model is trained to minimize150

the following InfoNCE loss:151

LCL = − log

(
exp(sim(q, d+))

exp(sim(q, d+)) +
∑N

j=1 exp(sim(q, d−j ))

)
(1)152

where q denotes the input query, d+ represents153

a positive document relevant to the query, d− indi-154

cates a negative document, and sim(·, ·) denotes the155

dot product between the embeddings of the query156

and the document.157

This initial step establishes the foundation for158

the subsequent LLM-based automatic re-labeling159

process, thereby improving both the effectiveness160

and stability of the CLEAR framework.161

2.2 Stage 2: Inference using training data162

queries163

In the second stage, we perform inference over the164

entire document collection using the dense retrieval165

(DR) model fine-tuned in Stage 1. For each query166

in the training set, the model retrieves the top-N167

candidate documents with the highest predicted168

relevance scores.169

Let D denote the set of documents retrieved dur- 170

ing Stage 2 inference. We formally define D as: 171

D = {di,1, di,2, . . . , di,N}mi=1 (2) 172

where m is the number of training queries, and 173

for each query qi, the documents di,j are the top-N 174

documents retrieved by the DR model based on 175

their similarity scores. 176

2.3 Stage 3: Filtering for Extracting Potential 177

False Negatives 178

Re-labeling all top-N documents retrieved in 179

Stage 2 using LLMs is both computationally in- 180

tensive and time-consuming. To mitigate this chal- 181

lenge, we selectively extract candidate documents 182

that are highly likely to be true positives. We refer 183

to these candidate documents as Potential False 184

Negatives (Moreira et al., 2024). 185

This filtering strategy is based on prior 186

work (Moreira et al., 2024), which demonstrated 187

that retriever performance can be enhanced through 188

more effective hard negative mining. 189

In particular, the study showed that carefully ex- 190

cluding potential false negatives from the negative 191

set yields substantial performance improvements, 192

as the inclusion of true positives among negatives 193

can reduce training quality. 194

Unlike prior studies that primarily focus on elim- 195

inating potential false negatives from the negative 196

set, our approach seeks to identify and extract doc- 197

uments that are likely to be positive instances. 198

To extract potential false negatives, we dynami- 199

cally determine a similarity threshold based on the 200

score s+ between the query and its corresponding 201

human-labeled positive document. Specifically, the 202

threshold is defined as follows: 203

Threshold = τ · s+ (3) 204

Following prior work (Moreira et al., 2024), the 205

threshold τ is empirically set to 0.95, as this value 206

has been shown to be effective in filtering potential 207

false negatives. 208

The similarity scores between each query and its 209

retrieved documents are formally defined as: 210

S = {si,1, si,2, . . . , si,N}mi=1 (4) 211

Based on the similarity scores si,j , each docu- 212

ment di,j is classified according to the following 213

criteria: 214

di,j =

{
Potential False Negative, if si,j > Threshold
Hard Negative, otherwise

(5) 215
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for i = 1, 2, . . . ,m, j = 1, 2, . . . , N216

We define the final set of Potential False Nega-217

tive (PFN) documents as follows:218

PFN =
{
d∗i,1, d

∗
i,2, . . . , d

∗
i,k−1, d

+
i,k

}m
i=1

(6)219

where
{
d∗i,1, . . . , d

∗
i,k−1

}
represents the docu-220

ments identified as Potential False Negatives, and221

d+i,k is the human-labeled positive document for222

query i.223

By incorporating the Potential False Negatives224

alongside the human-labeled positive documents,225

the overall reliability of the training set is enhanced.226

The filtered PFN documents are subsequently for-227

warded to the next stage, where they are re-labeled228

using a large language model (LLM). This selec-229

tive filtering strategy substantially reduces com-230

putational overhead compared to re-labeling all231

retrieved candidates.232

2.4 Stage 4: Re-labeling using LLMs233

In the fourth stage, we re-label the Potential False234

Negative documents identified in Stage 3 by lever-235

aging LLMs. We utilize the LLM to generate an an-236

swer based on each Potential False Negative docu-237

ment and subsequently compute a confidence score238

that measures how accurately the LLM generates239

the correct answer.240

Specifically, for each query qi, we construct an241

input set comprising pairs of PFN documents from242

Stage 3 and the corresponding answer ai. The input243

set is formally defined as follows:244

I =
{
(qi, d

∗
i,1, ai), . . . , (qi, d

+
i,k, ai)

