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Abstract

The performance of information retrieval (IR)
systems is heavily influenced by the quality of
training data. Manually labeled datasets often
contain errors due to subjective biases of anno-
tators, and limitations of retrieval models. To
address these challenges, we propose CLEAR,
a novel framework that leverages large lan-
guage models (LLMs) to automatically cor-
rect incorrect labels and extract more accu-
rate and true positive documents. CLEAR es-
timates the reliability of existing annotations
using LLMs and rectifies potential labeling er-
rors, thereby improving overall data quality.
Furthermore, we conduct a systematic investi-
gation of how utilizing true positive documents
affects retrieval model performance. We evalu-
ate CLEAR on several widely-used IR bench-
marks, including MS MARCO Passage, MS
MARCO Document, Natural Questions, and
TriviaQA. Experimental results demonstrate
that CLEAR consistently outperforms existing
baseline models, validating the effectiveness of
the proposed approach.

1 Introduction

Natural language processing (NLP) tasks, such as
question answering (QA) and information retrieval
(IR), typically rely on manually annotated datasets.
However, the manual annotation process is inher-
ently susceptible to labeling errors and noise, aris-
ing from various factors such as annotator subjec-
tivity, ambiguous annotation guidelines, cognitive
biases, and occasional lapses in attention (North-
cutt et al., 2021; Sheng et al., 2008; Snow et al.,
2008; Paullada et al., 2021).

The issue becomes even more pronounced in
crowd-sourced annotations involving non-expert
workers, where label noise and inconsistencies are
substantially more prevalent compared to expert-
generated annotations (Zhang et al., 2025; Jamison
and Gurevych, 2015). In tasks such as informa-
tion retrieval (IR), which require relevance judg-
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American Association of Colleges of Nursing (AACN) statistics from
January 2014 revealed that the average salary for an RN was $66,620, while
the average for BSN-educated RNs was $75,484.0590. 78060. Salaries for
RNs with BSNs vary according to the industry in which they are employed,
reported the Bureau of Labor Statistics. As of May 2013, RNs in the U.S.
earned an annual, mean salary of $68,910, with the top 10 percent eaming
more than $96,320.

Figure 1: An example from the MS MARCO dataset
comparing human-annotated and LLM-annotated posi-
tive documents for the query "AACN average starting
salary of RNs." The ground truth answer is $66,620.
The human-annotated document provides general salary
ranges for registered nurses but does not explicitly
mention the exact answer. In contrast, the LLM-
annotated document explicitly states the answer, ref-
erencing AACN statistics.

ments, crowd workers often apply divergent crite-
ria, leading to highly inconsistent labeling (Guo
et al., 2023). Numerous studies have demonstrated
that crowd-sourced annotations are significantly
noisier than those produced by trained assessors
(Chong et al., 2022). Furthermore, several widely
used benchmark datasets have been shown to con-
tain a non-negligible number of incorrect labels.
Therefore, enhancing dataset quality is essential
for the development of robust and reliable natu-
ral language processing (NLP) and information
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Figure 2: The CLEAR pipeline is designed to improve retriever training through LLM-based re-labeling. The process
consists of five stages: (1) fine-tuning an initial retriever using human-labeled training data, (2) running inference
on training queries, (3) filtering potential false negatives, (4) LLM-based re-labeling of retrieved documents, and
(5) fine-tuning the retriever with the LLM-labeled dataset. The CLEAR framework enhances retrieval quality by

correcting label errors and refining training data.

retrieval (IR) systems (Klie et al., 2023; Agro and
Aldarmaki, 2023).

Figure 1 illustrates a comparison between a mis-
labeling example by a human annotator in the MS
MARCO dataset (Bajaj et al., 2016) and the cor-
rected labeling generated by the proposed CLEAR
method. Whereas the human-annotated passage
does not explicitly contain the correct answer, the
passage labeled by CLEAR clearly provides a pre-
cise and direct response to the query.

