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ABSTRACT

With the improvement of computing power, over-parameterized models get in-
creasingly popular in machine learning. This type of model is usually with a
complicated, non-smooth, and non-convex loss function landscape. However,
when we train the model, simply using the first-order optimization algorithm like
stochastic gradient descent (SGD) could acquire some good results, in both train-
ing and testing, albeit that SGD is known to not guarantee convergence for non-
smooth and non-convex cases. Theoretically, it was previously proved that in
training, SGD converges to the global optimum with probability 1 − ϵ, but only
for certain models and ϵ depends on the model complexity. It was also observed
that SGD tends to choose a flat minimum, which preserves its training perfor-
mance in testing. In this paper, we first prove that SGD could iterate to the global
optimum almost surely under arbitrary initial value and some mild assumptions
on the loss function. Then, we prove that if the learning rate is larger than a value
depending on the structure of a global minimum, the probability of converging to
this global optimum is zero. Finally, we acquire the asymptotic convergence rate
based on the local structure of the global optimum.

1 INTRODUCTION

With the improvement of the computing power of computer hardware, an increasing number of
over-parameterized models are deployed in the domain of machine learning. One of the most repre-
sentative and successful models is what we called deep neural network (LeCun et al. (2015); Amodei
et al. (2015); Graves et al. (2013); He et al. (2016); Silver et al. (2017)), which has achieved great
empirical success in various application areas (Wu et al. (2016); Krizhevsky et al. (2017); Silver
et al. (2017); Halla et al. (2022)). Meanwhile, deep neural networks are large in scale and have an
optimization landscape that is in general non-smooth and non-convex (Wu et al., 2019; Brutzkus
& Globerson, 2017). Training such a model should have been concerning. However, people could
usually acquire very good results just through using first-order methods such as stochastic gradient
descent (SGD). A large theoretical gap persists in understanding this process. Two main questions
arise.

1. Due to the over-parametrization and the highly complex loss landscape of deep neural networks,
optimizing the deep networks to the global optimum is likely NP-hard (Brutzkus & Globerson, 2017;
Blum & Rivest, 1992). Nevertheless, in practice, simple first-order methods, which does not have a
convergence guarantee in the non-smooth and non-convex case (Liu et al., 2022a;b), are capable of
finding a global optimum. This happens even more often on the training data (Zhang et al., 2021;
Brutzkus & Globerson, 2017; Wu et al., 2019). It has been an open problem (Goodfellow et al.,
2014) that, in this case, does SGD provably find the global optimum? Does the result generalize to
more general model structures beyond neural networks?
2. In general, over-parametrized models offer many global optimums. These global optimums have
the same training loss of zero, and meanwhile drastically different test performance (Wu et al., 2018;
Feng & Tu, 2021). Interestingly, studies find that SGD tends to converge to those generalizable ones
(Zhang et al., 2021). In fact, it is observed empirically that SGD could usually find flat minima,
which subsequently enjoys better generalization (Kramers, 1940; Dziugaite & Roy, 2017; Arpit
et al., 2017; Kleinberg et al., 2018; Hochreiter & Schmidhuber, 1997; 1994). Why and how does
SGD find a flat global minimum? The empirical finding has yet to be theoretically validated.
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Related Works For the first question, in recent years, there have been a number of theoretical
results that target to explain this phenomenon. Many of them focus on concrete neural network
models, like two-layer networks with linear active function (Bartlett et al., 2018; Hardt & Ma, 2016).
Several works need the inputs to be random Gaussian variables (Ge et al., 2018; Tian, 2017; Du
et al., 2017; Zhong et al., 2017). Authors in Wu et al. (2019); Allen-Zhu et al. (2019) consider
the non-smooth case, but its techniques is depending on the structure of the network. They prove
when the number of nodes is enough large, the objective is “almost convex” and “semi-smooth”.
The techniques unfortunately do not generalize to more general models. Another commonly used
technique is to ignore the non-smoothness and apply the chain rule anyway on the non-smooth
points (Bartlett et al., 2018). The derivation does provide some intuitions but they do not offer any
rigorous guarantees, as the chain rule does not hold (Liu et al., 2022a;b). Even with these kinds of
restrictions, existing works (Ge et al., 2018; Tian, 2017; Du et al., 2017; Bartlett et al., 2018; Vaswani
et al., 2019; Chizat & Bach, 2018) only manage to find a high probability convergence result to the
global optimum. The difference between this probability and 1 could depend on the structure of
the model, like the number of nodes in the neural network, which raises further concerns on the
tightness of the probability bound. It is currently lacking to analyze SGD for general models to
obtain an almost surely convergence to the global optimum.

For the second question, most works investigate the flat minima in a qualitative way. A recent work
is by Xie et al. (2020), which views the SGD process as a stochastic differential equation (SDE),
and uses SDE to describe the process of the iteration escaping from the sharp minimum. Similar
techniques are also used in the works by Wu et al. (2019); Feng & Tu (2021). Unfortunately, SGD
can be viewed as an SDE only when the learning rate is sufficiently small, and for a normal learning
rate trajectories formed by SGD and SDE could be arbitrarily different. Another technique used to
study this problem is to use the linear stability (Wu et al., 2018; Feng & Tu, 2021), which considers a
linear system near a global minimum. The behavior of SGD near some global minimum can then be
characterized by the linear system of this global minimum. However, different from a deterministic
system where the property near one point can be quantitative determine by the linearized system
of this point, a stochastic system property near one point is determined by all points in Rd. Using
this linearized function to fully represent SGD near some global minimum is thus not a rigorous
argument.

Contributions

1. Under several mild assumptions about the non-smooth and non-convex loss function, we provide
the first proof that from an arbitrary initialization SGD could make the iteration converge to the
global optimum almost surely, i.e., P (θn converges to a global optimum) = 1.

2. Under the same set of assumptions and the same setting of SGD, we prove that if the learning
rate is larger than a threshold, which depends on the sharpness of a global minimum, the probability
which the iteration converges to this global optimum is strictly 0.

3. With similar assumptions and the same setting, we acquire the asymptotic convergence rate of the
iteration converging to the global optimum. By this result, we know that SGD achieves an arbitrary
accuracy in polynomial time.

Technical Insight The basic intuition is as follows. We first understand the SGD as a Markov
chain with the continuous state space. Then we aim to prove that the global optimum is the only
absorbing state of this Markov chain. Concretely, due to the property of the sampling noise, this
noise enjoys 0 variance when the optimization variable θ reaches the global optimum (Claim 2.1),
i.e., Eξn ∥∇̃g(θ, ξn)−∇̃g(θ)∥2 = 0 (notations are defined in the next section), which guarantees that
once θn reaches the global optimum, it will not escape from the optimum. Meanwhile, in other local
optimums, the positive variance makes θn jump out to this local optimum. Otherwise, as this Markov
chain is a continuous state space Markov chain, an absorbing state with the measure 0 cannot become
the real absorbing state (the probability of the θn reaching this absorbing state in every epoch is 0).
Based on this, we need this absorbing state to have a flat-enough neighborhood (Assumption 2.2 in
the new version), which deduces that θn that fall on this neighborhood tend to move closer to this
absorbing state. Combining this absorbing state and this neighborhood statement, we can prove the
distribution of θn will concentrate on the global optimum when as the iteration goes. Finally, this
distribution will degenerate to the global optimum, that is, θn will converge to the global optimum.
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This neighborhood is the key insight of proving the convergence of SGD. The neighborhood cannot
be very sharp (have at most quadratic growth), which is the reason we made Assumption 2.2, item
1. It is actually reflected in Equation (8). A flat enough neighborhood can make the coefficient of
the third term of (8) negative, which in turn makes the R(θn) (the Lyapunov function) to decrease
with high probability (θn close to global optimum). Otherwise, if the neighborhood is sharp, this
coefficient will become positive, which makes R(θn) increasing (θn away from global optimum).

2 PROBLEM FORMULATION

We investigate SGD under the over-parametrization setting, under a few mild assumptions on the
objective function. The setting and the assumptions, as well as some preliminaries that are relevant
to the results, are provided in Section 2.1. We then present the sampling schemes in Section 2.2.

2.1 OPTIMIZATION UNDER OVER-PARAMETRIZATION

In this paper, given a dataset D = {(xi, yi)}, xi, yi ∈ Rd, we consider a model ŷi = f(θ, xi), and
the mean-square error (MSE) loss, i.e.,

g(θ) =
1

N

N∑
i=1

g(θ, xi), g(θ, xi) =
(
f(θ, xi)− yi

)2
. (1)

The goal of an optimization method, like SGD, is to obtain an optimum θ ∈ J∗, where J∗ =
argminθ∈Rd g(θ).

In the over-parametrization setting, this optimum is zero. To handle the non-smoothness, we recall
the definition of Clarke subdifferential (Clarke, 1990), which is an important tool to design and
operate SGD algorithms.

Definition 1 (Clarke subdifferential (Clarke, 1990)). Let x̄ ∈ Ω be given. The Clarke subdifferential
of f at x̄ is defined by

∂f (x̄) = co
{
lim
x→x̄

∇f(x) : f is smooth at x
}
,

where co represents the convex hull. If f is furthermore smooth, it holds that ∂f(x) = {∇f(x)}. We
use ∇̃f(x) to denote an arbitrary element in ∂f(x), and for convenient, we call ∇̃ as subgradient.

The Clarke subdifferential does not enjoy the chain rule and several techniques involved in regular
gradient cannot be reused in our case. We provide a counterexample to illustrate this in Claim A.1.

This property and a few assumptions to eliminate pathological cases are described in the below
assumption.

Assumption 2.1. The loss function g(θ) satisfies the following conditions:

1. g(θ) is continuous and smooth almost everywhere;

2. The global optimum value of g(θ) is 0;

3. The set of global optimum points J∗ is composed of countably connected components Ji,
i.e., J∗ =

⋃+∞
i=1 Ji (Ji ∩ Jj = ∅);

4. There is a scalar c > 0, such that whenever g is smooth on θ1, θ2 then for any data point
(xi, yi), ∥∥∇̃g(θ1, xi)− ∇̃g(θ2, xi)

∥∥ ≤ cmax{∥θ1 − θ2∥, 1} .

This assumption describes the overall structure of the loss function g(θ). All 4 items in this As-
sumption are quite mild and are commonly used in optimization and learning.

Items 1 and 2 are true under the MSE loss and the over-parametrization setting. Item 3 describes that
the optimum is composed of countably many connected components and this item holds for almost
all functions unless one delicately constructs a pathological counterexample Jin et al. (2022). In
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this paper, to make the presentation clear, we continue with the countably many points assumption
J∗ =

⋃+∞
i=1 {θ∗i } to avoid the tedious arguments on continuum of optimums. Item 4 can be seen as

a non-smooth extension of the traditional L-smooth condition, i.e., ∥∇g(x)−∇g(y)∥ ≤ L∥x− y∥.
It can be satisfied by many non-smooth functions, like ReLU and leaky-ReLU.

Similar to the regular gradient, the subgradient is also zero at the optimum.
Claim 2.1. For the MSE loss function (1), if the global optimum is 0, i.e., minθ∈Rd g(θ) = 0. Then
the subgradient at the optimum points J∗ is 0.

