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Abstract— Intuitive robot programming through use of
tracked smart input devices relies on fixed, external tracking
systems, most often employing infra-red markers. Such an ap-
proach is frequently combined with projector-based augmented
reality for better visualisation and interface. The combined
system, although providing an intuitive programming platform
with short cycle times even for inexperienced users, is immobile,
expensive and requires extensive calibration. When faced with
a changing environment and large number of robots it becomes
sorely impractical. Here we present our work on infra-red
marker tracking using the Microsoft HoloLens head-mounted
display. The HoloLens can map the environment, register the
robot on-line, and track smart devices equipped with infra-
red markers in the robot coordinate system. We envision our
work to provide the basis to transfer many of the paradigms
developed over the years for systems requiring a projector and a
tracked input device into a highly-portable system that does not
require any calibration or special set-up. We test the quality of
the marker-tracking in an industrial robot cell and compare our
tracking with a ground truth obtained via an ART-3 tracking
system.

I. INTRODUCTION

Fast and intuitive robot programming, even by lay-users,
would bring massive changes to the industrial robot sector.
Cutting down the cost and time required for programming
and setup would mean easier implementation of flexible
production paradigms, increased customisation of products
and larger acceptance of robotics and automation in small
and medium sized enterprises [1]. Thus, intuitive robot
programming has been a staple of robotics research for years.

One particular research direction is the use of varied
intuitive input devices to facilitate robot programming. These
devices are tracked by external tracking systems, most no-
tably using infra-red (IR) markers. Hein et al. [2] have shown
that such devices allow even untrained people to solve robot
jogging, trajectory input and surface interaction error-free.
Such devices can also feature additional sensors, such as a
force sensor in the tip, to help with input.

Tracked input devices have often been coupled with
projector-based augmented reality (AR) to provide increased
feedback to the user. In [3] the user could add waypoints,
select and edit preexisting waypoints and add geometric
features by defining characteristic points. A small user study
with 9 male participants of medium robot programming
experience has shown a more than five-fold decrease in the
programming time of simple trajectories.
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Fig. 1: The user wearing the HoloLens and holding the
tracked input device equipped with IR-markers. The input
device is tracked purely through the on board sensors of
the HoloLens. The robot is referenced at the start of the
interaction using a quick, on-line interactive referencing step.
One can also see the live tracking in RViz on the screen of
a desktop PC running ROS.

Reihart et al. [4] discuss the interaction possibilities of
such a system. They list trajectory editing, interaction with
virtual menus and the digitising of object surfaces - generat-
ing 3D models of unknown objects on the fly, as interaction
options.

Gaschler et al. [5] show a system for general trajectory
and obstacle input, enhancing the system by providing an
additional monitor with a virtual 3D view of the robot arm,
it’s path and the defined obstacles.

Reinhart et al. [6] as well as Leutert et al. [7] apply such a
system for welding applications where the path was planned
on obstacle free surfaces. In particular Reinhart et al. show
a 30% increase in cycle times when using their system.

In [8] a head-mounted display (HMD) was used instead of
a projector. The system was used to program a trajectory of
an industrial robot carrying a suspended load, in this case a
ball. Once a trajectory input is given, a model-based control
algorithm is tested in simulation and visualised in AR so the
user can check the stability of the input trajectory.

As can be seen, systems with projector-based AR coupled
with tracked input devices have been shown to increase in-
tuitiveness and speed of robot programming and reprogram-
ming. Such systems however require extensive calibration of
the projector and IR tracking system. This translates to long
set-up times and costs making them unfeasible in flexible and
changing production paradigms. Furthermore such systems
are immobile and thus become impractical and even more



costly when large number of robots are involved.

The system proposed in this paper, on the other hand,
is fully portable, robot-agnostic and does not require any
calibration procedure. The programmer can freely take the
system from robot cell to robot cell and program individual
robots.

It consists only of a Microsoft HoloLens HMD, an input
device equipped with IR markers, in our case a pen, and a
desktop computer connected to the robot and running the
robot operating system (ROS). The HoloLens can freely
move around and track the input device. All the tracking
and computation are done on the device itself.

The HoloLens can interface with different computers to
acquire the specific robot description, model and joint state.
This information is then used to reference the robot on-line
by registering a generated model point cloud to an environ-
mental point cloud obtained through the use of the HoloLens’
depth sensor. The reference allows complete transformation
between the coordinate systems of the HoloLens and the
robot. This allows the HoloLens to send back its pose and
the pose of the tracked input device in the robot’s coordinate
system.

Our work here forms a basis to transfer all of the previ-
ously developed programming and interaction modalities into
a fully portable and flexible system, negating the previous
downsides of such systems.