Incorrect labels can significantly distort the eval-
uation of retrieval models and impede the training
of optimal models. Therefore, ensuring label accu-
racy is a critical prerequisite for the development of
reliable and effective retrieval models. To address
this issue, we take inspiration from the human pro-
cess of labeling documents. In manual annotation,
annotators commonly select as positive the docu-
ment that most clearly provides the correct answer
to a given query among those retrieved by a search
model. The labeling process can be interpreted
as an assessment of how explicitly each document
presents the answer to the query. Building on this
insight, we propose CLEAR, a novel pipeline that
leverages LLMs to efficiently and accurately iden-
tify positive documents. CLEAR is designed to
replicate the human labeling process while remain-
ing model-agnostic and broadly applicable across
diverse retrieval and LLM configurations.

Recent advances in information retrieval have
increasingly emphasized the use of hard negative
documents to enhance model performance (Zhan
et al., 2021; Xiong et al., 2020; Karpukhin et al.,
2020; Ren et al., 2021). However, in real-world

scenarios, a query is typically associated with
multiple relevant documents rather than a single
positive instance. This observation underscores the
importance of identifying and leveraging a diverse
set of positive documents during training (Dong
et al., 2024; Xu et al., 2019). In this study, we
investigate several training strategies designed to
effectively incorporate multiple positive documents
and conduct systematic experiments to evaluate
their impact on retrieval performance. Our findings
highlight the critical roles of both the quality and
diversity of positive samples, offering practical
insights into the development of more robust
learning paradigms for information retrieval
models.

Our contributions are summarized as follows:

1. We introduce CLEAR, a novel pipeline that
leverages LLMs to automatically correct noisy la-
bels in existing information retrieval datasets and
construct diverse sets of high quality positive doc-
uments. CLEAR emulates the human annotation
process to enhance both the accuracy and reliabil-
ity of training data, and it is designed to be readily
applicable across different models and retrieval set-
tings.

2. While prior research has predominantly fo-
cused on enhancing retrieval performance through
the selection of hard negative documents, we under-
score the complementary role of positive document
quality and diversity. We propose several training
strategies for the effective utilization of multiple
positive documents and demonstrate their efficacy
through systematic empirical evaluation.

3. We evaluate the effectiveness of CLEAR



across a range of widely used benchmark datasets,
including MS MARCO Passage, MS MARCO
Document, Natural Questions, and TriviaQA. Ex-
perimental results show that CLEAR consistently
achieves competitive performance relative to strong
baselines across all datasets.

2  Our Method

Figure 2 presents the overall pipeline of the pro-
posed CLEAR methodology. The CLEAR frame-
work consists of five sequential stages, each of
which is described in detail in this section. We
particularly emphasize the process of re-labeling
Information Retrieval (IR) datasets utilizing LLMs,
along with the training strategies designed to effec-
tively leverage the re-labeled data for improving
retrieval model performance.

2.1 Stage 1: Fine-tuning using Human-labeled
Train data

In the first stage, we fine-tune a dense retrieval
(DR) model using human-labeled data. Specifi-
cally, the DR model is optimized via in-batch neg-
ative sampling and the InfoNCE loss (Oord et al.,
2018; Bertram et al., 2024; Wu et al., 2021). Con-
trastive learning (CL), a widely adopted framework
for training DR models, encourages the model to ef-
fectively distinguish positive document pairs from
negative ones. The model is trained to minimize
the following InfoNCE loss:

LcL = —log < exp(sim(g, a") >
exp(sim(q, d+)) + 37—, exp(sim(q, d;()l))
where ¢ denotes the input query, d™ represents
a positive document relevant to the query, d~ indi-
cates a negative document, and sim(-, -) denotes the
dot product between the embeddings of the query
and the document.

This initial step establishes the foundation for
the subsequent LLM-based automatic re-labeling
process, thereby improving both the effectiveness
and stability of the CLEAR framework.

2.2 Stage 2: Inference using training data
queries

In the second stage, we perform inference over the
entire document collection using the dense retrieval
(DR) model fine-tuned in Stage 1. For each query
in the training set, the model retrieves the top-N
candidate documents with the highest predicted
relevance scores.