Proof. For any θ0 ∈ {θ | g is smooth at θ}, we can get that

∇̃g(θ0) = ∇g(θ0) =
1

N

N∑
i=1

(
f(θ0, xi)− yi

)
∇f(θ0, xi) .

Then for any θ∗ ∈ J∗, we have

lim
θ0→θ∗

∇̃g(θ0) = lim
θ0→θ∗

1

N

N∑
i=1

(
f(θ0, xi)− yi

)
∇f(θ0, xi) = 0 ,

where g is smooth at θ0. Then,

∂g(θ∗) = co

{
lim

θ0→θ∗
∇g(θ0) : f is smooth at z

}
= co{0} .

This concludes that ∇̃g(θ∗) = 0.

Notice that despite that g is non-smooth in general, in our setting, it is smooth on the optimum as
described in the above claim. This distinguishes our setting from the line of literature on non-smooth
optimization.

To make a global convergence, we need at least one θ∗ ∈ J∗ to be not very “sharp”. That is, at the
δθ∗− neighboring of θ∗ the loss function holds L-smooth condition with the coefficient βθ∗ and an
assumption as follow:
Assumption 2.2. There exist θ∗ ∈ J∗, rθ∗ ≥ 1, δ > 0, a neighboring area U(θ∗, δθ∗) of θ∗, such
that for those θ ∈ U(θ∗, δθ∗) that ∇̃g(θ) holds

1. For any mini-batch Ci, gCi
(θ) holds the local one point L-smooth condition, i.e.

∥∇̃g(θ)∥ < βθ∗∥θ − θ∗∥ (∀ θ ∈ U(θ∗, δθ∗)).

2. The loss function holds ∇̃g(θ)T (θ − θ∗) > αθ∗∥θ − θ∗∥rθ∗+1 (∀θ ∈ U(θ∗, δθ∗))), for
some constant αθ∗ > 0.

The first item of this assumption is very mild. Due to Claim 2.1, we know g(θ) is smooth in θ∗, that
is, limθ→θ∗ ∇̃g(θ) = ∇g(θ∗) = 0. Then item 1 is just to bound the speed of subgradient tend to 0 is
not slower than a linear function (not too sharp as O(

√
∥θ − θ∗∥) or O(∥θ − θ∗∥0.9)). The second

item of this assumption is very close to the local Kurdyka-Lojasiewicz condition, i.e. ∥∇g(θ)∥2r ≥
g(θ) − g(θ∗) (r ≥ 1)(θ ∈ U(θ∗, δθ∗)) which is a typically mild condition used to substitute the
local Polyak-Łojasiewicz condition (item 2 and the local Kurdyka-Lojasiewicz condition are totally
equivalent for an unary function). This assumption is milder than several assumptions used in the
previous works. It can be seen as the loss function has an rθ∗ + 1-order Taylor expansion on θ∗.
Compared with the one point strongly convexity used in Li & Yuan (2017); Kleinberg et al. (2018),
the positive Hessian matrix and local Polyak-Łojasiewicz condition in global optimum used in Wu
et al. (2018); Jin et al. (2022), our assumption is much milder.

2.2 TWO TYPES OF NOISE OF SGD

In the rest of this section we describe two types of SGD algorithms, by different sampling noise.
The first type is with the traditional sampling noise while the second type is SGD with the sampling
noise with global stable guarantee. They involve slightly different assumptions and the analysis of
SGD also varies by the type of noise. Nevertheless, they conclude similar results as we will present
in the next section.
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2.2.1 REGULAR SAMPLING NOISE

We start with the iterations of an (regular) SGD algorithm, that

vn = ϵ0∇̃g(θn, ξn) ,

θn+1 = θn − vn ,
(2)

where {ξn} represents the sampling noise. That is, we have the noised sampling

∇̃g(θ, ξn) =
1

|Ci|
∑

x̄, ȳ∈Ci

∇̃
((

f(θ, x̄)− ȳ
)2)

,

where Ci is a randomly selected mini-batch from the original data set. The next statement assumes
that the subdgradient can be sampled without the sampling error being too large. It is necessary for
an algorithm to use the gradient:

Assumption 2.3. Let ξn be the sampling noise involved in the n-th iteration of SGD and ∇̃g(θ, ξn)
be the noised sampling of the subgradient. For any θ ∈ Rd, it holds

lim inf
θ→∞

∥∇g(θ)∥ > 0,

and

lim sup
θ→+∞

Eξn

∥∥∇̃g(θ, ξn)
∥∥2∥∥∇̃g(θ)

∥∥2 < M0,

where M0 ≥ 0 is a constants decided by g. Meanwhile, we need lim infθ→∞ ∥∇̃g(θ)∥ >
max{4c

√
M0, 4c

√
K0}.

First of this assumption is milder than the widely used bounded variance assumption, i.e.,
Eξn

∥∥∇̃g(θ, ξn) − ∇̃g(θ)
∥∥2 ≤ a (Li & Yuan, 2017; Kleinberg et al., 2018). Second part is to

combine the {θn} tend to ∞. For example, for a very simple loss functions g(θ) = 1
3

(
∥θ − θ1∥2 +

∥θ − θ2∥2 + ∥θ − θ3∥2
)
, It hold our Assumption 2.3 but not hold bounded variance assumption.

Meanwhile, this sampling immediately implies the below bound.
Claim 2.2. For any bounded set Q that include J∗, it holds

Eξn

∥∥∇̃g(θ, ξn)
∥∥2 ≤ GQg(θ) (∀ θ ∈ Q) ,

where GQ is a constant decided by Q.

Proof. For any smooth point in Q, the mini-batch gradient norm satisfies

∥∥∇̃gCi(θ)
∥∥2 =

4

|N0|2

∥∥∥∥∥
N∑

xc∈Ci

(
f(θ, xc)− yc

)
∇̃f(θ, xc)

∥∥∥∥∥
2

≤ 4

|N0|2
N∑

xc∈Ci

(
f(θ, xc)− yc

)2∥∥∇̃f(θ, xc)
∥∥2 ≤

4N
∑N

i=1

∥∥∇̃f(θ, xi)
∥∥2

N2
0

g(θ),

(3)

where N0 is the size of the mini-batch. Define

hCi
(θ) =

4N
∑N

i=1

∥∥∇̃f(θ, xi)
∥∥2

N2
0

.

Through Assumption 2.1, we know that h(θ) is bounded on smooth points. Then we have∥∥∇̃gCi
(θ, ξn)

∥∥2 ≤ 4NGQ

N2
0

g(θ) (when g is smooth at θ) . (4)

Then,

Eξn

∥∥∇̃g(θ, ξn)
∥∥2 =

CN0−1
N−1

CN0

N

∑
all Ci

∥∥∇̃gCi(θ)
∥∥2 ≤

4NGQC
N0−1
N−1

N2
0C

N0

N

g(θ) := GQg(θ) .
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For the non-smooth point θ, we can prove for any sequence θ0 → θ (g is smooth at θ0), through
Equation (4), there is∥∥∥ lim

θ0→θ
∇̃gCi(θ0, ξn)

∥∥∥2 = lim
θ0→θ

∥∥∇̃gCi(θ0, ξn)
∥∥2 ≤ 4NGQ

N2
0

lim
θ0→θ

g(θ0) =
4NGQ

N2
0

g(θ) .

Recall the following fact:

If ∥a1∥2 < s0, ∥a2∥2 < s0, . . . , ∥an∥2 < s0, the norm of their any convex combination

∥ā∥2 :=

∥∥∥∥ n∑
i=1

λiai

∥∥∥∥2 <

( n∑
i=1

λ2
i

)
s0 ≤ s0 .

Then we obtain

∥∇̃gCi(θ)
∥∥2 ≤ 4NGQ

N2
0

g(θ) .

This concludes that
Eξn

∥∥∇̃g(θ, ξn)
∥∥2 ≤ GQg(θ) .

We could observe that the noise variance Eξn ∥∇̃g(θ, ξn) − ∇̃g(θ)∥2 = 0 at the global optimum
(Claim 2.1). Intuitively, the zero variance makes the θn stable in the global optimum, while for a
local minimum or a saddle point the variance is nonzero in general. This is intuitively how SGD
escapes from local minimum and saddle points.

We have to notice that the global optimum is a subset of the set where the noise variance equals 0.
It is easy to prove that

J∗ ⊆
{
θ | Eξn ∥∇̃(θ, ξn)− ∇̃(θ)∥2 = 0

}
= J∗∗ ,

where J∗∗ is equivalent to

J∗∗ =
⋂
Ci

{
θ | ∇̃

((
f(θ, x̄)− ȳ

)2)
= 0
}
.

Our techniques will eventually prove that the SGD with regular sampling noise converges to J∗∗.
This could be different than J∗ in theory, but intuitively, for the over-parameter model and a large
amount of data the model f(θ, x) is complex enough to make sure that other stationary points are
sensitive to the mini-batch batch selection. As such making a point, that is not the global optimum,
stationary to all batches simultaneously is almost impossible, i.e., J∗∗/J∗ = ∅. Nevertheless, in or-
der to insure the rigor of the theory, we make an additional assumption only for the regular sampling
noise. This assumption is lifted in the sampling noise with global stable guarantee.

Additional assumption for regular sampling noise For the sampling noise {ξn}, points that are
stationary to all mini-batches must be in J∗, i.e., J∗ = J∗∗. Meanwhile, for every mini-batch loss
function gCi

, the stationary point set of gCi
is countable.

If one slightly modifies SGD by adding an additional Gaussian noise, we will prove that such sam-
pling noise will enjoy a global stable guarantee. With this variant of SGD, the above assumption
could be lifted. We now present our proposed variant of SGD.

2.2.2 SAMPLING NOISE WITH GLOBAL STABLE GUARANTEE

The sampling noise we propose in this section is the regular noise in SGD plus an extra Gaussian
noise, as

vn = ϵ0
(
∇̃g(θn, ξn) +

√
min{g(θn),K0}τnNn

)
,

θn+1 = θn − vn ,
(5)

where {ξn} again represents the sampling noise, K0 is a constant to prevent the noise from approach-
ing infinity, {Nn} represents a mutually independent standard Gaussian noise, {τn} is a mutually
independent Bernoulli variable, i.e., P (τn = 0) = p0, P (τn = 1) = 1− p0, and {τn}, {ξn}, {Nn}
are also mutually independent. The coefficient min{g(θn),K0} is to make sure the algorithm hold
a positive noise variance Eξn,τn,Nn ∥vn∥2 > 0 in non-optimal stationary points. We use {τn} to re-
duce the scale of the problem, making the scale of the new noise equal to the scale of the mini-batch
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gradient ∇̃g(θn, ξn) and as the original sampling noise. For example, if the batch size is 100 and the
scale of the original data set is 10000, then we can set p0 = 1−0.01, which makes the average scale
of the noise min{g(θn),K0}τnNn

)
also 100. The tail term

√
min{g(θn),K0}τnNn

)
guarantees

that this algorithm has a positive variance in Rd/J∗.

