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ABSTRACT

Masked diffusion models (MDMs) have achieved notable progress in modeling dis-
crete data, while their potential in molecular generation remains underexplored. In
this work, we explore their potential and introduce the surprising result that naïvely
applying standards MDMs to molecules leads to severe performance degradation.
We trace this critical issue to a state-clashing problem—where the forward diffusion
trajectories of distinct molecules collapse into a common state, resulting in a mix-
ture of reconstruction targets that cannot be learned with a typical reverse diffusion
with unimodal predictions. To mitigate this, we propose Masked Element-wise
Learnable Diffusion (MELD) that orchestrates per-element corruption trajectories
to avoid collisions between different molecular graphs. This is realized through
a parameterized noise scheduling network that learns distinct corruption rates for
individual graph elements, i.e., atoms and bonds. Across extensive experiments,
MELD achieves 100% chemical validity in unconditional generation on QM9
and ZINC250K datasets, while markedly improving distributional and property
alignment over standard MDMs on both conditional and unconditioned generation.

1 INTRODUCTION

Molecular generation is critical in a variety of real-world applications, such as drug discovery (Si-
monovsky & Komodakis, 2018) and material design (Jia et al., 2024; Yang et al., 2023). However, the
task remains challenging due to the extremely large and complex nature of the chemical space (Du
et al., 2024). With the remarkable recent progress in deep generative models (Kingma & Welling,
2013; Rezende & Mohamed, 2015; Austin et al., 2021; Naveed et al., 2023), many approaches have
attempted to tackle this problem by training a neural network that learns molecular distributions from
large molecular datasets, demonstrating a strong promise in accelerating molecule discovery (Jensen,
2019; Jin et al., 2018; Shi et al., 2020; Jo et al., 2022; Vignac et al., 2023; Yiming et al., 2025).

In particular, recent works have focused on exploring generative models based on denoising diffusion
or flow-matching models, (Jo et al., 2022; Lee et al., 2023; Vignac et al., 2023; Kong et al., 2023; Jo
et al., 2024; Liu et al., 2024a), to learn a molecular distribution, inspired by their great success in
other data domains with scalability (Ho et al., 2020; Song et al., 2020; Austin et al., 2021; Nichol &
Dhariwal, 2021; Ma et al., 2024; Kingma et al., 2021; Sahoo et al., 2024b; Wan et al., 2025). These
models learn to recover original molecules from corrupted versions through a denoising process,
where the corruption typically involves altering types of atoms and bonds (e.g., changing a carbon
atom to nitrogen, or a single bond to a double bond).

Meanwhile, researchers have explored masked diffusion models (MDMs; Austin et al. 2021; Chang
et al. 2022; Shi et al. 2024; Sahoo et al. 2024a). Unlike conventional diffusion models that typically
design diffusion processes in continuous space, MDMs are specialized for discrete data by defining a
diffusion process more suitable in discrete space. Specifically, MDMs define the forward process
as element masking and train the model to infill the masked element during the reverse process.
Intriguingly, MDMs show great stability and scalability, being comparable or even better than previous
generative models for discrete data, such as autoregressive language models (Ziegler & Rush, 2019;
Hoogeboom et al., 2021) or high-resolution text-to-image generation (Chang et al., 2023). Despite
their success in other domains, applying MDMs to molecular graphs is still underexplored.

In this work, we focus on applying MDMs to molecular generation. Surprisingly, unlike other
domains, a naïve adaptation of existing MDMs to molecular graphs results in significantly worse
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Figure 1: Comparison between (a) element-agnostic noise scheduling and (b) element-specific noise
scheduling. The former results in an issue denoted as state-clashing, leading to generation of invalid
molecules. MELD mitigates this with element-specific noise schedule, effectively orchestrating the
forward process to minimize state-clashings.

performance, often generating distributionally misaligned structures. We argue that this phenomenon
stems from a state-clashing problem: Molecular graphs with different properties and semantics easily
collapse into a common intermediate state in the forward process (see Figure 1(a) for an illustration).
We attribute this to the usage of fixed noise schedules; element-agnostic masking rates across all
nodes and edges. This hinders the learning process of the unimodal denoiser – which predicts nodes
and edges independently, by creating multimodal targets for reconstruction. Such mismatch forces
the model to spread its probability mass into an averaged state creating samples that deviate from the
true target distribution and, in some cases, violate chemical rules.

To address this, we introduce MELD (Masked Element-wise Learnable Diffusion), a novel MDM for
molecular graph generation. The main idea of our method is to alleviate the state-clashing problem by
proposing an element-wise learnable forward process, which generates corruption trajectories in the
way of minimizing the occurrence of potential collision. To this end, we introduce a parameterized
noise scheduling network to yield distinct corruption rates for individual graph elements (i.e., for
nodes or edges). During training, we jointly optimize the forward (i.e., noise scheduling network) and
the reverse process (i.e., MDM denoiser network). Intuitively, by assigning per-element trajectories,
MELD organizes the forward process such that the probability of molecules being collapsed to the
same intermediate state (see Figure 1(b)) is minimized). Through such evasion, MELD effectively
learns to produce samples capturing the target molecular distribution.

We evaluate MELD on diverse molecular datasets, including QM9 (Ramakrishnan et al., 2014),
Polymers (Thornton et al., 2012), ZINC250K (Irwin et al., 2012), Guacamol (Brown et al., 2019),
and a synthetic graph benchmark (Martinkus et al., 2022). First, we demonstrate that MELD yields
substantial improvements in distributional similarity over standard MDMs, while maintaining 100%
validity. In conditional generation, MELD further enhances property alignment by up to 13.4% over
state-of-the-art baseline. Finally, we show the scalability and generalizability of MELD in large-scale
molecules and non-molecule graph datasets.

Our contributions are threefold:

• We identify a key limitation in applying standard masked diffusion models to molecular generation,
the use of an element-agnostic noise schedule, which leads to frequent state-clashing.

• We present MELD, a novel masked diffusion framework that mitigates the state-clashing problem
by learning per-element noise schedules, allowing adaptive corruption trajectories tailored to
individual molecular components.

• MELD substantially improves the overall quality of generated molecules over standard MDM
baselines, and surpasses existing molecular diffusion models in both unconditional and property-
conditioned generation tasks. Moreover, its efficacy generalizes consistently to large-scale
molecule and synthetic graph benchmarks.

2 RELATED WORK

Masked diffusion models (MDMs). MDMs have emerged as a powerful generative modeling
scheme for discrete data generation. Initially, D3PM (Austin et al., 2021) introduces an absorbing
mask token into the forward process and establishes a conceptual bridge between discrete diffusion
and masked language modeling. Additionally, in image generation, MaskGIT (Chang et al., 2022)
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shows that generative modeling based on unmasking enables fast and qualitatively comparable high-
fidelity image synthesis compared with left-to-right autoregressive decoding. More recent efforts
have further refined MDMs to close the performance gap with autoregressive models (AR; Vaswani
et al. 2017; Ziegler & Rush 2019; Hoogeboom et al. 2021). Notably, MD4 (Shi et al., 2024) and
MDLM (Sahoo et al., 2024a) show that the diffusion objective can be simplified as a weighted integral
of cross-entropy and that the model can achieve state-of-the-art results over prior diffusion models.