Fig. 2: The workflow of the marker tracking algorithm is
split into three jobs or processes - The Computing Job
in charge of detecting markers in reflectivity frames and
computing the input device’s pose. The Prediction Job that
interpolates the object’s position and orientation in between
frames. And the streamer job that streams the tracking data
to the desktop computer running ROS. The Computing Job
being computationally expensive runs on two threads, while
other jobs run each on one.

II. METHODOLOGY
A. Mapping

The HoloLens provides two modes of depth sensing, the
short-throw, with 30 frames per second update rate and a
range of 0.2-1 meters, and the long-throw, with one to five
frames per second update rate and a range of 0.5-4 meters.
These modes work in parallel and each one provides a
reflectivity and a depth stream. The reflectivity stream is the
raw data of how much IR light was reflected back into the
sensor after the environment was illuminated by IR emitters.
The depth stream is the filtered and processed stream where
each pixel corresponds to the distance form the camera.

For mapping we use the long throw depth stream, as this
eliminates any interference from the tracked device and the
user’s hands. The point cloud is then generated by taking
the location of the HoloLens when the frame was captured
and projecting the values of the depth frame using a pinhole
camera model. Registration between different frames was
found not to be necessary. The resulting point cloud is down-
sampled using voxel-grid filtering to ensure uniform point
density. It is then filtered with an outlier removal filter,
removing any point that had less than 9 neighbours in a
radius of 5 cm. The point cloud was then smoothed with
moving least squares [9]. RANSAC plane detection was used
to detect planes and map all the points near the plane to the
plane itself. This improved the resolution of objects near flat
surfaces.

This point cloud is then used in referencing to register the
robot model point cloud. It can also be used to create an
octomap representation of the robot environment and thus
prevent any possible collisions with the environment during
programming. More detail on the mapping, the experiments
and the octomap generation can be found in [10].

B. Referencing

When the HoloLens connects to the desktop computer
running ROS, the universal robot description file (urdf), the
robot model meshes and the joint states are used to create the
current model point cloud of the robot. The user is asked to
place a seed hologram near the robot’s base as the first guess
to the registration algorithm. This is done to prevent the reg-
istration algorithm getting stuck in local minima as it tends
to happen with algorithms based on local features. It was
found that the simple Iterative Closest Point (ICP) algorithm
performs very well and at high speeds. Once the registration
step is done the transformation between the HoloLens world
coordinate frame and the robot’s world coordinate frame is
calculated. This allows the transformation of the HoloLens’
pose and thus also of the tracked input device into the robot’s
coordinate system.

C. Tracking

For marker tracking we use the short-throw reflectivity
stream to track IR markers illuminated by the HoloLens’
depth sensor.

After undistorting the frame [11] we apply a threshold
filter, as the markers are highly reflective. The threshold filter
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Fig. 3: (a) The original, distorted reflectivity stream. One can notice the IR markers illuminated by the HoloLens’ depth
senor are quite visible. (b) The detected position of the blobs and the defined region of interest for the next frame.

is applied so that only pixel values higher than 250 remain,
since the marker pixel values are very close to 255. This
will eliminate interference from other reflective surfaces. The
image size is reduced by half for blob detection to save on
processing speed. The centre pixels (xi,yi) of each blob are
then mapped into 3D space using the pinhole camera model:

mi =

(
Zi · xi

f
,

Zi · yi

f
, Zi

)T

(1)

Where f is the focal length of the HoloLens depth camera,
and Zi is the distance of the i-th blob centre from the camera,
obtained by mapping the centre pixel of the blob to the depth
stream of the same frame.

The distance matrix (DR) of the set of detected markers
MR is created and the distances compared to the distance
matrix of the model (DM). Each distance matrix element di j

holds the distance between the points mi and m j. As there
will inevitably be a reconstruction error, a tolerance threshold
δ is introduced. Two distances are considered equal if:

| dpq
R −di j

M |< δ (2)

Where dpq
R is the distance between two reconstructed

markers, mp
R and mq

R and di j
M is the distance between two

model points, mi
M and m j

M .
After each of the found markers has been assigned to

a correspondent in the model, the rotation and translation
between the two rigid bodies has to be determined.

The main approaches are through the use of orthonormal
rotational matrices [12] and the singular value decomposi-
tion (SVD) of the covariance matrix [13]. Umeyama ([14],
Kanatani [15] and Challis [16], improved the previous meth-
ods, especially by fixing a flaw where noisy data sometimes

caused the rotation matrix to have a determinant of −1 and
thus become a reflection rather than a rotation. Our algorithm
is based on the work from Kanatani [15] and Challis [16]
who both independently expanded on the method proposed
by Arun et al. in [13].