3 MAIN RESULTS

Our first main result states that SGD must converge to a global optimum with probability 1. This is a
large improvement from previous results with only 1−δ probability, where δ depends on the model.
Our theorem answers the question raised in the introduction, affirmatively, that SGD could indeed
obtain a global optimum even in this non-smooth non-convex over-parameter setting. The next
two theorems discuss the cases of rθ∗ > 1 (higher than second-order local structure) and rθ∗ = 1
(second-order local structure) respectively.
Theorem 3.1. Consider the SGD iteration in Equation (5), or alternatively Equation (2) with J∗ =
J∗∗, and the MSE loss function (1). If Assumptions 2.1, 2.3 hold, and Assumption 2.2 holds with
rθ∗ > 1, then for any 0 < ϵ0 < min{1/2cM0, 1/4cK0(1−p0)}, and for any initialization θ1 ∈ Rd,
{θn} converges to the set J∗ almost surely, i.e.,

lim
n→∞

d(θn, J
∗) = 0 a.s. ,

where d(x, J∗) = infy{∥x − y∥, y ∈ J∗} denotes the distance between point x and set J∗. Mean-
while the value of the loss function converges to 0 almost surely, i.e.,

lim
n→∞

g(θn) = 0 a.s. .

For each main result, we provide a proof sketch to illustrate our idea in deriving the result. A
rigorous argument is deferred to the appendix.

Proof sketch. Our proof mainly relies on two techniques. The first technique is the Lyapunov
method. It transfers the convergence of a high dimension vector θn to a one dimensional Lya-
punov function R(θn). The second technique is to use the idea of Markov process. We sketch these
two steps and an additional step as follows.

Step 1: In this step, we aim to prove that there exists at least one bounded set S0 such that there is no
limit point of {θn} is in it almost surely. Through the Borel–Cantelli Lemma, it amounts to proving

+∞∑
n=1

P
(
θn ∈ S0

)
< +∞ . (6)

In order to prove Equation (6), we use the Lyapunov method, constructing a Lyapunov function
R(θ) which holds a unique zero R(θ∗) = 0 and an open set Ŝ0 which include θ∗ (exact forms of
R(θ) and Ŝ0 are provided in the appendix). We assign In as the characteristic function of the event
{θn ∈ Ŝ0}. Then we obtain the inequality

I
(Ŝ0)
n+1R(θn+1)− I(Ŝ0)

n R(θn) ≤ −I(Ŝ0)
n R

2r
r+1 (θn) + un , (7)

where un is defined in (12) with
∑+∞

n=1 E(un) < +∞. Summing up Equation (6) yields

+∞∑
n=1

E
(
I(Ŝ0)
n R

2r
r+1 (θn)

)
< E

(
I
(Ŝ0)
1 R

2r
r+1 (θ1)

)
+

+∞∑
n=1

E(un) < +∞ .

Subsequently we could construct S0 := Ŝ0/U(θ∗, δ′0), for some small enough δ′0, to make∑+∞
n=1 E

(
I
(S0)
n R

2r
r+1 (θn)

)
<
∑+∞

n=1 E
(
I
(Ŝ0)
n R

2r
r+1 (θn)

)
< +∞. Then, as whenever θn ∈

Ŝ0/U(θ∗, δ′0) we have R
2r

r+1 (θ) > ϵ̃, we have

+∞∑
n=1

P
(
θn ∈ S0

)
<

1

ϵ̃

+∞∑
n=1

E
(
I(S0)
n R

2r
r+1 (θn)

)
< +∞ .
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As such we conclude Equation (6), and through the Borel–Cantelli Lemma, we know that there is
no limit point in S0 almost surely.

Step 2: In this step, we aim to prove that for any bounded set S that has no intersection with J∗, there
is no limit point in it. The way we prove it is different for the two types of noise (2) and (5). Handling
the sampling noise with global stable guarantee (5) is relatively simple. The Gaussian noise of (5)
guarantees that it forms an irreducible Markov process. Then using the property of the irreducible
Markov process directly will prove the statement. For (2), the situation becomes complicated where
an argument of the regular sampling noise does not deduce an irreducible Markov process. We prove
it using a delicate argument. We first prove that a max positive bounded invariant set D must hold
its boundary set ∂D∩J∗ ̸= ∅, and every trajectory started from this set must almost surely converge
to some global optimum. Here a set is max positive invariant if any trajectories started in S0 will not
escape S0 and for any points θ′′ /∈ J∗∪D, θ′′∪D is not a positive invariant set. That means, for any
point either almost every trajectory started with it converges to J∗, or it holds a positive probability
transfer to S0. For the first situation, this statement is satisfied. For the second situation, we can
make a small enough positive measure set, such that for any θ ∈ S, there exists a δ′0, and some large
enough k, P (θn+k ∈ S0 | θn = θ) > υ. Then we can get as desired

υ
+∞∑
n=1

P (θn ∈ S) = υ

+∞∑
n=k+1

∫
S

Pn−k(dθ) ≤
+∞∑

n=k+1

∫
S

P (θn+k ∈ S(δ0,l0) | θn = θ)Pn−k(dθ)

=

+∞∑
n=k+1

∫
S(δ0,l0)

Pn(dθ) < +∞ .

Step 3: In the previous step we actually proved that almost surely either θn → J∗ or θn → +∞.
Through the Kolmogorov 0-1 law, we know {θn converges} is a tail event. As such, P (θn → J∗) ∈
{0, 1}. Meanwhile as P (θn → ∞) = 1 is impossible, P (θn → J∗) could only take 1.

In step 3, we suspect that P (θn → ∞) = 1 is indeed impossible, even without the assumption
lim infθ→∞ ∥∇̃g(θ)∥ > max{4c

√
M0, 4c

√
K0}. In fact, as long as θn converges to J∗ for any

initialization θ1 in some neighboring domain of the optimum, it converges for all initialization. This
is because for every initialization it either converges to the optimum or it has a positive probability to
transfer to an arbitrary set with a positive measure. As the neighboring domain could be arbitrarily
small, it is likely to exist.
Theorem 3.2. Consider the SGD iteration in Equation (5), or alternatively Equation (2) with J∗ =
J∗∗, and the MSE loss function (1). If Assumptions 2.1, 2.3 hold, and Assumption 2.2 holds with
rθ∗ = 1, then for any 0 < ϵ0 < min{1/2cM0, αθ∗/2(2− p0)β

2
θ∗ , 1/4cK0(1− p0)}, where normal

sampling noise 2 can be seen as p0 = 0, and for any θ1 ∈ Rd, θn converges to J∗ almost surely, i.e.,

lim
n→∞

d(θn, J
∗) = 0 a.s. ,

where d(x, J∗) = infy{∥x − y∥, y ∈ J∗} denotes the distance between point x and set J∗. Mean-
while the value of the loss function converges to 0 almost surely, i.e.,

lim
n→∞

g(θn) = 0 a.s. .

Proof sketch. This proof will be similar to the proof of Theorem 3.1. The difference is when rθ∗ = 1
the convergence towards a global optimum with second-order local structure is conditional on the
selection of the initial learning rate ϵ0. The reason for this is the inequality

I
(Ŝ0)
n+1R(θn+1)− I(Ŝ0)

n R(θn) ≤ −
(
αθ∗ϵ0 − 2(2− p0)ϵ

2
0β

2
θ∗

)
I(Ŝ0)
n R(θn) + un (8)

holds only when the coefficient αθ∗ϵ0 − 2(2 − p0)ϵ
2
0β

2
θ∗ > 0. By setting ϵ0 as the theorem the

inequality and other arguments remain valid. This proof also agrees with our intuition that SGD
converges to a sharper global optimum not as easy as a flat one (rθ∗ > 1).

Recall the second question raised in SGD was conjecturing if SGD tends to choose the flat minima
(and so as to enjoy a better generalization). In the end of the above proof we find that SGD converges

8
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to a sharper global optimum not as easy as a flat one. This observation is through positive results
only, though. We wonder if the converse is also true, that is, if a global minimum is not flat, then
SGD is unlikely to converge to that.

In the below theorem we answer the converse affirmatively. Is is proved that if ϵ0 is large enough,
then the iteration will almost surely not converge to this optimum.

Theorem 3.3. Consider the SGD iteration in Equation (5), or alternatively Equation (2) with J∗ =
J∗∗, and the MSE loss function (1). If Assumptions 2.1, 2.3 hold, and Assumption 2.2 holds with
rθ∗ = 1, then for any θ1 ∈ Rd, if ϵ0 > βθ∗/2(2 − p0)α

2
θ∗ , where normal sampling noise 2 can be

seen as p0 = 0, the probability that θn converges to θ∗ is 0, i.e.,

P
(

lim
n→∞

∥θn − θ∗∥ = 0
)
= 0 .

Proof sketch. The main idea is to prove that if the iteration always stays in a neighboring domain of
θ∗, then the probability that this iteration converges to θ∗ is zero. The Lyapunov method is helpful
in this case.

Step 1: In this step, we aim to acquire a reverse inequality of (7). We first construct a Lyapunov
function R(θ) and a domain S1 of θ∗, and an event Ai,n = {θn0 ∈ S1, n0 ∈ [i, n]} as well its
characteristic function Ii,n. Then we can acquire an inequality

Ii,n
(
R(θn+1)−R(θn)

)
≥
(
2(2− p0)ϵ

2
0α

2
θ∗ − ϵ0βθ∗

)
Ii,nR(θn) + Ii,nζn , (9)

where ζn is defined by equation 33. Notice that if
(
2(2−p0)ϵ

2
0α

2
θ∗−ϵ0βθ∗

)
> 0, then this inequality

will be a variant of diffusion process.

Step 2: In this step, we aim to prove when n approaches infinity, the iteration will transform a fixed
part of itself out of S1. Through (9), we get

E
(
Ii,n+1R(θn+1)

)
≥

(
1 + p̂0 −

E
(
R(θn+1)(Ii,n − Ii,n+1)

)
E
(
Ii,nR(θn)

) )
E
(
Ii,nR(θn)

)
.

We know if
E
(
R(θn+1)(Ii,n − Ii,n+1)

)
E
(
Ii,nR(θn)

) < p̂0 ,

then E
(
Ii,n+1R(θn+1)

)
will diverge to infinity, which is impossible to happen. As such, it must

hold
E
(
R(θn+1)(Ii,n − Ii,n+1)

)
E
(
Ii,nR(θn)

) ≥ p̂0 .

Step 3: In this step, we will show that if E(Ii,+∞ ̸= 0) > 0, then Ii,nR(θn) will not converge to
0 almost surely. We prove it by contradiction and assume P

(
limn→+∞ Ii,nR(θn) = 0

)
= 1. That

means for any ϵ′0 > 0, P
(
Ii,nR(θn) > ϵ′0

)
→ 0, which concludes P

(
Ii,nR(θn) ≤ ϵ′0

)
→ 1. Then

E
(
R(θn+1)(Ii,n − Ii,n+1)

)
E
(
Ii,nR(θn)

) → k′ϵ′0 .

This forms a contradiction.

Step 4: In this final step, we will prove P
(
limn→+∞ θn = θ∗

)
= 0. We inspect the event {θn →

θ∗}. If E(Ii,+∞ ̸= 0) > 0, then due to limn→+∞ Ii,ng(θn) − Ii,+∞g(θn) = 0 a.s., we could get
P
(
limn→+∞ Ii,+∞R(θn) = 0

)
= 0. Then,

P
(
{θn → θ∗} ∩Ai,+∞

)
= P

(
lim

n→+∞
Ii,+∞R(θn) = 0

)
= 0 .

Otherwise if E(Ii,+∞ ̸= 0) = 0, we have

P
(
{θn → θ∗} ∩Ai,+∞

)
≤ E(Ii,+∞ ̸= 0) = 0 .

