

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING FLEXIBLE FORWARD TRAJECTORIES FOR MASKED MOLECULAR DIFFUSION

Anonymous authors

Paper under double-blind review

ABSTRACT

Masked diffusion models (MDMs) have achieved notable progress in modeling discrete data, while their potential in molecular generation remains underexplored. In this work, we explore their potential and introduce the surprising result that naïvely applying standard MDMs to molecules leads to severe performance degradation. We trace this critical issue to a *state-clashing problem*—where the forward diffusion trajectories of distinct molecules collapse into a common state, resulting in a mixture of reconstruction targets that cannot be learned with a typical reverse diffusion with unimodal predictions. To mitigate this, we propose **Masked Element-wise Learnable Diffusion (MELD)** that orchestrates per-element corruption trajectories to avoid collisions between different molecular graphs. This is realized through a parameterized noise scheduling network that learns distinct corruption rates for individual graph elements, *i.e.*, atoms and bonds. Across extensive experiments, **MELD** achieves 100% chemical validity in unconditional generation on QM9 and ZINC250K datasets, while markedly improving distributional and property alignment over standard MDMs on both conditional and unconditioned generation.

1 INTRODUCTION

Molecular generation is critical in a variety of real-world applications, such as drug discovery (Simanovsky & Komodakis, 2018) and material design (Jia et al., 2024; Yang et al., 2023). However, the task remains challenging due to the extremely large and complex nature of the chemical space (Du et al., 2024). With the remarkable recent progress in deep generative models (Kingma & Welling, 2013; Rezende & Mohamed, 2015; Austin et al., 2021; Naveed et al., 2023), many approaches have attempted to tackle this problem by training a neural network that learns molecular distributions from large molecular datasets, demonstrating a strong promise in accelerating molecule discovery (Jensen, 2019; Jin et al., 2018; Shi et al., 2020; Jo et al., 2022; Vignac et al., 2023; Yiming et al., 2025).

In particular, recent works have focused on exploring generative models based on denoising diffusion or flow-matching models, (Jo et al., 2022; Lee et al., 2023; Vignac et al., 2023; Kong et al., 2023; Jo et al., 2024; Liu et al., 2024a), to learn a molecular distribution, inspired by their great success in other data domains with scalability (Ho et al., 2020; Song et al., 2020; Austin et al., 2021; Nichol & Dhariwal, 2021; Ma et al., 2024; Kingma et al., 2021; Sahoo et al., 2024b; Wan et al., 2025). These models learn to recover original molecules from corrupted versions through a denoising process, where the corruption typically involves altering types of atoms and bonds (*e.g.*, changing a carbon atom to nitrogen, or a single bond to a double bond).

Meanwhile, researchers have explored masked diffusion models (MDMs; Austin et al. 2021; Chang et al. 2022; Shi et al. 2024; Sahoo et al. 2024a). Unlike conventional diffusion models that typically design diffusion processes in continuous space, MDMs are specialized for discrete data by defining a diffusion process more suitable in discrete space. Specifically, MDMs define the forward process as element masking and train the model to infill the masked element during the reverse process. Intriguingly, MDMs show great stability and scalability, being comparable or even better than previous generative models for discrete data, such as autoregressive language models (Ziegler & Rush, 2019; Hoogeboom et al., 2021) or high-resolution text-to-image generation (Chang et al., 2023). Despite their success in other domains, applying MDMs to molecular graphs is still underexplored.

In this work, we focus on applying MDMs to molecular generation. Surprisingly, unlike other domains, a naïve adaptation of existing MDMs to molecular graphs results in significantly worse

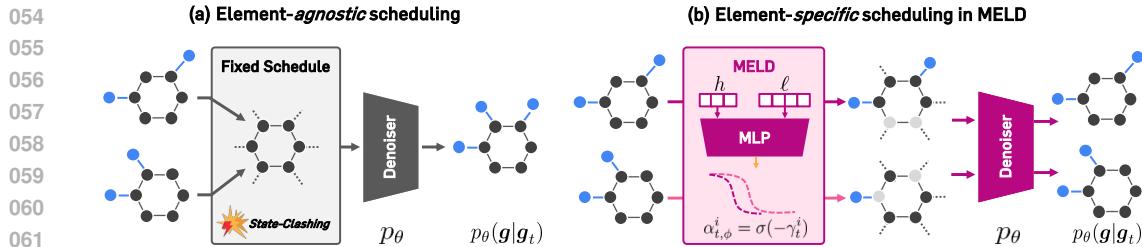


Figure 1: Comparison between (a) element-agnostic noise scheduling and (b) element-specific noise scheduling. The former results in an issue denoted as *state-clashing*, leading to generation of invalid molecules. **MELD** mitigates this with element-specific noise schedule, effectively orchestrating the forward process to minimize state-clashings.

performance, often generating distributionally misaligned structures. We argue that this phenomenon stems from a *state-clashing problem*: Molecular graphs with different properties and semantics easily collapse into a common intermediate state in the forward process (see Figure 1(a) for an illustration). We attribute this to the usage of fixed noise schedules; element-agnostic masking rates across all nodes and edges. This hinders the learning process of the unimodal denoiser – which predicts nodes and edges independently, by creating multimodal targets for reconstruction. Such mismatch forces the model to spread its probability mass into an averaged state creating samples that deviate from the true target distribution and, in some cases, violate chemical rules.

To address this, we introduce **MELD** (Masked Element-wise Learnable Diffusion), a novel MDM for molecular graph generation. The main idea of our method is to alleviate the state-clashing problem by proposing an *element-wise learnable forward process*, which generates corruption trajectories in the way of minimizing the occurrence of potential collision. To this end, we introduce a parameterized noise scheduling network to yield distinct corruption rates for individual graph elements (*i.e.*, for nodes or edges). During training, we jointly optimize the forward (*i.e.*, noise scheduling network) and the reverse process (*i.e.*, MDM denoiser network). Intuitively, by assigning per-element trajectories, **MELD** organizes the forward process such that the probability of molecules being collapsed to the same intermediate state (see Figure 1(b)) is minimized). Through such evasion, **MELD** effectively learns to produce samples capturing the target molecular distribution.

We evaluate **MELD** on diverse molecular datasets, including QM9 (Ramakrishnan et al., 2014), Polymers (Thornton et al., 2012), ZINC250K (Irwin et al., 2012), Guacamol (Brown et al., 2019), and a synthetic graph benchmark (Martinkus et al., 2022). First, we demonstrate that **MELD** yields substantial improvements in distributional similarity over standard MDMs, while maintaining 100% validity. In conditional generation, **MELD** further enhances property alignment by up to 13.4% over state-of-the-art baseline. Finally, we show the scalability and generalizability of **MELD** in large-scale molecules and non-molecule graph datasets.

Our contributions are threefold:

- We identify a key limitation in applying standard masked diffusion models to molecular generation, the use of an element-agnostic noise schedule, which leads to frequent *state-clashing*.
- We present **MELD**, a novel masked diffusion framework that mitigates the state-clashing problem by learning per-element noise schedules, allowing adaptive corruption trajectories tailored to individual molecular components.
- **MELD** substantially improves the overall quality of generated molecules over standard MDM baselines, and surpasses existing molecular diffusion models in both unconditional and property-conditioned generation tasks. Moreover, its efficacy generalizes consistently to large-scale molecule and synthetic graph benchmarks.

2 RELATED WORK

Masked diffusion models (MDMs). MDMs have emerged as a powerful generative modeling scheme for discrete data generation. Initially, D3PM (Austin et al., 2021) introduces an absorbing mask token into the forward process and establishes a conceptual bridge between discrete diffusion and masked language modeling. Additionally, in image generation, MaskGIT (Chang et al., 2022)

108 shows that generative modeling based on unmasking enables fast and qualitatively comparable high-
 109 fidelity image synthesis compared with left-to-right autoregressive decoding. More recent efforts
 110 have further refined MDMs to close the performance gap with autoregressive models (AR; [Vaswani et al. 2017](#); [Ziegler & Rush 2019](#); [Hoogeboom et al. 2021](#)). Notably, MD4 ([Shi et al., 2024](#)) and
 111 MDLM ([Sahoo et al., 2024a](#)) show that the diffusion objective can be simplified as a weighted integral
 112 of cross-entropy and that the model can achieve state-of-the-art results over prior diffusion models.
 113

114 However, naive adoption of the MDM framework in molecular graph generation introduces unique
 115 challenges, termed as *state-clashing problem*. As molecular graphs exhibit higher symmetries while
 116 utilizing smaller vocabulary, the forward process of MDMs easily collapse distinct graphs into a same
 117 intermediate state, hindering the learning process, as evidenced in [Tables 1](#) and [2](#). We formulate this
 118 problem further in Section 4.1.
 119

120 **Diffusion models for molecules.** The success of diffusion models for image ([Rombach et al., 2022](#))
 121 and text generation ([Li et al., 2022](#)) has inspired researchers to explore diffusion models in molecule
 122 domain. A surge of studies ([Vignac et al., 2023](#); [Jo et al., 2022](#); [Xie et al., 2021](#); [Kong et al., 2023](#);
 123 [Jo et al., 2024](#); [Liu et al., 2024a](#)) have been proposed to generate de novo molecules, competing
 124 with sequential models ([Segler et al., 2018](#); [Jin et al., 2018](#); [Shi et al., 2020](#); [Jang et al., 2024a;b](#))
 125 that iteratively constructs a graph by adding graph elements. These efforts can be categorized into
 126 two approaches: (1) Score-based molecule diffusion approaches ([Jo et al., 2022](#); [Lee et al., 2023](#);
 127 [Jo et al., 2024](#)) adopt continuous noise on molecular graphs using stochastic differential equations
 128 (SDEs) ([Song et al., 2020](#)). They train a score function to approximate reverse SDEs, relaxing discrete
 129 atoms/bonds into a continuous space. (2) Discrete diffusion-based approaches ([Vignac et al., 2023](#);
 130 [Liu et al., 2024a](#); [Hua et al., 2024](#); [Kerby & Moon, 2024](#)) apply discrete noise through Markovian
 131 transitions to nodes and edges in molecular graphs. Then they train a denoising neural network to
 132 reconstruct perturbed atom and bond types.

133 Despite progress in these two directions, masked diffusion frameworks remain underexplored for
 134 molecular generation. A preliminary application was explored in [Kong et al. \(2023\)](#), but it generates
 135 atoms in an autoregressive manner, limiting its ability to exploit the parallelized reconstruction of
 136 MDMs. In contrast, we propose MDMs for molecular graphs by focusing on the state-clashing
 137 problem occurring in the forward process, while preserving the parallelism inherent to MDMs.
 138

3 PRELIMINARIES

140 We provide a brief overview of masked diffusion models for molecular generation. The goal is
 141 to generate molecular graphs $\mathbf{g} = (\mathbf{x}, \mathbf{e})$ from a data distribution $q(\mathbf{g})$, where $\mathbf{x} = (x^i)_{i=1}^N$ and
 142 $\mathbf{e} = (e^{ij})_{i,j=1}^N$ represent one-hot encoded node and edge features, each augmented with an absorbing
 143 [mask] token. Following standard diffusion frameworks ([Ho et al., 2020](#); [Ma et al., 2024](#); [Nichol & Dhariwal, 2021](#); [Peebles & Xie, 2023](#)), we consider a forward process $q_\phi(\mathbf{g}_t | \mathbf{g}_{t-1})$ and a reverse
 144 process $p_\theta(\mathbf{g}_{t-1} | \mathbf{g}_t)$, parameterized by ϕ and θ , respectively.
 145

146 The forward process is defined as follows, where $\gamma_{t,\phi}$ denotes the marginal masking probabilities
 147 parameterized by ϕ :
 148

$$149 \quad q_\phi(x_t^i | x_0^i) = \begin{cases} \gamma_{t,\phi}^i & \text{if } x_t^i = [\text{mask}] \\ 1 - \gamma_{t,\phi}^i & \text{if } x_t^i = x_0^i \end{cases}, \quad q_\phi(e_t^{ij} | e_0^{ij}) = \begin{cases} \gamma_{t,\phi}^{ij} & \text{if } e_t^{ij} = [\text{mask}] \\ 1 - \gamma_{t,\phi}^{ij} & \text{if } e_t^{ij} = e_0^{ij} \end{cases} \quad (1)$$

150 Most existing molecular diffusion models ([Vignac et al., 2023](#); [Jo et al., 2022](#); [Lee et al., 2023](#); [Jo](#)
 151 et al., 2024; [Liu et al., 2024a](#)) have defined the corruption probability using a *fixed, element-agnostic*
 152 noise scheduling function (*i.e.*, γ_t).
 153

