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ABSTRACT

In computer vision, it is often observed that formulating regression problems
as a classification task yields better performance. We investigate this curious
phenomenon and provide a derivation to show that classification, with the cross-
entropy loss, outperforms regression with a mean squared error loss in its ability
to learn high-entropy feature representations. Based on the analysis, we propose
an ordinal entropy regularizer to encourage higher-entropy feature spaces while
maintaining ordinal relationships to improve the performance of regression tasks.
Experiments on synthetic and real-world regression tasks demonstrate the impor-
tance and benefits of increasing entropy for regression. Code can be found here:
https://github.com/needylove/OrdinalEntropy

1 INTRODUCTION

Classification and regression are two fundamental tasks of machine learning. The choice between
the two usually depends on the categorical or continuous nature of the target output. Curiously,
in computer vision, specifically with deep learning, it is often preferable to solve regression-type
problems as classification tasks. A simple and common way is to discretize the continuous labels; each
bin is then treated as a class. After converting regression into classification, the ordinal information
of the target space is lost. Discretization errors are also introduced to the targets. Yet for a diverse set
of regression problems, including depth estimation (Cao et al., 2017), age estimation (Rothe et al.,
2015), crowd-counting (Liu et al., 2019a) and keypoint detection (Li et al., 2022), classification yields
better performance.

The phenomenon of classification outperforming regression on inherently continuous estimation tasks
naturally begs the question of why. Previous works have not investigated the cause, although they hint
at task-specific reasons. For depth estimation, both Cao et al. (2017) and Fu et al. (2018) postulate
that it is easier to estimate a quantized range of depth values rather than one precise depth value. For
crowd counting, regression suffers from inaccurately generated target values (Xiong & Yao, 2022).
Discretization helps alleviate some of the imprecision. For pose estimation, classification allows for
the denser and more effective heatmap-based supervision (Zhang et al., 2020; Gu et al., 2021; 2022).

Could the performance advantages of classification run deeper than task-specific nuances? In this
work, we posit that regression lags in its ability to learn high-entropy feature representations. We
arrive at this conclusion by analyzing the differences between classification and regression from a
mutual information perspective. According to Shwartz-Ziv & Tishby (2017), deep neural networks
during learning aim to maximize the mutual information between the learned representation Z and the
target Y . The mutual information between the two can be defined as I(Z;Y ) = H(Z)−H(Z|Y ).
I(Z;Y ) is large when the marginal entropy H(Z) is high, i.e., features Z are as spread as possible,
and the conditional entropy H(Z|Y ) is low, i.e., features of common targets are as close as possible.
Classification accomplishes both objectives (Boudiaf et al., 2020). This work, as a key contribution,
shows through derivation that regression minimizes H(Z|Y ) but ignores H(Z). Accordingly, the
learned representations Z from regression have a lower marginal entropy (see Fig. 1(a)). A t-SNE
visualization of the features (see Fig. 1(b) and1(c)) confirms that features learned by classification
have more spread than features learned by regression. More visualizations are shown in Appendix B.

The difference in entropy between classification and regression stems from the different losses. We
postulate that the lower entropy features learned by L2 losses in regression explain the performance

1

https://github.com/needylove/OrdinalEntropy


(a) Entropy of feature space (b) Regression (c) Classification

Figure 1: Feature learning of regression versus classification for depth estimation. Regression keeps
features close together and forms an ordinal relationship, while classification spreads the features
(compare (b) vs. (c) ), leading to a higher entropy feature space. Features are colored based on their
predicted depth. Detailed experimental settings are given in Appendix B.

gap compared to classification. Despite its overall performance advantages, classification lags in
the ability to capture ordinal relationships. As such, simply spreading the features for regression to
emulate classification will break the inherent ordinality of the regression target output.

To retain the benefits of both high entropy and ordinality for feature learning, we propose, as a
second contribution, an ordinal entropy regularizer for regression. Specifically, we capture ordinal
relationships as a weighting based on the distances between samples in both the representation and
target space. Our ordinal entropy regularizer increases the distances between representations, while
weighting the distances to preserve the ordinal relationship.

The experiments on various regression tasks demonstrate the effectiveness of our proposed method.
Our main contributions are three-fold:

• To our best knowledge, we are the first to analyze regression’s reformulation as a classifi-
cation problem, especially in the view of representation learning. We find that regression
lags in its ability to learn high-entropy features, which in turn leads to the lower mutual
information between the learned representation and the target output.

• Based on our theoretical analysis, we design an ordinal entropy regularizer to learn high-
entropy feature representations that preserve ordinality.

• Benefiting from our ordinal entropy loss, our methods achieve significant improvement on
synthetic datasets for solving ODEs and stochastic PDEs as well as real-world regression
tasks including depth estimation, crowd outing and age estimation.