}m
i=1

(7)245

Each input tuple is provided to the LLM, which246

computes a document-specific confidence score cs247

based on the model’s predicted output distribution:248

cs = 1− d (GT, p(y | T, q, d)) (8)249

where, T denotes the prompt template, and GT250

represents a binary vector that indicates the ground-251

truth answer tokens. The term p(y | T, q, d) refers252

to the LLM’s predicted probability distribution over253

the output sequence y, conditioned on the prompt254

T , query q, and document d.255

The function d(·, ·) computes the distance be-256

tween the distributions using the length-normalized257

L2 norm, defined as follows:258

d(p, q) =

√√√√ 1

L

L∑
h=1

(ph − qh)2 (9)259

where ph and qh represent the h-th elements of260

the probability distributions p and q, respectively,261

and L is the number of tokens in the ground-truth 262

answer. This normalization ensures that the dis- 263

tance measure remains consistent across different 264

sequence lengths. 265

A higher confidence score indicates that the doc- 266

ument allows the LLM to predict the answer with 267

greater accuracy. The complete set of confidence 268

scores is formally defined as: 269

C = {csi,1, . . . , csi,k}mi=1 (10) 270

2.5 Stage 5: Fine-tuning Using LLM-labeled 271

Train Data 272

In the fifth stage, we propose several re-labeling 273

strategies utilizing the confidence scores C obtained 274

in Stage 4. Furthermore, we detail the correspond- 275

ing fine-tuning methodologies designed to effec- 276

tively exploit the re-labeled samples for improved 277

model performance. 278

2.5.1 Fine-tuning Using Only LLM-labeled 279

Data 280

The first strategy focuses on fine-tuning the model 281

exclusively using positive documents that have 282

been re-labeled by the LLM. 283

For each query, we select the document with the 284

highest confidence score from the candidate set 285

C and designate it as the new positive document. 286

Formally, this selection is defined as follows: 287

d(LLM+)
i = argmax

k
csi,k, ∀i ∈ {1, . . . ,m} (11) 288

where d(LLM+)
i denotes the newly selected positive 289

document, determined according to the confidence 290

scores assigned by the LLM. Subsequently, the 291

model is fine-tuned on these re-labeled documents 292

using the InfoNCE loss function as defined in Equa- 293

tion (1). 294

2.5.2 Augmenting Human-Labeled Data with 295

LLM-Labeled Data 296

The second strategy entails augmenting human- 297

labeled data with data annotated by an LLM to en- 298

hance model performance. The primary motivation 299

for this approach is to address potential omissions 300

or inaccuracies in the human annotations, thereby 301

improving both the quality and the diversity of the 302

dataset. 303

To this end, we construct an augmented dataset, 304

denoted as DAug by combining the human-labeled 305

dataset DHuman with the LLM-labeled dataset 306

DLLM. The human-labeled dataset is formally de- 307

fined as: 308
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DHuman =
{
(qi, d

(Human+)
i , d−i )

}m

i=1
(12)309

The LLM-labeled dataset is defined as:310

DLLM =
{
(qi, d

(LLM+)
i , d−i )