154 The denoiser predicts the original graph \mathbf{g}_0 by independently predicting nodes and edges. It is trained
 155 to recover the original graph directly without recursive sampling ([Vignac et al., 2023](#); [Liu et al., 2024a](#)), by minimizing the following loss objective:
 156

$$157 \quad \mathcal{L}(\theta, \phi) = \mathbb{E}_{t, \mathbf{g}, \mathbf{g}_t} \left[\sum_{1 \leq i \leq N} \frac{\dot{\gamma}_{t,\phi}^i}{1 - \gamma_{t,\phi}^i} \log p_\theta(x^i | \mathbf{g}_t) + \lambda \sum_{1 \leq i < j \leq N} \frac{\dot{\gamma}_{t,\phi}^{ij}}{1 - \gamma_{t,\phi}^{ij}} \log p_\theta(e^{ij} | \mathbf{g}_t) \right] \quad (2)$$

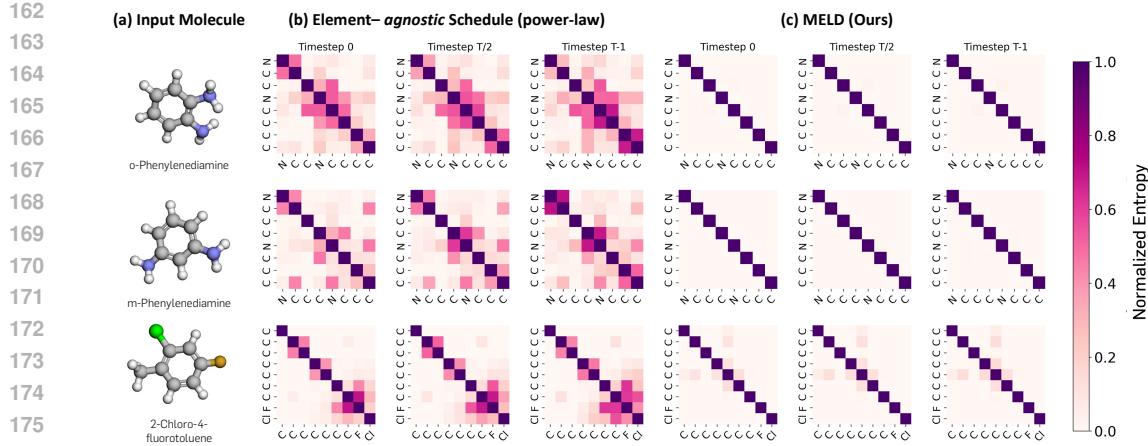


Figure 2: Visualization of prediction entropy for various molecule types. The first and second rows show prediction matrices with nitrogen bonds masked, while the third row shows generations with chlorine bond masked. From left to right: (a) 3D renderings of the input molecules, (b) predictions from MDMs using a fixed power law noise schedule, and (c) predictions from **MELD**. Brighter colors indicate lower uncertainty (*i.e.*, higher confidence). The dark diagonal entries reflect enforced uniform predictions, as self-connections in molecules are not meaningful and are excluded from valid outputs. Note that predictions are being made for all locations, regardless of their entropy values.

Here, $\dot{\gamma}_{t,\phi}$ denotes the derivative of $\gamma_{t,\phi}$ with respect to t , while $\lambda > 0$ balances node- and edge-level reconstruction, following prior work (Vignac et al., 2023; Liu et al., 2024a).

4 MELD: MASKED ELEMENT-WISE LEARNABLE DIFFUSION

In this section, we introduce **MELD**, a masked diffusion model (MDM) for molecular graph generation that jointly learns per-graph-element corruption rate and the denoising model. As we will explain, our proposed design alleviates the state-clashing problem (Section 4.1) by producing distinguishable forward trajectories for each molecular component (Section 4.2).

4.1 FORMALIZING THE STATE-CLASHING PROBLEM

In this section, we describe the *state-clashing problem* which naturally arise for training MDMs on graphs without learning the forward process, *i.e.*, set $\gamma_{t,\phi}^i$ to some constant γ_t for all node i and edges i, j . In a nutshell, state-clashing refers to the phenomenon where semantically distinct molecules are corrupted into the same intermediate state, due to the nature of the constant forward process in MDMs. Consequently, the model trained with such constant forward process struggles to infer the correct reconstruction target, resulting in outputs that fail to preserve structural or molecular coherence with target distribution (see Figure 1 for an illustration). This is particularly pronounced in molecules with symmetric motifs, to which the number of immediate parent states grows by the number of permutations that leave the motif invariant.

Formally, note that the diffusion model loss in Equation 2 can be expressed as:

$$\mathbb{E}_t [\text{KL}(p(\mathbf{g}|\mathbf{g}_t), p_\theta(\mathbf{g}|\mathbf{g}_t))], \quad p(\mathbf{g}|\mathbf{g}_t) \propto p(\mathbf{g}_t|\mathbf{g})p(\mathbf{g}). \quad (3)$$

The main problem is that $p(\mathbf{g}|\mathbf{g}_t)$ can be highly *multimodal*, *i.e.*, there exists many graph \mathbf{g} with non-zero probabilities of $p(\mathbf{g}_t|\mathbf{g})$. However, the parameterized diffusion model $p_\theta(\mathbf{g}|\mathbf{g}_t) = \prod_{1 \leq i \leq N} p_\theta(x^i|\mathbf{g}_t) \prod_{1 \leq i < j \leq N} p_\theta(e^{ij}|\mathbf{g}_t)$ is *unimodal*, as it predicts each node and edge independently, typically resulting in a single mode centered around an average graph. Furthermore, due to the mode-covering property of KL divergence, the reverse diffusion model trained with Equation 2 tends to converge to a high-entropy distribution—the model compensates for its inability to represent multiple modes by spreading its probability mass broadly around the single mode.

This is illustrated in Figure 2, where we visualize the denoiser’s prediction entropy when reconstructing masked bonds in the given molecules. In the first two rows, we mask all nitrogen–carbon bonds in

216 o- and m-phenylenediamine. As masking removes the distinguishing nitrogen atoms, both molecules
 217 collapse into the identical symmetric benzene backbone, creating a severe state-clashing scenario.
 218 Under an element-agnostic schedule, the denoiser exhibits higher uncertainty when predicting the
 219 masked bond types, as many distinct underlying configurations are compatible with the same cor-
 220 rupted state. Additionally, we visualize the denoiser prediction for 2-Chloro-4-fluorotoluene when
 221 only the chlorine bond is masked. Due to the inherent asymmetry of the masked molecule, the state-
 222 clashing issue is less pertinent than Phenylenediamine isomers. Consequently, the denoiser shows
 223 increased prediction confidence even with element-agnostic schedules, underscoring the necessity of
 224 addressing the state-clashing.

225 We note that this issue is not unique to MDMs, but it does become significantly more severe in their
 226 case. Masking operations tend to absorb diverse input graphs into indistinguishable intermediate
 227 states, whereas the probability of state-clashing in substitution-based discrete diffusion is orders of
 228 magnitude lower with realistic vocabulary sizes (see Appendix Section F for a detailed qualitative
 229 analysis). Moreover, the effect is particularly pronounced in molecular graphs, which often contain
 230 structural symmetries and a limited set of element types compared to other discrete domains.

231 4.2 MAIN ALGORITHM

232 **Learnable element-wise embedding.** To reduce state-clashing in forward diffusion trajectories
 233 across graph states, one should use information that distinguishes individual graph elements, which
 234 guides the noise scheduling network. One can consider incorporating graph positional encod-
 235 ings (Dwivedi et al., 2022; Ma et al., 2023) for conditioning. However, such encodings often
 236 fail to disambiguate elements when given symmetric structures such as those found in aromatic
 237 rings (Lawrence et al., 2025; Morris et al., 2024). Moreover, conditioning the noisy graph input in
 238 the noise schedule breaks the tractable closed-form marginal $q(\mathbf{g}_t \mid \mathbf{g}_0)$ since the transition kernel
 239 becomes dependent on the current corrupted state, which eliminates the efficiency.

240 Thus, we consider learnable element-wise embeddings over the graph elements that assigns distinct
 241 masking rate, and use it for an input to the noise scheduling network. Specifically, we assign a
 242 learnable embedding matrix $\mathbf{H} \in \mathbb{R}^{D \times N}$ and consider its i -th column \mathbf{h}^i as node-wise embedding of
 243 i -th node x^i , where $N > 0$ is a number of nodes and D is the embedding dimension. For an edge
 244 $\{i, j\} \in \mathcal{E}$, we set its embedding by $\mathbf{h}^{ij} = \mathbf{h}^i + \mathbf{h}^j$. In addition, we randomly permute columns of
 245 \mathbf{H} during training to differentiate graph states that have the same numbers of nodes and edges.

246 **Time-dependent noise schedule.** We parameterize the noise scheduling network for each element
 247 (e.g., node) using a power-law function, commonly used in Shi et al. (2024; 2025). Leveraging i -th
 248 node embedding \mathbf{h}^i as an example, our noise schedule $\gamma_{t,\phi}^i$ is defined as:

$$249 \gamma_{t,\phi}^i = 1 - (1 - \epsilon) \cdot t^{w_\phi^i}, \quad w_\phi^i = \sigma_{\text{sf}}(\mathbf{h}^i), \quad (4)$$

250 where σ_{sf} denotes the softplus function. The same computation applies analogously to other nodes
 251 and edges. Consistent with Shi et al. (2024; 2025), we introduce a bounding constant ϵ for numerical
 252 stability and fix $\epsilon = 0.0001$ in all experiments. Throughout this process, **MELD** naturally introduces
 253 element-specific masking rates, mitigating the collapse between distinct molecules that would
 254 otherwise persist under element-agnostic noise scheduling.

255 **Maintaining gradient flow in discrete sampling.** In discrete-space molecular diffusion frame-
 256 works (Vignac et al., 2023; Liu et al., 2024a; Kerby & Moon, 2024), the noisy graph at each timestep
 257 is obtained by sampling a single graph from a categorical distribution over nodes and edges (Equa-
 258 tion 1), as computing the full expectation over $\mathbf{g}_t \sim q(\cdot \mid \mathbf{g})$ is intractable. However, such discretization
 259 introduces a discontinuity in the computational graph when parameterizing the forward process,
 260 impeding a gradient flow towards the learnable schedule parameters ϕ . Thus, we adopt the Straight-
 261 Through Gumbel-Softmax (STGS) estimator (Jang et al., 2017), which provides a differentiable
 262 surrogate for discrete sampling. This formulation ensures the forward pass to utilize one-hot vectors
 263 for graph constructions, while the backward pass approximates them as continuous variables to enable
 264 end-to-end training. We provide the detailed formulation in Section E.

265 **Domain specialization and applicability.** In principle, **MELD** is applicable to non-molecular
 266 data. However, we note that other discrete data such as text or protein sequences typically involve

270
271
272
273 Table 1: Unconditional generation of 10K molecules on QM9 and ZINC250K datasets. The best and
274 second best performances are represented by **bold** and underline.
275

276 Method	QM9						ZINC250K					
	277 Valid.↑	FCD↓	NSPDK↓	Scaf.↑	Uniq.↑	Novel.↑	278 Valid.↑	FCD↓	NSPDK↓	Scaf.↑	Uniq.↑	Novel.↑
<i>Flow-based</i>												
MoFlow	91.36	4.47	0.017	0.145	<u>98.65</u>	<u>94.72</u>	63.11	20.93	0.046	0.013	<u>99.99</u>	100.00
GraphAF	74.43	5.63	0.021	0.305	<u>88.64</u>	<u>86.59</u>	68.47	16.02	0.044	0.067	<u>98.64</u>	<u>99.99</u>
GraphDF	93.88	10.93	0.064	0.098	98.58	98.54	90.61	33.55	0.177	0.000	99.63	100.00
<i>Continuous diffusion</i>												
EDP-GNN	47.52	2.68	0.005	0.327	99.25	86.58	82.97	16.74	0.049	0.000	99.79	100.00
GDSS	95.72	2.90	0.003	0.698	<u>98.46</u>	<u>86.27</u>	97.01	14.66	0.019	0.047	<u>99.64</u>	100.00
GruM	<u>99.69</u>	0.11	0.0002	<u>0.945</u>	96.90	24.15	<u>98.65</u>	<u>2.26</u>	<u>0.0015</u>	<u>0.530</u>	99.97	99.98
<i>Discrete diffusion</i>												
DiGress	98.19	<u>0.10</u>	<u>0.0003</u>	0.936	96.67	25.58	94.99	3.48	0.0021	0.416	99.97	<u>99.99</u>
<i>Masked diffusion</i>												
GraphARM	90.25	1.22	0.002	N/A	95.62	70.39	88.23	16.26	0.055	N/A	99.46	100.00
MDM w/ cosine	100.00	3.67	0.009	0.653	<u>85.96</u>	<u>69.85</u>	100.00	25.41	0.051	0.001	<u>99.99</u>	100.00
MDM w/ polynomial	100.00	3.70	0.010	0.890	<u>86.57</u>	<u>67.18</u>	100.00	26.43	0.053	0.001	<u>99.93</u>	100.00
MDM w/ power-law	100.00	3.62	0.007	0.628	91.30	76.65	100.00	26.09	0.068	0.001	<u>100.00</u>	100.00
MELD (Ours)	100.00	0.09	0.0002	0.947	96.49	33.55	100.00	1.51	0.0006	0.559	100.00	99.96

286
287 larger vocabularies and fewer structural symmetries. Consequently, the risk of collapsing distinct
288 inputs into identical intermediate states is lower, and the relative benefits of **MELD** may be less
289 pronounced in such settings. Nevertheless, to show the generality of our approach, we include
290 additional experiments on general graph with constrained number of nodes and edges in Section 5.4.