However, naive adoption of the MDM framework in molecular graph generation introduces unique
challenges, termed as state-clashing problem. As molecular graphs exhibit higher symmetries while
utilizing smaller vocabulary, the forward process of MDMs easily collapse distinct graphs into a same
intermediate state, hindering the learning process, as evidenced in Tables 1 and 2. We formulate this
problem further in Section 4.1.

Diffusion models for molecules. The success of diffusion models for image (Rombach et al., 2022)
and text generation (Li et al., 2022) has inspired researchers to explore diffusion models in molecule
domain. A surge of studies (Vignac et al., 2023; Jo et al., 2022; Xie et al., 2021; Kong et al., 2023;
Jo et al., 2024; Liu et al., 2024a) have been proposed to generate de novo molecules, competing
with sequential models (Segler et al., 2018; Jin et al., 2018; Shi et al., 2020; Jang et al., 2024a;b)
that iteratively constructs a graph by adding graph elements. These efforts can be categorized into
two approaches: (1) Score-based molecule diffusion approaches (Jo et al., 2022; Lee et al., 2023;
Jo et al., 2024) adopt continuous noise on molecular graphs using stochastic differential equations
(SDEs) (Song et al., 2020). They train a score function to approximate reverse SDEs, relaxing discrete
atoms/bonds into a continuous space. (2) Discrete diffusion-based approaches (Vignac et al., 2023;
Liu et al., 2024a; Hua et al., 2024; Kerby & Moon, 2024) apply discrete noise through Markovian
transitions to nodes and edges in molecular graphs. Then they train a denoising neural network to
reconstruct perturbed atom and bond types.

Despite progress in these two directions, masked diffusion frameworks remain underexplored for
molecular generation. A preliminary application was explored in Kong et al. (2023), but it generates
atoms in an autoregressive manner, limiting its ability to exploit the parallelized reconstruction of
MDMs. In contrast, we propose MDMs for molecular graphs by focusing on the state-clashing
problem occurring in the forward process, while preserving the parallelism inherent to MDMs.

3 PRELIMINARIES

We provide a brief overview of masked diffusion models for molecular generation. The goal is
to generate molecular graphs g = (x, e) from a data distribution q(g), where x = (xi)Ni=1 and
e = (eij)Ni,j=1 represent one-hot encoded node and edge features, each augmented with an absorbing
[mask] token. Following standard diffusion frameworks (Ho et al., 2020; Ma et al., 2024; Nichol
& Dhariwal, 2021; Peebles & Xie, 2023), we consider a forward process qϕ(gt|gt−1) and a reverse
process pθ(gt−1|gt), parameterized by ϕ and θ, respectively.

The forward process is defined as follows, where γt,ϕ denotes the marginal masking probabilities
parameterized by ϕ:

qϕ(x
i
t |xi

0) =

{
γi
t,ϕ if xi

t = [mask]

1− γi
t,ϕ if xi

t = xi
0

, qϕ(e
ij
t | eij0 ) =

{
γij
t,ϕ if eijt = [mask]

1− γij
t,ϕ if eijt = eij0

(1)

Most existing molecular diffusion models (Vignac et al., 2023; Jo et al., 2022; Lee et al., 2023; Jo
et al., 2024; Liu et al., 2024a) have defined the corruption probability using a fixed, element-agnostic
noise scheduling function (i.e., γt).

The denoiser predicts the original graph g0 by independently predicting nodes and edges. It is trained
to recover the original graph directly without recursive sampling (Vignac et al., 2023; Liu et al.,
2024a), by minimizing the following loss objective:

L(θ, ϕ) = Et,g,gt

 ∑
1≤i≤N

γ̇i
t,ϕ

1− γi
t,ϕ

log pθ(x
i|gt) + λ

∑
1≤i<j≤N

γ̇ij
t,ϕ

1− γij
t,ϕ

log pθ(e
ij |gt)

 (2)
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(a) Input Molecule (b) Element– agnostic Schedule (power-law) (c) MELD (Ours)

o-Phenylenediamine

m-Phenylenediamine

2-Chloro-4-
fluorotoluene

Figure 2: Visualization of prediction entropy for various molecule types. The first and second rows
show prediction matrices with nitrogen bonds masked, while the third row shows generations with
chlorine bond masked. From left to right: (a) 3D renderings of the input molecules, (b) predictions
from MDMs using a fixed power law noise schedule, and (c) predictions from MELD. Brighter
colors indicate lower uncertainty (i.e., higher confidence). The dark diagonal entries reflect enforced
uniform predictions, as self-connections in molecules are not meaningful and are excluded from valid
outputs. Note that predictions are being made for all locations, regardless of their entropy values.

Here, γ̇t,ϕ denotes the derivative of γt,ϕ with respect to t, while λ > 0 balances node- and edge-level
reconstruction, following prior work (Vignac et al., 2023; Liu et al., 2024a).

4 MELD: MASKED ELEMENT-WISE LEARNABLE DIFFUSION

In this section, we introduce MELD, a masked diffusion model (MDM) for molecular graph genera-
tion that jointly learns per-graph-element corruption rate and the denoising model. As we will explain,
our proposed design alleviates the state-clashing problem (Section 4.1) by producing distinguishable
forward trajectories for each molecular component (Section 4.2).

4.1 FORMALIZING THE STATE-CLASHING PROBLEM

In this section, we describe the state-clashing problem which naturally arise for training MDMs on
graphs without learning the forward process, i.e., set γi

t,ϕ to some constant γt for all node i and edges
i, j. In a nutshell, state-clashing refers to the phenomenon where semantically distinct molecules
are corrupted into the same intermediate state, due to the nature of the constant forward process
in MDMs. Consequently, the model trained with such constant forward process struggles to infer
the correct reconstruction target, resulting in outputs that fail to preserve structural or molecular
coherence with target distribution (see Figure 1 for an illustration). This is particularly pronounced
in molecules with symmetric motifs, to which the number of immediate parent states grows by the
number of permutations that leave the motif invariant.

Formally, note that the diffusion model loss in Equation 2 can be expressed as:

Et

[
KL(p(g|gt), pθ(g|gt))

]
, p(g|gt) ∝ p(gt|g)p(g). (3)

The main problem is that p(g|gt) can be highly multimodal, i.e., there exists many graph g
with non-zero probabilities of p(gt|g). However, the parameterized diffusion model pθ(g|gt) =∏

1≤i≤N pθ(x
i|gt)

∏
1≤i<j≤N pθ(e

ij |gt) is unimodal, as it predicts each node and edge indepen-
dently, typically resulting in a single mode centered around an average graph. Furthermore, due to
the mode-covering property of KL divergence, the reverse diffusion model trained with Equation 2
tends to converge to a high-entropy distribution–the model compensates for its inability to represent
multiple modes by spreading its probability mass broadly around the single mode.