}z

i=1
, z ≤ m (13)311

where d(Human+)
i and d(LLM+)

i represent the posi-312

tive documents selected by the human annotators313

and the LLM, respectively. To avoid redundancy,314

any sample in DLLM that overlaps with the human-315

labeled positives in DHuman is excluded.316

The final augmented dataset DAug is defined as:317

DAug = DHuman ∪DLLM (14)318

Subsequently, the model is fine-tuned on the aug-319

mented dataset using the InfoNCE loss function320

Equation (1).321

2.5.3 Joint Training of Human-Labeled and322

LLM-Labeled Data via Confidence323

Thresholding324

The third strategy is based on the hypothesis that325

a single query may correspond to multiple posi-326

tive documents. Under this assumption, all docu-327

ments whose confidence scores exceed a predefined328

threshold ϕ are regarded as positive examples. For-329

mally, the positive document assignment is defined330

as follows:331

di,j =

{
Labeled as Positive, if csi,j > ϕ

Labeled as Negative, otherwise
(15)332

where ϕ denotes the predefined confidence thresh-333

old, and csi,j is the confidence score of the j-th334

document for query i. The dataset DLLM, compris-335

ing up to u positive documents selected based on336

the confidence threshold, is formally defined as:337

DLLM =
{
(qi, d

(LLM+)
i,1 , . . . , d(LLM+)

i,u , d−i )
}m

i=1
(16)338

• Averaging multi-positive (AMP) loss339

We introduce a novel loss function, termed Aver-340

aging Multi-Positive (AMP) Loss, which is specifi-341

cally designed to facilitate effective learning from342

multiple positive documents. AMP Loss promotes343

balanced optimization by assigning equal impor-344

tance to all positive samples. Assuming a batch345

size of 1 for simplicity, the AMP Loss is formally346

defined as follows:347

LAMP = − 1

u

u∑
i=1

(17)348

log (
exp(sim(q, d+i ))

exp(sim(q, d+i )) +
∑N

j=1 exp(sim(q, d−j ))

)
349

where u is the number of positive documents 350

exceeding the threshold ϕ, d+i represents the i-th 351

positive document, and d−j denotes a negative doc- 352

ument. 353

• Confidence-guided multi-positive (CMP) 354

loss 355

Although AMP Loss assigns equal weights to all 356

positive samples, this approach may not be opti- 357

mal because some documents provide much more 358

relevant or clearer answers to the query than others. 359

To address this limitation, we propose the 360

Confidence-Guided Multi-Positive (CMP) Loss, 361

which assigns dynamic weights to positive sam- 362

ples based on their confidence scores predicted by 363

an LLM. 364

The CMP loss is formally defined as follows: 365

LCMP = −
u∑

i=1

wi× (18) 366

log (
exp(sim(q, d+i ))

exp(sim(q, d+i )) +
∑N

j=1 exp(sim(q, d−j ))

)
367

where the confidence-based weight wi is given by: 368

wi =
exp(csi)∑u

k=1 exp(csk)
(19) 369

In this formulation, each positive sample’s con- 370

tribution to the loss is modulated by its associated 371

confidence score, allowing the model to more effec- 372

tively leverage soft supervision signals generated 373

by the LLM. 374

3 Experimental Setup 375

3.1 Comparison Systems 376

To assess the effectiveness of our proposed method, 377

we conduct a comparative evaluation against the 378

following three representative dense retrieval mod- 379

els: 380

• DPR : DPR adopts a dual-encoder architec- 381

ture that independently encodes queries and 382

documents (Karpukhin et al., 2020). The simi- 383

larity between a query and a document is mea- 384

sured via the dot product of their respective 385

embeddings. 386

• CoCondenser: CoCondenser builds upon the 387

Condenser model by enhancing pretraining 388

with unsupervised learning techniques (Gao 389

and Callan, 2021). A central contribution is 390

the introduction of corpus-level contrastive 391
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Models Natural Questions TriviaQA MS-MARCO (Pas) MS-MARCO (Doc)

R@5 R@20 R@5 R@20 R@5 R@20 R@5 R@20

DPR - Human-only (Pos=1, InfoNCE) 65.6 77.5 69.4 78.1 40.4 61.6 40.1 65.4

DPR - LLM-only (Pos=1, InfoNCE) 66.1 79.3 69.5 78.4 40.5 61.7 40.0 65.4

DPR - Human+LLM Aug (Pos=1, InfoNCE) 67.1 80.2 70.6 79.9 41.4 62.9 41.1 66.2

DPR - Human+LLM Thresh (Pos=N, AMP) 67.6 80.5 71.1 81.1 41.9 63.7 42.0 67.0

DPR - Human+LLM Thresh (Pos=N, CMP) 68.8 81.1 72.8 81.6 42.4 64.2 42.5 67.5
[CLEAR] (+3.2%) (+3.6%) (+3.4%) (+3.5%) (+2.0%) (+2.1%) (+2.4%) (+2.5%)