291 5 EXPERIMENTS

292 5.1 EXPERIMENTAL SETUP

293
294 We evaluate **MELD** on unconditional and property-conditioned molecular generation tasks. For
295 unconditional generation, in line with prior work (Jo et al., 2024; Kong et al., 2023; Jo et al., 2022),
296 we use QM9 (Ramakrishnan et al., 2014), ZINC250k (Irwin et al., 2012), and Guacamol (Brown
297 et al., 2019) datasets. For conditional generation, we adopt the Polymer dataset (Thornton et al.,
298 2012) introduced in Liu et al. (2024a), which conditions homopolymers on three gas permeability
299 constraints and synthesizability scores. We compare against recent baselines with standard metrics
300 for both tasks, following established setups (Liu et al., 2024a; Jo et al., 2022; 2024). See Section C
301 for detailed description of each method and metrics. Our implementation employs the diffusion
302 transformer (Peebles & Xie, 2023) as the denoising network within a masked diffusion framework.
303 For property-conditioned generation, we further apply classifier-free guidance (Ho & Salimans, 2021)
304 as implemented in (Peebles & Xie, 2023; Liu et al., 2024a). Unless otherwise noted, all experiments
305 use the same backbone across standard MDMs and **MELD**.
306

307 5.2 MAIN RESULTS

308
309 **Unconditional Generation.** We present the results of **MELD** on QM9 and ZINC250K datasets
310 for unconditional generation. Remarkably, **MELD** substantially enhances distributional similarity
311 while maintaining perfect validity, as shown in Table 1. On the QM9 dataset, our method outperforms
312 GraphARM (Kong et al., 2023), the autoregressive masked diffusion baseline, with up to 91%
313 reduction in FCD and NSPDK. Moreover, it significantly improves the NSPDK by up to 98% from
314 standard MDMs.

315
316 On the more challenging ZINC250K dataset, which includes larger molecules and richer atom
317 types, **MELD** achieves state-of-the-art results on 5 out of 6 metrics, surpassing GruM (Jo et al.,
318 2024), the strongest baseline. It also consistently improves over masked diffusion baselines on key
319 metrics including FCD, NSPDK, and scaffold similarity (Scaf.). In contrast, standard MDMs exhibit
320 degenerate behavior, with FCD 91.4% higher and a Scaf. 99.8% lower than the best diffusion-based
321 baselines, suggesting that element-agnostic schedulers yield valid but distributionally misaligned
322 molecules.

323
324 **Property-conditioned Generation.** Next, we evaluate **MELD** on conditional generation using
325 the Polymer dataset (Thornton et al., 2012), with results summarized in Table 2. Overall, **MELD**

324
 325 Table 2: Property-conditioned generation of 10K Polymers on three gas permeability properties and
 326 synthetic score. The numbers in parentheses in Valid. represent the validity without correction. The
 327 best and second best performances are represented by **bold** and underline.

328 329 Method	330 General Quality				331 Property Alignment					
	332 Valid.↑	333 Cover.↑	334 Divers.↑	335 Frag.↑	336 FCD↓	337 Synth.↓	338 O ₂ Perm.↓	339 N ₂ Perm.↓	340 CO ₂ Perm.↓	341 MAE↓
<i>Molecule Optimization</i>										
GraphGA	100.00 (N/A)	11/11	88.28	0.927	9.19	1.3307	1.9840	2.2900	1.9489	1.888
MARS	100.00 (N/A)	11/11	83.75	0.928	7.56	1.1658	1.5761	1.8327	1.6074	1.546
LSTM-HC	99.10 (N/A)	10/11	89.18	0.794	18.16	1.4251	1.1003	1.2365	1.0772	1.210
JTVAE-BO	100.00 (N/A)	10/11	73.66	0.729	23.59	1.0714	1.0781	1.2352	1.0978	1.121
<i>Continuous diffusion</i>										
GDSS	92.05 (90.76)	9/11	75.10	0.000	34.26	1.3701	1.0271	1.0820	1.0683	1.137
MOOD	98.66 (92.05)	11/11	83.49	0.023	39.40	1.4019	1.4961	1.7603	1.4748	1.533
<i>Discrete diffusion</i>										
DiGress v2	98.12 (30.57)	11/11	91.05	0.278	21.73	2.7507	1.7130	2.0632	1.6648	2.048
GraphDiT	82.45 (84.37)	11/11	87.12	<u>0.960</u>	<u>6.64</u>	1.2973	<u>0.7440</u>	<u>0.8857</u>	<u>0.7550</u>	<u>0.921</u>
<i>Masked diffusion</i>										
MDM w/ cosine	15.95 (37.16)	11/11	89.91	0.307	26.45	2.1795	1.5035	1.7755	1.4974	1.739
MDM w/ polynomial	18.61 (60.32)	11/11	88.44	0.237	29.32	2.0041	1.6805	1.9846	1.6468	1.829
MDM w/ power-law	17.31 (53.64)	11/11	89.08	0.401	26.56	2.0145	1.4100	1.6536	1.4030	1.620
MELD (Ours)	99.10 (96.51)	11/11	85.91	0.974	5.93	<u>1.1398</u>	0.6433	0.7596	0.6496	0.798

342
 343 Table 3: Ablation study of **MELD** with varying noise scheduling approaches. γ without ϕ and γ_ϕ
 344 denote fixed and learnable schedules, respectively. V.U.N. denotes a composite score for Validity,
 345 Uniqueness, and Novelty.

346 Schedule type	347 Method	348 FCD↓	349 NSPDK↓	350 Scaf.↑	351 V.U.N.↑
347 Fixed γ	Power-law	26.09	0.0683	0.001	100.00
	DiffusionBERT (He et al., 2022)	1.95	0.0009	0.491	100.00
351 Learnable γ_ϕ	GenMD4 (Shi et al., 2024)	3.19	0.0017	0.429	100.00
	TabDiff (Shi et al., 2025)	2.15	0.0009	0.486	99.99
	MELD (Ours; Node)	1.63	0.0009	0.536	99.99
	MELD (Ours; Edge)	1.73	0.0009	0.525	99.99
	MELD (Ours; Node + Edge)	1.51	0.0006	0.559	99.96

354 establishes a new state-of-the-art in property alignment, with a 13.4% reduction in average MAE
 355 relative to GraphDiT (Liu et al., 2024a). Apart from GraphDiT, no existing method can satisfy
 356 multiple property constraints simultaneously: LSTM-HC achieves strong synthesizability MAE but
 357 fails under gas permeability targets. DiGress v2 (Vignac et al., 2023), despite leveraging classifier
 358 guidance (Dhariwal & Nichol, 2021), incurs substantially higher MAE across most conditions.
 359 Beyond alignment, **MELD** also improves generative quality, surpassing FCD and fragment-based
 360 similarity (Frag.) over the previous best. Consistent with earlier work (Ho & Salimans, 2021; Liu
 361 et al., 2024b), we observe an inherent trade-off between property alignment and sample diversity.
 362 Importantly, our method addresses the state-clashing issue prevalent in MDMs: whereas element-
 363 agnostic schedule results in generating low-quality molecules, our learnable, element-wise noise
 364 schedule enhances validity by a factor of five and improves property alignment by an average of 50%.

365 5.3 ABLATION STUDY

366 We evaluate several learnable scheduling strategies on ZINC250K (Irwin et al., 2012), as summarized
 367 in Table 3. The first row reports a standard MDM with a power-law function, while the second-to-last
 368 and third-to-last rows correspond to element-wise learnable scheduling applied only to nodes or edges.
 369 Rows two through four present advanced scheduling strategies from prior work. DiffusionBERT (He
 370 et al., 2022) employs a fixed spindle noise schedule decided by class-wise entropy; GenMD4 (Shi
 371 et al., 2024) is another class-wise scheduling variant where each atom and bond type has its own
 372 learned corruption rate; and TabDiff (Shi et al., 2025) introduces a single corruption rate shared
 373 across elements within the same column, analogous to node and edge-level schedules, e.g., all nodes
 374 sharing the same schedule. The final row corresponds to the full element-wise schedule of **MELD**.

375 As depicted in the table, all alternative noise schedules fall short of optimal gains in key metrics
 376 such as FCD and Scaf., an effect we attribute to their limited ability of reducing state-clashing. For
 377 instance, employing GenMD4 noise scheduling can remain limited in resolving the state-clashing:

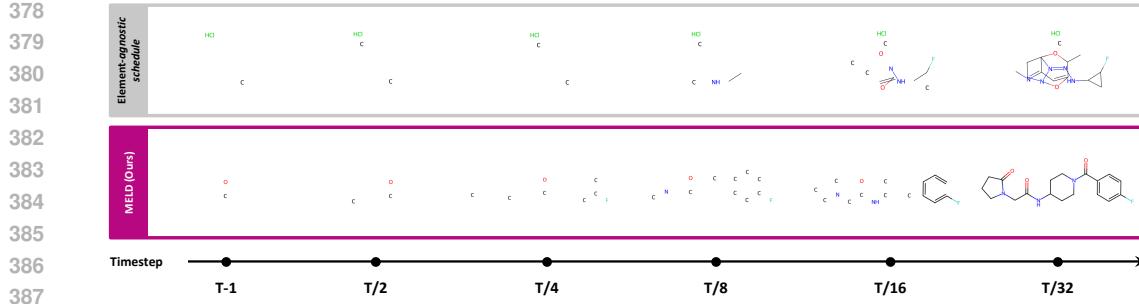


Figure 3: Comparison between fixed power-law scheduling and **MELD** during reconstruction. With the learnable noise schedule, **MELD** achieves faster recovery than standard MDMs.

delaying the corruption of all carbon atoms relative to nitrogen in o-Phenylenediamine (Figure 2) may still result in symmetric benzene ring. In contrast, our full per-element corruption (**MELD**) delivers further reductions in distributional similarity metrics, demonstrating its fine-grained control.

5.4 QUALITATIVE ANALYSIS

Reverse process of MELD. Figure 3 compares **MELD** with standard MDM. Corrupted nodes and edges are shown as [mask] and dashed lines, respectively. Under unified noise scheduling, unmasking proceeds relatively slowly: at time $t = T/4$ only HCl and two carbon atoms begin to emerge, ultimately leading to a poorly-designed molecule. In contrast, **MELD** reconstructs fragments earlier relative to element-agnostic schedule, where larger amount of atoms already reveal from step $t = T/4$. Similar phenomena can also be found with more examples in Section D.7.

Scalability to large molecules. We further evaluate **MELD** on the large-scale Guacamol dataset (Brown et al., 2019) following the standard protocol used in prior work (Vignac et al., 2023). As demonstrated in Table 4, **MELD** surpasses all diffusion-based baselines (Vignac et al., 2023; Xu et al., 2024) while achieving 100% validity. Notably, this performance is obtained with 70% reduced training epochs (300 epochs) than DiGress (1000 epochs), emphasizing both efficiency and empirical gains.

Table 4: Performance comparison on large-scale Guacamol dataset. The metrics are transformed such that higher values indicate better performance.

Method	Valid. \uparrow	Uniq. \uparrow	Novel. \uparrow	KL div. \uparrow	FCD \uparrow
ConGress (Vignac et al., 2023)	0.1	100.0	100.0	36.1	0.0
DiGress (Vignac et al., 2023)	85.2	100.0	99.9	92.9	68.0
DisCo (Xu et al., 2024)	86.6	100.0	99.9	92.6	59.7
MELD	100.0	100.0	100.0	93.4	68.8

Table 5: Number of unique graph states across varying timesteps in ZINC250K, averaged over 3 seeds.