Let D denote the set of documents retrieved dur-
ing Stage 2 inference. We formally define D as:

D:{di,17di,27~--7di,N}Zl (2)

where m is the number of training queries, and
for each query ¢;, the documents d; ; are the top-NV
documents retrieved by the DR model based on
their similarity scores.

2.3 Stage 3: Filtering for Extracting Potential
False Negatives

Re-labeling all top-N documents retrieved in
Stage 2 using LLMs is both computationally in-
tensive and time-consuming. To mitigate this chal-
lenge, we selectively extract candidate documents
that are highly likely to be true positives. We refer
to these candidate documents as Potential False
Negatives (Moreira et al., 2024).

This filtering strategy is based on prior
work (Moreira et al., 2024), which demonstrated
that retriever performance can be enhanced through
more effective hard negative mining.

In particular, the study showed that carefully ex-
cluding potential false negatives from the negative
set yields substantial performance improvements,
as the inclusion of true positives among negatives
can reduce training quality.

Unlike prior studies that primarily focus on elim-
inating potential false negatives from the negative
set, our approach seeks to identify and extract doc-
uments that are likely to be positive instances.

To extract potential false negatives, we dynami-
cally determine a similarity threshold based on the
score sT between the query and its corresponding
human-labeled positive document. Specifically, the
threshold is defined as follows:

Threshold = 7 - s 3)

Following prior work (Moreira et al., 2024), the
threshold 7 is empirically set to 0.95, as this value
has been shown to be effective in filtering potential
false negatives.

The similarity scores between each query and its
retrieved documents are formally defined as:

ETNNS “

Based on the similarity scores s; j, each docu-
ment d; ; is classified according to the following
criteria:

S = {Si71,si’2, ..

if s;,; > Threshold

d = Potential False Negative,
“ otherwise

Hard Negative,
&)



fori=1,2,...,m,j=1,2,...,N
We define the final set of Potential False Nega-
tive (PFN) documents as follows:

PFN = {dj{,la dz,27 e ad:,k*h dik}:il (6)

where {df’l, e >d;<,k—1} represents the docu-
ments identified as Potential False Negatives, and
d:k is the human-labeled positive document for
query ¢.

By incorporating the Potential False Negatives
alongside the human-labeled positive documents,
the overall reliability of the training set is enhanced.
The filtered PFN documents are subsequently for-
warded to the next stage, where they are re-labeled
using a large language model (LLM). This selec-
tive filtering strategy substantially reduces com-
putational overhead compared to re-labeling all

retrieved candidates.

2.4 Stage 4: Re-labeling using LL.Ms

In the fourth stage, we re-label the Potential False
Negative documents identified in Stage 3 by lever-
aging LLMs. We utilize the LLM to generate an an-
swer based on each Potential False Negative docu-
ment and subsequently compute a confidence score
that measures how accurately the LLM generates
the correct answer.

Specifically, for each query ¢;, we construct an
input set comprising pairs of PEN documents from
Stage 3 and the corresponding answer a;. The input
set is formally defined as follows:

I= {(qhd;hai)w"7(qi7d;‘,—kaai)}:il (7)

Each input tuple is provided to the LLM, which
computes a document-specific confidence score cs
based on the model’s predicted output distribution:

cs=1- d(GT7 p(y | T, q, d)) (3

where, T' denotes the prompt template, and GT
represents a binary vector that indicates the ground-
truth answer tokens. The term p(y | T', ¢, d) refers
to the LLM’s predicted probability distribution over
the output sequence y, conditioned on the prompt
T, query ¢, and document d.
The function d(-,-) computes the distance be-
tween the distributions using the length-normalized
Lo norm, defined as follows:

L
d(p,q) = , %Z(ph —qn)? ©)
h=1

where p;, and gj, represent the h-th elements of
the probability distributions p and g, respectively,

and L is the number of tokens in the ground-truth
answer. This normalization ensures that the dis-
tance measure remains consistent across different
sequence lengths.

A higher confidence score indicates that the doc-
ument allows the LLM to predict the answer with
greater accuracy. The complete set of confidence
scores is formally defined as:

C={csin,...,CSirtin, (10)

2.5 Stage 5: Fine-tuning Using LLM-labeled
Train Data

In the fifth stage, we propose several re-labeling
strategies utilizing the confidence scores C obtained
in Stage 4. Furthermore, we detail the correspond-
ing fine-tuning methodologies designed to effec-
tively exploit the re-labeled samples for improved
model performance.