Given a point xi in the set MR and point yi in the set MM
(i = 1,2, ...,N and N ≥ 3). The transformation between them
is:

yi = Rxi + t (3)

Where R is a 3x3 rotation matrix and t is the translation
vector.

The least-squares problem of finding R and t is equivalent
to minimising the following expression:

1
n

n

∑
i=1

(Rxi + t− yi)
2 =

1
n

n

∑
i=1

(Rxi + t− yi)
T (Rxi + t− yi) (4)

This can be further simplified by eliminating t as an
unknown variable. We compute the mean vectors of both
point sets x and y. The vector t can then be computed as:

t = y−Rx (5)

Substituting t in Equation 4, we get:

1
n

n

∑
i=1

(Rxi− yi + y−Rx)T (Rxi− yi + y−Rx) (6)

We define two new point sets by translating the sets yi and
xi so that the means x′ and y′ of these two new point sets
are located in the origins of the two reference frames:

x′i = xi− x, y′i = yi− y (7)
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Fig. 4: (a) Distribution of the positional error of 5000 data points. The average absolute error is of 1.9mm (b) Distribution
of the angular error of 5000 data points. The average absolute error is of 0.37◦. To note is the non-Gaussian distribution of
error due to the IMU drift being the major component of error.

Substituting these two new vectors in Equation 6, we get:

1
n

n

∑
i=1

(y′i−Rx′i)
T (y′i−Rx′i) (8)

By expanding and reducing the equation above, we get:

1
n

n

∑
i=1

(y′i
T y′i + x′i

T x′i−2y′i
T Rx′i) (9)

By using the following equivalences:

{Rx′i}T y′i = y′i
T Rx′i (10)

{Rx′i}T Rx′i = x′i
T RT Rx′i = x′i

T x′i (11)

Thus, minimising Equation 4 is equivalent to maximising:

1
n

n

∑
i=1

(y′i
T Rx′i) (12)

Rearranging and summing this, gives the following to
maximise:

1
n

n

∑
i=1

(y′i
T Rx′i) = tr

(
RT 1

n

n

∑
i=1

y′ix
′
i
T

)
= tr(RTC) (13)

Where tr() is the trace of a matrix and C is the correlation
matrix computed as:

C =
1
n

n

∑
i=1

(yi− y)(xi− x)T =
1
n

n

∑
i=1

y′ix
′
i
T (14)

Using SVD one can decompose the correlation matrix C =
UWV T where U and V are orthogonal matrices and W is
a diagonal matrix containing the singular values of C. By
substituting the SVD of C into Equation 13, we get:

tr(RTC) = tr{RTUWV T}= tr{V T RTUW} (15)

We now define a new matrix Q as:

Q =V T RTU (16)

Thus we now have to maximise:

tr(RTC) = tr(QW ) (17)

Since W is a diagonal matrix, the result of Equation 17
is only influenced by the values along the main diagonal of
Q. Thus maximising Equation 17 becomes the problem of
maximising the values on the main diagonal of Q.

As V , R and U are orthogonal the same must hold for Q.
The Euclidean vector norm of the main diagonal of Q must
be equal or less than 1. Therefore, in order to maximise
Equation 17, Q has to be the identity matrix.

Going back to Equation 16 and substituting Q with I:

I =V T RTU → RV =U → R =UV T (18)

This solution fails in certain cases when the determinant
of R becomes −1, which makes it a reflection not a rotation.
This has been resolved by Kanatani and Challis. After com-
puting the SVD of C, we can maximise tr(RTC) (Equation
13) if:

R =U

1 0 0
0 1 0
0 0 det(UV T )

V T (19)

The method will no longer fail in the cases where
det(UV T ) is −1 as R will have a determinant of +1.

Two main methods are used to increase the frame rate.
Firstly based on the positions of the markers in the previous
frame, a region of interest is defined to reduce the number
of pixels in the blob detection phase as seen in Fig. 3(b).

Secondly, we interpolate the position and orientation in
between frames. We use simple linear interpolation of posi-
tion assuming constant speed. For orientation, we use SLERP
[17], a method for linearly interpolating between quaternions.
As the movement markers on the object are tied to the motion
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Fig. 5: (a) Distribution of the positional error of 10000 data points. The average absolute error is of 22.1mm (b) Distribution
of the angular error of 10000 data points. The average absolute error is of 3.87◦. In the dynamic case the error follows a
Gaussian as per the central limit theorem due to multiple independent error sources.

of the human hand, the system is not highly dynamic and
thus such simple linear interpolations prove adequate.

The tracking runs in 46 fps in static conditions and 41
fps in dynamic conditions. The entire workflow split into
programming jobs is visible in Fig. 2. The computing job
runs on two threads, while the prediction and streamer jobs
each run on one.