Method	T-100	T-75	T-50	T-25	T-1
MDM w/ cosine	131.0	122.3	63.0	14.7	1.7
MDM w/ polynomial	131.0	131.0	131.0	103.0	13.3
MDM w/ power-law	131.0	131.0	131.0	126.0	8.7
MELD	131.0	131.0	131.0	131.0	17.3

Quantifying state-clashing problem. Here, we assess state-clashing phenomenon by measuring the number of distinct intermediate graph states at each timestep, as shown in Table 5. Specifically, we sample molecules with a fixed graph size and employ a graph isomorphism-based method (Cordella et al., 2001) to count unique graphs. A higher count of unique graphs indicates fewer state-clashing. Due to the extreme cost of isomorphism algorithm, we sample 131 molecules with 12 nodes from the ZINC250K dataset for the evaluation. The results show that **MELD** preserves greater structural diversity at later timesteps compared to any standard MDMs.

It is important to note that **MELD** is not intended to eliminate state-clashing *entirely*, but to reduce the chance of its occurrence, particularly in the early and intermediate timesteps. Inevitably, some clashes remain, *e.g.*, all graphs converge to a fully masked state, but these unavoidable cases only affect a small portion of decisions near the prior distribution and therefore does not compromise its overall effectiveness.

432
 433 **Generalizability on synthetic graph.**
 434 To assess generalizability of **MELD** on
 435 other discrete graph domains, we bench-
 436 mark **MELD** against two strong molecular
 437 diffusion models, DiGress and GruM, on
 438 SBM (Martinkus et al., 2022), a synthetic
 439 graph benchmark. Following the standard
 440 evaluation protocol (Vignac et al., 2023;
 441 Jo et al., 2024), we compute the maximum
 442 mean discrepancy (MMD) across four key
 443 graph statistics. As reported in Table 6,
 444 **MELD** outperforms the baselines on most
 445 metrics, with notable gains in
 446 V.U.N. (a composite score for validity/uni-
 447 queness/novelty) and Orbit.
 448

6 CONCLUSION

449 In this work, we investigated masked
 450 diffusion models (MDMs) for molecular
 451 graph generation and identified a central
 452 limitation, which we term *state-clashing*. To
 453 address this, we introduced **MELD**,
 454 a masked diffusion model that learns
 455 element-wise forward trajectories through a
 456 parameterized noise
 457 scheduling. Extensive experiments show that
 458 **MELD** consistently outperforms standard MDMs
 459 and prior diffusion-based methods in both
 460 unconditional and property-conditioned
 461 molecular generation.

ETHICS STATEMENT

462 From a broader perspective, **MELD** has a potential to accelerate molecular discovery and reduce
 463 the need for costly and time-intensive wet-lab experiments, thereby contributing to advancements
 464 in drug design and material science. However, as with any generative technology, there exists the
 465 risk of misuse, including the malicious design of toxic or harmful compounds. We advocate for the
 466 responsible deployment of such models for the safe integration into real-world workflows.

REPRODUCIBILITY STATEMENT

467 We provide the source code and setup for our key experiments, with detailed configurations described
 468 in the appendix. The implementation has been carefully verified, and we empirically confirm the
 469 validity of the proposed method.

REFERENCES

470 Aye Phyu Phyu Aung, Jay Chaudhary, Ji Wei Yoon, and Senthilnath Jayavelu. Xmol: Explainable
 471 multi-property optimization of molecules. *arXiv preprint arXiv:2409.07786*, 2024.

472 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
 473 denoising diffusion models in discrete state-spaces. In *Advances in Neural Information Processing
 474 Systems*, 2021.

475 Tobias Bernecker, Ghalia Rehawi, Francesco Paolo Casale, Janine Knauer-Arloth, and Annalisa
 476 Marsico. Random walk diffusion for efficient large-scale graph generation. *arXiv preprint
 477 arXiv:2408.04461*, 2024.

478 Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. Guacamol: benchmarking
 479 models for de novo molecular design. *Journal of chemical information and modeling*, 2019.

480 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
 481 image transformer. In *IEEE Conference on Computer Vision and Pattern Recognition*, 2022.

482 Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang,
 483 Kevin Murphy, William T Freeman, Michael Rubinstein, et al. Muse: Text-to-image generation
 484 via masked generative transformers. *arXiv preprint arXiv:2301.00704*, 2023.

485 Luigi Pietro Cordella, Pasquale Foggia, Carlo Sansone, Mario Vento, et al. An improved algorithm
 486 for matching large graphs. In *3rd IAPR-TC15 workshop on graph-based representations in pattern
 487 recognition*, 2001.

Table 6: Performance comparison on synthetic graph domain (SBM).

Method	Degree↓	Cluster↓	Orbit↓	Spectral↓	V.U.N.↑
DiGress	0.0013	0.0498	0.0434	0.0400	74.00
GruM	0.0007	0.0492	0.0448	0.0050	85.00
MELD	0.0005	0.0506	0.0381	0.0047	97.50

486 Fabrizio Costa and Kurt De Grave. Fast neighborhood subgraph pairwise distance kernel. In
 487 *International Conference on Machine Learning*, 2010.
 488

489 Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
 490 bridge with applications to score-based generative modeling. In *Advances in Neural Information*
 491 *Processing Systems*, 2021.

492 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In *Advances*
 493 *in Neural Information Processing Systems*, 2021.
 494

495 Yuanqi Du, Arian R Jamasb, Jeff Guo, Tianfan Fu, Charles Harris, Yingheng Wang, Chenru Duan,
 496 Pietro Liò, Philippe Schwaller, and Tom L Blundell. Machine learning-aided generative molecular
 497 design. *Nature Machine Intelligence*, 2024.

498 Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
 499 Graph neural networks with learnable structural and positional representations. In *International*
 500 *Conference on Learning Representations*, 2022.

501 Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
 502 *ICLR Workshop on Representation Learning on Graphs and Manifolds*, 2019.
 503

504 Tianfan Fu, Wenhao Gao, Cao Xiao, Jacob Yasonik, Connor W. Coley, and Jimeng Sun. Differentiable
 505 scaffolding tree for molecule optimization. In *International Conference on Learning*
 506 *Representations*, 2022.

507 Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor Coley. Sample efficiency matters: a benchmark
 508 for practical molecular optimization. In *Advances in Neural Information Processing Systems*, 2022.
 509

510 Zhengfu He, Tianxiang Sun, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu. Diffusion-
 511 bert: Improving generative masked language models with diffusion models. *arXiv preprint*
 512 *arXiv:2211.15029*, 2022.

513 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *NeurIPS 2021 Workshop on*
 514 *Deep Generative Models and Downstream Applications*, 2021.
 515

516 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances in*
 517 *Neural Information Processing Systems*, 2020.

518 Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
 519 and multinomial diffusion: Learning categorical distributions. In *Advances in Neural Information*
 520 *Processing Systems*, 2021.
 521

522 Chenqing Hua, Sitao Luan, Minkai Xu, Zhitao Ying, Jie Fu, Stefano Ermon, and Doina Precup.
 523 Mudiff: Unified diffusion for complete molecule generation. In *Proceedings of the Second*
 524 *Learning on Graphs Conference*, 2024.

525 John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc: a
 526 free tool to discover chemistry for biology. *Journal of chemical information and modeling*, 2012.
 527

528 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
 529 *International Conference on Learning Representations*, 2017.

530 Yunhui Jang, Dongwoo Kim, and Sungsoo Ahn. Graph generation with k^2 -trees. In *International*
 531 *Conference on Learning Representations*, 2024a.
 532

533 Yunhui Jang, Seul Lee, and Sungsoo Ahn. A simple and scalable representation for graph generation.
 534 In *International Conference on Learning Representations*, 2024b.

535 Jan H Jensen. A graph-based genetic algorithm and generative model/monte carlo tree search for the
 536 exploration of chemical space. *Chemical science*, 2019.
 537

538 Jiarui Ji, Runlin Lei, Jialing Bi, Zhewei Wei, Xu Chen, Yankai Lin, Xuchen Pan, Yaliang Li, and
 539 Bolin Ding. Llm-based multi-agent systems are scalable graph generative models. *arXiv preprint*
arXiv:2410.09824, 2024.

540 Shuyi Jia, Chao Zhang, and Victor Fung. Llmatdesign: Autonomous materials discovery with large
 541 language models. *arXiv preprint arXiv:2406.13163*, 2024.

542

543 Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
 544 molecular graph generation. In *International Conference on Machine Learning*, 2018.

545

546 Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Multi-objective molecule generation using
 547 interpretable substructures. In *International Conference on Machine Learning*, 2020.

548

549 Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
 550 system of stochastic differential equations. *arXiv:2202.02514*, 2022.

551

552 Jaehyeong Jo, Dongki Kim, and Sung Ju Hwang. Graph generation with diffusion mixture. In
 553 *International Conference on Machine Learning*, 2024.

554

555 Oumar Kaba and Siamak Ravanbakhsh. Equivariant networks for crystal structures. In *Advances in
 556 Neural Information Processing Systems*, 2022.

557

558 Thomas J Kerby and Kevin R Moon. Training-free guidance for discrete diffusion models for
 559 molecular generation. *arXiv preprint arXiv:2409.07359*, 2024.

560

561 Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. In
 562 *Advances in Neural Information Processing Systems*, 2021.

563

564 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint
 565 arXiv:1312.6114*, 2013.

566

567 Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B Aditya Prakash, and Chao Zhang.
 568 Autoregressive diffusion model for graph generation. In *International Conference on Machine
 569 Learning*, 2023.

570

571 Najwa Laabid, Severi Rissanen, Markus Heinonen, Arno Solin, and Vikas Garg. Equivariant denoisers
 572 cannot copy graphs: Align your graph diffusion models. In *International Conference on Learning
 573 Representations*, 2025.

574

575 Hannah Lawrence, Vasco Portilheiro, Yan Zhang, and Sékou-Oumar Kaba. Improving equivariant
 576 networks with probabilistic symmetry breaking. In *International Conference on Learning
 577 Representations*, 2025.

578

579 Seul Lee, Jaehyeong Jo, and Sung Ju Hwang. Exploring chemical space with score-based out-of-
 580 distribution generation. In *International Conference on Machine Learning*, 2023.

581

582 Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-lm
 583 improves controllable text generation. In *Advances in Neural Information Processing Systems*,
 584 2022.

585

586 Gang Liu, Jiaxin Xu, Tengfei Luo, and Meng Jiang. Graph diffusion transformers for multi-conditional
 587 molecular generation. In *Advances in Neural Information Processing Systems*, 2024a.

588

589 Zhen Liu, Tim Z Xiao, Weiyang Liu, Yoshua Bengio, and Dinghuai Zhang. Efficient diversity-
 590 preserving diffusion alignment via gradient-informed gflownets. *arXiv preprint arXiv:2412.07775*,
 591 2024b.

592

593 Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
 594 generation. In *International Conference on Machine Learning*, 2021.

595

596 Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates, Philip
 597 Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing. In
 598 *International Conference on Machine Learning*, 2023.

599

600 Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and
 601 Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
 602 transformers. In *European Conference on Computer Vision*, 2024.

594 Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre: Spec-
 595 tral conditioning helps to overcome the expressivity limits of one-shot graph generators. In
 596 *International Conference on Machine Learning*, 2022.

597 Amina Mollaysa, Brooks Paige, and Alexandros Kalousis. Goal-directed generation of discrete
 598 structures with conditional generative models. In *Advances in Neural Information Processing
 599 Systems*, 2020.

600 Matthew Morris, Bernardo Cuenca Grau, and Ian Horrocks. Orbit-equivariant graph neural networks.
 601 In *International Conference on Learning Representations*, 2024.

602 Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
 603 Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
 604 models. *arXiv preprint arXiv:2307.06435*, 2023.

605 Daniel Neil, Marwin Segler, Laura Guasch, Mohamed Ahmed, Dean Plumbley, Matthew Sellwood,
 606 and Nathan Brown. Exploring deep recurrent models with reinforcement learning for molecule
 607 design, 2018.

608 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 609 In *International Conference on Machine Learning*, 2021.

610 Chenhai Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Permu-
 611 tation invariant graph generation via score-based generative modeling. In *International Conference
 612 on Artificial Intelligence and Statistics*, 2020.

613 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 614 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 615 high-performance deep learning library. In *Advances in Neural Information Processing Systems*,
 616 2019.

617 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *IEEE International
 618 Conference on Computer Vision*, 2023.