2.5.1 Fine-tuning Using Only LLM-labeled
Data

The first strategy focuses on fine-tuning the model
exclusively using positive documents that have
been re-labeled by the LLM.

For each query, we select the document with the
highest confidence score from the candidate set
C and designate it as the new positive document.
Formally, this selection is defined as follows:

dELLMﬂ vie{l,...,m} 11

= arg m};ax CSi ks
where dELLM” denotes the newly selected positive
document, determined according to the confidence
scores assigned by the LLM. Subsequently, the
model is fine-tuned on these re-labeled documents
using the InfoNCE loss function as defined in Equa-
tion (1).

2.5.2 Augmenting Human-Labeled Data with
LLM-Labeled Data

The second strategy entails augmenting human-
labeled data with data annotated by an LLM to en-
hance model performance. The primary motivation
for this approach is to address potential omissions
or inaccuracies in the human annotations, thereby
improving both the quality and the diversity of the
dataset.

To this end, we construct an augmented dataset,
denoted as Dayg by combining the human-labeled
dataset Dygyman With the LLM-labeled dataset
Dy ym- The human-labeled dataset is formally de-
fined as:



_ . (Human+) - m
DHuman - {(qhdi 7d7, )}izl (12)
The LLM-labeled dataset is defined as:

z

Diiy = {(qi,dgLLM”,d;)}lzl, <m (13

where d""™™ and d{""™M* represent the posi-
tive documents selected by the human annotators
and the LLM, respectively. To avoid redundancy,
any sample in Dy that overlaps with the human-
labeled positives in Dyyman i excluded.
The final augmented dataset Dayg is defined as:

DAug = DHuman U Drim (14)

Subsequently, the model is fine-tuned on the aug-
mented dataset using the InfoNCE loss function
Equation (1).

2.5.3 Joint Training of Human-Labeled and
LLM-Labeled Data via Confidence
Thresholding

The third strategy is based on the hypothesis that
a single query may correspond to multiple posi-
tive documents. Under this assumption, all docu-
ments whose confidence scores exceed a predefined
threshold ¢ are regarded as positive examples. For-
mally, the positive document assignment is defined
as follows:

ifesi; > ¢

Labeled as Positive
7 { otherwise (15)

Labeled as Negative,

where ¢ denotes the predefined confidence thresh-
old, and cs; ; is the confidence score of the j-th
document for query ¢. The dataset Dy .y, compris-
ing up to u positive documents selected based on
the confidence threshold, is formally defined as:

Duw = { (g, d P, ., a)}" a6
’ ’ i=1

* Averaging multi-positive (AMP) loss

We introduce a novel loss function, termed Aver-
aging Multi-Positive (AMP) Loss, which is specifi-
cally designed to facilitate effective learning from
multiple positive documents. AMP Loss promotes
balanced optimization by assigning equal impor-
tance to all positive samples. Assuming a batch
size of 1 for simplicity, the AMP Loss is formally
defined as follows:

u

1
Laww =~ (17)

i=1

log (

exp(sim(q, ;) )
exp(sim(q, d;")) + Z;\;l exp(sim(q, d; ))

where v is the number of positive documents
exceeding the threshold ¢, dj represents the i-th
positive document, and d; denotes a negative doc-
ument.

* Confidence-guided multi-positive (CMP)
loss

Although AMP Loss assigns equal weights to all
positive samples, this approach may not be opti-
mal because some documents provide much more
relevant or clearer answers to the query than others.

To address this limitation, we propose the
Confidence-Guided Multi-Positive (CMP) Loss,
which assigns dynamic weights to positive sam-
ples based on their confidence scores predicted by
an LLM.

The CMP loss is formally defined as follows:

Lemp = _Zwix 18
i=1
s exp(sim(g, d;) )
exp(sim(q, d;)) + Z;V:l exp(sim(g, d; ))

where the confidence-based weight w; is given by:

_ exp(csy)
ke exp(esk)

In this formulation, each positive sample’s con-
tribution to the loss is modulated by its associated
confidence score, allowing the model to more effec-
tively leverage soft supervision signals generated
by the LLM.