2 RELATED WORK

Classification for Continuous Targets. Several works formulate regression problems as classification
tasks to improve performance. They focus on different design aspects such as label discretization
and uncertainty modeling. To discretize the labels, Cao et al. (2017); Fu et al. (2018) and Liu et al.
(2019a) convert the continuous values into discrete intervals with a pre-defined interval width. To
improve class flexibility, Bhat et al. (2021) followed up with an adaptive bin-width estimator. Due
to inaccurate or imprecise regression targets, several works have explored modeling the uncertainty
of labels with classification. Liu et al. (2019a) proposed estimating targets that fall within a certain
interval with high confidence. Tompson et al. (2014) and Newell et al. (2016) propose modeling the
uncertainty by using a heatmap target in which each pixel represents the probability of that pixel
being the target class. This work, instead of focusing on task-specific designs, explores the difference
between classification and regression from a learning representation point of view. By analyzing
mutual information, we reveal a previously underestimated impact of high-entropy feature spaces.

Ordinal Classification. Ordinal classification aims to predict ordinal target outputs. Many works
exploit the distances between labels (Castagnos et al., 2022; Polat et al., 2022; Gong et al., 2022) to
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(a) Illustration of frameworks (b) Tightness and diversity of ordinal entropy

Figure 2: Illustration of (a) regression and classification for continuous targets, and the use of our
ordinal entropy for regression, (b) the pull and push objective of tightness and diversity on the feature
space. The tightness part encourages features to be close to their feature centers while the diversity
part encourages feature centers to be far away from each other.

preserve ordinality. Our ordinal entropy regularizer also preserves the ordinality by exploiting the
label distances, while it mainly aims at encouraging a higher-entropy feature space.

Entropy. The entropy of a random variable reflects its uncertainty and can be used to analyze and
regularize a feature space. With entropy analysis, Boudiaf et al. (2020) has shown the benefits of
the cross-entropy loss, i.e., encouraging features to be dispersed while keeping intra-class features
compact. Moreover, existing works (Pereyra et al., 2017; Dubey et al., 2017) have shown that many
regularization terms, like confidence penalization (Pereyra et al., 2017) and label smoothing (Müller
et al., 2019), are actually regularizing the entropy of the output distribution. Inspired by these
works, we explore the difference in entropy between classification and regression. Based on our
entropy analysis, we design an entropy term (i.e., ordinal entropy) for regression and bypass explicit
classification reformulation with label discretization.

3 A MUTUAL-INFORMATION BASED COMPARISON ON FEATURE LEARNING

3.1 PRELIMINARIES

Suppose we have a dataset {X,Y } with N input data X = {xi}Ni=1 and their corresponding labels
Y = {yi}Ni=1. In a typical regression problem for computer vision, xi is an image or video, while
yi ∈ RY takes a continuous value in the label space Y . The target of regression is to recover yi by
encoding the image to feature zi = φ(xi) with encoder φ and then mapping zi to a predicted target
ŷi = fθ(zi) with a regression function f(·) parameterized by θ. The encoder φ and θ are learned by
minimizing a regression loss function such as the mean-squared error Lmse =

1
N

∑N
i=1(yi − ŷi)

2.

To formulate regression as a classification task with K classes, the continuous target Y can be
converted to classes Y C = {yc

i}Ni=1 with some discretizing mapping function, where yc
i ∈ [0,K−1]

is a categorical target. The feature zi is then mapped to the categorical target yc
i = gω(zi) with

classifier gω(·) parameterized by ω. The encoder ϕ and ω are learned by minimizing the cross-

entropy loss LCE = − 1
N

∑N
i=1 log gω(zi), where (gω(zi))k =

expωT
kzi∑

j expωT
kzj

. Fig. 2(a) visualizes the
symmetry of the two formulations.

The entropy of a random variable can be loosely defined as the amount of “information” associated
with that random variable. One approach for estimating entropy H(Z) for a random variable Z is
the meanNN entropy estimator (Faivishevsky & Goldberger, 2008). It can accommodate higher-
dimensional Zs, and is commonly used in high-dimensional space (Faivishevsky & Goldberger,
2010). The meanNN estimator relies on the distance between samples to approximate p(Z). For a
D-dimensional Z, it is defined as

Ĥ(Z) =
D

N(N − 1)

∑
i ̸=j

log ||zi − zj ||2 + const. (1)
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3.2 FEATURE LEARNING WITH A CROSS-ENTROPY LOSS (CLASSIFICATION)