619 Stefano Peluchetti. Diffusion bridge mixture transports, schrödinger bridge problems and generative
 620 modeling. *Journal of Machine Learning Research*, 2023.

621 Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Gunter Klambauer. Fréchet
 622 chemnet distance: a metric for generative models for molecules in drug discovery. *Journal of
 623 chemical information and modeling*, 2018.

624 Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
 625 chemistry structures and properties of 134 kilo molecules. *Scientific data*, 2014.

626 Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In *International
 627 Conference on Machine Learning*, 2015.

628 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 629 resolution image synthesis with latent diffusion models. In *IEEE Conference on Computer Vision
 630 and Pattern Recognition*, 2022.

631 Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
 632 Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
 633 models. In *Advances in Neural Information Processing Systems*, 2024a.

634 Subham Sahoo, Aaron Gokaslan, Christopher M De Sa, and Volodymyr Kuleshov. Diffusion models
 635 with learned adaptive noise. In *Advances in Neural Information Processing Systems*, 2024b.

636 Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Generating focused
 637 molecule libraries for drug discovery with recurrent neural networks. *ACS central science*, 2018.

638 Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
 639 human out of the loop: A review of bayesian optimization. *Proceedings of the IEEE*, 2015.

648 Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf: a
 649 flow-based autoregressive model for molecular graph generation. *arXiv preprint arXiv:2001.09382*,
 650 2020.

651 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and generalized
 652 masked diffusion for discrete data. In *Advances in Neural Information Processing Systems*, 2024.

653

654 Juntong Shi, Minkai Xu, Harper Hua, Hengrui Zhang, Stefano Ermon, and Jure Leskovec. Tabdiff: a
 655 mixed-type diffusion model for tabular data generation. In *International Conference on Learning
 656 Representations*, 2025.

657

658 Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schrödinger
 659 bridge matching. In *Advances in Neural Information Processing Systems*, 2023.

660

661 Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
 662 variational autoencoders. In *Artificial Neural Networks and Machine Learning–ICANN 2018: 27th
 663 International Conference on Artificial Neural Networks, Rhodes, Greece, October 4–7, 2018, Proceedings, Part I* 27, 2018.

664

665 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 666 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 667 arXiv:2011.13456*, 2020.

668 A Thornton, L Robeson and B Freeman, and D Uhlmann. Polymer gas separation membrane database.
 669 2012.

670

671 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 672 Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information
 673 Processing Systems*, 2017.

674 Clement Vignac, Igor Krawczuk, Antoine Sraordin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
 675 Digress: Discrete denoising diffusion for graph generation. In *International Conference on
 676 Learning Representations*, 2023.

677

678 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 679 Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai
 680 Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi
 681 Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang,
 682 Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng
 683 Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan
 684 Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You
 685 Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen
 686 Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models.
arXiv preprint arXiv:2503.20314, 2025.

687 Rui Wang, Elyssa Hofgard, Han Gao, Robin Walters, and Tess E Smidt. Discovering symmetry
 688 breaking in physical systems with relaxed group convolution, 2024. In *International Conference
 689 on Machine Learning*, 2024.

690

691 Yuhang Xia, Yongkang Wang, Zhiwei Wang, and Wen Zhang. A comprehensive review of molecular
 692 optimization in artificial intelligence-based drug discovery. *Quanitative Biology*, 2024.

693

694 Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li. {MARS}:
 695 Markov molecular sampling for multi-objective drug discovery. In *International Conference on
 696 Learning Representations*, 2021.

697

698 Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng, Ma-
 699 hashweta Das, and Hanghang Tong. Discrete-state continuous-time diffusion for graph generation.
 In *Advances in Neural Information Processing Systems*, 2024.

700

701 Sherry Yang, KwangHwan Cho, Amil Merchant, Pieter Abbeel, Dale Schuurmans, Igor Mordatch, and
 702 Ekin Dogus Cubuk. Scalable diffusion for materials generation. *arXiv preprint arXiv:2311.09235*,
 2023.

702 QIN Yiming, Manuel Madeira, Dorina Thanou, and Pascal Frossard. Defog: Discrete flow matching
703 for graph generation. In *International Conference on Machine Learning*, 2025.
704

705 Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional
706 policy network for goal-directed molecular graph generation. In *Advances in Neural Information
707 Processing Systems*, 2018.

708 Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular graphs. In
709 *ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, 2020.
710

711 Yiheng Zhu, Jialu Wu, Chaowen Hu, Jiahuan Yan, Tingjun Hou, Jian Wu, et al. Sample-efficient multi-
712 objective molecular optimization with gflownets. In *Advances in Neural Information Processing
713 Systems*, 2023.

714 Zachary Ziegler and Alexander Rush. Latent normalizing flows for discrete sequences. In *Internation-
715 al Conference on Machine Learning*, 2019.
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 SUPPLEMENTARY MATERIALS
757758 A MORE RELATED WORK
759

760 **Molecule optimization.** Optimization-based methods generate molecules by iteratively refining
761 candidates assembled from a predefined vocabulary of fragments, aiming to align with desired prop-
762 erty constraints. These approaches typically employ techniques such as genetic algorithms (Jensen,
763 2019), Bayesian optimization (Shahriari et al., 2015; Jin et al., 2018; Zhu et al., 2023), and goal-
764 directed generation (Mollaysa et al., 2020; You et al., 2018). Representative examples include (Jin
765 et al., 2020; 2018; Xie et al., 2021; Fu et al., 2022), which utilize predefined subgraph motifs or
766 scaffolds to ensure chemical validity during the generation process. These methods rely on diverse
767 strategies including Markov sampling to sparse Gaussian processes and optimize molecules based on
768 property-specific scoring functions. Goal-directed generation (Mollaysa et al., 2020; You et al., 2018),
769 in particular, often adopts reinforcement learning, where a generation policy is updated to maximize
770 a property-driven reward function. Despite their strengths, existing optimization-based approaches
771 remain limited in conditional generation settings. Specifically, they require a full re-optimization for
772 each new property configuration when tasked with generating molecules that precisely match target
773 properties, rather than simply increasing or decreasing property values. This results in a high training
774 complexity and limits their scalability (Aung et al., 2024; Xia et al., 2024).

775 **Learnable noise scheduling.** Several works have explored learnable corruption process to optimize
776 the forward trajectories in images and text. In continuous-space diffusion models, Kingma et al.
777 (2021) introduces a learnable scalar noise schedule as a function of time, enabling variance reduction
778 in evidence lower bound (ELBO) estimation. Extending this, Sahoo et al. (2024b) proposes a
779 multivariate, data-dependent noise schedule, showing that a non-scalar, adaptive diffusion process
780 can further tighten the ELBO by aligning the forward process more closely with the true posterior.
781 In discrete masked diffusion, Shi et al. (2024) generalizes the corruption process to allow class-
782 dependent masking rates across tokens, prioritizing semantically important tokens during generation.
783 Shi et al. (2025) adopts feature-wise noise schedule for tabular data, where a single corruption
784 rate is shared across elements within the same column. Additionally, Schrödinger bridges-based
785 approaches (Peluchetti, 2023; De Bortoli et al., 2021; Shi et al., 2023) formulate generative modeling
786 as learning an expressive, path-wise forward process by solving entropy-regularized optimal transport
787 problems over path spaces.

788 It is noteworthy that the design philosophy of **MELD** is built upon the state-clashing, a critical issue
789 that has not been addressed in these work nor in the molecular diffusion literature (Vignac et al., 2023;
790 Jo et al., 2022; 2024; Liu et al., 2024a; Lee et al., 2023). While employing the learnable forward
791 process, our work departs from existing methods by introducing graph element-wise parameterization
792 of the forward diffusion, specifically to avoid trajectory collisions between semantically distinct
793 molecules. Moreover, we explicitly target and resolves the intermediate state degeneracy unique to
794 discrete molecular graphs, while Schrödinger bridge-based approaches neither address structural
795 collapse in discrete settings nor differentiate forward paths across individual graph elements.

796 B LIMITATIONS
797

798 While our element-wise noise scheduling significantly mitigates the state-clashing issue, it may
799 not fully address the inherent multimodality when a large portion of molecules are masked at later
800 diffusion steps. This is especially pronounced at later diffusion steps, where a majority of the graph
801 elements are masked, making it challenging to distinguish them. Nevertheless, these unavoidable
802 cases only affects a small portion of corruption near the prior distribution and therefore does not
803 compromise the overall efficacy of our method.

804 C EXPERIMENTAL SETUP
805

806 **Implementation details.** We follow the evaluation protocols and dataset splits adopted in prior
807 works: for unconditional generation, we adopt the setup from Jo et al. (2024), and for property-
808 conditioned tasks, we follow the procedure outlined in Liu et al. (2024a). We provide the detailed

810
811
812 Table 7: Dataset statistics.
813
814
815

Dataset	#(Graphs)	#(Nodes)	#(Node types)	#(Edge types)
QM9	133,985	$ \mathcal{V} \leq 9$	4	3
ZINC250K	249,555	$ \mathcal{V} \leq 38$	9	3
Polymers	553	$ \mathcal{V} \leq 50$	11	3

816 statistics of each dataset in Table 7. During training for unconditional generation, we apply an
817 exponential moving average (EMA) to the model parameters, consistent with the training framework
818 in Jo et al. (2024). For conditional generation, we utilize the implementation strategies proposed in
819 Peebles & Xie (2023); Liu et al. (2024a), including condition vector encoders and adaptive layer
820 normalization (AdaLN). Across all experiments, we use a transformer-based denoising model (Peebles
821 & Xie, 2023) with 6 layers, a hidden dimension of 1152, and 16 attention heads. The noise scheduling
822 network is parameterized as a two-layered MLP with SiLU activation with hidden dimension set
823 as 64. We train all models using the AdamW optimizer with no weight decay. We provide detailed
824 training setups compared with representative baselines (Jo et al., 2024; Vignac et al., 2023; Liu
825 et al., 2024a) in Table 8. The FLOPS comparison with these baselines is shown in Table 9. Models
826 are implemented in PyTorch Paszke et al. (2019) with PyTorch Geometric Fey & Lenssen (2019).
827 Experiments were conducted on machines equipped with NVIDIA RTX 3090 and 4090 GPUs (24
828 GB) and AMD EPYC 7543 32-Core CPUs (64 cores total). Note that **MELD** does not rely on
829 increased GPU count or specialized accelerators compared to baselines. For reference, the results
830 of Jo et al. (2024) were obtained using RTX 3090 and 2080 Ti, while Liu et al. (2024a) used an
831 A6000 GPU. These configurations all fall within a similar class of commodity GPUs, and none of the
832 compared methods (including **MELD**) benefits from substantially larger compute budgets or hardware
833 advantages.

834
835 Table 8: Training details comparison with representative baselines.
836

Datasets	Methods	Total epochs	Diffusion sampling step	Learning rate	Scheduler	Backbone
QM9	DiGress	1000	1000	2e-4	Cosine	Graph transformer
	GruM	1000	1000	2e-4	Linear	Graph transformer
	MELD	1500	300	2e-4	Element-wise	Diffusion transformer (DiT)
ZINC250K	DiGress	500	1000	2e-4	Cosine	Graph transformer
	GruM	500	1000	2e-4	Linear	Graph transformer
	MELD	600	500	2e-4	Element-wise	Diffusion transformer (DiT)
Polymers	GraphDiT	10000	500	2e-4	Cosine	Diffusion transformer (DiT)
	MELD	15000	200	2e-4	Element-wise	Diffusion transformer (DiT)

844
845 **Baselines.** We consider various recent baselines for conditional and unconditional generation;
846 following experimental setups of prior works (Liu et al., 2024a; Jo et al., 2022; 2024).

- 847 • **Unconditional Generation:** First, we consider three flow-based models as baselines:
848 MoFlow (Zang & Wang, 2020), GraphAF (Shi et al., 2020) and GraphDF (Luo et al., 2021), three
849 continuous diffusion models: EDP-GNN (Niu et al., 2020), GDSS (Jo et al., 2022), and GruM (Jo
850 et al., 2024), and one discrete-diffusion model: DiGress (Vignac et al., 2023). Additionally, we
851 compare **MELD** against GraphARM (Kong et al., 2023), a method that employs mask tokens as
852 absorbing states but generates tokens (*i.e.*, nodes) autoregressively.
- 853 • **Conditional Generation:** We consider four optimization-based frameworks as baselines:
854 GraphGA (Jensen, 2019), MARS (Xie et al., 2021), LSTM-HC (Neil et al., 2018), and JTVAE-
855 BO (Jin et al., 2018), two continuous diffusion models: GDSS (Jo et al., 2022) and MOOD (Lee
856 et al., 2023), and two discrete diffusion models: DiGress v2 (Vignac et al., 2023) integrated with
857 classifier guidance and GraphDiT (Liu et al., 2024a).