This is illustrated in Figure 2, where we visualize the denoiser’s prediction entropy when reconstruct-
ing masked bonds in the given molecules. In the first two rows, we mask all nitrogen–carbon bonds in
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o- and m-phenylenediamine. As masking removes the distinguishing nitrogen atoms, both molecules
collapse into the identical symmetric benzene backbone, creating a severe state-clashing scenario.
Under an element-agnostic schedule, the denoiser exhibits higher uncertainty when predicting the
masked bond types, as many distinct underlying configurations are compatible with the same cor-
rupted state. Additionally, we visualize the denoiser prediction for 2-Chloro-4-fluorotoluene when
only the chlorine bond is masked. Due to the inherent asymmetry of the masked molecule, the state-
clashing issue is less pertinent than Phenylenediamine isomers. Consequently, the denoiser shows
increased prediction confidence even with element-agnostic schedules, underscoring the necessity of
addressing the state-clashing.

We note that this issue is not unique to MDMs, but it does become significantly more severe in their
case. Masking operations tend to absorb diverse input graphs into indistinguishable intermediate
states, whereas the probability of state-clashing in substitution-based discrete diffusion is orders of
magnitude lower with realistic vocabulary sizes (see Appendix Section F for a detailed qualitative
analysis). Moreover, the effect is particularly pronounced in molecular graphs, which often contain
structural symmetries and a limited set of element types compared to other discrete domains.

4.2 MAIN ALGORITHM

Learnable element-wise embedding. To reduce state-clashing in forward diffusion trajectories
across graph states, one should use information that distinguishes individual graph elements, which
guides the noise scheduling network. One can consider incorporating graph positional encod-
ings (Dwivedi et al., 2022; Ma et al., 2023) for conditioning. However, such encodings often
fail to disambiguate elements when given symmetric structures such as those found in aromatic
rings (Lawrence et al., 2025; Morris et al., 2024). Moreover, conditioning the noisy graph input in
the noise schedule breaks the tractable closed-form marginal q(gt | g0) since the transition kernel
becomes dependent on the current corrupted state, which eliminates the efficiency.

Thus, we consider learnable element-wise embeddings over the graph elements that assigns distinct
masking rate, and use it for an input to the noise scheduling network. Specifically, we assign a
learnable embedding matrix H ∈ RD×N and consider its i-th column hi as node-wise embedding of
i-th node xi, where N > 0 is a number of nodes and D is the embedding dimension. For an edge
{i, j} ∈ E , we set its embedding by hij = hi + hj . In addition, we randomly permute columns of
H during training to differentiate graph states that have the same numbers of nodes and edges.

Time-dependent noise schedule. We parameterize the noise scheduling network for each element
(e.g., node) using a power-law function, commonly used in Shi et al. (2024; 2025). Leveraging i-th
node embedding hi as an example, our noise schedule γi

t,ϕ is defined as:

γi
t,ϕ = 1− (1− ϵ) · tw

i
ϕ , wi

ϕ = σsf(h
i), (4)

where σsf denotes the softplus function. The same computation applies analogously to other nodes
and edges. Consistent with Shi et al. (2024; 2025), we introduce a bounding constant ϵ for numerical
stability and fix ϵ = 0.0001 in all experiments. Throughout this process, MELD naturally introduces
element-specific masking rates, mitigating the collapse between distinct molecules that would
otherwise persist under element-agnostic noise scheduling.

Maintaining gradient flow in discrete sampling. In discrete-space molecular diffusion frame-
works (Vignac et al., 2023; Liu et al., 2024a; Kerby & Moon, 2024), the noisy graph at each timestep
is obtained by sampling a single graph from a categorical distribution over nodes and edges (Equa-
tion 1), as computing the full expectation over gt ∼ q(·|g) is intractable. However, such discretization
introduces a discontinuity in the computational graph when parameterizing the forward process,
impeding a gradient flow towards the learnable schedule parameters ϕ. Thus, we adopt the Straight-
Through Gumbel-Softmax (STGS) estimator (Jang et al., 2017), which provides a differentiable
surrogate for discrete sampling. This formulation ensures the forward pass to utilize one-hot vectors
for graph constructions, while the backward pass approximates them as continuous variables to enable
end-to-end training. We provide the detailed formulation in Section E.

Domain specialization and applicability. In principle, MELD is applicable to non-molecular
data. However, we note that other discrete data such as text or protein sequences typically involve
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Table 1: Unconditional generation of 10K molecules on QM9 and ZINC250K datasets. The best and
second best performances are represented by bold and underline.

QM9 ZINC250K

Method Valid.↑ FCD↓ NSPDK↓ Scaf.↑ Uniq.↑ Novel.↑ Valid.↑ FCD↓ NSPDK↓ Scaf.↑ Uniq.↑ Novel.↑
Flow-based

MoFlow 91.36 4.47 0.017 0.145 98.65 94.72 63.11 20.93 0.046 0.013 99.99 100.00
GraphAF 74.43 5.63 0.021 0.305 88.64 86.59 68.47 16.02 0.044 0.067 98.64 99.99
GraphDF 93.88 10.93 0.064 0.098 98.58 98.54 90.61 33.55 0.177 0.000 99.63 100.00

Continuous diffusion
EDP-GNN 47.52 2.68 0.005 0.327 99.25 86.58 82.97 16.74 0.049 0.000 99.79 100.00
GDSS 95.72 2.90 0.003 0.698 98.46 86.27 97.01 14.66 0.019 0.047 99.64 100.00
GruM 99.69 0.11 0.0002 0.945 96.90 24.15 98.65 2.26 0.0015 0.530 99.97 99.98

Discrete diffusion
DiGress 98.19 0.10 0.0003 0.936 96.67 25.58 94.99 3.48 0.0021 0.416 99.97 99.99