Given that mutual information between target Y C and feature Z is defined as I(Z;Y C) = H(Z)−
H(Z|Y C), it follows that I(Z;Y C) can be maximized by minimizing the second term H(Z|Y C)
and maximizing the first term H(Z). Boudiaf et al. (2020) showed that minimizing the cross-entropy
loss accomplishes both by approximating the standard cross-entropy loss LCE with a pairwise
cross-entropy loss LPCE . LPCE serves as a lower bound for LCE , and can be defined as

LPCE = − 1

2λN2

N∑
i=1

∑
j∈[yc

j=yc
i ]

z⊺i zj︸ ︷︷ ︸
Tightness ∝ H(Z|Y C)

+
1

N

N∑
i=1

log

K∑
k=1

exp(
1

λN

N∑
j=1

pjkz
⊺
i zj)−

1

2λ

K∑
k=1

||ck||︸ ︷︷ ︸
Diversity ∝ H(Z)

, (2)

where λ ∈ R is to make sure LCE is a convex function with respect to ω. Intuitively, LPCE can
be understood as being composed of both a pull and a push objective more familiar in contrastive
learning. We interpret the pulling force as a tightness term. It encourages higher values for z⊺i zj and
closely aligns the feature vectors within a given class. This results in features clustered according
to their class, i.e., lower conditional entropy H(Z|Y C). The pushing force from the second term
encourages lower z⊺i zj while forcing classes’ centers csk to be far from the origin. This results in
diverse features that are spread apart, or higher marginal entropy H(Z). Note that the tightness term
corresponds to the numerator of the Softmax function in LCE , while the diversity term corresponds
to the denominator.

3.3 FEATURE LEARNING WITH AN LMSE LOSS (REGRESSION)

In this work, we find that minimizing Lmse, as done in regression, is a proxy for minimizing H(Z|Y ),
without increasing H(Z). Minimizing Lmse does not increase the marginal entropy H(Z) and
therefore limits feature diversity. The link between classification and regression is first established
below in Lemma 1. We assume that we are dealing with a linear regressor, as is commonly used in
deep neural networks.
Lemma 1 We are given dataset {xi, yi}Ni=1, where xi is the input and yi ∈ Y is the label, and linear
regressor fθ(·) parameterized by θ. Let zi denote the corresponding feature. Assume that the label
space Y is discretized into bins with maximum width η, and ci is the center of the bin to which yi
belongs. Then for any ϵ > 0, there exists η > 0 such that:

|Lmse −
1

N

N∑
1

(θTzi − ci)
2|≤ η

2n

n∑
1

|2θTzi − ci − yi| < ϵ. (3)

The detailed proof of Lemma 1 is provided in Appendix A.

The result of Lemma 1 says that the discretization error from replacing a regression target yi with ci
can be made arbitrarily small if the bin width η is sufficiently fine. As such, the Lmse can be directly
approximated by the second term of Eq. 3 i.e., Lmse ≈ 1

N

∑N
1 (θTzi − ci)

2. With this result, it can
be proven that minimizing Lmse is a proxy for minimizing H(Z|Y ).
Theorem 1 Let zci denote the center of the features corresponding to bin center ci, and ϕi be the
angle between θ and zi − zci . Assume that θ is normalized, (Zc|Y ) ∼ N (zci , I), where Zc is
the distribution of zci and that cosϕi is fixed. Then, minimizing Lmse can be seen as a proxy for
minimizing H(Z|Y ) without increasing H(Z).

Proof Based on Lemma 1, we have

Lmse =
1

N

N∑
1

(θT(zi − zci))
2 =

1

N

N∑
1

(||θ||||zi − zci || cosϕi)
2

=
1

N

N∑
1

||θ||2||zi − zci ||2 cos2 ϕi ∝
1

N

N∑
1

||zi − zci ||2.

(4)
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Note, zci exist unless θ = 0 and ci ̸= 0. Since it is assumed that Zc|Y ∼ N (zci , I), the term
1
N

∑N
1 ||zi−zci ||2 can be interpreted as a conditional cross entropy between Z and Zc, as it satisfies

H(Z;Zc|Y ) = −Ez∼Z|Y [log pZc|Y (z)]
mc
≈ −1

N

N∑
i=1

log(e
−1
2 ||zi−zci

||2) + const

c
=

1

N

N∑
i=1

||zi − zci ||2,

(5)

where c
= denotes equal to, up to a multiplicative and an additive constant. The

mc
≈ denotes Monte

Carlo sampling from the Z|Y distribution, allowing us to replace the expectation by the mean of the
samples. Subsequently, we can show that

Lmse ∝
1

N

N∑
1

||zi − zci ||2
c
= H(Z;Zc|Y ) = H(Z|Y ) +DKL(Z||Zc|Y ). (6)

The result in Eq. 6 shows that 1
N

∑N
1 ||zi − zci ||2 is an upper bound of the tightness term in mutual

information. If (Z|Y ) ∼ N (zci , I), then DKL(Z||Zc|Y ) is equal to 0 and the bound is tight
i.e., 1

N

∑N
1 ||zi − zci ||2 ≥ H(Z|Y ). Hence, minimizing Lmse is a proxy for minimizing H(Z|Y ).