9
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Absolutely, we have

{θn → θ∗} ⊂

{
+∞⋃
i=1

Ai,+∞

}
.

Subsequently we have

P
(
θn → θ∗

)
= P

(
{θn → θ∗}

⋂{
+∞⋃
m=1

Ai,+∞

})
= P

(
+∞⋃
i=1

{θn → θ∗}
⋂

Ai,+∞

)

≤
+∞∑
i=1

P
(
{θn → θ∗}

⋂
Ai,+∞

)
= 0 .

As we have shown the asymptotic convergence of SGD, the natural question is how fast it converges.
To provide the convergence rate, we will need a slightly stronger version of Assumption 2.2. We
need, instead of just one θ∗, all θ∗, to satisfy the order r + 1 expansion. In this case, the supremum
of the expansion order, among all optimum points, is denoted as r̂ = maxθ∗∈J∗

∞
rθ∗ , where J∗

∞ :=
{θ∗ ∈ J∗ | P (θn → θ∗) > 0}.

Our next theorem provides the convergence rate of SGD.

Theorem 3.4. Consider the SGD iteration in Equation (5), or alternatively Equation (2) with J∗ =
J∗∗, and the MSE loss function (1). If Assumptions 2.1, 2.3 hold, and the variant of Assumption 2.2
described immediately preceding this statement holds with order r̂ + 1, then for any θ1 ∈ Rd, θn
has an asymptotic convergence rate as

g(θn)=

{
O
(
pn0
)

a.s. , if r̂ = 1 ,

O
(
n− 2

r̂−1
)

a.s. , if r̂ > 1 ,

where p0 < 1 is a constant decided by the learning rate ϵ0.

Proof sketch. The proof of this theorem is based on the proof of Theorem 3.1. We asymptotically
bound of martingale difference (Lemma A.1) and with the bound apply the martingale convergence
theorem. The asymptotic convergence rate follows.

As an immediate consequence of the convergence rate, the SGD algorithm could obtain an arbitrary
accuracy in polynomial time. This validates the efficiency of SGD.

Corollary 3.1. Consider the same setting as Theorem 3.4. For any θ1 ∈ Rd, the computational time
for g(θn) to reach an η accuracy is{

O
(
N0d · log( 1η )

)
a.s. , if r̂ = 1 ,

O
(
N0d · ( 1η )

r̂−1
2

)
a.s. , if r̂ > 1 ,

where N0 is the mini-batch size.
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A APPENDIX

A.1 COUNTER-EXAMPLE

Claim A.1. The chain rule does not hold the Clarke subdifferential.

Proof. For a composite nonsmooth function, the chain rule may not hold at the nonsmooth point Liu
et al. (2022b). We introduce an example as follows.

Consider

min
w1∈R,w2∈R,b1∈R,b2∈R

f(w1, w2, b1, b2)

:= ((w2σ (w1 + b1) + b2) + 1)
2
+ ((w2σ (2w1 + b1) + b2)− 1)

2
. (10)

Let w∗
2 = 1, b∗1 = 0, w∗

1 = 0, b∗2 = 0, one can easily see that the SGD method will get stuck at
(w∗

1 , w
∗
2 , b

∗
1, b

∗
2), and

∂f(w∗
1 , w

∗
2 , b

∗
1, b

∗
2) =

{
(t, 0, s, 0)T : t ∈ [−4, 2], s ∈ [−2, 0]

}
,

f(w∗
1 + ϵ, w∗

2 , b
∗
1, b

∗
2) = 5ϵ2 − 2ϵ+ 2 < 2 = f(w∗

1 , w
∗
2 , b

∗
1, b

∗
2) for some small positive number ϵ .

Then, observe that (w∗
1 , w

∗
2 , b

∗
1, b

∗
2) is neither a local minimizer of equation 10. Moreover, one can

see that (1, 2,−1,−1) is a global minimizer of equation 10, at which the function value is 0.

A.2 AUXILIARY LEMMAS

Lemma A.1. (Theorem 4.2.13, Lei et al. (2005)) Consider a Martingale difference column
{Xn,Fn} that satisfies supn E(∥Xn+1∥2|Fn) < +∞ almost surely. Then it holds that

n∑
k=1

βkXk = O
(√

Sn ln
1
2+η(Sn + e)

)
almost surely , ∀η > 0,

where Sn =
∑n

k=1 β
2
k .

Lemma A.2. (Lemma 6 in Jin et al. (2022)) Suppose that {Xn} ∈ Rd is a non-negative sequence
of random variables, then

∑∞
n=0 Xn < +∞ holds almost surely if

∑∞
n=0 E

(
Xn

)
< +∞.

Lemma A.3. (Wang et al., 2019) Suppose that {Xn} ∈ Rd is an L2 martingale difference sequence,
and (Xn,Fn) is an adaptive process. Then it holds almost surely that

∑∞
k=0 Xk < +∞ if

∞∑
n=1

E(∥Xn∥2) < +∞, or
∞∑

n=1

E
(
∥Xn∥2

∣∣Fn−1

)
< +∞ ,

happens almost surely.
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A.3 PROOF OF LEMMA A.4.

Lemma A.4. Consider the SGD updates specified in equation 2 (or equation 2 with J∗ =
J∗∗) and the MSE loss function equation 1. If Assumptions 2.1, 2.3 hold, then for any ϵ0 <
min{1/2cM0, 1/4cK0(1 − p0)}, where normal sampling noise 2 can be seen as p0 = 0. Then
for any θ1 ∈ Rd, the probability of θn diverge to the infinity is less than 1, i.e., P (θn → ∞) < 1.

Proof. We prove this Lemma by contradiction. We first assume P (θn → ∞) = 1, which means
θn → ∞ almost surely. By the Lagrange’s mean value theorem, we have

g(θn+1)− g(θn) = ∇̃g(θζn)
T (θn+1 − θn) ,

where ζn is a point between θn and θn+1. If ζn is a non-smooth point, then we can find at least one
point in the set of ∇̃g(θζn). Therefore, we have

g(θn+1)− g(θn) = ∇̃g(θζn)
T (θn+1 − θn)

= − ϵ0∇̃g(θn)
T ∇̃g(θn, ξn) +

(
∇̃g(θζn)− ∇̃g(θn)

)T
(θn+1 − θn)

≤ − ϵ0∇̃g(θn)
T ∇̃g(θn, ξn) +

∥∥∇̃g(θζn)− ∇̃g(θn)
∥∥∥θn+1 − θn∥

≤ − ϵ0∇̃g(θn)
T ∇̃g(θn, ξn) + max{c, c · ϵ0∥∇̃g(θn, ξn)∥}ϵ0∥∇̃g(θn, ξn)∥

< − ϵ0∇̃g(θn)
T ∇̃g(θn, ξn) + c · ϵ0∥∇̃g(θn, ξn)∥+ c · ϵ20∥∇̃g(θn, ξn)∥2 .

Through Assumption 2.3, we know that it hold Eξn ∥∇̃g(θn, ξn)∥2 ≤ M0∥ ˜∇g(θn)∥2 when θn →
∞. Then we take an expectation over the sampling noise, we have

E
(
g(θn+1)

)
− E

(
g(θn)

)
< − ϵ0 E ∥∇̃g(θn)∥2 + c · ϵ0

√
M0 E ∥∇̃g(θn)∥+ c ·M0 · ϵ20 E ∥∇̃g(θn)∥2

+ c(1− p0)K0ϵ
2
0 + c

√
(1− p0)K0ϵ0

< −
(
ϵ0 − cM0ϵ

2
0

)
E ∥∇̃g(θn)∥2 + cϵ0

√
M0 E ∥∇̃g(θn)∥+ c(1− p0)K0ϵ

2
0

+ c
√
(1− p0)K0ϵ0 .

Since 1
2ϵ0−cM0ϵ

2
0 > 0, and ∥∇̃g(θn)∥ > max{4c

√
M0, 4c

√
(1− p0)K0} when θn → ∞, we can

get P (∥∇̃g(θn)∥ > max{4c
√
M0, 4c

√
(1− p0)K0}) → 1. This implies

E ∥∇̃g(θn)∥2 ≥
(
E ∥∇̃g(θn)∥

)2
With this, we have

E
(
g(θn+1)

)
≤ E

(
g(θ1)

)
− k̂′1ϵ0

n∑
k=1

E ∥∇̃g(θn)∥2 → −∞ ,

which is impossible. We thus conclude that {θn} can not tend to infinity almost surely, i.e., P (θn →
∞) < 1.

A.4 PROOF OF THEOREM 3.1.

Proof. For convenience, we abbreviate rθ∗ := r. Then we let

l0 := min

{(
βθ∗ + 1

2r(r + 1)G
(rθ∗ )
0 αθ∗ϵr0

) r+1
r−1

, δθ∗

}
,

and construct a function

R(θ) =


∥θ − θ∗∥r+1, if ∥θ − θ∗∥ ≤ max{1, δθ∗}
∥θ − θ∗∥2, if ∥θ − θ∗∥ > K̄0

k̂(∥θ − θ∗∥), if max{1, δθ∗} < ∥θ − θ∗∥ ≤ K̄0

,
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where k̂(∥θ − θ∗∥) is the smooth connection between ∥θ − θ∗∥ (∥θ − θ∗∥ > K̄0) and ∥θ −
θ∗∥r+1 (∥θ − θ∗∥ ≤ max{1, δθ∗}).

Then through choosing feasible k̂(θ − θ∗) and K̂0, we can ensure that the Hessian matrix of R(θ)
is bounded in Rd. Let the upper bound of the Hessian matrix be r(r + 1), i.e., xTHθθx ≤ r(r +
1)∥x∥2 (∀x ∈ Rd, θ ∈ Rd).

Next, we construct a set
S(l0) =

{
θ
∣∣0 ≤ ∥θ − θ∗∥ < l0

}
.

We also define event A(l0)
n = {θn ∈ S(l0)} and the characteristic function I

(l0)
n . Through the

Lagrange’s mean value theorem, we obtain

I(l0)n

(
R(θn+1)−R(θn)

)
= I(l0)n ∇R(θζn)

T (θn+1 − θn) ,

where θζn ∈ [θn+1, θn]. Note that

∇R(θζn) = ∇R(θn) +∇R(θζn)−∇R(θn) ,

and thus

I(l0)n

(
R(θn+1)−R(θn)

)
≤ −I(l0)n ∇R(θn)

T vn + I(l0)n ∥∇R(θζn)−∇R(θn)∥∥θn+1 − θn∥ .

Hence, for any θ ∈ {θ|∥θ − θn∥ ≤ max{1, δθ∗}} we have

∇R(θ) = ∇
(
∥θ − θ∗∥r+1

)
= (r + 1)∥θ − θ∗∥r−1(θ − θ∗) .

Moreover, if ∥θξn − θn∥ < max{1, δθ∗}, we also have

∥∇R(θζn)−∇R(θn)∥ ≤ r(r + 1)∥θn+1 − θn∥r ,

and if ∥θξn − θn∥ ≥ max{l0, 1}, we have

∥∇R(θζn)−∇R(θn)∥ ≤ r(r + 1)∥θζn − θn∥

≤ r(r + 1)

∥θζn − θn∥r−1
∥θζn − θn∥r

≤ r(r + 1)

1
∥θn+1 − θn∥r .