Masked diffusion
GraphARM 90.25 1.22 0.002 N/A 95.62 70.39 88.23 16.26 0.055 N/A 99.46 100.00
MDM w/ cosine 100.00 3.67 0.009 0.653 85.96 69.85 100.00 25.41 0.051 0.001 99.99 100.00
MDM w/ polynomial 100.00 3.70 0.010 0.890 86.57 67.18 100.00 26.43 0.053 0.001 99.93 100.00
MDM w/ power-law 100.00 3.62 0.007 0.628 91.30 76.65 100.00 26.09 0.068 0.001 100.00 100.00
MELD (Ours) 100.00 0.09 0.0002 0.947 96.49 33.55 100.00 1.51 0.0006 0.559 100.00 99.96

larger vocabularies and fewer structural symmetries. Consequently, the risk of collapsing distinct
inputs into identical intermediate states is lower, and the relative benefits of MELD may be less
pronounced in such settings. Nevertheless, to show the generality of our approach, we include
additional experiments on general graph with constrained number of nodes and edges in Section 5.4.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate MELD on unconditional and property-conditioned molecular generation tasks. For
unconditional generation, in line with prior work (Jo et al., 2024; Kong et al., 2023; Jo et al., 2022),
we use QM9 (Ramakrishnan et al., 2014), ZINC250k (Irwin et al., 2012), and Guacamol (Brown
et al., 2019) datasets. For conditional generation, we adopt the Polymer dataset (Thornton et al.,
2012) introduced in Liu et al. (2024a), which conditions homopolymers on three gas permeability
constraints and synthesizability scores. We compare against recent baselines with standard metrics
for both tasks, following established setups (Liu et al., 2024a; Jo et al., 2022; 2024). See Section C
for detailed description of each method and metrics. Our implementation employs the diffusion
transformer (Peebles & Xie, 2023) as the denoising network within a masked diffusion framework.
For property-conditioned generation, we further apply classifier-free guidance (Ho & Salimans, 2021)
as implemented in (Peebles & Xie, 2023; Liu et al., 2024a). Unless otherwise noted, all experiments
use the same backbone across standard MDMs and MELD.

5.2 MAIN RESULTS

Unconditional Generation. We present the results of MELD on QM9 and ZINC250K datasets
for unconditional generation. Remarkably, MELD substantially enhances distributional similarity
while maintaining perfect validity, as shown in Table 1. On the QM9 dataset, our method outperforms
GraphARM (Kong et al., 2023), the autoregressive masked diffusion baseline, with up to 91%
reduction in FCD and NSPDK. Moreover, it significantly improves the NSPDK by up to 98% from
standard MDMs.

On the more challenging ZINC250K dataset, which includes larger molecules and richer atom
types, MELD achieves state-of-the-art results on 5 out of 6 metrics, surpassing GruM (Jo et al.,
2024), the strongest baseline. It also consistently improves over masked diffusion baselines on key
metrics including FCD, NSPDK, and scaffold similarity (Scaf.). In contrast, standard MDMs exhibit
degenerate behavior, with FCD 91.4% higher and a Scaf. 99.8% lower than the best diffusion-based
baselines, suggesting that element-agnostic schedulers yield valid but distributionally misaligned
molecules.

Property-conditioned Generation. Next, we evaluate MELD on conditional generation using
the Polymer dataset (Thornton et al., 2012), with results summarized in Table 2. Overall, MELD
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Table 2: Property-conditioned generation of 10K Polymers on three gas permeability properties and
synthetic score. The numbers in parentheses in Valid. represent the validity without correction. The
best and second best performances are represented by bold and underline.

General Quality Property Alignment

Method Valid.↑ Cover.↑ Divers.↑ Frag.↑ FCD↓ Synth.↓ O2 Perm.↓ N2 Perm.↓ CO2 Perm.↓ MAE↓
Molecule Optimization

GraphGA 100.00 (N/A) 11/11 88.28 0.927 9.19 1.3307 1.9840 2.2900 1.9489 1.888
MARS 100.00 (N/A) 11/11 83.75 0.928 7.56 1.1658 1.5761 1.8327 1.6074 1.546
LSTM-HC 99.10 (N/A) 10/11 89.18 0.794 18.16 1.4251 1.1003 1.2365 1.0772 1.210
JTVAE-BO 100.00 (N/A) 10/11 73.66 0.729 23.59 1.0714 1.0781 1.2352 1.0978 1.121

Continuous diffusion
GDSS 92.05 (90.76) 9/11 75.10 0.000 34.26 1.3701 1.0271 1.0820 1.0683 1.137
MOOD 98.66 (92.05) 11/11 83.49 0.023 39.40 1.4019 1.4961 1.7603 1.4748 1.533

Discrete diffusion
DiGress v2 98.12 (30.57) 11/11 91.05 0.278 21.73 2.7507 1.7130 2.0632 1.6648 2.048
GraphDiT 82.45 (84.37) 11/11 87.12 0.960 6.64 1.2973 0.7440 0.8857 0.7550 0.921

Masked diffusion
MDM w/ cosine 15.95 (37.16) 11/11 89.91 0.307 26.45 2.1795 1.5035 1.7755 1.4974 1.739
MDM w/ polynomial 18.61 (60.32) 11/11 88.44 0.237 29.32 2.0041 1.6805 1.9846 1.6468 1.829
MDM w/ power-law 17.31 (53.64) 11/11 89.08 0.401 26.56 2.0145 1.4100 1.6536 1.4030 1.620
MELD (Ours) 99.10 (96.51) 11/11 85.91 0.974 5.93 1.1398 0.6433 0.7596 0.6496 0.798

Table 3: Ablation study of MELD with varying noise scheduling approaches. γ without ϕ and γϕ
denote fixed and learnable schedules, respectively. V.U.N. denotes a composite score for Validity,
Uniqueness, and Novelty.

Schedule type Method FCD↓ NSPDK↓ Scaf.↑ V.U.N.↑

Fixed γ
Power-law 26.09 0.0683 0.001 100.00
DiffusionBERT (He et al., 2022) 1.95 0.0009 0.491 100.00

Learnable γϕ

GenMD4 (Shi et al., 2024) 3.19 0.0017 0.429 100.00
TabDiff (Shi et al., 2025) 2.15 0.0009 0.486 99.99

MELD (Ours; Node) 1.63 0.0009 0.536 99.99
MELD (Ours; Edge) 1.73 0.0009 0.525 99.99
MELD (Ours; Node + Edge) 1.51 0.0006 0.559 99.96

establishes a new state-of-the-art in property alignment, with a 13.4% reduction in average MAE
relative to GraphDiT (Liu et al., 2024a). Apart from GraphDiT, no existing method can satisfy
multiple property constraints simultaneously: LSTM-HC achieves strong synthesizability MAE but
fails under gas permeability targets. DiGress v2 (Vignac et al., 2023), despite leveraging classifier
guidance (Dhariwal & Nichol, 2021), incurs substantially higher MAE across most conditions.
Beyond alignment, MELD also improves generative quality, surpassing FCD and fragment-based
similarity (Frag.) over the previous best. Consistent with earlier work (Ho & Salimans, 2021; Liu
et al., 2024b), we observe an inherent trade-off between property alignment and sample diversity.
Importantly, our method addresses the state-clashing issue prevalent in MDMs: whereas element-
agnostic schedule results in generating low-quality molecules, our learnable, element-wise noise
schedule enhances validity by a factor of five and improves property alignment by an average of 50%.

5.3 ABLATION STUDY

We evaluate several learnable scheduling strategies on ZINC250K (Irwin et al., 2012), as summarized
in Table 3. The first row reports a standard MDM with a power-law function, while the second-to-last
and third-to-last rows correspond to element-wise learnable scheduling applied only to nodes or edges.
Rows two through four present advanced scheduling strategies from prior work. DiffusionBERT (He
et al., 2022) employs a fixed spindle noise schedule decided by class-wise entropy; GenMD4 (Shi
et al., 2024) is another class-wise scheduling variant where each atom and bond type has its own
learned corruption rate; and TabDiff (Shi et al., 2025) introduces a single corruption rate shared
across elements within the same column, analogous to node and edge-level schedules, e.g., all nodes
sharing the same schedule. The final row corresponds to the full element-wise schedule of MELD.