Apart from H(Z|Y ), the relation in Eq. 6 also contains the KL divergence between the two conditional
distributions P (Z|Y ) and P (Zc|Y ), where Zc

i are feature centers of Z. Minimizing this divergence
will either force Z closer to the centers Zc, or move the centers Zc around. By definition, however,
the cluster centers Zc

i cannot expand beyond Z’s coverage, so features Z must shrink to minimize the
divergence. As such, the entropy H(Z) will not be increased by this term. □

Based on Eq. 2 and Theorem 1, we draw the conclusion that regression, with an MSE loss, overlooks
the marginal entropy H(Z) and results in a less diverse feature space than classification with a
cross-entropy loss.

It is worth mentioning that the Gaussian distribution assumption, i.e., Zc|Y ∼ N (zci , I), is standard
in the literature when analyzing features (Yang et al., 2021a; Salakhutdinov et al., 2012) and entropy
(Misra et al., 2005), and cosϕi is a constant value at each iteration.

4 ORDINAL ENTROPY

Our theoretical analysis in Sec. 3 shows that learning with only the MSE loss does not increase the
marginal entropy H(Z) and results in lower feature diversity. To remedy this situation, we propose a
novel regularizer to encourage a higher entropy feature space.

Using the distance-based entropy estimate from Eq. 1, one can then minimize the the negative
distances between feature centers zci to maximize the entropy of the feature space. zci are calculated
by taking a mean over all the features z which project to the same yi. Note that as feature spaces
are unbounded, the features z must first be normalized, and below, we assume all the features z are
already normalized with an L2 norm:

L′
d = − 1

M(M − 1)

M∑
i=1

∑
i ̸=j

||zci − zcj ||2 ∝ −H(Z), (7)

where M is the number of feature centers in a batch of samples or a sampled subset sampled from
a batch. We consider each feature as a feature center when the continuous labels of the dataset are
precise enough.

While the regularizer L′
d indeed spreads features to a larger extent, it also breaks ordinality in the

feature space (see Fig. 3(b)). As such, we opt to weight the feature norms in L′
d with wij , where wij

are the distances in the label space Y:

Ld = − 1

M(M − 1)

M∑
i=1

∑
i ̸=j

wij ||zci − zcj ||2, where wij = ||yi − yj ||2 (8)
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(a) Regression (b) Regression +L′
d (c) Regression +Ld (d) Regression +Ld + Lt

Figure 3: t-SNE visualization of features from the depth estimation task. (b) Simply spreading the
features (L′

d) leads to a higher entropy feature space, while the ordinal relationship is lost. (c) By
further exploiting the ordinal relationship in the label space (Ld), the features are spread and the
ordinal relationship is also preserved. (d) Adding the tightness term (Lt) further encourages features
close to its centers.

As shown in Figure 3(c), Ld spreads the feature while also preserve preserving ordinality. Note that
L′
d is a special case of Ld when wij are all equal.

To further minimize the conditional entropy H(Z|Y ), we introduce an additional tightness term that
directly considers the distance between each feature zi with its centers zci in the feature space:

Lt =
1

Nb

Nb∑
i=1

||zi − zci ||2, (9)

where Nb is the batch size. Adding this tightness term further encourages features close to its centers
(compare Fig. 3(c) with Fig. 3(d)). Compared with features from standard regression (Fig. 3(a)), the
features in Fig. 3(d) are more spread, i.e., the lines formed by the features are longer.

We define the ordinal entropy regularizer as Loe = Ld + Lt, with a diversity term Ld and a tightness
term Lt. Loe achieves similar effect as classification in that it spreads zci while tightening features
zi corresponding to zci . Note, if the continuous labels of the dataset are precise enough and each
feature is its own center, then our ordinal entropy regularizer will only contain the diversity term,
i.e., Loe = Ld. We show our regression with ordinal entropy (red dotted arrow) in Fig. 2(a).

The final loss function Ltotal is defined as:

Ltotal = Lm + λdLd + λtLt, (10)

where Lm is the task-specific regression loss and λd and λe are trade-off parameters.

5 EXPERIMENTS

5.1 DATASETS, METRICS & BASELINE ARCHITECTURES

We conduct experiments on four tasks: operator learning, a synthetic dataset and three real-world
regression settings of depth estimation, crowd counting, age estimation.

For operator learning, we follow the task from DeepONet (Lu et al., 2021) and use a two-layer fully
connected neural network with 100 hidden units. See Sec. 5.2 for details on data preparation.