III. EXPERIMENTS AND RESULTS
We performed two groups of tests. A static one where

both the HoloLens and the tracked input device are static
and a dynamic one where both the HoloLens and the input
device move. To get directly the precision of the tracking we
skipped the referencing step using the point cloud. We took
1000 static samples before each test to find a transformation
that minimises the root mean square error between the
ground truth position of the input device obtain via the ART-
3 tracking system and the transform of the input device
position in the HoloLens coordinate system.

For measuring the precision in static conditions, the input
device and the Hololens were both placed in stationary
positions one arm-length away. After calibrating the world
coordinate of the ART system, we gathered 5.000 samples
of pose data for the pen pose seen from the Hololens and
the ART tracker.

To measure the precision in dynamic conditions, we
moved randomly through the room again and gathered
10.000 samples of pose data in 5 experiments of 2.000
samples each. The referencing was performed at the start
as previously described.

The static tests have shown an average absolute positional
error of 1.9 mm and an average absolute angular error of
0.37◦. In the dynamic case an average absolute positional
error of 22.1 mm and an average absolute angular error of
3.87◦ were observed. Fitting a Gaussian distribution to the
positional errors gave the median of the positional error of
-0.1 mm and the standard deviation of 30.7 mm. The angular
error distribution had a median of 0.22◦ and a standard
deviation of 5.39◦.

A. Discussion

Interesting to see is the non-Gaussian distribution of the
stationary tracking error. This is most likely due to the fact
that the main error contribution is the IMU drift. Therefore
the quality of the tracking was based purely on the average
absolute error. On the other hand, while moving, independent
error sources such as IMU drift, visual odometry errors
etc. add to a Gaussian distribution as per the central limit
theorem. Thus the error in the dynamic case does follow a
Gaussian distribution. The biases found in the error distribu-
tion can then be used as ad-hoc corrections to the obtained
tracking data.

The main contribution to the tracking error in the dynamic
case seems to be the localisation error of the HoloLens,
as is noticeable from the difference between the static
and dynamic cases. In most cases the user will not move
significantly while inputting trajectories, thus the error is
expected to usually be much closer to the static case than
the fully dynamic case.

Compared to four other state of the art commercial track-
ing devices (OptiTrack Flex3, Qualisys ARQUS and MIQUS
and the Vicon Vantage), the static position error is four times
higher than the average of the four devices (0.5mm) while
the dynamic one is significantly worse at 45 times higher.
The achieved frame rate however is only 2.5 times lower
than the average of 100 frames per second.

In [18], Bérard et al. tested human input precision from
various devices. It was shown that mouse and stylus type
devices have a human input precision of around 0.5 mm
while free-space devices have a precision of 5 mm. Thus the
precision of the tracking in free space without significant
HoloLens motion is adequate. Assuming that when the input
device contacts a surface the precision will be approximately
same to the mouse or stylus, the tracking precision will need
to be improved in those cases.

There are ways to further reduce the tracking error to
achieve the necessary precision. The most obvious one is
to use newer generations of HMDs, like the HoloLens 2,



which have improved tracking capability. Additionally the
use of sensors on the robot itself may improve accuracy
dramatically. In [19] it was shown that a laser line sensor
on the robot can be used to vastly improve the accuracy of
user input to achieve sub-millimetre precision. The input was
given through the same input-device tracked here.

IV. CONCLUSION

Here we presented an inside-out tracking system for IR-
tracked input devices using the Microsoft HoloLens. The
combination of AR and IR-tracked input devices has been
a staple of intuitive robot programming research and has
shown dramatic decreases in programming time and increase
in precision even when non-experts used the system. Such
systems, however, are expensive, static and inflexible, re-
quiring extensive calibration before use. Our system would
mitigate the disadvantages present by providing a mobile,
robot-agnostic system that can both provide AR interaction
and IR tracking capabilities.

Experiments have shown that the system performs ade-
quately. In free-space, without any major HoloLens motion,
the tracking precision is in the range of human motion
precision. Human motion precision, however can increase up
to 0.5mm when the input device is in contact with a surface.

Still future prospects are exciting. The system will be
tested with non-experts in various programming tasks to
see how and if the intuitiveness of programming improved
with our system. Better model-based prediction and filtering
will be researched to help improve tracking accuracy. Using
newer HMDs such as the HoloLens 2 would decrease the
main error contribution which is the HMD’s localisation
error. Our system can directly be deployed on the HoloLens
2 to test the influence of the better localisation. Finally, using
various sensor mounted on the robot end-effector to improve
the user input is a promising way to greatly improve accuracy
as demonstrated by Hartmann et al. [19].
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