858
859 **Metrics.** Following the evaluation protocol in previous work (Liu et al., 2024a; Jo et al., 2022;
860 2024), we evaluate the performance of our framework using the following metrics:

- 861 • **Unconditional Generation:** We use 10,000 generated samples for evaluation using the following
862 six metrics: (1) *Valid.*, the proportion of chemically valid molecules; (2) *Frechet ChemNet*
863 *Distance* (FCD; Preuer et al. 2018), a distributional similarity score of ChemNet embeddings
864 between generated and reference molecules; (3) *NSPDK* (Costa & De Grave, 2010), a graph

864 Table 9: Computational cost analysis comparing various methods (GruM, DiT, DiGress, and **MELD**).
 865 We report the average and standard deviation values of processing molecule size of $|V| = 100$, with
 866 a batch size of 32, upon 5 forward passes. All experiments were conducted on an NVIDIA GeForce
 867 RTX 4090 GPU and AMD EPYC 7K62 48-Core Processor.

Metric	Baselines			Masked Diffusion Models			
	GruM	DiT	DiGress	Fixed Poly.	Fixed Cosine	TabDiff	MELD
FLOPs	209.9 ± 0.1	314.7 ± 0.1	209.4 ± 0.1	315.2 ± 0.1	315.2 ± 0.1	318.5 ± 0.1	318.5 ± 0.1
Exec (s)	1.12 ± 0.03	0.91 ± 0.01	1.29 ± 0.04	0.94 ± 0.02	0.94 ± 0.02	0.95 ± 0.02	1.16 ± 0.03
Peak (GB)	19.16 ± 0.05	2.74 ± 0.01	19.15 ± 0.06	2.74 ± 0.01	2.74 ± 0.01	3.27 ± 0.02	2.77 ± 0.01

875 kernel metric that quantifies topological similarity to the reference set; (4) *Scaf.*, a scaffold-level
 876 similarity score; (5) *Uniqueness*, the proportion of valid molecules that are structurally distinct
 877 within the generated set; and (6) *Novelty*, the fraction of valid molecules not in the training data.

878 • **Conditional Generation:** We generate 10,000 samples and assess their overall quality using the
 879 following criteria: (1) *Valid.*, (2) *Cover.*, the heavy atom type coverage; (3) *Divers.*, the diversity
 880 among the generated molecules; (4) *Frag.*, a fragment-based similarity metric; and (5) FCD.
 881 We also report *Property Alignment*, measured as the mean absolute error (MAE) between target
 882 properties and the corresponding oracle-evaluated scores of generated molecules.

883 To compute property alignment, we follow the setup of prior works (Liu et al., 2024a; Gao et al.,
 884 2022), employing a random forest model trained on molecular fingerprints as an oracle function.

885 We report official baseline results (except for Kong et al. (2023)) from Jo et al. (2024) for unconditional
 886 generation and Liu et al. (2024a) for property-conditioned generation. For Kong et al. (2023), we
 887 take the results from the original paper. To evaluate the efficacy of our method in remedying state-
 888 clashing, we perform additional ablative studies against fixed-scheduling mechanisms often adopted
 889 in masked diffusion models; namely cosine (MDM w/ cosine), polynomial (MDM w/ polynomial),
 890 and power-law (MDM w/ power-law) scheduling functions. We train all vanilla MDM variants
 891 as well as **MELD** under identical training budgets. The corresponding standard deviation results
 892 are reported in Table 10 and Table 11. Note that the standard deviations for GraphARM and the
 893 conditional-generation baselines are not available.

895 D FURTHER EXPERIMENTS AND ANALYSIS

896 D.1 ANALYSIS OF ELEMENT-WISE LEARNED EMBEDDING

897 Our design philosophy of learnable em-
 898 bedding in **MELD** is focused on reducing
 899 the chance of state-clashing problem by
 900 making each graph elements distinct and
 901 unique. As a result, our method can dis-
 902 tinguish graph elements even within the
 903 symmetric motifs, which is often difficult
 904 to be discriminated using existing graph positional encodings (Dwivedi et al., 2022; Ma et al., 2023).
 905

906 Table 12: Average cosine similarity between pairs of \mathbf{h}^i
 907 and \mathbf{h}^{ij} in a benzene ring.

Cosine similarity	Learned \mathbf{H} (MELD)	Random walk embedding
Nodes (\mathbf{h}^i)	0.103	1
Edges (\mathbf{h}^{ij})	0.237	1
All	0.192	1

908 To empirically verify this, we analyze the learned embedding matrix \mathbf{H} on a benzene ring and
 909 compare it to random walk positional embeddings (Dwivedi et al., 2022). In Table 12, we evaluate the
 910 average pairwise cosine similarity for (1) node embeddings \mathbf{h}^i , (2) edge embeddings \mathbf{h}^{ij} (connected
 911 to benzene ring), and (3) all element embeddings (nodes and edges). Our learned embeddings
 912 exhibit significantly low pair-wise similarity, suggesting that the learned embedding successfully
 913 distinguishes elements even within the symmetric structure.

914 D.2 ROBUSTNESS ACROSS DIFFERENT DIFFUSION STEPS

915 We evaluate the performance of **MELD** on the Polymer dataset under varying diffusion steps, setting
 916 the total timestep $T \in \{50, 100, 150, 200\}$. Note that during this experiment, we fix the **MELD**-
 917 incorporated MDM to be trained upon a fixed diffusion step of 200, and only vary the number of

918
919
920
921 Table 10: Unconditional generation performance of **MELD** with standard deviation. The baseline
922 results are taken from [Jo et al. \(2024\)](#).

Method	QM9					
	Valid.↑	FCD↓	NSPDK↓	Scaf.↑	Uniq.↑	Novel.↑
<i>Flow-based</i>						
MoFlow	91.36 ± 1.23	4.47 ± 0.595	0.017 ± 0.003	0.145 ± 0.052	98.65 ± 0.57	94.72 ± 0.77
GraphAF	74.43 ± 2.55	5.63 ± 0.259	0.021 ± 0.003	0.305 ± 0.056	88.64 ± 2.37	86.59 ± 1.95
GraphDF	93.88 ± 4.76	10.93 ± 0.038	0.064 ± 0.000	0.098 ± 0.106	98.58 ± 0.25	98.54 ± 0.48
<i>Continuous diffusion</i>						
EDP-GNN	47.52 ± 3.60	2.68 ± 0.221	0.005 ± 0.001	0.327 ± 0.115	99.25 ± 0.05	86.58 ± 1.85
GDSS	95.72 ± 1.94	2.90 ± 0.282	0.003 ± 0.000	0.698 ± 0.020	98.46 ± 0.61	86.27 ± 2.29
GruM	99.69 ± 0.19	0.11 ± 0.006	0.0002 ± 0.000	0.945 ± 0.005	96.90 ± 0.15	24.15 ± 0.80
<i>Discrete diffusion</i>						
DiGress	98.19 ± 0.23	0.10 ± 0.008	0.0003 ± 0.000	0.936 ± 0.003	96.67 ± 0.24	25.58 ± 2.36
<i>Masked diffusion</i>						
MDM w/ cosine	100.00 ± 0.00	3.67 ± 0.081	0.009 ± 0.001	0.653 ± 0.007	85.96 ± 0.62	69.85 ± 0.41
MDM w/ polynomial	100.00 ± 0.00	3.70 ± 0.093	0.010 ± 0.000	0.890 ± 0.006	86.57 ± 0.55	67.18 ± 0.38
MDM w/ power-law	100.00 ± 0.00	3.62 ± 0.074	0.007 ± 0.000	0.628 ± 0.006	91.30 ± 0.54	76.65 ± 0.36
MELD	100.00 ± 0.00	0.09 ± 0.004	0.0002 ± 0.000	0.947 ± 0.004	96.49 ± 0.13	33.55 ± 0.04
ZINC250K						
Method	Valid.↑	FCD↓	NSPDK↓	Scaf.↑	Uniq.↑	Novel.↑
<i>Flow-based</i>						
MoFlow	63.11 ± 5.17	20.93 ± 0.184	0.046 ± 0.002	0.013 ± 0.005	99.99 ± 0.01	100.00 ± 0.00
GraphAF	68.47 ± 0.99	16.02 ± 0.451	0.044 ± 0.005	0.067 ± 0.016	98.64 ± 0.69	99.99 ± 0.01
GraphDF	90.61 ± 4.30	33.55 ± 0.150	0.177 ± 0.001	0.000 ± 0.000	99.63 ± 0.01	100.00 ± 0.00
<i>Continuous diffusion</i>						
EDP-GNN	82.97 ± 2.73	16.74 ± 1.300	0.049 ± 0.006	0.000 ± 0.000	99.79 ± 0.08	100.00 ± 0.00
GDSS	97.01 ± 0.77	14.66 ± 0.680	0.019 ± 0.001	0.047 ± 0.005	99.64 ± 0.13	100.00 ± 0.00
GruM	98.65 ± 0.25	2.26 ± 0.084	0.0015 ± 0.0003	0.530 ± 0.044	99.97 ± 0.03	99.98 ± 0.02
<i>Discrete diffusion</i>						
DiGress	94.99 ± 2.55	3.48 ± 0.147	0.0021 ± 0.0004	0.416 ± 0.053	99.97 ± 0.01	99.99 ± 0.01
<i>Masked diffusion</i>						
MDM w/ cosine	100.00 ± 0.00	25.41 ± 0.023	0.051 ± 0.0003	0.001 ± 0.000	99.99 ± 0.02	100.00 ± 0.00
MDM w/ polynomial	100.00 ± 0.00	26.43 ± 0.027	0.053 ± 0.0004	0.001 ± 0.000	99.93 ± 0.03	100.00 ± 0.00
MDM w/ power-law	100.00 ± 0.00	26.09 ± 0.031	0.068 ± 0.0004	0.001 ± 0.000	100.00 ± 0.00	100.00 ± 0.00
MELD	100.00 ± 0.00	1.51 ± 0.047	0.0006 ± 0.0001	0.559 ± 0.015	100.00 ± 0.01	99.96 ± 0.02

919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Table 11: Property-conditioned generation performance of **MELD** with standard deviation, averaged
over three runs. Note that the standard deviation of the baseline results, which are taken from [Liu
et al. \(2024a\)](#), are unavailable.

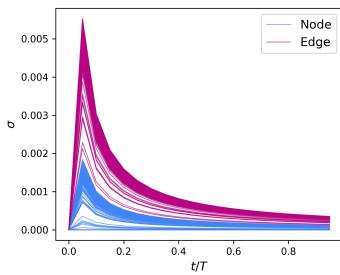
Method	General Quality					Property Alignment			
	Valid.↑	Cover.↑	Divers.↑	Frag.↑	FCD↓	Synth.↓	O ₂ Perm.↓	N ₂ Perm.↓	CO ₂ Perm.↓
MDM w/ cosine	15.95 ± 0.41 (37.16 ± 0.28)	11/11	89.91 ± 0.12	0.307 ± 0.006	26.45 ± 0.180	2.1795 ± 0.014	1.5035 ± 0.021	1.7755 ± 0.030	1.4974 ± 0.019
MDM w/ polynomial	18.61 ± 0.52 (60.32 ± 0.32)	11/11	88.44 ± 0.10	0.237 ± 0.005	29.32 ± 0.224	2.0041 ± 0.011	1.6805 ± 0.024	1.9846 ± 0.027	1.6468 ± 0.018
MDM w/ power-law	17.31 ± 0.52 (53.64 ± 0.36)	11/11	89.08 ± 0.06	0.401 ± 0.009	26.56 ± 0.104	2.0145 ± 0.018	1.4100 ± 0.021	1.6536 ± 0.035	1.4030 ± 0.024
MELD	99.10 ± 0.12 (96.51 ± 0.14)	11/11	85.91 ± 0.06	0.974 ± 0.001	5.93 ± 0.032	1.1398 ± 0.009	0.6433 ± 0.013	0.7596 ± 0.013	0.6496 ± 0.012

958 steps taken during inference. We compare the performance of **MELD** against that of the strongest
959 baseline, GraphDiT ([Liu et al., 2024a](#)), which is originally evaluated at diffusion step size of 500. As
960 depicted in Figure 5, **MELD** overall exhibits robust performance across a range of metrics.