19

w;

3 Experimental Setup

3.1 Comparison Systems

To assess the effectiveness of our proposed method,
we conduct a comparative evaluation against the
following three representative dense retrieval mod-
els:

* DPR : DPR adopts a dual-encoder architec-
ture that independently encodes queries and
documents (Karpukhin et al., 2020). The simi-
larity between a query and a document is mea-
sured via the dot product of their respective
embeddings.

* CoCondenser: CoCondenser builds upon the
Condenser model by enhancing pretraining
with unsupervised learning techniques (Gao
and Callan, 2021). A central contribution is
the introduction of corpus-level contrastive



Models Natural Questions TriviaQA MS-MARCO (Pas) MS-MARCO (Doc)
R@5 R@20 R@5 R@20 R@5 R@20 R@5 R@20
DPR - Human-only (Pos=1, InfoNCE) 65.6 71.5 69.4 78.1 404 61.6 40.1 65.4
DPR - LLM-only (Pos=1, InfoNCE) 66.1 79.3 69.5 78.4 40.5 61.7 40.0 65.4
DPR - Human+LLM Aug (Pos=1, InfoNCE) 67.1 80.2 70.6 79.9 414 62.9 41.1 66.2
DPR - Human+LLM Thresh (Pos=N, AMP) 67.6 80.5 71.1 81.1 41.9 63.7 42.0 67.0
DPR - Human+LLM Thresh (Pos=N, CMP) 68.8 81.1 72.8 81.6 42.4 64.2 42.5 67.5

[CLEAR] +3.2%) (+3.6%) (+3.4%) (+3.5%) (+2.0%) (+2.1%) (+2.4%) (+2.5%)
CoCondenser - Human-only (Pos=1, InfoNCE) 72.8 80.1 73.4 80.2 45.0 68.9 43.4 71.1
CoCondenser - LLM-only (Pos=1, InfoNCE) 73.0 80.9 73.4 80.6 452 68.2 43.6 71.3
CoCondenser - Human+LLM Aug (Pos=1, InfoNCE)  74.1 81.2 74.8 81.1 45.9 68.6 44.0 72.0
CoCondenser - Human+LLM Thresh (Pos=N, AMP)  74.7 82.6 75.5 82.6 46.9 69.1 44.9 72.5
CoCondenser - Human+LLM Thresh (Pos=N, CMP) 75.7 82.9 76.6 83.3 47.1 70.1 45.5 73.5
[CLEAR] (+2.9%) (+2.8%) (+3.2%) (+3.1%) (+2.1%) (+1.9%) (+2.1%) (+2.4%)
DRAGON - Human-only (Pos=1, InfoNCE) 71.5 81.8 73.9 82.3 53.1 74.7 48.1 74.3
DRAGON - LLM-only (Pos=1, InfoNCE) 71.9 82.1 74.1 82.4 53.7 74.9 48.6 74.9
DRAGON - Human+LLM Aug (Pos=1, InfoNCE) 72.5 82.7 75.4 84.0 54.0 75.5 49.2 75.4
DRAGON - Human+LLM Thresh (Pos=N, AMP) 72.9 83.6 75.7 84.2 54.1 76.0 49.5 75.9
DRAGON - Human+LLM Thresh (Pos=N, CMP) 73.9 84.4 76.1 84.6 54.9 76.6 50.1 76.6

[CLEAR]

(+2.4%) (+2.6%) (+2.2%) (+2.3%) (+1.8%) (+1.9%) (+2.0%) (+2.3%)

Table 1: Performance comparison of various retrieval models across four datasets, evaluated using Recall@5 and
Recall @20 metrics. Models are trained with InfoNCE Loss (InfoNCE), Averaging Multi-Positive Loss (AMP), and
Confidence-guided Multi-Positive Loss (CMP). Our proposed method, CLEAR, which leverages LLM-generated
positives selected based on confidence scores, consistently outperforms the baselines. Percentage improvements

over the baselines are reported in parentheses.

learning, which strengthens the semantic rep-
resentations of documents and significantly
improves retrieval performance across various
benchmarks.