For depth estimation, NYU-Depth-v2 (Silberman et al., 2012) provides indoor images with the
corresponding depth maps at a pixel resolution 640 × 480. We follow (Lee et al., 2019) and use
ResNet50 (He et al., 2016) as our baseline architecture unless otherwise indicated. We use the
train/test split given used by previous works (Bhat et al., 2021; Yuan et al., 2022), and evaluate with
the standard metrics of threshold accuracy δ1, average relative error (REL), root mean squared error
(RMS) and average log10 error.

For crowd counting, we evaluate on SHA and SHB of the ShanghaiTech crowd counting dataset
(SHTech) (Zhang et al., 2015). Like previous works, we adopt density maps as labels and evaluate
with mean absolute error (MAE) and mean squared error (MSE). We follow Li et al. (2018) and use
CSRNet with ResNet50 as the regression baseline architecture.
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Table 1: Ablation studies on linear and nonlinear operators learning with synthetic data and depth
estimation on NYU-Depth-v2. For operator learning, we report results as mean ± standard variance
over 10 runs. Bold numbers indicate the best performance.

Method Linear Nonlinear NYU-Depth-v2
Lmse(×10−3) ↓ Lmse(×10−2) ↓ δ1 ↑ REL ↓ RMS ↓ log10 ↓

Baseline 3.0 ± 0.93 2.5± 2.0 0.793 0.148 0.502 0.064
Baseline + L′

d 2.2 ± 0.42 0.8 ± 0.3 0.795 0.147 0.505 0.063
Baseline + Ld 1.6 ± 0.34 0.5 ± 0.3 0.808 0.144 0.483 0.061
Baseline + Ld + Lt - - 0.811 0.143 0.478 0.060
w/ cosine distance 1.7 ± 0.33 0.6 ± 0.5 0.806 0.147 0.488 0.061
w/o normalization 5.3 ± 1.10 15.5 ± 0.4 0.790 0.153 0.510 0.064

wij = ||yi − yj ||22 2.0 ± 0.60 0.4 ± 0.2 0.800 0.149 0.498 0.063
wij =

√
||yi − yj ||2 1.8 ± 0.50 0.5± 0.2 0.799 0.147 0.496 0.062

For age estimation, we use AgeDB-DIR (Yang et al., 2021b) and also implement their regression
baseline model, which uses ResNet-50 as a backbone. Following Liu et al. (2019b), we report results
on three disjoint subsets (i.e., ,Many, Med. and Few), and also overall performance (i.e., ALL). We
evaluate with MAE and geometric mean (GM).

Other Implementation Details: We follow the settings of previous works DeepONet (Lu et al.,
2021) for operator learning, Adabins (Bhat et al., 2021) for depth estimation, CSRNet (Li et al., 2018)
for crowd counting, and Yang et al. (2021b) for age estimation. See Appendix D for details.

λd and λt are set empirically based on the scale of the task loss λm. We use the trade-off parameters
λd, λt the same value of 0.001, 1, 10, 1, for operator learning, depth estimation, crowd counting and
age estimation, respectively.

5.2 LEARNING LINEAR AND NONLINEAR OPERATORS

We first verify our method on the synthetic task of operator learning. In this task, an (unknown)
operator maps input functions into output functions and the objective is to regress the output value.
We follow (Lu et al., 2021) and generate data for both a linear and non-linear operator. For the linear
operator, we aim to learn the integral operation G:

G : u(x) 7→ s(x) =

∫ x

0

u(τ)dτ, x ∈ [0, 1], (11)

where u is the input function, and s is the target function. The data is generated with a mean-
zero Gaussian random field function space: u ∼ G(0, kl(x1, x2)), where the covariance kernel
kl(x1, x2) = exp(−||x1 − x2||2/2l2) is the radial-basis function kernel with a length-scale param-
eter l = 0.2. The function u is represented by the function values of m = 100 fixed locations
{x1, x2, · · · , xm}. The data is generated as ([u, y], G(u)(y)), where y is sampled from the domain
of G(u). We randomly sample 1k data as the training set and test on the testing set with 100k samples.

For the nonlinear operator, we aim to learn the following stochastic partial differential equation,
which maps b(x;ω) of different correlation lengths l ∈ [1, 2] to a solution u(x;ω):

div(eb(x;ω)∇u(x;ω)) = f(x), (12)

where x ∈ (0, 1), ω from the random space with Dirichlet boundary conditions u(0) = u(1) = 0,
and f(x) = 10. The randomness comes from the diffusion coefficient eb(x;ω). The function
b(x;ω) ∼ GP(b0(x), cov(x1, x2)) is modelled as a Gaussian random process GP , with mean
b0(x) = 0 and cov(x1, x2) = σ2 exp(−||x1 − x2||2/2l2). We randomly sample 1k training samples
and 10k test samples.