D.3 PER-ELEMENT SCHEDULING OF MELD

964 In Figure 4, we visualize the variation in per-step learned noise
965 schedules across nodes and edges during the forward diffusion
966 process. Specifically, we take 200 samples and plot the variation
967 of the normalized masking probability σ , defined as the
968 standard deviation of $\frac{\alpha_{t-1, \phi} - \alpha_{t, \phi}}{1 - \alpha_{t, \phi}}$.

969 We observe consistently higher variance for edge schedules
970 across all timesteps, suggesting that the model prioritizes differ-
971 entiating edges more aggressively than nodes during training.
972 In addition, state-clashing problem is inherently intensified in



973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
Figure 4: Variation of normalized
masking probability σ .

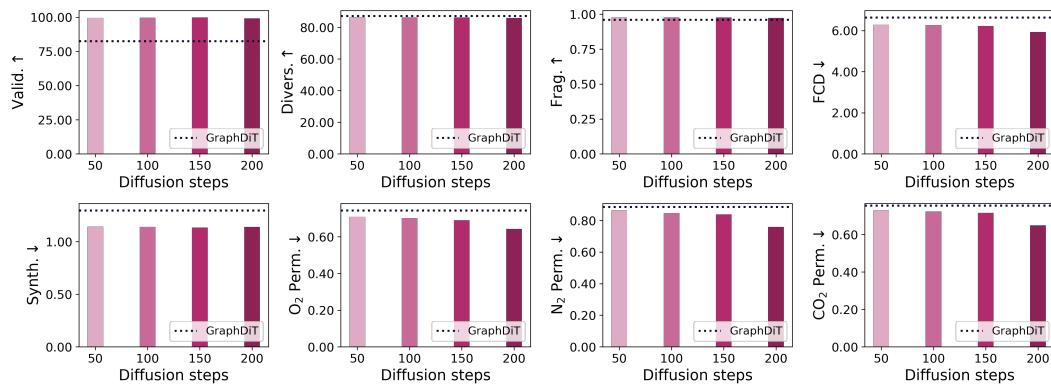


Figure 5: Performance of **MELD** under varying diffusion steps. The dotted line indicates the performance of the strongest baseline, GraphDiT, evaluated at a fixed diffusion step of 500.

Table 13: Computational cost analysis with varying molecular sizes (batch size = 1). All experiments were conducted on an NVIDIA GeForce RTX 4090 GPU and an AMD EPYC 7K62 48-Core Processor. Runtime values are averaged over 5 random seeds.

#Atoms	Method	#Params (M)	FLOPs (GMac)	Peak memory (MB)	Runtime (sec)
10	MDM	156.23	2.06	622.76	0.056 ± 0.005
	MELD	156.24	2.06	623.19	0.056 ± 0.006
50	MDM	157.22	9.88	680.40	0.077 ± 0.007
	MELD	157.23	9.93	692.31	0.087 ± 0.008
100	MDM	158.46	19.74	755.12	0.093 ± 0.008
	MELD	158.47	19.94	788.71	0.098 ± 0.008
200	MDM	160.93	39.77	929.09	0.132 ± 0.007
	MELD	160.94	40.59	1067.64	0.165 ± 0.008

the later steps of the forward process for both nodes and edges, as expected.

D.4 COMPUTATIONAL COST ANALYSIS

In practice, the computational and memory overhead introduced by **MELD** is negligible since it only adds learnable embedding matrix \mathbf{H} to the existing transformer-based architectures. To validate this, we report (1) total number of parameters, (2) FLOPs, (3) peak memory usage, and (4) single-step runtime across various molecular sizes ($|\mathcal{V}| \in [10, 50, 100, 200]$) for **MELD** and standard MDM in Table 13. Our results demonstrate that **MELD** introduces only about 0.01M additional parameters with negligible computational overhead, regardless of the input size.

D.5 STATE-CLASHING ON SYNTHETIC GRAPH

While the state-clashing can also arise in other discrete graph domains such as citation graphs (Bernecker et al., 2024) or social networks (Ji et al., 2024), they typically involve a more diverse set of node and edge types, which reduces the likelihood that distinct graphs collapse into identical intermediate states. However, in synthetic graphs such as SBM (Martinkus et al., 2022), which contain only a single node type and binary edge types (denoting edge existence), state-clashing is susceptible to occur as depicted in Table 14.

Table 14: Number of unique graph states across varying timesteps in synthetic graph domain (SBM), averaged over 3 seeds.

Method	T-100	T-75	T-50	T-25	T-1
MDM w/ cosine	36.7	23.3	11.7	4.3	1.3
MDM w/ polynomial	72.0	72.0	58.0	18.7	7.3
MDM w/ power-law	72.0	71.3	66.0	38.6	4.0
MELD	72.0	72.0	72.0	65.7	6.3

1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

Using SBM synthetic graph (Martinkus et al., 2022) as a representative, we conducted the same quantitative analysis as done in Table 5. Due to the high computational cost of applying a full graph isomorphism check on the original graphs, we adopted a practical approximation: for each of 72 test and validation graphs, we randomly sampled 10 nodes and performed the state-clashing analysis. This procedure was repeated over 3 random seeds to ensure consistency. The results show that **MELD** mostly outperforms standard MDMs in terms of distinguishability.

D.6 STATE-CLASHING ON LARGE-SCALE GRAPH

We further provide state-clashing analysis on the large-scale Guacamol dataset. Since direct graph isomorphism tests are computationally infeasible to quantify the degree of state-clashing, we use approximate fingerprint-based hashing method to count the number of graphs that are provably distinct. Specifically, for each intermediate graph, we compute a canonical graph fingerprint using a set of graph properties that remain unchanged under node relabeling. The fingerprint is constructed by combining the numbers of nodes and edges, sorted list of node degrees, and sorted multisets of node and edge types (including masked tokens). These components are concatenated into a canonical string (e.g., n4le3ld:1,1,2,2lv:0,6,6,8leatrr:1,1,2) and passed through a SHA-1 hashing. Graphs are counted as identical if their fingerprints match.

We sample molecules from Guacamol using the maximum graph size in its test set that has sufficient number of samples (> 100), resulting in collecting 144 molecules with 58 nodes each. The results in Table 15 below demonstrates that MELD retains substantially more distinct graph states at the last timestep than baselines, even for larger molecules.

D.7 MORE EXAMPLES OF REVERSE PROCESS

We provide additional visualizations of reverse diffusion trajectories under **MELD** compared with those from a fixed power-law (element-agnostic) schedule in Figure 6. Consistent with our earlier analysis, **MELD** achieves faster reconstruction than standard MDMs. For instance, fragments begin to unmask as early as $t = T - 1$, whereas the element-agnostic schedule only starts to recover them at $T/4 \leq t \leq T/8$.

D.8 MOLECULE VISUALIZATION

In this section, we provide 2D visualization of molecules generated by **MELD**. As illustrated, **MELD** generates chemically realistic molecules even for polymers dataset with larger number of atoms (i.e., $|\mathcal{V}| \leq 50$), verifying its robustness under various graph sizes.

E DIFFERENTIABLE SAMPLING WITH GUMBLE-SOFTMAX

As discussed in Section 4, we require a differentiable approximation of the categorical distribution to optimize the noise scheduling network. We employ the Straight-Through Gumbel-Softmax (STGS) trick Jang et al. (2017), which we detail below.

Let $\mathbf{z} \in \mathbb{R}^N$ denote the logits, and $\eta > 0$ be the temperature parameter. We first compute a soft approximation of the categorical distribution $\mathbf{p}_{\text{soft}} \in [0, 1]^N$ via the Gumbel-Softmax:

$$\mathbf{p}_{\text{soft},k} = \frac{\exp((z_k + g_k)/\eta)}{\sum_{l=1}^N \exp((z_l + g_l)/\eta)}, \quad (5)$$

where $g_k = -\log(-\log(u_k))$ is a gumbel noise with $u_k \sim \text{Unif}[0, 1]$ and z_k is the k -th element of the logits \mathbf{z} . A discrete one-hot vector $\mathbf{p}_{\text{hard}} \in \{0, 1\}^N$ is then obtained by taking the index with the

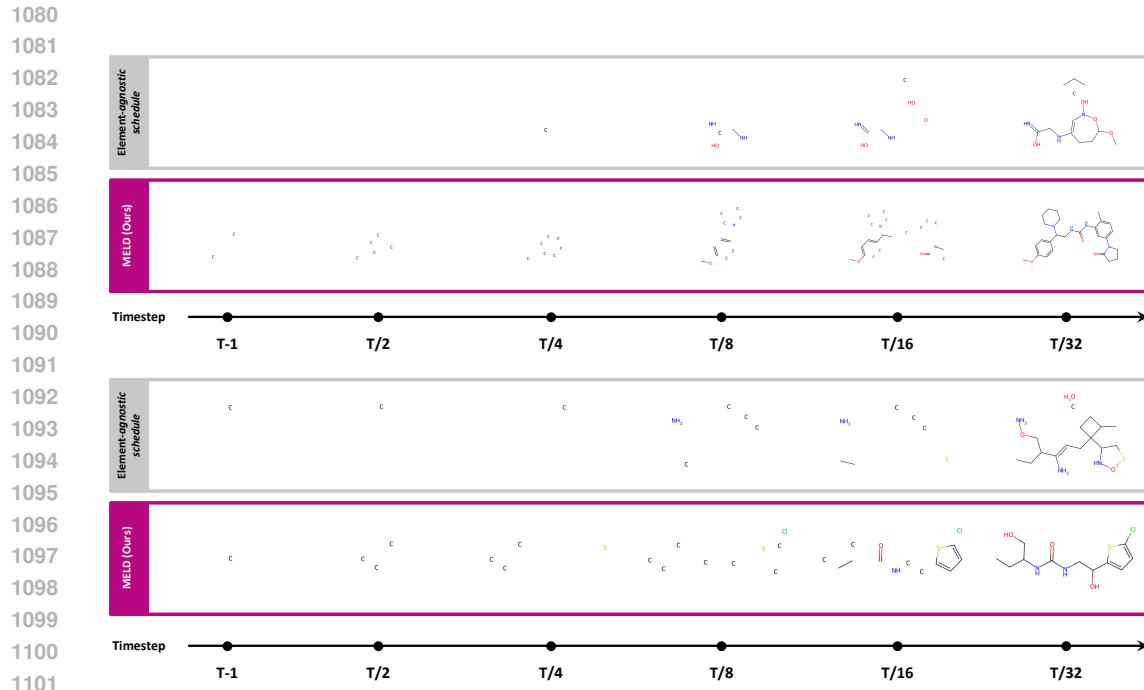


Figure 6: More comparisons between element-agnostic power-law scheduling and **MELD** during reconstruction on the ZINC250K dataset. With our proposed noise schedule, most reconstruction occurs at earlier timesteps relative to element-agnostic approach.

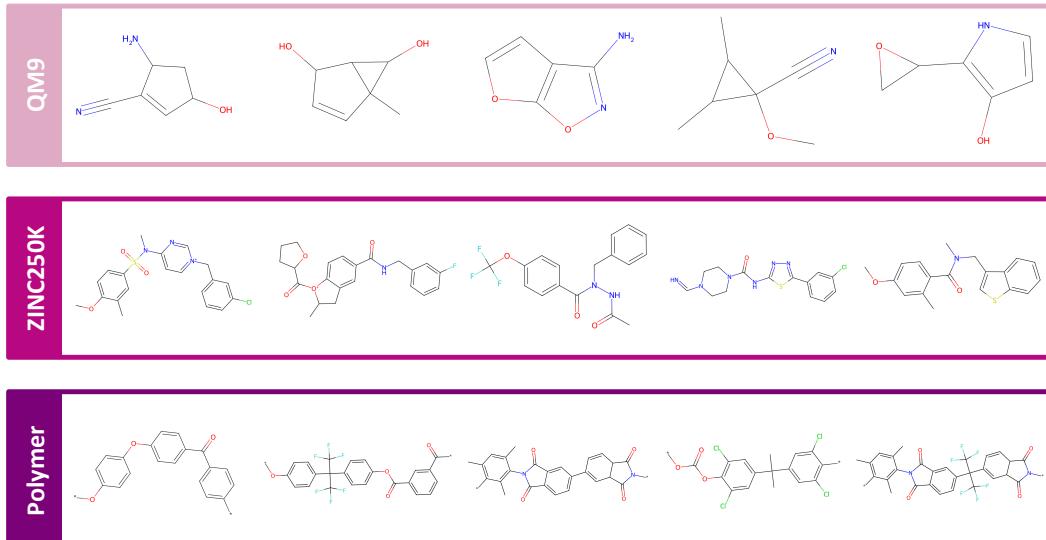


Figure 7: Visualization of molecules generated by **MELD**.