CoCondenser - Human-only (Pos=1, InfoNCE) 72.8 80.1 73.4 80.2 45.0 68.9 43.4 71.1

CoCondenser - LLM-only (Pos=1, InfoNCE) 73.0 80.9 73.4 80.6 45.2 68.2 43.6 71.3

CoCondenser - Human+LLM Aug (Pos=1, InfoNCE) 74.1 81.2 74.8 81.1 45.9 68.6 44.0 72.0

CoCondenser - Human+LLM Thresh (Pos=N, AMP) 74.7 82.6 75.5 82.6 46.9 69.1 44.9 72.5

CoCondenser - Human+LLM Thresh (Pos=N, CMP) 75.7 82.9 76.6 83.3 47.1 70.1 45.5 73.5
[CLEAR] (+2.9%) (+2.8%) (+3.2%) (+3.1%) (+2.1%) (+1.9%) (+2.1%) (+2.4%)

DRAGON - Human-only (Pos=1, InfoNCE) 71.5 81.8 73.9 82.3 53.1 74.7 48.1 74.3

DRAGON - LLM-only (Pos=1, InfoNCE) 71.9 82.1 74.1 82.4 53.7 74.9 48.6 74.9

DRAGON - Human+LLM Aug (Pos=1, InfoNCE) 72.5 82.7 75.4 84.0 54.0 75.5 49.2 75.4

DRAGON - Human+LLM Thresh (Pos=N, AMP) 72.9 83.6 75.7 84.2 54.1 76.0 49.5 75.9

DRAGON - Human+LLM Thresh (Pos=N, CMP) 73.9 84.4 76.1 84.6 54.9 76.6 50.1 76.6
[CLEAR] (+2.4%) (+2.6%) (+2.2%) (+2.3%) (+1.8%) (+1.9%) (+2.0%) (+2.3%)

Table 1: Performance comparison of various retrieval models across four datasets, evaluated using Recall@5 and
Recall@20 metrics. Models are trained with InfoNCE Loss (InfoNCE), Averaging Multi-Positive Loss (AMP), and
Confidence-guided Multi-Positive Loss (CMP). Our proposed method, CLEAR, which leverages LLM-generated
positives selected based on confidence scores, consistently outperforms the baselines. Percentage improvements
over the baselines are reported in parentheses.