For operator learning, we set Lmse as the task-specific baseline loss for both the linear and non-linear
operator. Table 1 shows that even without ordinal information, adding the diversity term i.e., L′

d to
Lmse already improves performance. The best gains, however, are achieved by incorporating the
weighting with Ld, which decreases Lmse by 46.7% for the linear operator and up to 80% for the more
challenging non-linear operator. The corresponding standard variances are also reduced significantly.

7



Table 2: Quantitative comparison of depth estimation results with NYU-Depth-v2. Bold numbers
indicate the best performance.

Method δ1 ↑ REL ↓ RMS ↓ log10 ↓
Laina et al. (Laina et al., 2016) 0.811 0.127 0.573 0.055
DORN (Fu et al., 2018) 0.828 0.115 0.509 0.051
BTS (Lee et al., 2019) 0.885 0.110 0.392 0.047
Adabins (Bhat et al., 2021) 0.903 0.103 0.364 0.044

NeW-CRFs (Yuan et al., 2022) 0.922 0.095 0.334 0.041
NeW-CRFs + Ld + Lt 0.932 0.089 0.321 0.039
Baseline (ResNet-50) 0.793 0.148 0.502 0.064
Baseline (ResNet-50) + Ld 0.808 0.144 0.483 0.061
Baseline (ResNet-50) + Ld + Lt 0.811 0.143 0.478 0.060

Table 3: Results on SHTech. Bold numbers indicate the best performance.

Method MAE ↓ MSE ↓
SHA SHB SHA SHB

Regression Baseline (Li et al., 2018) 68.2 10.6 115.0 16.0
+Ld 66.9 9.1 107.5 14.7

+Ld + Lt 65.6 9.1 105.0 14.5

Note that we do not verify Lt on operator learning due to the high data precision on synthetic datasets,
it is difficult to sample points belonging to the same zci . Adding Lt, however, is beneficial for the
three real-world tasks (see Sec. 5.3).

5.3 REAL-WORLD TASKS: DEPTH ESTIMATION, CROWD COUNTING & AGE ESTIMATION

Depth Estimation: Table 2 shows that adding the ordinal entropy terms boosts the performance of
the regression baseline and the state-of-the-art regression method NeW-CRFs (Yuan et al., 2022).
NeW-CRFs with ordinal entropy achieves the highest values for all metrics, decreasing δ1 and REL
errors by 12.8% and 6.3%, respectively. Moreover, higher improvement can be observed when
adding the ordinal entropy into a simpler baseline, i.e., ResNet-50.

Crowd Counting: Table 3 shows that adding Ld and Lt each contribute to improving the baseline.
Adding both terms has the largest impact and for SHB, the improvement is up to 14.2% on MAE and
9.4% on MSE.

Age Estimation: Table 4 shows that with Ld we achieve a significant 0.13 and 0.29 overall improve-
ment (i.e., ALL) on MAE and GM, respectively. Applying Lt achieves a further overall improvement
over Ld only, including 0.14 on MAE and 0.04 on GM.

5.4 ABLATION STUDIES

Ablation results on both operator learning and depth estimation are shown in Table 1 and Figure 4.

Ordinal Relationships: Table 1 shows that using the unweighted diversity term ‘Baseline+L′
d’,

which ignores ordinal relationships, is worse than the weighted version ‘Baseline+Ld’ for both
operator learning and depth estimation.

Feature Normalization: As expected, normalization is important, as performance will decrease
(compare ‘w/o normalization’ to ‘Baseline+Ld’ in Table 1) for both operator learning and depth
estimation. Most interestingly, normalization also helps to lower variance for operator learning.

Feature Distance ||zci − zcj ||: We replace the original feature distance L2 with cosine distance (see
‘w/ cosine distance’) and the cosine distance is slightly worse than L2 for all the cases.

Weighting Function wij : The weight as defined in Eq. 8 is based on an L2 distance. Table 1
shows that L2 is best for linear operator learning and depth estimation but is slightly worse than
wij = ||yi − yj ||22 for nonlinear operator learning.
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Table 4: Results on AgeDB-DIR. Bold numbers indicate the best performance.

Method MAE ↓ GM ↓
ALL Many Med. Few ALL Many Med. Few

Baseline (Yang et al., 2021b) 7.77 6.62 9.55 13.67 5.05 4.23 7.01 10.75
+Ld 7.60 6.79 8.55 12.70 4.76 4.15 5.95 9.60

+Ld + Lt 7.46 6.73 8.18 12.38 4.72 4.21 5.36 9.70

(a) MSE with number of samples (b) MSE with λd (c) Entropy of different methods

Figure 4: Based on the linear operator learning and depth estimation, we show (a) the effect of
the number of samples on MSE, (b) the performance analysis with different λd and (c) the entropy
curves of different methods during testing. The results for the nonlinear operator learning are given
in Appendix C.