highest probability:

$$k^* = \arg \max_k p_{\text{soft},k}, \quad p_{\text{hard},k} = \begin{cases} 1 & \text{if } k = k^* \\ 0 & \text{otherwise} \end{cases} \quad (6)$$

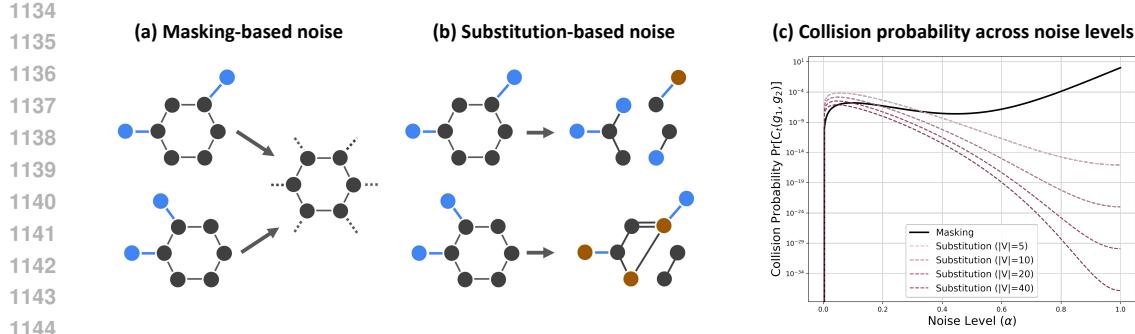


Figure 8: (a) Illustration of masking-based noise, and (b) illustration of substitution-based noise. (c) Quantitative comparison of state-clashing probabilities ($\Pr[C_t]$) between masked and substitution-based corruption. The analysis assumes $L = 23$ (average number of nodes in ZINC250K dataset) with $k = 2$ differing positions. While the collision probability for masking (solid black line) approaches 1 as the noise level $\alpha \rightarrow 1$, substitution-based methods (dashed lines) exhibit negligible probabilities that decrease further as vocabulary size $|\mathcal{V}|$ increases.

To retain gradient flow, we use the straight-through estimator to combine the discrete and continuous components, *i.e.*, set $\mathbf{p} = \mathbf{p}_{\text{hard}} - \text{sg}(\mathbf{p}_{\text{soft}}) + \mathbf{p}_{\text{soft}}$, where $\text{sg}(\cdot)$ denotes the stop-gradient operator. This ensures that the forward pass uses the discretized one-hot vector $\mathbf{p} = \mathbf{p}_{\text{hard}}$, while the backward pass treats \mathbf{p} as the continuous \mathbf{p}_{soft} , allowing gradients to propagate through z , *i.e.*, $\frac{\partial \mathbf{p}}{\partial z} = \frac{\partial \mathbf{p}_{\text{soft}}}{\partial z}$.

F DISCUSSION WITH SUBSTITUTION-BASED CORRUPTION

Indeed, substitution-based corruption (illustrated in Figure 8 (b)) can theoretically produce multimodal target distribution as well as masking-based corruption (depicted in Figure 8 (a)). However, the probability of creating multimodal targets is negligible in substitution-based methods compared to masking-based corruption. Below, we formalize this claim and demonstrate that state-clashing is a dominant failure mode for MDMs using a toy example.

Formalizing state-clashing with collision probability. Let g denote a clean graph and \tilde{g}_t the noisy graph at time t . Consistent with our manuscript, we denote $q_t(\tilde{g} \mid g)$ as the corruption kernel in the forward diffusion process. We define the state-clashing as the event where distinct clean graphs g_1, g_2, \dots collapse into the same noisy graph \tilde{g}_t during the forward diffusion process. To quantify this, we consider the collision event C_t at time t for two distinct, independent graphs $g_1 \neq g_2$:

$$C_t(g_1, g_2) := \{\tilde{g}_1 = \tilde{g}_2 \mid g_1 \neq g_2\}, \quad \tilde{g}_1 \sim q_t(\cdot \mid g_1), \tilde{g}_2 \sim q_t(\cdot \mid g_2). \quad (7)$$

The severity of the collision is determined by the collision probability $\Pr[C_t(g_1, g_2)] = \sum_{\tilde{g}} q_t(\tilde{g} \mid g_1)q_t(\tilde{g} \mid g_2)$.

Derivation of collision probability. To compare two corruption approaches, consider a simplified scenario where graphs are sequences of nodes of length L over a vocabulary \mathcal{V} . Each node is independently corrupted with probability α at specific timestep t . Take two clean sequences g_1 and g_2 that differ at exactly k positions and are identical at $L - k$ positions. Note that while graphs are unordered, this element-wise comparison holds without loss of generality for permutation-equivariant denoisers.

(1) Case A: Differing positions ($g_1(i) \neq g_2(i)$)

- Masked corruption: we keep the original token with probability $1 - \alpha$, otherwise with probability α we replace it with a single special token `[MASK]`. A collision occurs only if both tokens are masked. Thus, the collision probability $p_{\text{diff}}^{\text{mask}}$ is computed as:

$$p_{\text{diff}}^{\text{mask}} = \Pr[\tilde{g}_1(i) = \tilde{g}_2(i) \mid g_1(i) \neq g_2(i)] = \alpha^2. \quad (8)$$

- Substitution corruption: we keep the original token with probability $1 - \alpha$, otherwise with probability α we randomly replace it with a token sampled uniformly from \mathcal{V} . A collision occurs if (i) one is kept and the other is substituted to that token, or (ii) both are substituted to the same token. This leads to the collision probability $p_{\text{diff}}^{\text{sub}}$ as follows:

$$p_{\text{diff}}^{\text{sub}} = \Pr[\tilde{g}_1(i) = \tilde{g}_2(i) \mid g_1(i) \neq g_2(i)] = 2 \cdot \frac{\alpha(1 - \alpha)}{|\mathcal{V}|} + \frac{\alpha^2}{|\mathcal{V}|} = \frac{\alpha(2 - \alpha)}{|\mathcal{V}|}. \quad (9)$$

(2) Case B: Identical positions ($g_1(i) = g_2(i)$)

- Masked corruption: A match occurs if both tokens are (i) masked or (ii) kept. Thus, the collision probability $p_{\text{eq}}^{\text{mask}}$ is computed as:

$$p_{\text{eq}}^{\text{mask}} = \alpha^2 + (1 - \alpha)^2. \quad (10)$$

- Substitution corruption: The corrupted tokens match if (i) both tokens are retained or (ii) both are substituted to the same token or (iii) one is kept and the other is substituted to the same token. The collision probability for $p_{\text{eq}}^{\text{sub}}$ is:

$$p_{\text{eq}}^{\text{sub}} = (1 - \alpha)^2 + \frac{\alpha^2}{|\mathcal{V}|} + 2 \frac{\alpha(1 - \alpha)}{|\mathcal{V}|} = (1 - \alpha)^2 + \frac{\alpha(2 - \alpha)}{|\mathcal{V}|}. \quad (11)$$

Assuming independence across positions, the total collision probability is the product over all sites:

$$\Pr[C_t(g_1, g_2)]_{\text{mask}} = (p_{\text{diff}}^{\text{mask}})^k (p_{\text{eq}}^{\text{mask}})^{L-k}, \quad \Pr[C_t(g_1, g_2)]_{\text{sub}} = (p_{\text{diff}}^{\text{sub}})^k (p_{\text{eq}}^{\text{sub}})^{L-k}. \quad (12)$$

For positions where two graph elements differ, the ratio of collision probabilities is:

$$\frac{p_{\text{diff}}^{\text{mask}}}{p_{\text{diff}}^{\text{sub}}} = \frac{\alpha^2}{\frac{\alpha(2 - \alpha)}{|\mathcal{V}|}} = \frac{|\mathcal{V}| \alpha}{2 - \alpha}. \quad (13)$$

This ratio exceeds 1 whenever $\alpha > \frac{2}{|\mathcal{V}| + 1}$. For a typical vocabulary size in molecular datasets (e.g., $|\mathcal{V}| = 9$ for ZINC250K) masked corruption yields a higher collision probability for all $\alpha > 0.2$. A similar trend applies to identical positions (p_{eq}). Since the term $(1 - \alpha)^2$ is common to both methods, the inequality is determined by the remaining corruption terms, which follows the same ratio derived above.

Crucially, in the intermediate and later stages of diffusion (where $\alpha \rightarrow 1$), this gap becomes extreme. As $\alpha \rightarrow 1$, the collision probability for masking approaches 1, whereas for substitution, it approaches $(1/|\mathcal{V}|)^L$, where distinct graphs are highly scattered. That is, $\lim_{\alpha \rightarrow 1} \frac{\Pr[C_t(g_1, g_2)]_{\text{mask}}}{\Pr[C_t(g_1, g_2)]_{\text{sub}}} \approx |\mathcal{V}|^L$.

We visualize the gap between $\Pr[C_t(g_1, g_2)]_{\text{mask}}$ and $\Pr[C_t(g_1, g_2)]_{\text{sub}}$ in Figure 8 (c). The plot confirms that the gap becomes extreme as $\alpha \rightarrow 1$. Specifically, when $\alpha = 1$, the ratio $\Pr[C_t(g_1, g_2)]_{\text{mask}}/\Pr[C_t(g_1, g_2)]_{\text{sub}} \approx 10^{16}$. This confirms that while substitution can theoretically produce multimodal targets, the probability of such an event is orders of magnitude lower than masking with fair amount of vocabulary. Thus, state-clashing is much more pertinent to MDMs.

G COMPARISON BETWEEN STATE-CLASHING AND SYMMETRY-BREAKING

Several prior work (Lawrence et al., 2025; Laabid et al., 2025; Wang et al., 2024; Kaba & Ravanbakhsh, 2022) have introduced the concept of symmetry-breaking in self-symmetric inputs. For instance, Lawrence et al. (2025) and Laabid et al. (2025) identified that equivariant denoiser is unable to yield less symmetric output from highly self-symmetric noisy input. In this section, we provide two examples where state-clashing and symmetry-breaking formulations clearly differ.

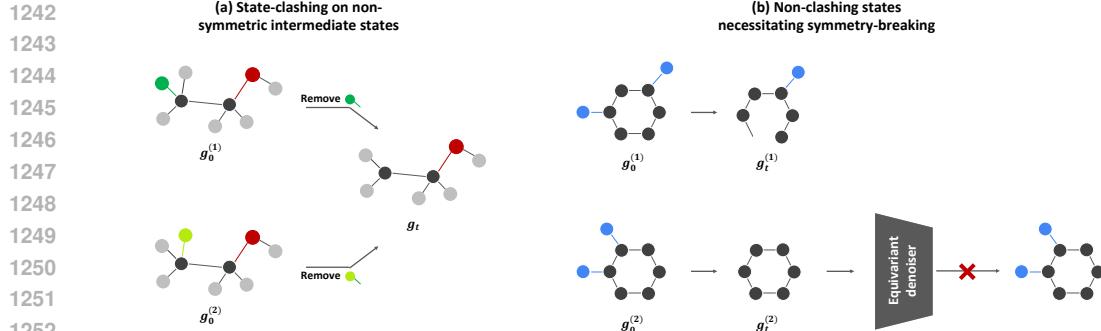


Figure 9: (a) Illustration of state-clashing between two non-isomers, collapsing into the asymmetric intermediate state. (b) Example case when the equivariant denoiser fails to reconstruct the original molecule from $g_t^{(2)}$, although state-clashing does not happen.

State-clashing on non-symmetric intermediate states. We point out that state-clashing can occur even for non-symmetric cases, not only covering self-symmetric inputs. As illustrated in Figure 9 (a), masking the fluorine atom and bond in 2-Fluoroethanol ($g_0^{(1)}$) produces the same masked state as masking the chlorine atom and bond in 2-Chloroethanol ($g_0^{(2)}$). The collapsed masked state is not self-symmetric, yet the denoiser still faces a multimodal reconstruction target. We clarify that our emphasis is on mismatch between the joint distribution and the product of marginal distribution for denoising labels, *e.g.*, $p(x_1, x_2) \neq p(x_1)p(x_2)$. This can happen even when there exists no symmetry in intermediate states nor the reconstruction targets.

Symmetry breaking for non-clashing states. In contrast, symmetry breaking can help even when there exist no state-clashing, which we depict an example in Figure 9 (b). Here, even when no state-clashing happens between distinct graphs, the reconstruction will fail for permutation-equivariant neural networks.

Thus, (a) state-clashing and (b) symmetry breaking refers to distinct problems arising from lack of expressive power in (a) element-wise independent prediction and (b) permutation equivariant architectures used by the decoder, respectively.