learning, which strengthens the semantic rep-392

resentations of documents and significantly393

improves retrieval performance across various394

benchmarks.395

• DRAGON: DRAGON advances dense re-396

trieval by employing aggressive data augmen-397

tation strategies, including both query aug-398

mentation and label augmentation, to gener-399

ate a broader diversity of training examples400

(Lin et al., 2023).401

3.2 LLMs Used for Re-labeling402

To generate confidence scores and re-label train-403

ing samples, we leverage a diverse set of LLMs404

with varying scales and architectural characteristics.405

Specifically, we utilize LLaMA-3.1-70B, LLaMA-406

3.1-8B (Touvron et al., 2023), EXAONE 3.5-407

32B (Research et al., 2024), Gemma-7B (Team408

et al., 2024), and Qwen 2.5-7B (Yang et al., 2024).409

Among these models, we conduct our experiments410

using LLaMA-3.1-70B.411

3.3 Training 412

For fair comparison, we apply consistent training 413

configurations and hyperparameters across all base- 414

line models and our proposed method. All exper- 415

iments are conducted on a single NVIDIA A100- 416

SXM4-40GB GPU. 417

To ensure efficient training and stable evalua- 418

tion, we adopt the batch size recommended for 419

each model, following the configurations specified 420

in their original implementations. The number of 421

hard negatives is set to one in all experiments to 422

minimize performance variance introduced by dif- 423

ferent negative sampling strategies. 424

During training, we select the checkpoint that 425

achieves the highest validation score for final eval- 426

uation. This procedure ensures that each model is 427

assessed at its optimal performance level under a 428

consistent training protocol. 429

4 Experiments 430

Table 1 summarizes the retrieval performance of 431

our proposed CLEAR pipeline compared to strong 432
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Figure 3: Retriever performance across different LLMs
on the Natural Questions dataset, measured by Re-
call@20. The heatmap compares the retrieval effec-
tiveness of three retrievers when paired with various
LLMs, including Llama-3.1-70B, EXAONE-3.5-32B,
and others. Higher recall scores are indicated in red,
while lower scores are in blue.

Figure 4: Impact of confidence score threshold ϕ on
Recall@20 for the Natural Questions development set.
The plot compares the performance of three models as
the confidence threshold varies from 0.1 to 0.9.

baselines across four benchmark datasets: Natural433

Questions (Kwiatkowski et al., 2019), TriviaQA434

(Joshi et al., 2017), and MS MARCO (Bajaj et al.,435

2016). All datasets used in our study are in English436

and primarily cover web-based passages and open-437

domain questions. MS MARCO consists of real438

anonymized Bing queries and passages retrieved439

from web documents. Natural Questions consists440

of real, anonymized queries issued to the Google441

search engine, paired with Wikipedia articles re-442

trieved at the time of the query. Our re-labeled443

dataset inherits these properties. For the Natu-444

ral Questions and TriviaQA datasets, we use the445

same train/dev/test splits as provided in the original446

benchmark releases (Karpukhin et al., 2020). For447

MS MARCO, we use the publicly available dataset448

without any modification. Retrieval performance is449

measured using Recall@5 and Recall@20 metrics.450

4.1 Effect of LLM-based Labeling 451

(LLM-only) 452

Models trained on labels generated by LLMs 453

consistently outperform those trained on human- 454

annotated labels. Our analysis shows that approxi- 455

mately 10% of the documents were re-labeled by 456

the LLMs, while the remaining 90% exhibited iden- 457

tical labels between human annotators and LLMs. 458

These results indicate that LLMs compensate for 459

human labeling errors or identify more appropri- 460

ate positive documents. The fact that the majority 461

(90%) of labels remain consistent suggests that 462

LLMs largely preserve high-quality human judg- 463

ments, while the re-labeled 10% likely capture edge 464

cases such as relevant documents missed by anno- 465

tators due to fatigue, subjective interpretation, or 466

limited context. 467

4.2 Impact of Augmenting Data with Both 468

Human and LLM Labels (Human+LLM) 469

Augmenting human-annotated data with labels gen- 470

erated by LLMs consistently improves retrieval 471

performance. This finding suggests that human- 472

labeled and LLM-labeled documents serve com- 473

plementary functions, jointly contributing to en- 474

hanced retrieval effectiveness.In many cases, both 475

human-annotated and LLM-labeled documents can 476

be considered valid positive examples, reflecting 477

the multiplicity of relevance judgments.These find- 478

ings underscore the value of combining human and 479

LLM supervision to construct richer and more se- 480

mantically diverse training signals, ultimately lead- 481

ing to more robust retrieval models. 482

4.3 Effectiveness of Multi-Positive Training 483

(Joint Training, AMP Loss) 484

Training with multiple positive documents consis- 485

tently outperforms training with a single positive 486

document. These findings indicate that leveraging 487

multiple positive examples facilitates more stable 488

and robust model learning. We hypothesize that 489

this improvement stems from the increased diver- 490

sity and coverage provided by multi-positive su- 491

pervision. In contrast to single-positive training, 492

where the model is optimized to match a narrow 493

view of relevance, multi-positive training exposes 494

the model to a wider semantic spectrum of valid 495

answers. This helps the model generalize better to 496

unseen queries by reducing overfitting to a limited 497

set of lexical or structural patterns. Additionally, 498

averaging over multiple positives during loss com- 499
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putation smooths the learning signal and mitigates500