With this, we have

∇R(θζn)−∇R(θn)∥ ≤ r(r + 1)∥θn+1 − θn∥r = r(r + 1)∥vn∥r ,
I(l0)n

(
R(θn+1)−R(θn)

)
≤ − I(l0)n ∇R(θn)

T vn + I(l0)n r(r + 1)∥vn∥r+1 .

I
(l0)
n+1R(θn+1)− I(l0)n R(θn) ≤ − I(l0)n ∇R(θn)

T vn + I(l0)n r(r + 1)∥vn∥r+1

− (I(l0)n − I
(l0)
n+1)R(θn+1) . (11)

Taking expectation of equation 11, we have

E
(
I(l0)n ∇R(θn)

T vn
)

= E
(
I(l0)n E

(
∇R(θn)

T vn
∣∣Fn

))
= E

(
I(l0)n ϵ0 E

(
∇R(θn)

T ∇̃g(θn, ξn)
)
+ I(l0)n ϵ0 E

(
∇R(θn)

T
√

min{g(θn),K0}τnNn

)∣∣Fn

))
= ϵ0 E

(
I(l0)n E

(
∇R(θn)

T ∇̃g(θn)
)
.

Define Ŝ to be the set of θ′, such that g(θ′) is not smooth. Then with Assumption 2.1, we have
Eθn∈Ŝ(h(θn)) = 0, where h is an arbitrary measurable function. Hence, when θn ∈ Rd/Ŝ,

I(l0)n ∇R(θn)
T ∇̃g(θn)

= I(l0)n (r + 1)∥θn − θ∗∥r−1(θn − θ∗)T ∇̃g(θn)

≥ I(l0)n (r + 1)∥θn − θ∗∥r−1αθ∗∥θn − θ∗∥r+1 = I(l0)n αθ∗(r + 1)R
2r

r+1 (θn).
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Therefore, we have

E
(
I(l0)n ∇R(θn)

T ∇̃g(θn)
)
= Eθn∈Rd/Ŝ

(
I(l0)n ∇R(θn)

T ∇̃g(θn)
)

≥ E
(
I(l0)n αθ∗(r + 1)R

2r
r+1 (θn)

)
,

and through Assumption 2.2, we get

E
(
I(l0)n r(r + 1)∥vn∥r+1

)
= r(r + 1)ϵr+1

0 E
(
I(l0)n E

(
∥∇̃g(θn, ξn)∥r+1

∣∣Fn

))
+ r(r + 1)ϵr+1

0 E
(
I(l0)n E

(
∥
√

min{g(θn),K0}τnNn∥r+1
∣∣Fn

))
+ r(r + 1)ϵr+1

0 E
(
I(l0)n E

(
∇̃g(θn, ξn)

T
√
min{g(θn),K0}τnNn

∣∣Fn

))
= r(r + 1)ϵr+1

0 E
(
I(l0)n E

(
∥∇̃g(θn, ξn)∥r+1

∣∣Fn

))
+ r(r + 1)ϵr+1

0 E
(
I(l0)n E

(
∥
√
min{g(θn),K0}τnNn∥r+1

∣∣Fn

))
≤ r(r + 1)(2− p0)ϵ

r+1
0 (βθ∗ + 1)G

(rθ∗ )
0 E

(
I(l0)n R(θn)

)
,

where G
(rθ∗ )
0 is defined in Claim 2.1, and results of equation 2 can be seen the situation which

p0 = 0. Then,

E
(
I
(l0)
n+1R(θn+1)

)
− E

(
I(l0)n R(θn)

)
≤ − αθ∗ϵ0 E

(
I(l0)n R(θn)

2r
r+1
)

+ r(r + 1)(2− p0)(βθ∗ + 1)ϵr+1
0 G

(rθ∗ )
0 E

(
I(l0)n R

r+1
2 (θn)

)
− E

(
(I(l0)n − I

(l0)
n+1)R(θn+1)

)
.

Due to θn ∈ S(l0), we know

R(θn) <

(
βθ∗ + 1

2r(r + 1)(2− p0)G
(rθ∗ )
0 αθ∗ϵr0

) r+1
r−1

.

That means

αθ∗ϵ0I
(l0)
n R

2r
r+1 (θn) > 2r(r + 1)(2− p0)αθ∗ϵr+1

0 G
(rθ∗ )
0 I(l0)n R(θn) .

Hence,
E
(
I
(l0)
n+1R(θn+1)

)
− E

(
I(l0)n R(θn)

)
≤ − αθ∗ϵ0

2
E
(
I(l0)n R

2r
r+1 (θn)

)
− E

(
(I(l0)n − I

(l0)
n+1)R(θn+1)

)
.

For the term E
(
(I

(l0)
n − I

(l0)
n+1)R(θn+1)

)
, we observe that

E
(
(I(l0)n − I

(l0)
n+1)R(θn+1)

)
= E

(
(I(l0)n − I(l0)n I

(l0)
n+1)R(θn+1)− (I

(l0)
n+1 − I(l0)n I(l0)n )R(θn+1)

)
,

(12)
and

(I(l0)n − I(l0)n I
(l0)
n+1)g(θn+1) ≥ l0(I

(l0)
n − I(l0)n I

(l0)
n+1) ,

(I
(l0)
n+1 − I(l0)n I(l0)n )g(θn+1) ≤ l0(I

(l0)
n+1 − I(l0)n I(l0)n ) .

Taking these into equation 12, we obtain

E
(
(I(l0)n − I

(l0)
n+1)R(θn+1)

)
≥ E

(
(I(l0)n − I(l0)n I

(l0)
n+1)l0 − (I

(l0)
n+1 − I(l0)n I(l0)n )l0

)
= l0 E

(
I(l0)n − I

(l0)
n+1

)
. (13)

Taking equation 13 into equation 12, we have

E
(
I
(l0)
n+1R(θn+1)

)
− E

(
I(l0)n R(θn)

)
≤ −αθ∗ϵ0

2
E
(
I(l0)n R2r(θn)

)
− l0 E

(
I(l0)n − I

(l0)
n+1

)
.

(14)
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Summing equation 14 over n, we have

E
(
I
(l0)
n+1R(θn+1)

)
− E

(
I
(l0)
1 R(θ1)

)
≤ −αθ∗ϵ0

2

n∑
k=1

E
(
I
(l0)
k R

2r
r+1 (θn)

)
− l0 E

(
I
(l0)
1 − I

(l0)
n+1

)
.

(15)
Rearranging the equation, we have

n∑
k=1

E
(
I
(l0)
k R

2r
r+1 (θn)

)
≤ 2(l0 + g(θ1))

αθ∗ϵ0
< +∞ .

Next we construct a subset of S(l0) as

S(δ0,l0) = {θ
∣∣0 < δ0 ≤ ∥θ − θ∗∥ < l0} .

Define event
A(δ0,l0)

n = {θn ∈ S(δ0,l0)}

and the characteristic function be I
(δ0,l0)
n . Obviously, we have

n∑
k=1

E
(
I
(δ0,l0)
k R

2r
r+1 (θk)

)
<

n∑
k=1

E
(
I
(l0)
k R

2r
r+1 (θk)

)
≤ 2(l0 + g(θ1))

αθ∗ϵ0
< +∞ .

Let r0 := infθ∈S(δ0,l0 ) R
2r

r+1 (θ) > 0, we have

r0

n∑
k=1

E
(
I
(δ0,l0)
k

)
<

2(l0 + g(θ1))

αθ∗ϵ0
< +∞ ,

that is
+∞∑
k=1

P
(
θk ∈ S(δ0,l0)

)
=

+∞∑
k=1

E
(
I
(δ0,l0)
k

)
<

2(l0 + g(θ1))

αθ∗ϵ0r0
< +∞ . (16)

Then we can obtain

P
(
{θn} ∈ S(δ0,l0), i.o.

)
= P

( +∞⋂
n=1

+∞⋃
k=n

(
θk ∈ S(δ0,l0)

))
(17)

= lim
n→+∞

P

( +∞⋃
k=n

(
θk ∈ S(δ0,l0)

))
(18)

≤ lim
n→+∞

+∞∑
k=n

P
(
θk ∈ S(δ0,l0)

)
= 0 . (19)

Note that equation 17 means the set S(δ0,l0) has no limit point of {θn} almost surely. Then if we
use the SGD update rule equation 5 Since the noise is Gaussian, any θ ∈ Rd/J∗ and for any k > 0,
there is P (θn+k ∈ S(δ0,l0)|θn = θ) = δ̂0 > 0. If we use SGD update rule equation 2, for any
max positive invariant set D/J∗, we know that there must exist a boundary set ∂D. Moreover,
∀θ′ ∈ ∂D, if θ′ ∈ Rd/D, then for any mini-batch Ci, we have ∇̃gCi

(θ′) = 0. Otherwise we
can find a sequence {θ′′ → θ′, /θ′′ ∈ D}, making the trajectories started from θ′′ close to the
trajectory started from θ′. It forms a contradiction. Then due to J∗∗ = J∗, we know θ′ ∈ J∗.
That means D ∩ J∗ ̸= ∅. If θ′ ∈ D, we can conclude all trajectories started from θ′ are a subset
of ∂D. On the other hand, we can conclude ∂g is a close set. Through Heine˘Borel theorem, it
exists a finite open cover

⋃M
n=1 On ⊃ ∂D, and every On holding an arbitrary small diameter. We

let θ′ ∈ O1. Then we assign Tn as the lone time interval of one trajectory started from θ′ and back
to Tn. If Tn → +∞, that means this trajectory must stay a infinity time in some Ok, that means
exists a global optimum in Ok. Naturally, the trajectory will converge to this global optimum. If Tn

is bounded, that means the trajectory will enter into O1 infinite times. Due to a mass of different
mini-batch and the enough small diameter and f(θ) := P (θn+k ∈ Rd/D|θn = θ) = δ̂0 > 0 is a
continuous function, We get P (θn+k ∈ Rd/D|θn ∈ O1) = δ̂0 > 0, it is contradiction about D is a

17
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positive invariant set. That means for any θ ∈ R/J∗, either trajectories started from it will converge
to some global optimum, either it has a positive probability to make sure it transfers to S(δ0,l0) after
k steps. Then for any bounded set Ŝ0 which has no intersection with J∗, we first get rid of those
points which will converge to J∗. We know that f(θ) := P (θn+k ∈ S(δ0,l0)|θn = θ) = δ̂0 > 0 is a
continuous function. Then we can get for any bounded closed set Ŝ0 which satisfied Ŝ0 ∩ J∗ = ∅,
there is minθ∈Ŝ0

P (θn+k ∈ S(δ0,l0)|θn = θ) = δ̂1 > 0. Then we aim to prove there is no limit point
in Ŝ0 almost surely by contradiction. We assume

+∞∑
n=1

P
(
θn ∈ Ŝ0

)
= +∞ .

Then,
+∞∑

n=k+1

P (θn ∈ S(δ0,l0)) =

+∞∑
n=k+1

∫
S(δ0,l0)

Pn(dθ)

=

+∞∑
n=k+1

∫
SRd

P (θn+k ∈ S(δ0,l0)|θn = θ)Pn−k(dθ)

≥
+∞∑

n=k+1

∫
Ŝ0

P (θn+k ∈ S(δ0,l0)|θn = θ)Pn−k(dθ)

≥ δ̂1

+∞∑
n=k+1

∫
Ŝ0

Pn−k(dθ) = δ̂1

+∞∑
n=1

P (θn ∈ Ŝ0)

= +∞ .