DRAGON: DRAGON advances dense re-
trieval by employing aggressive data augmen-
tation strategies, including both query aug-
mentation and label augmentation, to gener-
ate a broader diversity of training examples
(Lin et al., 2023).

3.2 LLMs Used for Re-labeling

To generate confidence scores and re-label train-
ing samples, we leverage a diverse set of LLMs
with varying scales and architectural characteristics.
Specifically, we utilize LLaMA-3.1-70B, LLaMA-
3.1-8B (Touvron et al., 2023), EXAONE 3.5-
32B (Research et al., 2024), Gemma-7B (Team
et al., 2024), and Qwen 2.5-7B (Yang et al., 2024).
Among these models, we conduct our experiments
using LLaMA-3.1-70B.

3.3 Training

For fair comparison, we apply consistent training
configurations and hyperparameters across all base-
line models and our proposed method. All exper-
iments are conducted on a single NVIDIA A100-
SXM4-40GB GPU.

To ensure efficient training and stable evalua-
tion, we adopt the batch size recommended for
each model, following the configurations specified
in their original implementations. The number of
hard negatives is set to one in all experiments to
minimize performance variance introduced by dif-
ferent negative sampling strategies.

During training, we select the checkpoint that
achieves the highest validation score for final eval-
uation. This procedure ensures that each model is
assessed at its optimal performance level under a
consistent training protocol.

4 Experiments

Table 1 summarizes the retrieval performance of
our proposed CLEAR pipeline compared to strong



Impact of LLM-based Re-labeling on Retriever Performance
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Figure 3: Retriever performance across different LLMs
on the Natural Questions dataset, measured by Re-
call@20. The heatmap compares the retrieval effec-
tiveness of three retrievers when paired with various
LLMs, including Llama-3.1-70B, EXAONE-3.5-32B,
and others. Higher recall scores are indicated in red,
while lower scores are in blue.
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Figure 4: Impact of confidence score threshold ¢ on
Recall@20 for the Natural Questions development set.
The plot compares the performance of three models as
the confidence threshold varies from 0.1 to 0.9.

baselines across four benchmark datasets: Natural
Questions (Kwiatkowski et al., 2019), TriviaQA
(Joshi et al., 2017), and MS MARCO (Bajaj et al.,
2016). All datasets used in our study are in English
and primarily cover web-based passages and open-
domain questions. MS MARCO consists of real
anonymized Bing queries and passages retrieved
from web documents. Natural Questions consists
of real, anonymized queries issued to the Google
search engine, paired with Wikipedia articles re-
trieved at the time of the query. Our re-labeled
dataset inherits these properties. For the Natu-
ral Questions and TriviaQA datasets, we use the
same train/dev/test splits as provided in the original
benchmark releases (Karpukhin et al., 2020). For
MS MARCO, we use the publicly available dataset
without any modification. Retrieval performance is
measured using Recall@5 and Recall @20 metrics.

4.1 Effect of LLM-based Labeling
(LLM-only)

Models trained on labels generated by LLMs
consistently outperform those trained on human-
annotated labels. Our analysis shows that approxi-
mately 10% of the documents were re-labeled by
the LLMs, while the remaining 90% exhibited iden-
tical labels between human annotators and LLMs.
These results indicate that LLMs compensate for
human labeling errors or identify more appropri-
ate positive documents. The fact that the majority
(90%) of labels remain consistent suggests that
LLMs largely preserve high-quality human judg-
ments, while the re-labeled 10% likely capture edge
cases such as relevant documents missed by anno-
tators due to fatigue, subjective interpretation, or
limited context.

4.2 Impact of Augmenting Data with Both
Human and LLM Labels (Human+LLM)

Augmenting human-annotated data with labels gen-
erated by LLMs consistently improves retrieval
performance. This finding suggests that human-
labeled and LLM-labeled documents serve com-
plementary functions, jointly contributing to en-
hanced retrieval effectiveness.In many cases, both
human-annotated and LLM-labeled documents can
be considered valid positive examples, reflecting
the multiplicity of relevance judgments.These find-
ings underscore the value of combining human and
LLM supervision to construct richer and more se-
mantically diverse training signals, ultimately lead-
ing to more robust retrieval models.