Sample Size (M) In practice, we estimate the entropy from a limited number of regressed samples
and this is determined by the batch size. For certain tasks, this may be sufficiently large, e.g., depth
estimation (number of pixels per image × batch size) or very small, e.g., age estimation (batch size).
We investigate the influence of M from Eq. 8 on linear operator learning (see Fig.4(b)). In the most
extreme case, when M = 2, the performance is slightly better than the baseline model (2.7× 10−3 vs.
3.0× 10−3), suggesting that our ordinal regularizer terms are effective even with 2 samples. As M
increases, the MSE and its variance steadily decrease as the estimated entropy likely becomes more
accurate. However, at a certain point, MSE and variance start to increase again. This behavior is not
surprising; with too many samples under consideration, it likely becomes too difficult to increase
the distance between a pair of points without decreasing the distance to other points, i.e., there is not
sufficient room to maneuver. The results for the nonlinear operator learning are given in Appendix C.

Hyperparameter λd and λt: Fig. 4(b) plots the MSE for linear operator learning versus the trade-off
hyper-parameter λd applied to the diversity term Ld. Performance remains relatively stable up to
10−2, after which this term likely overtakes the original learning objective Lmse and causes MSE to
decrease. The results for the nonlinear operator and analysis on λt are given in Appendix C and E.

Marginal Entropy H(Z): We show the marginal entropy of the testing set from different methods
during training (see Fig. 4(c)). We can see that the marginal entropy of classification is always larger
than that of regression, which has a downward trend. Regression with only diversity achieves the
largest marginal entropy, which verifies the effectiveness of our diversity term. With both diversity
and tightness terms, as training goes, its marginal entropy continues to increase and larger than that
of regression after the 13th epoch. More experiment results can be found in Appendix F.

6 CONCLUSION

In this paper, we dive deeper into the trend of solving regression-type problems as classification
tasks by comparing the difference between regression and classification from a mutual information
perspective. We conduct a theoretical analysis and show that regression with an MSE loss lags in its
ability to learn high-entropy feature representations. Based on the findings, we propose an ordinal
entropy regularizer for regression, which not only keeps an ordinal relationship in feature space like
regression, but also learns a high-entropy feature representation like classification. Experiments on
different regression tasks demonstrate that our entropy regularizer can serve as a plug-in component
for regression-based methods to further improve the performance.

9



Acknowledgement. This research / project is supported by the Ministry of Education, Singapore,
under its MOE Academic Research Fund Tier 2 (STEM RIE2025 MOE-T2EP20220-0015).

REFERENCES

Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka. Adabins: Depth estimation using adaptive
bins. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 4009–4018, 2021.
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Appendix

A PROOF OF LEMMA 1

Proof

Lmse =
1

n

n∑
1

(θTzi − yi)
2

=
1

n

n∑
1

((θTzi − ci) + (ci − yi))
2

=
1

n

n∑
1

(θTzi − ci)
2 +

1

n

n∑
1

((ci − yi)(2θ
Tzi − ci − yi))

Since |ci − yi| ≤ η
2 , we have:

|Lmse −
1

n

n∑
1

(θTzi − ci)
2| ≤ η

2n

n∑
1

|2θTzi − ci − yi|

For η < 2nϵ∑n
1 |2θTzi−ci−yi| :

|Lmse −
1

n

n∑
1

(θTzi − ci)
2| < ϵ

□

B VISUALIZATION

Experimental setting We train the regression and classification models on the NYU-Depth-v2 dataset
for depth estimation. We modify the last layer of a ResNet-50 model to a convolution operation
with kernel size 1 × 1, and train the modified model with Lmse as our regression model. For the
classification models, we modify the last layer of two ResNet-50 models to output Nc channels, where
Nc is the number of classes, and train the modified models with cross-entropy. The classes are defined
by uniformly discrete ground-truth depths into Nc bins. The entropy of feature space is estimated
using Eq 1 on pixel-wise features over the training and test set of NYU-Depth-v2. After training, we
visualize the pixel-wise features of an image from the test set using t-distributed stochastic neighbor
embedding (t-SNE), and features are colored based on their predicted depth.

The visualization results are shown in Figure A. We exploit three entropy estimators to estimate the
entropy of feature space H(Z). Entropy in the first row of Figure A is estimated with the meanNN
entropy estimator Eq. 1. Entropy in the second row is also estimated with the meanNN entropy
estimator, where the input is the features normalized with the L2 norm. Entropy in the third row is
estimated with the diversity part of our ordinal entropy Eq. 8.