Note that this is in contradiction with equation 16 and thus
∑+∞

n=1 P
(
θn ∈ Ŝ0

)
< +∞. Then,

P
(
{θn} ∈ Ŝ0, i.o.

)
= P

( +∞⋂
n=1

+∞⋃
k=n

(
θk ∈ Ŝ0

))

= lim
n→+∞

P

( +∞⋃
k=n

(
θk ∈ Ŝ0

))

≤ lim
n→+∞

+∞∑
k=n

P
(
θk ∈ Ŝ0

)
= 0 .

(20)

Combining equation 20 with equation 16, we can see that for any bounded set which does not include
J∗ = {θ|g(θ) = 0} has no limit point almost surely. This implies θn → J∗ or θn → ∞. Since
{{θn} is convergence} is a tail event. Then by the zero-one law, we know P ({θn} is convergence) =
0 or 1. That means {θn} either converges to J∗ almost surely, or diverges to infinity almost surely.
Through Lemma A.4, we know P (θn → ∞) < 1, thus {θn} can only converge to J∗ almost
surely.

A.5 PROOF OF THEOREM 3.2

Proof. We define R(θ) = ∥θ − θ∗∥2, and a set

S(l0) = {θ
∣∣0 ≤ ∥θ − θ∗∥ < l0 := δθ∗} .

We also define an event A(l0)
n = {θn ∈ S(l0)} and the characteristic function I

(l0)
n . By Lagrange’s

mean value theorem, we have

I(l0)n

(
R(θn+1)−R(θn)

)
= I(l0)n ∇R(θζn)

T (θn+1 − θn) ,

where θζn ∈ [θn+1, θn].

Note that ∇R(θζn) = ∇R(θn) +∇R(θζn)−∇R(θn), we have

I(l0)n

(
R(θn+1)−R(θn)

)
≤ −I(l0)n ∇R(θn)

T vn + I(l0)n ∥∇R(θζn)−∇R(θn)∥∥θn+1 − θn∥ .

18
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Moreover, we also have

∥∇R(θζn)−∇R(θn)∥ ≤ 2∥θn+1 − θn∥ = 2∥vn∥
I(l0)n

(
R(θn+1)−R(θn)

)
≤ − I(l0)n ∇R(θn)

T vn + I(l0)n 2∥vn∥2

I(l0)n

(
R(θn+1)−R(θn)

)
≤ − I(l0)n ∇R(θn)

T vn + I(l0)n 2∥vn∥2

I
(l0)
n+1R(θn+1)− I(l0)n R(θn) ≤ − I(l0)n ∇R(θn)

T vn + I(l0)n 2∥vn∥2 (21)

− (I(l0)n − I
(l0)
n+1)R(θn+1) . (22)

Taking expectation of equation 21, we have

E
(
I(l0)n ∇R(θn)

T vn
)

= E
(
I(l0)n E

(
∇R(θn)

T vn
∣∣Fn

))
= E

(
I(l0)n ϵ0 E

(
∇R(θn)

T ∇̃g(θn, ξn)
)
+ I(l0)n ϵ0 E

(
∇R(θn)

T
√
min{g(θn),K0}τnNn

)∣∣Fn

))
= ϵ0 E

(
I(l0)n ϵ0 E

(
∇R(θn)

T ∇̃g(θn)
)
.

We define Ŝ = {θ′|∇̃g(θ) is not continue at θ′}. Then through Assumption 2.1, and note that
Eθn∈Ŝ(h(θn)) = 0, where h is an arbitrary measurable function, we have that the following when
θn ∈ Rd/Ŝ.

I(l0)n ∇R(θn)
T ∇̃g(θn) = 2I(l0)n (θn − θ∗)T ∇̃g(θn) ≥ 2I(l0)n αθ∗∥θn − θ∗∥2

≥ 2I(l0)n αθ∗∥θn − θ∗∥2 = 2I(l0)n αθ∗R(θn).

Therefore, we have

E
(
I(l0)n ∇R(θn)

T ∇̃g(θn)
)
= Eθn∈Rd/Ŝ

(
I(l0)n ∇R(θn)

T ∇̃g(θn)
)

≥ 2E
(
I(l0)n αθ∗R(θn)

)
.

and through Assumption 2.2, we get

E
(
I(l0)n 2∥vn∥2

)
= 2ϵ20 E

(
I(l0)n E

(
∥∇̃g(θn, ξn)∥2

∣∣Fn

))
+ 2ϵ20 E

(
I(l0)n E

(
∥
√
min{g(θn),K0}τnNn∥2

∣∣Fn

))
+ 4ϵ20 E

(
I(l0)n E

(
∇̃g(θn, ξn)

T
√
min{g(θn),K0}τnNn

∣∣Fn

))
= 2ϵ20 E

(
I(l0)n E

(
∥∇̃g(θn, ξn)∥2

∣∣Fn

))
+ 2ϵ20 E

(
I(l0)n E

(
∥
√
min{g(θn),K0}τnNn∥2

∣∣Fn

))
≤ 2(2− p0)ϵ

2
0β

2
θ∗ E

(
I(l0)n R(θn)

)
,

where the situation of equation 2 can be seen as p0 = 0. Then we have

E
(
I
(l0)
n+1R(θn+1)

)
− E

(
I(l0)n R(θn)

)
≤ − cθ∗ϵ0 E

(
I(l0)n R(θn)

)
+ 2(2− p0)ϵ

2
0β

2
θ∗ E

(
I(l0)n R(θn)

)
− E

(
(I(l0)n − I

(l0)
n+1)R(θn+1)

)
,

and
E
(
I
(l0)
n+1R(θn+1)

)
− E

(
I(l0)n R(θn)

)
≤ −

(
αθ∗ϵ0 − 2(2− p0)ϵ

2
0β

2
θ∗

)
E
(
I(l0)n R(θn)

)
− E

(
(I(l0)n − I

(l0)
n+1)R(θn+1)

)
.

For the term E
(
(I

(l0)
n − I

(l0)
n+1)R(θn+1)

)
, we first observe that

E
(
(I(l0)n − I

(l0)
n+1)R(θn+1)

)
= E

(
(I(l0)n − I(l0)n I

(l0)
n+1)R(θn+1)− (I

(l0)
n+1 − I(l0)n I(l0)n )R(θn+1)

)
,

(23)
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and
(I(l0)n − I(l0)n I

(l0)
n+1)g(θn+1) ≥ l0(I

(l0)
n − I(l0)n I

(l0)
n+1) ,

(I
(l0)
n+1 − I(l0)n I(l0)n )g(θn+1) ≤ l0(I

(l0)
n+1 − I(l0)n I(l0)n ) .

Taking these into equation 23, we have

E
(
(I(l0)n − I

(l0)
n+1)R(θn+1)

)
≥ E

(
(I(l0)n − I(l0)n I

(l0)
n+1)l0 − (I

(l0)
n+1 − I(l0)n I(l0)n )l0

)
= l0 E

(
I(l0)n − I

(l0)
n+1

)
.

(24)

Substituting equation 24 into equation 23, we get

E
(
I
(l0)
n+1R(θn+1)

)
− E

(
I(l0)n R(θn)

)
≤ −

(
αθ∗ϵ0 − 2(2− p0)ϵ

2
0β

2
θ∗

)
E
(
I(l0)n R(θn)

)
− l0 E

(
I(l0)n − I

(l0)
n+1

)
.

(25)

Summing equation 25 over n, we have

E
(
I
(l0)
n+1R(θn+1)

)
− E

(
I
(l0)
1 R(θ1)

)
≤ −

(
αθ∗ϵ0 − 2(2− p0)ϵ

2
0β

2
θ∗

) n∑
k=1

E
(
I
(l0)
k R(θn)

)
− l0 E

(
I
(l0)
1 − I

(l0)
n+1

)
.

(26)

As ϵ0 < αθ∗/2(2− p0)β
2
θ∗ , we have

n∑
k=1

E
(
I
(l0)
k R(θn)

)
≤ l0 + g(θ1)

αθ∗ϵ0 − 2(2− p0)ϵ20β
2
θ∗

< +∞ .

Next, we construct a subset of S(l0) as

S(δ0,l0) = {θ
∣∣0 < δ ≤ ∥θ − θ∗∥ < l0} .

We also define A(δ0,l0)
n = {θn ∈ S(δ0,l0)} and the characteristic function be I(δ0,l0)n . Notice that, we

have
n∑

k=1

E
(
I
(δ0,l0)
k R(θk)

)
<

n∑
k=1

E
(
I
(l0)
k R(θk)

)
≤ l0 + g(θ1)

αθ∗ϵ0 − 2(2− p0)ϵ20β
2
θ∗

< +∞ .

Denoter0 := infθ∈S(δ0,l0 ) R(θ) > 0, then

r0

n∑
k=1

E
(
I
(δ0,l0)
k

)
<

l0 + g(θ1)

αθ∗ϵ0 − 2(2− p0)ϵ20β
2
θ∗

< +∞,

that is
+∞∑
k=1

P
(
θk ∈ S(δ0,l0)

)
=

+∞∑
k=1

E
(
I
(δ0,l0)
k

)
<

l0 + g(θ1)

αθ∗ϵ0 − 2(2− p0)ϵ20β
2
θ∗

< +∞. (27)

With this, we have

P
(
{θn} ∈ S(δ0,l0), i.o.

)
= P

( +∞⋂
n=1

+∞⋃
k=n

(
θk ∈ S(δ0,l0)

))

= lim
n→+∞

P

( +∞⋃
k=n

(
θk ∈ S(δ0,l0)

))

≤ lim
n→+∞

+∞∑
k=n

P
(
θk ∈ S(δ0,l0)

)
= 0 .

(28)
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We remark thatequation 28 implies the set S(δ0,l0) has no limit point of {θn} almost surely. Then if
we use the SGD update rule equation 5, as the noise is Gaussian, for any θ ∈ Rd/J∗ and any k > 0,
there is P (θn+k ∈ S(δ0,l0)|θn = θ) = δ̂0 > 0.

If we use SGD update rule equation 2, for any max positive invariant set D/J∗, we know that there
must exist a boundary set ∂D. Moreover, ∀θ′ ∈ ∂D, if θ′ ∈ Rd/D, then for any mini-batch Ci,
we have ∇̃gCi

(θ′) = 0. Otherwise we can find a sequence {θ′′ → θ′, /θ′′ ∈ D}, making the
trajectories started from θ′′ close to the trajectory started from θ′. It forms a contradiction. Then
due to J∗∗ = J∗, we know θ′ ∈ J∗. That means D ∩ J∗ ̸= ∅. If θ′ ∈ D, we can conclude all
trajectories started from θ′ are a subset of ∂D. On the other hand, we can conclude ∂g is a close
set. Through Heine˘Borel theorem, it exists a finite open cover

⋃M
n=1 On ⊃ ∂D, and every

On holding an arbitrary small diameter. We let θ′ ∈ O1. Then we assign Tn as the lone time
interval of one trajectory started from θ′ and back to Tn. If Tn → +∞, that means this trajectory
must stay a infinity time in some Ok, that means exists a global optimum in Ok. Naturally, the
trajectory will converge to this global optimum. If Tn is bounded, that means the trajectory will
enter into O1 infinite times. Due to a mass of different mini-batch and the enough small diameter
and f(θ) := P (θn+k ∈ Rd/D|θn = θ) = δ̂0 > 0 is a continuous function, We get P (θn+k ∈
Rd/D|θn ∈ O1) = δ̂0 > 0, it is contradiction about D is a positive invariant set. That means for
any θ ∈ R/J∗, either trajectories started from it will converge to some global optimum, either it
has a positive probability to make sure it transfers to S(δ0,l0) after k steps. Then for any bounded
set Ŝ0 which has no intersection with J∗, we first get rid of those points which will converge to J∗.