4.3 Effectiveness of Multi-Positive Training
(Joint Training, AMP Loss)

Training with multiple positive documents consis-
tently outperforms training with a single positive
document. These findings indicate that leveraging
multiple positive examples facilitates more stable
and robust model learning. We hypothesize that
this improvement stems from the increased diver-
sity and coverage provided by multi-positive su-
pervision. In contrast to single-positive training,
where the model is optimized to match a narrow
view of relevance, multi-positive training exposes
the model to a wider semantic spectrum of valid
answers. This helps the model generalize better to
unseen queries by reducing overfitting to a limited
set of lexical or structural patterns. Additionally,
averaging over multiple positives during loss com-



putation smooths the learning signal and mitigates
the influence of outlier examples, further contribut-
ing to optimization stability and performance ro-
bustness.

4.4 Effectiveness of Confidence-Guided
Weighting (Joint Training, CMP Loss)

In multi-positive training, uniformly assigning
weights to all positive documents may not always
yield optimal performance. This is because not all
positive documents hold the same importance with
respect to the query. To address this issue, we em-
ploy a confidence-guided weighting strategy that
dynamically adjusts the contribution of each posi-
tive document based on confidence scores provided
by the LLM. This strategy is particularly benefi-
cial in scenarios where some LLLM-labeled posi-
tives are only weakly relevant or noisy. By down-
weighting low-confidence examples, the model can
avoid overfitting to uncertain supervision signals
and allow positive documents with higher confi-
dence scores to exert a greater influence during
training.

4.5 Comparative Analysis of Retriever
Performance with Various LLM Labelers

Figure 3 illustrates the impact of LLM-based re-
labeling on the training of retrieval models. In the
proposed framework, a LLM receives a query and
a document as input and generates a response indi-
cating whether the document contains the correct
answer. LLMs with larger parameter sizes possess
greater parametric knowledge, enabling them to
generate more accurate and reliable labels.

Experimental results demonstrate that retrieval
performance improves with the scale of the
LLM’s parameters. Notably, the DRAGON model
achieved the highest Recall@20 when trained with
labels generated by LLaMA-3.1-70B, closely fol-
lowed by EXAONE-3.5-32B.

In contrast, LLMs with relatively smaller pa-
rameter sizes—such as LLaMA-3.1-8B, Qwen2.5-
7B, and Gemma-7B—exhibited comparable per-
formance levels, whereas Mistral-7B consistently
yielded the lowest Recall@20 scores across all re-
trieval models. This suggests that lower-quality
answers generated by smaller LLMs can degrade
label quality and, in turn, negatively impact down-
stream training performance.

This trend was consistently observed across dif-
ferent retrieval models, including DRAGON, Co-
Condenser, and DPR. These findings underscore

the importance of selecting a sufficiently large
LLM for re-labeling, as high-quality supervision
from high-capacity models can substantially en-
hance retrieval effectiveness.

4.6 Impact of Confidence Score Threshold on
Retrieval Performance

Figure 4 presents the impact of the confidence
score threshold (¢) on retrieval performance. The
figure compares Recall@20 across three mod-
els—DPR, CoCondenser, and DRAGON—under
varying threshold values, highlighting how filtering
based on LLM-generated confidence scores affects
retrieval quality.

Overall, increasing the confidence score thresh-
old leads to a decrease in Recall@20. This trend
indicates that overly aggressive filtering based on
high confidence scores may inadvertently exclude
valuable positive samples, thereby impairing re-
trieval effectiveness.

The highest performance is observed at ¢ = 0.3,
suggesting that removing low-confidence, poten-
tially noisy positive samples can contribute to im-
proved model training. At ¢ = 0.3, an average
of 3.5 positive documents are retained per query.
These results suggest that maintaining a lower con-
fidence threshold, which allows for a greater di-
versity of positive documents during training, can
further enhance retrieval performance.