We make several interesting observations from the visualization results: (1) On both training and
testing, compared with classification, regression always has a lower estimated entropy based on all
three entropy estimators; (2) benefiting from the diversity part of our ordinal entropy Ld, regression
produces a higher entropy space than the classification model; (3) Ld with the tightness term Lt can
result in feature space with a similarly estimated entropy compared with classification.

C RESULTS ON THE NONLINEAR OPERATOR LEARNING PROBLEM

We analyze the effect of the number of samples on MSE loss and the performance with λd on the
nonlinear operator learning task. The results are shown in Figure B. The results corroborate the
conclusions derived from the linear task.
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(a) Training (b) Testing (c) Testing

(d) Training(feature normalized) (e) Testing(feature normalized) (f) Testing(feature normalized)

(g) Training(ordinal entropy) (h) Testing(ordinal entropy) (i) Testing(ordinal entropy)

Figure A: Visualization results with different entropy estimators on training and testing set.

(a) MSE with number of samples (b) MSE with λd

Figure B: Based on the nonlinear operator learning problem, we show (a) the effect of the number of
samples on MSE loss, (b) the performance analysis with different λd.

D EVALUATION METRICS

Here we introduce the definition of the evaluation metrics for depth estimation, crowd counting, and
age estimation.
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Depth Estimation. We denote the predicted depth at position p as yp and the corresponding ground
truth depth as y′p, the total number of pixels is n. The metrics are: 1) threshold accuracy δ1 ≜ %

of yp, s.t.max(
yp

y′
p
,
y′
p

yp
) < t1, where t1 = 1.25; 2) average relative error (REL): 1

n

∑
p

|yp−y′
p|

yp
; 3)

root mean squared error (RMS):
√

1
n

∑
p(yp − y′p)

2; 4) average (log10 error): 1
n

∑
p | log10(yp)−

log10(y
′
p)|.

Crowd Counting. Given N images for testing, yi, y′i are the estimated count and the ground truth for
the i-th image, respectively. We exploit two widely used metrics as measurements: 1) Mean Absolute

Error (MAE)= 1
N

∑N
i=1 |yi − y′i|, and 2) Mean Squared Error (MSE) =

√
1
N

∑N
i=1 |yi − y′i|2.

Age Estimation. Given N images for testing, yi and y′i are the i-th prediction and ground-truth,
respectively. The evaluation metrics include 1)MAE: 1

N

∑N
i=1 |yi − y′i|, and 2)Geometric Mean

(GM): (
∏N

i=1 |yi − y′i|)
1
N .

E EFFECT OF λt

We analyze the effect of λt with an ablation study on the age estimation with Age-DB-DIR. Table 5
shows that the final performance is not sensitive to the change of λt, and Lt is effective even with a
small λt, i.e., 0.1.

Table 5: Results on AgeDB-DIR. Bold numbers indicate the best performance.

λt
MAE ↓ GM ↓

ALL Many Med. Few ALL Many Med. Few
0 7.60 6.79 8.55 12.70 4.76 4.15 5.95 9.60

0.1 7.50 6.53 8.64 13.50 4.71 4.04 5.92 10.62
1 7.46 6.73 8.18 12.38 4.72 4.21 5.36 9.70
10 7.49 6.70 8.27 12.86 4.79 4.23 5.61 10.21

F INFLUENCE OF THE SAMPLE SIZE (M)

Efficiency-wise, the computing complexity of the regularizer is quadratic with respect to M . The
synthetic experiments on operator learning (Table 6) use a 2-layer MLP, so the regularizer adds
significant computing time when M gets large. However, the real-world experiments on depth
estimation (Table 7) use a ResNet-50 backbone, and the added time and memory are negligible
(27% and 0.3%, respectively), even with M = 3536. We exploit M = 3536 in our depth estimation
experiments, where 3536 is a 16x subsampling of the total number of pixels in an image. Note that
these increases are only during training and do not add computing demands for inference. In addition,
the added time and memory with Lt are also negligible (0.08% and 0%, respectively), even with
M=3536.

Table 6: Quantitative comparison of the time consumption and memory consumption on linear
operator learning with synthetic data.

M Training time (s) Memory taken (MB)
0 155 2163
2 291 2163
10 296 2163
100 327 2163
1000 1033 2205
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Table 7: Quantitative comparison of the time consumption and memory consumption on depth
estimation with NYU-v2. The training time is one epoch training time.

M Regularizer Training time (s) Memory taken (MB)
0 no regularizer 1836 12363
100 Ld + Lt 1877 12379
1000 Ld + Lt 1999 12395
3526 Ld 2342 12405
3526 Ld + Lt 2344 12405
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