We know that f(θ) := P (θn+k ∈ S(δ0,l0)|θn = θ) = δ̂0 > 0 is a continuous function. Then we
can get for any bounded closed set Ŝ0 which satisfied Ŝ0 ∩ J∗ = ∅, there is minθ∈Ŝ0

P (θn+k ∈
S(δ0,l0)|θn = θ) = δ̂1 > 0. Then we aim to prove there is no limit point in Ŝ0 almost surely by
contradiction. We assume

+∞∑
n=1

P
(
θn ∈ Ŝ0

)
= +∞.

Then we can get

+∞∑
n=k+1

P (θn ∈ S(δ0,l0)) =

+∞∑
n=k+1

∫
S(δ0,l0)

Pn(dθ)

=

+∞∑
n=k+1

∫
SRd

P (θn+k ∈ S(δ0,l0)|θn = θ)Pn−k(dθ)

≥
+∞∑

n=k+1

∫
Ŝ0

P (θn+k ∈ S(δ0,l0)|θn = θ)Pn−k(dθ)

≥ δ̂1

+∞∑
n=k+1

∫
Ŝ0

Pn−k(dθ) = δ̂1

+∞∑
n=1

P (θn ∈ Ŝ0)

= +∞ .

This is contradiction with equation 27, which implies

+∞∑
n=1

P
(
θn ∈ Ŝ0

)
< +∞ .
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Hence, we can obtain

P
(
{θn} ∈ Ŝ0, i.o.

)
= P

( +∞⋂
n=1

+∞⋃
k=n

(
θk ∈ Ŝ0

))

= lim
n→+∞

P

( +∞⋃
k=n

(
θk ∈ Ŝ0

))

≤ lim
n→+∞

+∞∑
k=n

P
(
θk ∈ Ŝ0

)
= 0 . (29)

Combining equation 29 with equation 27, for any bounded set which does not include J∗ =
{θ|g(θ) = 0}, we can say that it has no limit point almost surely. That means θn → J∗ or θn → ∞
almost surely. We know the event {θn is convergence} is a tail event. By zero-one law, we have
P ({θn} is convergence) = 0 or 1. That means {g(θn)} either converges to J∗ almost surely, or
diverges to infinity almost surely. Through Lemma A.4, we know P (θn → ∞) < 1. That proves
{θn} can only converge to J∗ almost surely.

A.6 PROOF OF THEOREM 3.3

First we construct a function R(θ) = ∥θ − θ∗∥2. We can get that

R(θn+1)−R(θn) = ∥θn+1 − θ∗∥2 − ∥θn − θ∗∥2 = (θn+1 − θn)
T (θn+1 + θn − 2θ∗)

= 2(θn − θ∗)T (θn+1 − θn) + ∥θn+1 − θn∥2 = −2(θn − θ∗)T vn + ∥vn∥2

= − 2(θn − θ∗)T
(
ϵ0∇̃g(θn, ξn) + ϵ0

√
min{g(θn),K0}τnNn

)
+
∥∥ϵ0∇̃g(θn, ξn) + ϵ0

√
min{g(θn),K0}τnNn

∥∥2 .
(30)

For the term 2(θn− θ∗)T
(
ϵ0∇̃g(θn, ξn)+ ϵ0

√
min{g(θn),K0}τnNn

)
, we use the following trans-

formation:
2(θn − θ∗)T

(
ϵ0∇̃g(θn, ξn) + ϵ0

√
min{g(θn),K0}τnNn

)
+ 2ϵ0

= 2ϵ0(θn − θ∗)T ∇̃g(θn) + 2ϵ0(θn − θ∗)T
(
∇̃g(θn, ξn)− ∇̃g(θn)

)
+ 2ϵ0

√
min{g(θn),K0}τn(θn − θ∗)TNn .

(31)

For the term
∥∥ϵ0∇̃g(θn, ξn) + ϵ0

√
min{g(θn),K0}τnNn

∥∥2, we can obtain∥∥ϵ0∇̃g(θn, ξn) + ϵ0
√
min{g(θn),K0}τnNn

∥∥2
= ϵ20

∥∥∇̃g(θn, ξn)
∥∥2 + 2ϵ20τn

√
min{g(θn),K0}∇̃g(θn, ξn)

TNn + ϵ20τ
2
nN 2

n min{g(θn),K0}

= ϵ20 E
(∥∥∇̃g(θn, ξn)

∥∥2∣∣Fn

)
+ ϵ20p0 min{g(θn),K0}+ ϵ20

∥∥∇̃g(θn, ξn)
∥∥2

− ϵ20 E
(∥∥∇̃g(θn, ξn)

∥∥2∣∣Fn

)
+ ϵ20τ

2
nN 2

n min{g(θn),K0} − ϵ20p0 min{g(θn),K0}

+ 2ϵ20τn
√
min{g(θn),K0}∇̃g(θn, ξn)

TNn

≥ ϵ20
∥∥∇̃g(θn)

∥∥2 + ϵ20
∥∥∇̃g(θn, ξn)

∥∥2 − ϵ20 E
(∥∥∇̃g(θn, ξn)

∥∥2∣∣Fn

)
+ 2ϵ20τn

√
min{g(θn),K0}∇̃g(θn, ξn)

TNn .
(32)

Then we construct a set
S(l̂0) = {θ|∥θ − θ∗∥ < l0 := δθ∗}/{θ∗} .

We also define event Ai,n = {θn0
∈ S(l̂0), n0 ∈ [i, n]}, and its characteristic function as Ii,n. We

substitute equation 32 and equation 31 into equation 30, and multiple Ii,n, getting

Ii,n
(
R(θn+1)−R(θn)

)
≥
(
2(2− p0)ϵ

2
0α

2
θ∗ − ϵ0βθ∗

)
Ii,nR(θn) + Ii,nζn,
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where

ζn := 2ϵ0(θn − θ∗)T
(
∇̃g(θn, ξn)− ∇̃g(θn)

)
+ 2ϵ0

√
min{g(θn),K0}τn(θn − θ∗)TNn

+ ϵ20
∥∥∇̃g(θn, ξn)

∥∥2 − ϵ20E
(∥∥∇̃g(θn, ξn)

∥∥2∣∣Fn

)
+ ϵ20τ

2
nN 2

n min{g(θn),K0}

− ϵ20p0 min{g(θn),K0}

(33)

is a Martingale difference. Denote p̂0 :=
(
R(θn+1) − R(θn)

)
≥
(
2(2 − p0)ϵ

2
0α

2
θ∗ − ϵ0βθ∗

)
, we

have

Ii,n+1R(θn+1)− Ii,nR(θn) ≥ p̂0Ii,nR(θn) + Ii,nζ̂n −R(θn+1)(Ii,n − Ii,n+1) .

Then,

E
(
Ii,n+1R(θn+1)

)
− E

(
Ii,nR(θn)

)
≥ p̂0 E

(
Ii,nR(θn)

)
− E

(
R(θn+1)(Ii,n − Ii,n+1)

)
,

which implies

E
(
Ii,n+1R(θn+1)

)
≥

(
1 + p̂0 −

E
(
R(θn+1)(Ii,n − Ii,n+1)

)
E
(
Ii,nR(θn)

) )
E
(
Ii,nR(θn)

)
.

Assuming

lim sup
n→+∞

E
(
R(θn+1)(Ii,n − Ii,n+1)

)
E
(
Ii,nR(θn)

) < p̂0 ,

we have

E
(
Ii,n+1R(θn+1)

)
→ +∞ .

Note that this contradicted the E
(
Ii,n+1R(θn+1)

)
≤ l̂0. Hence,

lim sup
n→+∞

E
(
R(θn+1)(Ii,n − Ii,n+1)

)
E
(
Ii,nR(θn)

) ≥ p̂0. (34)

Define an event Ai,+∞ := {θn0
∈ S(l̂0), n0 ≥ i}, and its characteristic function as Ii,+∞. We next

prove P
(
limn→+∞ Ii,+∞R(θn) = 0

)
= 0.

We assume P
(
limn→+∞ Ii,+∞R(θn) = 0

)
= 1, and we can get P

(
limn→+∞ Ii,nR(θn) = 0

)
=

1. That means for any ϵ′0 > 0, P
(
Ii,nR(θn) > ϵ′0

)
→ 0, concluding P

(
Ii,nR(θn) ≤ ϵ′0

)
→ 1.

Then we get

lim sup
n→+∞

E
(
R(θn+1)(Ii,n − Ii,n+1)

)
E
(
Ii,nR(θn)

) = lim sup
n→+∞

∫
E(R(θn+1) > l̂0|θ = θ)Pi,n(dθ)∫

R(θ)ϵ′0
R(θ)Pi,n(dθ) +

∫
R(θ)>ϵ′0

R(θ)Pi,n(dθ)

= lim sup
n→+∞

∫
R(θ)≤ϵ′0

E(R(θn+1) > l̂0|θ = θ)Pi,n(dθ)∫
R(θ)≤ϵ′0

R(θ)Pi,n(dθ)

<
p̂0
2

.

Note that this contradicted equation 34, which implies P
(
limn→+∞ Ii,+∞R(θn) = 0

)
= 0.

Through inspecting the event {θn → θ∗}, we can get

{θn → θ∗} ⊂

{
+∞⋃
i=1

Ai,+∞

}
.
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That means

P
(
θn → θ∗

)
= P

(
{θn → θ∗}

⋂{
+∞⋃
m=1

Ai,+∞

})

= P

(
+∞⋃
i=1

{θn → θ∗}
⋂

Ai,+∞

)

= P

(
+∞⋃
i=1

{
lim

n→+∞
Ii,+∞R(θn) = 0

})

≤
+∞∑
i=1

P
(

lim
n→+∞

Ii,+∞R(θn) = 0
)

= 0 .

A.7 PROOF OF THEOREM 3.4.

First we order J∗
∞ as {θ∗i }. Then Assumption 2.2 implies that ∀ θ∗ ∈ J∗, there is ∥∇̃g(θ)∥ > 0 (g

is smooth at θ and θ ∈ U(θ∗, δθ∗)/{θ∗}). That means for any θ∗i ̸= θ∗j ∈ J∗, there is ∥θ∗i − θ∗j ∥ ≥
infθi ̸=θj ∥θ∗i −θ∗j ∥ := δ̂0 ̸= 0 and U(θ∗i , δθ∗

i
)∩U(θ∗j , δθ∗

j
) = ∅. Furthermore, it means that there are

at most infinite {θ∗i }. We assign this number as m. Due lim infθ→+∞ ∥∇̃g∥ > 0, we know {δθ∗
i
} is

bounded. Then we construct a function R̄(θ) as follow:

R̄θ∗
i
(θ) = ∥θ − θ∗i ∥

rθ∗
i
+1

.