As depicted in the table, all alternative noise schedules fall short of optimal gains in key metrics
such as FCD and Scaf., an effect we attribute to their limited ability of reducing state-clashing. For
instance, employing GenMD4 noise scheduling can remain limited in resolving the state-clashing:
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Figure 3: Comparison between fixed power-law scheduling and MELD during reconstruction. With
the learnable noise schedule, MELD achieves faster recovery than standard MDMs.

delaying the corruption of all carbon atoms relative to nitrogen in o-Phenylenediamine (Figure 2)
may still result in symmetric benzene ring. In contrast, our full per-element corruption (MELD)
delivers further reductions in distributional similarity metrics, demonstrating its fine-grained control.

5.4 QUALITATIVE ANALYSIS

Reverse process of MELD. Figure 3 compares MELD with standard MDM. Corrupted nodes
and edges are shown as [mask] and dashed lines, respectively. Under unified noise scheduling,
unmasking proceeds relatively slowly: at time t = T/4 only HCl and two carbon atoms begin to
emerge, ultimately leading to a poorly-designed molecule. In contrast, MELD reconstructs fragments
earlier relative to element-agnostic schedule, where larger amount of atoms already reveal from step
t = T/4. Similar phenomena can also be found with more examples in Section D.7.

Table 4: Performance comparison on large-scale Gua-
camol dataset. The metrics are transformed such that
higher values indicate better performance.

Method Valid.↑ Uniq.↑ Novel.↑ KL div.↑ FCD↑
ConGress (Vignac et al., 2023) 0.1 100.0 100.0 36.1 0.0
DiGress (Vignac et al., 2023) 85.2 100.0 99.9 92.9 68.0
DisCo (Xu et al., 2024) 86.6 100.0 99.9 92.6 59.7
MELD 100.0 100.0 100.0 93.4 68.8

Scalability to large molecules. We fur-
ther evaluate MELD on the large-scale
Guacamol dataset (Brown et al., 2019) fol-
lowing the standard protocol used in prior
work (Vignac et al., 2023). As demon-
strated in Table 4, MELD surpasses all
diffusion-based baselines (Vignac et al.,
2023; Xu et al., 2024) while achieving
100% validity. Notably, this performance
is obtained with 70% reduced training epochs (300 epochs) than DiGress (1000 epochs), emphasizing
both efficiency and empirical gains.

Table 5: Number of unique graph states across varying
timesteps in ZINC250K, averaged over 3 seeds.

Method T-100 T-75 T-50 T-25 T-1

MDM w/ cosine 131.0 122.3 63.0 14.7 1.7
MDM w/ polynomial 131.0 131.0 131.0 103.0 13.3
MDM w/ power-law 131.0 131.0 131.0 126.0 8.7
MELD 131.0 131.0 131.0 131.0 17.3

Quantifying state-clashing problem.
Here, we assess state-clashing phe-
nomenon by measuring the number of
distinct intermediate graph states at each
timestep, as shown in Table 5. Specif-
ically, we sample molecules with a
fixed graph size and employ a graph
isomorphism-based method (Cordella
et al., 2001) to count unique graphs. A
higher count of unique graphs indicates fewer state-clashing. Due to the extreme cost of isomorphism
algorithm, we sample 131 molecules with 12 nodes from the ZINC250K dataset for the evaluation.
The results show that MELD preserves greater structural diversity at later timesteps compared to any
standard MDMs.

It is important to note that MELD is not intended to eliminate state-clashing entirely, but to reduce
the chance of its occurrence, particularly in the early and intermediate timesteps. Inevitably, some
clashes remain, e.g., all graphs converge to a fully masked state, but these unavoidable cases only
affect a small portion of decisions near the prior distribution and therefore does not compromise its
overall effectiveness.
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Table 6: Performance comparison on synthetic graph
domain (SBM).

Method Degree↓ Cluster↓ Orbit↓ Spectral↓ V.U.N.↑
DiGress 0.0013 0.0498 0.0434 0.0400 74.00
GruM 0.0007 0.0492 0.0448 0.0050 85.00
MELD 0.0005 0.0506 0.0381 0.0047 97.50

Generalizability on synthetic graph.
To assess generalizability of MELD on
other discrete graph domains, we bench-
mark MELD against two strong molecular
diffusion models, DiGress and GruM, on
SBM (Martinkus et al., 2022), a synthetic
graph benchmark. Following the standard
evaluation protocol (Vignac et al., 2023;
Jo et al., 2024), we compute the maximum mean discrepancy (MMD) across four key graph statistics.
As reported in Table 6, MELD outperforms the baselines on most metrics, with notable gains in
V.U.N. (a composite score for validity/uniqueness/novelty) and Orbit.

6 CONCLUSION

In this work, we investigated masked diffusion models (MDMs) for molecular graph generation and
identified a central limitation, which we term state-clashing. To address this, we introduced MELD,
a masked diffusion model that learns element-wise forward trajectories through a parameterized noise
scheduling. Extensive experiments show that MELD consistently outperforms standard MDMs and
prior diffusion-based methods in both unconditional and property-conditioned molecular generation.

ETHICS STATEMENT

From a broader perspective, MELD has a potential to accelerate molecular discovery and reduce
the need for costly and time-intensive wet-lab experiments, thereby contributing to advancements
in drug design and material science. However, as with any generative technology, there exists the
risk of misuse, including the malicious design of toxic or harmful compounds. We advocate for the
responsible deployment of such models for the safe integration into real-world workflows.

REPRODUCIBILITY STATEMENT

We provide the source code and setup for our key experiments, with detailed configurations described
in the appendix. The implementation has been carefully verified, and we empirically confirm the
validity of the proposed method.
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SUPPLEMENTARY MATERIALS

A MORE RELATED WORK

Molecule optimization. Optimization-based methods generate molecules by iteratively refining
candidates assembled from a predefined vocabulary of fragments, aiming to align with desired prop-
erty constraints. These approaches typically employ techniques such as genetic algorithms (Jensen,
2019), Bayesian optimization (Shahriari et al., 2015; Jin et al., 2018; Zhu et al., 2023), and goal-
directed generation (Mollaysa et al., 2020; You et al., 2018). Representative examples include (Jin
et al., 2020; 2018; Xie et al., 2021; Fu et al., 2022), which utilize predefined subgraph motifs or
scaffolds to ensure chemical validity during the generation process. These methods rely on diverse
strategies including Markov sampling to sparse Gaussian processes and optimize molecules based on
property-specific scoring functions. Goal-directed generation (Mollaysa et al., 2020; You et al., 2018),
in particular, often adopts reinforcement learning, where a generation policy is updated to maximize
a property-driven reward function. Despite their strengths, existing optimization-based approaches
remain limited in conditional generation settings. Specifically, they require a full re-optimization for
each new property configuration when tasked with generating molecules that precisely match target
properties, rather than simply increasing or decreasing property values. This results in a high training
complexity and limits their scalability (Aung et al., 2024; Xia et al., 2024).