5 Conclusion

In this work, we propose CLEAR, a novel pipeline
that improves the quality of IR training datasets
via LLM-based re-labeling. By correcting noisy la-
bels and identifying diverse, high-quality positives,
CLEAR enhances both the accuracy and coverage
of supervision.

Experiments on four benchmark datasets show
that CLEAR consistently improves retrieval perfor-
mance across multiple retrievers. We also demon-
strate that confidence-guided weighting in multi-
positive training stabilizes optimization and en-
hances generalization.

These results underscore the value of LLMs as
effective tools for constructing reliable IR datasets
and motivate future research on automated label
refinement and soft-supervision in retrieval tasks.

6 Limitations

Answer Dependency CLEAR relies on the
LLM-generated answers to compute confidence
scores for document re-labeling. This approach



inherently assumes the accuracy of each generated
question—answer pair. However, if an answer is in-
correct, the resulting confidence score may lead to
erroneous re-labeling of documents, thereby propa-
gating inaccuracies within the dataset.

Heuristic Sensitivity The use of fixed thresholds
and heuristic-based filtering may lead to subop-
timal performance in domains with significantly
different distributions. These manually tuned pa-
rameters, while effective on our validation set, are
unlikely to transfer robustly to new domains, spe-
cialized corpora, or query styles that deviate from
open-domain benchmarks.

Domain and Language Constraints Experi-
ments are conducted only on English-language
benchmarks in open-domain IR. It remains unclear
whether CLEAR can be effectively applied to other
languages, low-resource settings, or highly domain-
specific corpora such as legal or medical text.

7 Ethical Considerations

Data Source Transparency We use only pub-
licly available datasets—MS MARCO, Natural
Questions, TriviaQA, and others—which were re-
leased for academic use and contain no personally
identifying information. No additional human data
was collected or annotated.

Bias and Fairness Concerns While CLEAR
aims to improve label quality, it inherits potential
biases from both the original human annotations
and the LLM used for re-labeling. For example,
LLM-generated answers may reinforce patterns
present in web-scale pretraining data, leading to
unintentional biases in re-labeled datasets.

Responsible Use Our re-labeled data and
pipeline are intended strictly for academic research.
Practitioners adopting CLEAR should be cautious
about unintended consequences of relying on LLM-
generated pseudo-labels, especially in sensitive ap-
plication domains. Future work should explore
mechanisms to verify or calibrate LLM-generated
outputs for better safety and transparency.
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A Appendix

Model : DPR Llama-3.1-70B | Llama-3.1-8B
Threshold : 0.95 66.1 654
Threshold : 0.90 66.3 65.1
Threshold : 0.85 66.3 65.0
Threshold : 0.80 66.5 64.7
Threshold : 0.75 66.4 64.5
Threshold : 0.70 66.2 64.6

Table 2: Recall@5 for DPR LLM-only under different
thresholds on the NQ dataset

A.1 Impact of Filtering Threshold on
Retrieval Performance

In Stage 3, we apply filtering to identify poten-
tial positive candidates based on a thresholding
strategy. Since re-labeling all retrieved documents
with LLMs is computationally expensive and of-
ten unnecessary, we first narrow down the candi-
date pool through filtering to reduce labeling over-
head. Specifically, we follow the hyperparameter
settings proposed in (Moreira et al., 2024), which



suggest using a similarity threshold to extract po-
tential false negatives based on their proximity to
human-labeled positives. The original study (Mor-
eira et al., 2024) reports that setting the threshold
to 0.95 is particularly effective for removing hard
negatives that are semantically close to positives.
We then apply LLM-based re-labeling only to the
filtered candidate documents.

To validate its applicability in our framework,
we re-experimented with varying threshold val-
ues. Our results show that higher thresholds tend
to slightly improve performance, especially when
stronger LLLMs are used for document re-labeling,
as they are more capable of correctly identifying
true positives from a larger pool of candidates. This
suggests that LLMs with larger parameter counts
exhibit better semantic understanding, enabling
more accurate re-labeling decisions even when the
filtering threshold is relaxed and a broader range of
candidate documents is considered.
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