Then we try to prove that there exists a function R̂(θ) satisfies:

1. For any θ ∈ Rd, there exist Hθθ such that θTHθθ(R̂)θ ≤
(
maxθ∗

i ∈J∗
∞
rθ

∗
i (rθ

∗
i + 1)

)
∥θ∥2.

2. R̂(θ) = ∥θ − θ∗i ∥
rθ∗

i
+1, when θ near the θ∗i .

3. R̂(θ) is bounded.

We define indicator functions

Î
(ri)
θ∗
i

:=

{
1, if ∥θ − θ∗∥ ≤ ri
0, if ∥θ − θ∗∥ > ri

,

where ri is an undetermined coefficient. Clearly, function Î
(ri)
θ∗
i

R̄θ∗
i
(θ) can be seen as an unary

function fθ∗
i
(x) = x

rθ∗
i
+1

, (0 < x < ri) about the independent variable ∥θ − θ∗i ∥. Then for any
δ̄0 > 0, we can always find

hθ∗
i
(x) = r

rθ∗
i
+1

i +
(rθ∗

i
+ 1)2r

2rθ∗
i

i

2
,

to ensure there is a smooth connection (a parabola) between fθ∗
i
(x) and hθ∗

i
(x). Denote this

entirety after adding the smooth connection between fθ∗
i
(x) and hθ∗

i
(x) as jθ∗

i
(x), jθ∗

i
(x) satis-

fied j′′(x) < 1 and the connection point on hθ∗
i
(x) is r̂i(ri) := ri + (rθ∗

i
+ 1)r

rθ∗
i

i . Then let
hθ∗

i
(x) be an arbitrary constant value M , for different rθ∗

i
, we can always get an inverse solution

ri := h−1
θ∗
i
(M). Take K0 := minθ∗

i ∈J∗
∞
{Î

δθ∗
i

θ∗
i
R̄θ∗

i
(θ), 1}, there must exists K0 < K0, such that sets

{U(θ∗i , r̂i(h
−1
θ∗
i
(K0))} do not intersect. Then

R̂(θ) :=

∑m
i=1 Î

(r̂i(h
−1
θ∗
i
(K0)))

θ∗
i

jθ∗
i
(∥θ − θ∗i ∥), if θ ∈

⋃m
i=1 U(θ∗i , r̂i(h

−1
θ∗
i
(K0))

K0, others
, (35)

is what we need. We next discuss this problem case by case according to the value of r̂.
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The first case is r̂ = 1 (from here to equation 38), we define an event

A
(l̂0)
n,θ∗

i
= {θn ∈ U(θ∗i , h

−1
θ∗
i
(K0)} ,

and the characteristic function be I
(l̂0)
n,θi

. Then we can get that

I
(l̂0)
n,θ∗

i

(
R̂(θn+1)− R̂(θn)

)
≤ − In,θ∗

i

k̂1ϵ0
2

∥∇̃R̂(θn)∥2 + ζ̂n

≤ −I
(l̂0)
n,θ∗

i

k0k̂1ϵ0
2

R̂(θn) + I
(l̂0)
n,θ∗

i
ζ̂n,

(36)

where {ζ̂n} is a Martingale difference sequence defined as

ζ̂n := ϵ0∥∇̃R̂(θn)∥2 − ∇̃R̂(θn)
T vn + 2M0∥vn∥2 − 2M0 E(∥vn∥2|Fn) ,

where k0, k̂1 are two constants. We also define I
(−l̂0)
n := 1 −

∑m
i=1 I

(l̂0)
n,θ∗

i
, and obtain

I(−l̂0)
n

(
R̂(θn+1)− R̂(θn)

)
≤ I(−l̂0)

n K0 ≤ I(−l̂0)
n R̂(θn)

K0

R̂(θn)

≤ I(−l̂0)
n R̂(θn)

1
rθ∗

i
+1

+
(rθ∗

i
+1)21

2rθ∗
i

2

1

≤ 3I(−l̂0)
n R̂(θn) .

(37)

Through calculating the sum of equation 36, equation 37, we obtain

R̂(θn+1)− R̂(θn) ≤ − k0k̂1ϵ0
2

R̂(θn) + 3I(−l̂0)
n R̂(θn) + ζ̂ ′n ,

E
(
R̂(θn+1)

∣∣Fn

)
≤
(
1− k0k̂1ϵ0

2
+ 3I(−l̂0)

n

)
R̂(θn) ,

where ζ̂ ′n :=
∑m

i=1 I
(l̂0)
n,θ∗

i
ζ̂n. Denote k′ := k0k̂1ϵ0/2, we get

E

(
R̂(θn+1)∏n

k=1

(
1− k′ϵ0 + 3I

(−l̂0)
k

)
∣∣∣∣∣Fn

)
≤ R̂(θn)∏n−1

k=1

(
1− k′ϵ0 + 3I

(−l̂0)
k

) .
Through the upper martingale convergence theorem, we get

R̂(θn) = O

(
n−1∏
k=1

(
1− k′ϵ0 + 3I

(−l̂0)
k

))

almost surely. By Theorem 3.1, we also
∑+∞

k=1 I
(−l̂0)
k < +∞ almost surely, which means

R̂(θn) = O
((

1− k′ϵ0
)n)

almost surely. Denote
p0 := 1− k′ϵ0 < 1 ,

we have
R̂(θn) = O

(
pn0
)

almost surely . (38)

The second case is when r̂ > 1. Let

l̂0 := min
1≤i≤m, rθ∗

i
>1

{
min

{(
βθ∗ + 1

2r(r + 1)G
(rθ∗ )
0 αθ∗ϵr0

) rθ∗
i
+1

rθ∗
i
−1

, δθ∗
i
, h−1

θ∗
i
(K0),

}}
,

Then we construct a set
S
(l̂0)
θ∗
i

= {θ
∣∣0 ≤ ∥θ − θ∗i ∥ < l̂0 .
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We also define event A(l̂0)
n,θ∗

i
= {θn ∈ S(l̂0)} and let the characteristic function be I(l̂0)n,θi

. Then we can
get that

I
(l̂0)
n,θ∗

i

(
R̂(θn+1)− R̂(θn)

)
≤ − In,θ∗

i

k̂1ϵ0
2

∥∇̃R̂(θn)∥2 + ζ̂n

≤ − I
(l̂0)
n,θ∗

i

k0k̂1ϵ0
2

R̂
r̂+1
2 (θn) + I

(l̂0)
n,θ∗

i
ζ̂n ,

(39)

where {ζ̂n} is a Martingale difference sequence defined as

ζ̂n := ϵ0∥∇̃R̂(θn)∥2 − ∇̃R̂(θn)
T vn + 2M0∥vn∥r+1 − 2M0 E(∥vn∥r+1|Fn) ,

and k0, k̂1 are two constants. Define I
(−l̂0)
n := 1 −

∑m
i=1 I

(l̂0)
n,θ∗

i
, we get

I(−l̂0)
n

(
R̂(θn+1)− R̂(θn)

)
≤ I(−l̂0)

n K0 ≤ â0I
(−l̂0)
n R̂

r̂+1
2 (θn), (40)

where â0 is a constant. Through calculating the sum of equation 39 and equation 40, we get

R̂(θn+1)− R̂(θn) ≤ −k0k̂1ϵ0
2

R̂
r̂+1
2 (θn) + I(−l̂0)

n â0R̂
r̂+1
2 + ζ̂ ′n,

where ζ̂ ′n :=
∑m

i=1 I
(l̂0)
n,θ∗

i
ζ̂n. We also have

R̂(θn+1) ≤ R̂(θn)

(
1− k′R̂

r̂−1
2 (θn) + I(−l̂0)

n â0R̂
r̂−1
2 +

ζ̂ ′n

R̂(θn)

)
.

This

R̂
1−r̂
2 (θn+1) ≥ R̂

1−r̂
2 (θn)

(
1− k′R̂

r̂−1
2 (θn) + I(−l̂0)

n â0R̂
r̂−1
2 (θn) +

ζ̂n

R̂(θn)

) 1−r̂
2

.

Using the inequalities (1 + x)r0 ≥ 1 + r0x, (r0 < 0), we have

R̂
1−r̂
2 (θn+1) ≥ R̂

1−r̂
2 (θn) +

k′(r̂ − 1)

2
+

(1− r)

2
I(−l̂0)
n â0 +

(1− r)ζ̂n

2R̂
r̂+1
2 (θn)

.

Summing this over n, we have

R̂
1−r̂
2 (θn+1) ≥ R̂

1−r̂
2 (θ1) +

k′(r̂ − 1)

2
n+ (1− r̂)â0

n∑
k=1

I
(−l̂0)
k +

n∑
k=1

(1− r̂)ζ̂k

2R̂
r̂+1
2 (θk)

.

Note that
∑+∞

k=1 I
(−l̂0)
k < +∞ almost surely, thus we have

R̂
1−r̂
2 (θn+1) ≥ Ω(n) +

n∑
k=1

(1− r̂)ζ̂k

2R̂
r̂+1
2 (θk)

, almost surely .

Denote

ζ̂ ′n :=
(1− r)ζ̂n

2R̂
r̂+1
2 (θn)

.

Clearly,

sup
n

E
(
∥ζ̂ ′n∥2|Fn

)
=

(r − 1)2

4
sup
n

E

(∥∥∥∥∥ ζ̂k

R̂
r̂+1
2 (θk)

∥∥∥∥∥
2∣∣∣∣∣Fn

)
< +∞almost surely .

By Lemma A.1, we have
n∑

k=1

(1− r̂)ζ̂k

2R̂
r̂+1
2 (θk)

= O(
√
n ln(n))almost surely .

Then,
R̂

1−r̂
2 (θn) ≥ Ω(n)almost surely ,

which implies
g(θn) = O

(
R̂(θn)

)
= O

(
n− 2

r̂−1
)
almost surely .
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A.8 PROOF OF COROLLARY 3.1

When the loss function g(θn) attains the ε′ accuracy, according to Theorem 3.4,the overall number
of SGD iteration is

n=

{
O
(
log( 1

ε′ )
)

almost surely , if r̂ = 1

O
(
( 1
ε′ )

r−1
2

)
almost surely , if r̂ > 1 .

Then we consider the computational time of a single step of SGD. Generally, the main time-
consuming part of one step is computing the gradient of loss function on a batch of datasets,
which can be decomposed into computing N0 times of numerical differentiation, where the N0

is the size of the dataset. We assume time consumed of computing a function value is O
(
1
)
.

When a specific numerical differentiation scheme is given, such as ∂f(θ(1),··· ,θ(d),x)
∂θi

|θ=θ0 ≈
f(θ

(1)
0 ,··· ,θ(i)

0 +h,··· ,θ(d)
0 ,x)−f(θ0,x)

h , it’s obviously the computation time of numerical gradient is O
(
d
)
.

In summary, the whole computation time is{
O
(
N0d · log( 1

ε′ )
)

almost surely , if r̂ = 1

O
(
N0d · ( 1

ε′ )
r−1
2

)
almost surely , if r̂ > 1 ,

which is bounded by a polynomial time.
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