the influence of outlier examples, further contribut-501

ing to optimization stability and performance ro-502

bustness.503

4.4 Effectiveness of Confidence-Guided504

Weighting (Joint Training, CMP Loss)505

In multi-positive training, uniformly assigning506

weights to all positive documents may not always507

yield optimal performance. This is because not all508

positive documents hold the same importance with509

respect to the query. To address this issue, we em-510

ploy a confidence-guided weighting strategy that511

dynamically adjusts the contribution of each posi-512

tive document based on confidence scores provided513

by the LLM. This strategy is particularly benefi-514

cial in scenarios where some LLM-labeled posi-515

tives are only weakly relevant or noisy. By down-516

weighting low-confidence examples, the model can517

avoid overfitting to uncertain supervision signals518

and allow positive documents with higher confi-519

dence scores to exert a greater influence during520

training.521

4.5 Comparative Analysis of Retriever522

Performance with Various LLM Labelers523

Figure 3 illustrates the impact of LLM-based re-524

labeling on the training of retrieval models. In the525

proposed framework, a LLM receives a query and526

a document as input and generates a response indi-527

cating whether the document contains the correct528

answer. LLMs with larger parameter sizes possess529

greater parametric knowledge, enabling them to530

generate more accurate and reliable labels.531

Experimental results demonstrate that retrieval532

performance improves with the scale of the533

LLM’s parameters. Notably, the DRAGON model534

achieved the highest Recall@20 when trained with535

labels generated by LLaMA-3.1-70B, closely fol-536

lowed by EXAONE-3.5-32B.537

In contrast, LLMs with relatively smaller pa-538

rameter sizes—such as LLaMA-3.1-8B, Qwen2.5-539

7B, and Gemma-7B—exhibited comparable per-540

formance levels, whereas Mistral-7B consistently541

yielded the lowest Recall@20 scores across all re-542

trieval models. This suggests that lower-quality543

answers generated by smaller LLMs can degrade544

label quality and, in turn, negatively impact down-545

stream training performance.546

This trend was consistently observed across dif-547

ferent retrieval models, including DRAGON, Co-548

Condenser, and DPR. These findings underscore549

the importance of selecting a sufficiently large 550

LLM for re-labeling, as high-quality supervision 551

from high-capacity models can substantially en- 552

hance retrieval effectiveness. 553

4.6 Impact of Confidence Score Threshold on 554

Retrieval Performance 555

Figure 4 presents the impact of the confidence 556

score threshold (ϕ) on retrieval performance. The 557

figure compares Recall@20 across three mod- 558

els—DPR, CoCondenser, and DRAGON—under 559

varying threshold values, highlighting how filtering 560

based on LLM-generated confidence scores affects 561

retrieval quality. 562

Overall, increasing the confidence score thresh- 563

old leads to a decrease in Recall@20. This trend 564

indicates that overly aggressive filtering based on 565

high confidence scores may inadvertently exclude 566

valuable positive samples, thereby impairing re- 567

trieval effectiveness. 568

The highest performance is observed at ϕ = 0.3, 569

suggesting that removing low-confidence, poten- 570

tially noisy positive samples can contribute to im- 571

proved model training. At ϕ = 0.3, an average 572

of 3.5 positive documents are retained per query. 573

These results suggest that maintaining a lower con- 574

fidence threshold, which allows for a greater di- 575

versity of positive documents during training, can 576

further enhance retrieval performance. 577

5 Conclusion 578

In this work, we propose CLEAR, a novel pipeline 579

that improves the quality of IR training datasets 580

via LLM-based re-labeling. By correcting noisy la- 581

bels and identifying diverse, high-quality positives, 582

CLEAR enhances both the accuracy and coverage 583

of supervision. 584

Experiments on four benchmark datasets show 585

that CLEAR consistently improves retrieval perfor- 586

mance across multiple retrievers. We also demon- 587

strate that confidence-guided weighting in multi- 588

positive training stabilizes optimization and en- 589

hances generalization. 590