Learnable noise scheduling. Several works have explored learnable corruption process to optimize
the forward trajectories in images and text. In continuous-space diffusion models, Kingma et al.
(2021) introduces a learnable scalar noise schedule as a function of time, enabling variance reduction
in evidence lower bound (ELBO) estimation. Extending this, Sahoo et al. (2024b) proposes a
multivariate, data-dependent noise schedule, showing that a non-scalar, adaptive diffusion process
can further tighten the ELBO by aligning the forward process more closely with the true posterior.
In discrete masked diffusion, Shi et al. (2024) generalizes the corruption process to allow class-
dependent masking rates across tokens, prioritizing semantically important tokens during generation.
Shi et al. (2025) adopts feature-wise noise schedule for tabular data, where a single corruption
rate is shared across elements within the same column. Additionally, Schrödinger bridges-based
approaches (Peluchetti, 2023; De Bortoli et al., 2021; Shi et al., 2023) formulate generative modeling
as learning an expressive, path-wise forward process by solving entropy-regularized optimal transport
problems over path spaces.

It is noteworthy that the design philosophy of MELD is built upon the state-clashing, a critical issue
that has not been addressed in these work nor in the molecular diffusion literature (Vignac et al., 2023;
Jo et al., 2022; 2024; Liu et al., 2024a; Lee et al., 2023). While employing the learnable forward
process, our work departs from existing methods by introducing graph element-wise parameterization
of the forward diffusion, specifically to avoid trajectory collisions between semantically distinct
molecules. Moreover, we explicitly target and resolves the intermediate state degeneracy unique to
discrete molecular graphs, while Schrödinger bridge-based approaches neither address structural
collapse in discrete settings nor differentiate forward paths across individual graph elements.

B LIMITATIONS

While our element-wise noise scheduling significantly mitigates the state-clashing issue, it may
not fully address the inherent multimodality when a large portion of molecules are masked at later
diffusion steps. This is especially pronounced at later diffusion steps, where a majority of the graph
elements are masked, making it challenging to distinguish them. Nevertheless, these unavoidable
cases only affects a small portion of corruption near the prior distribution and therefore does not
compromise the overall efficacy of our method.

C EXPERIMENTAL SETUP

Implementation details. We follow the evaluation protocols and dataset splits adopted in prior
works: for unconditional generation, we adopt the setup from Jo et al. (2024), and for property-
conditioned tasks, we follow the procedure outlined in Liu et al. (2024a). We provide the detailed

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Dataset statistics.

Dataset #(Graphs) #(Nodes) #(Node types) #(Edge types)

QM9 133,985 |V| ≤ 9 4 3
ZINC250K 249,555 |V| ≤ 38 9 3
Polymers 553 |V| ≤ 50 11 3

statistics of each dataset in Table 7. During training for unconditional generation, we apply an
exponential moving average (EMA) to the model parameters, consistent with the training framework
in Jo et al. (2024). For conditional generation, we utilize the implementation strategies proposed in
Peebles & Xie (2023); Liu et al. (2024a), including condition vector encoders and adaptive layer
normalization (AdaLN). Across all experiments, we use a transformer-based denoising model (Peebles
& Xie, 2023) with 6 layers, a hidden dimension of 1152, and 16 attention heads. The noise scheduling
network is parameterized as a two-layered MLP with SiLU activation with hidden dimension set
as 64. We train all models using the AdamW optimizer with no weight decay. We provide detailed
training setups compared with representative baselines (Jo et al., 2024; Vignac et al., 2023; Liu
et al., 2024a) in Table 8. The FLOPS comparison with these baselines is shown in Table 9. Models
are implemented in PyTorch Paszke et al. (2019) with PyTorch Geometric Fey & Lenssen (2019).
Experiments were conducted on machines equipped with NVIDIA RTX 3090 and 4090 GPUs (24
GB) and AMD EPYC 7543 32-Core CPUs (64 cores total). Note that MELD does not rely on
increased GPU count or specialized accelerators compared to baselines. For reference, the results
of Jo et al. (2024) were obtained using RTX 3090 and 2080 Ti, while Liu et al. (2024a) used an
A6000 GPU. These configurations all fall within a similar class of commodity GPUs, and none of the
compared methods (including MELD) benefits from substantially larger compute bugets or hardware
advantages.

Table 8: Training details comparison with representative baselines.

Datasets Methods Total epochs Diffusion sampling step Learning rate Scheduler Backbone

QM9
DiGress 1000 1000 2e−4 Cosine Graph transformer
GruM 1000 1000 2e−4 Linear Graph transformer
MELD 1500 300 2e−4 Element-wise Diffusion transformer (DiT)

ZINC250K
DiGress 500 1000 2e−4 Cosine Graph transformer
GruM 500 1000 2e−4 Linear Graph transformer
MELD 600 500 2e−4 Element-wise Diffusion transformer (DiT)

Polymers GraphDiT 10000 500 2e−4 Cosine Diffusion transformer (DiT)
MELD 15000 200 2e−4 Element-wise Diffusion transformer (DiT)

Baselines. We consider various recent baselines for conditional and unconditional generation;
following experimental setups of prior works (Liu et al., 2024a; Jo et al., 2022; 2024).

• Unconditional Generation: First, we consider three flow-based models as baselines:
MoFlow (Zang & Wang, 2020), GraphAF (Shi et al., 2020) and GraphDF (Luo et al., 2021), three
continuous diffusion models: EDP-GNN (Niu et al., 2020), GDSS (Jo et al., 2022), and GruM (Jo
et al., 2024), and one discrete-diffusion model: DiGress (Vignac et al., 2023). Additionally, we
compare MELD against GraphARM (Kong et al., 2023), a method that employs mask tokens as
absorbing states but generates tokens (i.e., nodes) autoregressively.

• Conditional Generation: We consider four optimization-based frameworks as baselines:
GraphGA (Jensen, 2019), MARS (Xie et al., 2021), LSTM-HC (Neil et al., 2018), and JTVAE-
BO (Jin et al., 2018), two continuous diffusion models: GDSS (Jo et al., 2022) and MOOD (Lee
et al., 2023), and two discrete diffusion models: DiGress v2 (Vignac et al., 2023) integrated with
classifier guidance and GraphDiT (Liu et al., 2024a).