These results underscore the value of LLMs as 591

effective tools for constructing reliable IR datasets 592

and motivate future research on automated label 593

refinement and soft-supervision in retrieval tasks. 594

6 Limitations 595

Answer Dependency CLEAR relies on the 596

LLM-generated answers to compute confidence 597

scores for document re-labeling. This approach 598

8



inherently assumes the accuracy of each generated599

question–answer pair. However, if an answer is in-600

correct, the resulting confidence score may lead to601

erroneous re-labeling of documents, thereby propa-602

gating inaccuracies within the dataset.603

Heuristic Sensitivity The use of fixed thresholds604

and heuristic-based filtering may lead to subop-605

timal performance in domains with significantly606

different distributions. These manually tuned pa-607

rameters, while effective on our validation set, are608

unlikely to transfer robustly to new domains, spe-609

cialized corpora, or query styles that deviate from610

open-domain benchmarks.611

Domain and Language Constraints Experi-612

ments are conducted only on English-language613

benchmarks in open-domain IR. It remains unclear614

whether CLEAR can be effectively applied to other615

languages, low-resource settings, or highly domain-616

specific corpora such as legal or medical text.617

7 Ethical Considerations618

Data Source Transparency We use only pub-619

licly available datasets—MS MARCO, Natural620

Questions, TriviaQA, and others—which were re-621

leased for academic use and contain no personally622

identifying information. No additional human data623

was collected or annotated.624

Bias and Fairness Concerns While CLEAR625

aims to improve label quality, it inherits potential626

biases from both the original human annotations627

and the LLM used for re-labeling. For example,628

LLM-generated answers may reinforce patterns629

present in web-scale pretraining data, leading to630

unintentional biases in re-labeled datasets.631

Responsible Use Our re-labeled data and632

pipeline are intended strictly for academic research.633

Practitioners adopting CLEAR should be cautious634

about unintended consequences of relying on LLM-635

generated pseudo-labels, especially in sensitive ap-636

plication domains. Future work should explore637

mechanisms to verify or calibrate LLM-generated638

outputs for better safety and transparency.639
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A Appendix 785

Model : DPR Llama-3.1-70B Llama-3.1-8B
Threshold : 0.95 66.1 65.4
Threshold : 0.90 66.3 65.1
Threshold : 0.85 66.3 65.0
Threshold : 0.80 66.5 64.7
Threshold : 0.75 66.4 64.5
Threshold : 0.70 66.2 64.6

Table 2: Recall@5 for DPR LLM-only under different
thresholds on the NQ dataset

A.1 Impact of Filtering Threshold on 786

Retrieval Performance 787

In Stage 3, we apply filtering to identify poten- 788

tial positive candidates based on a thresholding 789

strategy. Since re-labeling all retrieved documents 790

with LLMs is computationally expensive and of- 791

ten unnecessary, we first narrow down the candi- 792

date pool through filtering to reduce labeling over- 793

head. Specifically, we follow the hyperparameter 794

settings proposed in (Moreira et al., 2024), which 795

10



suggest using a similarity threshold to extract po-796

tential false negatives based on their proximity to797

human-labeled positives. The original study (Mor-798

eira et al., 2024) reports that setting the threshold799

to 0.95 is particularly effective for removing hard800

negatives that are semantically close to positives.801

We then apply LLM-based re-labeling only to the802

filtered candidate documents.803

To validate its applicability in our framework,804

we re-experimented with varying threshold val-805

ues. Our results show that higher thresholds tend806

to slightly improve performance, especially when807

stronger LLMs are used for document re-labeling,808

as they are more capable of correctly identifying809

true positives from a larger pool of candidates. This810

suggests that LLMs with larger parameter counts811

exhibit better semantic understanding, enabling812

more accurate re-labeling decisions even when the813

filtering threshold is relaxed and a broader range of814

candidate documents is considered.815
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