Metrics. Following the evaluation protocol in previous work (Liu et al., 2024a; Jo et al., 2022;
2024), we evaluate the performance of our framework using the following metrics:

• Unconditional Generation: We use 10,000 generated samples for evaluation using the following
six metrics: (1) Valid., the proportion of chemically valid molecules; (2) Frechet ChemNet
Distance (FCD; Preuer et al. 2018), a distributional similarity score of ChemNet embeddings
between generated and reference molecules; (3) NSPDK (Costa & De Grave, 2010), a graph
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Table 9: Computational cost analysis comparing various methods (GruM, DiT, DiGress, and MELD).
We report the average and standard deviation values of processing molecule size of |V | = 100, with
a batch size of 32, upon 5 forward passes. All experiments were conducted on an NVIDIA GeForce
RTX 4090 GPU and AMD EPYC 7K62 48-Core Processor.

Baselines Masked Diffusion Models

Metric GruM DiT DiGress Fixed Poly. Fixed Cosine TabDiff MELD

FLOPs 209.9 ± 0.1 314.7 ± 0.1 209.4 ± 0.1 315.2 ± 0.1 315.2 ± 0.1 318.5 ± 0.1 318.5 ± 0.1
Exec (s) 1.12 ± 0.03 0.91 ± 0.01 1.29 ± 0.04 0.94 ± 0.02 0.94 ± 0.02 0.95 ± 0.02 1.16 ± 0.03
Peak (GB) 19.16 ± 0.05 2.74 ± 0.01 19.15 ± 0.06 2.74 ± 0.01 2.74 ± 0.01 3.27 ± 0.02 2.77 ± 0.01

kernel metric that quantifies topological similarity to the reference set; (4) Scaf., a scaffold-level
similarity score; (5) Uniqueness, the proportion of valid molecules that are structurally distinct
within the generated set; and (6) Novelty, the fraction of valid molecules not in the training data.

• Conditional Generation: We generate 10,000 samples and assess their overall quality using the
following criteria: (1) Valid., (2) Cover., the heavy atom type coverage; (3) Divers., the diversity
among the generated molecules; (4) Frag., a fragment-based similarity metric; and (5) FCD.
We also report Property Alignment, measured as the mean absolute error (MAE) between target
properties and the corresponding oracle-evaluated scores of generated molecules.

To compute property alignment, we follow the setup of prior works (Liu et al., 2024a; Gao et al.,
2022), employing a random forest model trained on molecular fingerprints as an oracle function.

We report official baseline results (except for Kong et al. (2023)) from Jo et al. (2024) for unconditional
generation and Liu et al. (2024a) for property-conditioned generation. For Kong et al. (2023), we
take the results from the original paper. To evaluate the efficacy of our method in remedying state-
clashing, we perform additional ablative studies against fixed-scheduling mechanisms often adopted
in masked diffusion models; namely cosine (MDM w/ cosine), polynomial (MDM w/ polynomial),
and power-law (MDM w/ power-law) scheduling functions. We train all vanilla MDM variants
as well as MELD under identical training budgets. The corresponding standard deviation results
are reported in Table 10 and Table 11. Note that the standard deviations for GraphARM and the
conditional-generation baselines are not available.

D FURTHER EXPERIMENTS AND ANALYSIS

D.1 ANALYSIS OF ELEMENT-WISE LEARNED EMBEDDING

Table 12: Average cosine similarity between pairs of hi

and hij in a benzene ring.

Cosine similarity Learned H (MELD) Random walk embedding

Nodes (hi) 0.103 1
Edges (hij) 0.237 1
All 0.192 1

Our design philosophy of learnable em-
bedding in MELD is focused on reducing
the chance of state-clashing problem by
making each graph elements distinct and
unique. As a result, our method can dis-
tinguish graph elements even within the
symmetric motifs, which is often difficult
to be discriminated using existing graph positional encodings (Dwivedi et al., 2022; Ma et al., 2023).

To empirically verify this, we analyze the learned embedding matrix H on a benzene ring and
compare it to random walk positional embeddings (Dwivedi et al., 2022). In Table 12, we evaluate the
average pairwise cosine similarity for (1) node embeddings hi, (2) edge embeddings hij (connected
to benzene ring), and (3) all element embeddings (nodes and edges). Our learned embeddings
exhibit significantly low pair-wise similarity, suggesting that the learned embedding successfully
distinguishes elements even within the symmetric structure.

D.2 ROBUSTNESS ACROSS DIFFERENT DIFFUSION STEPS

We evaluate the performance of MELD on the Polymer dataset under varying diffusion steps, setting
the total timestep T ∈ {50, 100, 150, 200}. Note that during this experiment, we fix the MELD-
incorporated MDM to be trained upon a fixed diffusion step of 200, and only vary the number of
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Table 10: Unconditional generation performance of MELD with standard deviation. The baseline
results are taken from Jo et al. (2024).

QM9

Method Valid.↑ FCD↓ NSPDK↓ Scaf.↑ Uniq.↑ Novel.↑
Flow-based

MoFlow 91.36 ± 1.23 4.47 ± 0.595 0.017 ± 0.003 0.145 ± 0.052 98.65 ± 0.57 94.72 ± 0.77
GraphAF 74.43 ± 2.55 5.63 ± 0.259 0.021 ± 0.003 0.305 ± 0.056 88.64 ± 2.37 86.59 ± 1.95
GraphDF 93.88 ± 4.76 10.93 ± 0.038 0.064 ± 0.000 0.098 ± 0.106 98.58 ± 0.25 98.54 ± 0.48

Continuous diffusion
EDP-GNN 47.52 ± 3.60 2.68 ± 0.221 0.005 ± 0.001 0.327 ± 0.115 99.25 ± 0.05 86.58 ± 1.85
GDSS 95.72 ± 1.94 2.90 ± 0.282 0.003 ± 0.000 0.698 ± 0.020 98.46 ± 0.61 86.27 ± 2.29
GruM 99.69 ± 0.19 0.11 ± 0.006 0.0002 ± 0.000 0.945 ± 0.005 96.90 ± 0.15 24.15 ± 0.80

Discrete diffusion
DiGress 98.19 ± 0.23 0.10 ± 0.008 0.0003 ± 0.000 0.936 ± 0.003 96.67 ± 0.24 25.58 ± 2.36

Masked diffusion
MDM w/ cosine 100.00 ± 0.00 3.67 ± 0.081 0.009 ± 0.001 0.653 ± 0.007 85.96 ± 0.62 69.85 ± 0.41
MDM w/ polynomial 100.00 ± 0.00 3.70 ± 0.093 0.010 ± 0.000 0.890 ± 0.006 86.57 ± 0.55 67.18 ± 0.38
MDM w/ power-law 100.00 ± 0.00 3.62 ± 0.074 0.007 ± 0.000 0.628 ± 0.006 91.30 ± 0.54 76.65 ± 0.36
MELD 100.00 ± 0.00 0.09 ± 0.004 0.0002 ± 0.000 0.947 ± 0.004 96.49 ± 0.13 33.55 ± 0.04

ZINC250K

Method Valid.↑ FCD↓ NSPDK↓ Scaf.↑ Uniq.↑ Novel.↑
Flow-based

MoFlow 63.11 ± 5.17 20.93 ± 0.184 0.046 ± 0.002 0.013 ± 0.005 99.99 ± 0.01 100.00 ± 0.00
GraphAF 68.47 ± 0.99 16.02 ± 0.451 0.044 ± 0.005 0.067 ± 0.016 98.64 ± 0.69 99.99 ± 0.01
GraphDF 90.61 ± 4.30 33.55 ± 0.150 0.177 ± 0.001 0.000 ± 0.000 99.63 ± 0.01 100.00 ± 0.00

Continuous diffusion
EDP-GNN 82.97 ± 2.73 16.74 ± 1.300 0.049 ± 0.006 0.000 ± 0.000 99.79 ± 0.08 100.00 ± 0.00
GDSS 97.01 ± 0.77 14.66 ± 0.680 0.019 ± 0.001 0.047 ± 0.005 99.64 ± 0.13 100.00 ± 0.00
GruM 98.65 ± 0.25 2.26 ± 0.084 0.0015 ± 0.0003 0.530 ± 0.044 99.97 ± 0.03 99.98 ± 0.02

Discrete diffusion
DiGress 94.99 ± 2.55 3.48 ± 0.147 0.0021 ± 0.0004 0.416 ± 0.053 99.97 ± 0.01 99.99 ± 0.01

Masked diffusion
MDM w/ cosine 100.00 ± 0.00 25.41 ± 0.023 0.051 ± 0.0003 0.001 ± 0.000 99.99 ± 0.02 100.00 ± 0.00
MDM w/ polynomial 100.00 ± 0.00 26.43 ± 0.027 0.053 ± 0.0004 0.001 ± 0.000 99.93 ± 0.03 100.00 ± 0.00
MDM w/ power-law 100.00 ± 0.00 26.09 ± 0.031 0.068 ± 0.0004 0.001 ± 0.000 100.00 ± 0.00 100.00 ± 0.00
MELD 100.00 ± 0.00 1.51 ± 0.047 0.0006 ± 0.0001 0.559 ± 0.015 100.00 ± 0.01 99.96 ± 0.02

Table 11: Property-conditioned generation performance of MELD with standard deviation, averaged
over three runs. Note that the standard deviation of the baseline results, which are taken from Liu
et al. (2024a), are unavailable.

General Quality Property Alignment

Method Valid.↑ Cover.↑ Divers.↑ Frag.↑ FCD↓ Synth.↓ O2 Perm.↓ N2 Perm.↓ CO2 Perm.↓
MDM w/ cosine 15.95 ± 0.41 (37.16 ± 0.28) 11/11 89.91 ± 0.12 0.307 ± 0.006 26.45 ± 0.180 2.1795 ± 0.014 1.5035 ± 0.021 1.7755 ± 0.030 1.4974 ± 0.019
MDM w/ polynomial 18.61 ± 0.52(60.32 ± 0.32) 11/11 88.44 ± 0.10 0.237 ± 0.005 29.32 ± 0.224 2.0041 ± 0.011 1.6805 ± 0.024 1.9846 ± 0.027 1.6468 ± 0.018
MDM w/ power-law 17.31 ± 0.52 (53.64 ± 0.36) 11/11 89.08 ± 0.06 0.401 ± 0.009 26.56 ± 0.104 2.0145 ± 0.018 1.4100 ± 0.021 1.6536 ± 0.035 1.4030 ± 0.024
MELD 99.10 ± 0.12 (96.51 ± 0.14) 11/11 85.91 ± 0.06 0.974 ± 0.001 5.93 ± 0.032 1.1398 ± 0.009 0.6433 ± 0.013 0.7596 ± 0.013 0.6496 ± 0.012

steps taken during inference. We compare the performance of MELD against that of the strongest
baseline, GraphDiT (Liu et al., 2024a), which is originally evaluated at diffusion step size of 500. As
depicted in Figure 5, MELD overall exhibits robust performance across a range of metrics.

D.3 PER-ELEMENT SCHEDULING OF MELD

Figure 4: Variation of normalized
masking probability σ.

In Figure 4, we visualize the variation in per-step learned noise
schedules across nodes and edges during the forward diffusion
process. Specifically, we take 200 samples and plot the vari-
ation of the normalized masking probability σ, defined as the
standard deviation of αt−1,ϕ−αt,ϕ

1−αt,ϕ
.

We observe consistently higher variance for edge schedules
across all timesteps, suggesting that the model prioritizes differ-
entiating edges more aggressively than nodes during training.
In addition, state-clashing problem is inherently intensified in
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Figure 5: Performance of MELD under varying diffusion steps. The dotted line indicates the
performance of the strongest baseline, GraphDiT, evaluated at a fixed diffusion step of 500.

Table 13: Computational cost analysis with varying molecular sizes (batch size = 1). All experiments
were conducted on an NVIDIA GeForce RTX 4090 GPU and an AMD EPYC 7K62 48-Core Processor.
Runtime values are averaged over 5 random seeds.

#Atoms Method #Params (M) FLOPs (GMac) Peak memory (MB) Runtime (sec)

10 MDM 156.23 2.06 622.76 0.056 ± 0.005
MELD 156.24 2.06 623.19 0.056 ± 0.006

50 MDM 157.22 9.88 680.40 0.077 ± 0.007
MELD 157.23 9.93 692.31 0.087 ± 0.008

100 MDM 158.46 19.74 755.12 0.093 ± 0.008
MELD 158.47 19.94 788.71 0.098 ± 0.008

200 MDM 160.93 39.77 929.09 0.132 ± 0.007
MELD 160.94 40.59 1067.64 0.165 ± 0.008

the later steps of the forward process for both nodes and edges,
as expected.

D.4 COMPUTATIONAL COST ANALYSIS

In practice, the computational and memory overhead introduced by MELD is negligible since it only
adds learnable embedding matrix H to the existing transformer-based architectures. To validate this,
we report (1) total number of parameters, (2) FLOPs, (3) peak memory usage, and (4) single-step
runtime across various molecular sizes (|V| ∈ [10, 50, 100, 200]) for MELD and standard MDM
in Table 13. Our results demonstrate that MELD introduces only about 0.01M additional parameters
with negligible computational overhead, regardless of the input size.

D.5 STATE-CLASHING ON SYNTHETIC GRAPH

Table 14: Number of unique graph states across varying
timesteps in synthetic graph domain (SBM), averaged
over 3 seeds.

Method T-100 T-75 T-50 T-25 T-1

MDM w/ cosine 36.7 23.3 11.7 4.3 1.3
MDM w/ polynomial 72.0 72.0 58.0 18.7 7.3
MDM w/ power-law 72.0 71.3 66.0 38.6 4.0
MELD 72.0 72.0 72.0 65.7 6.3

While the state-clashing can also arise in
other discrete graph domains such as ci-
tation graphs (Bernecker et al., 2024) or
social networks (Ji et al., 2024), they typ-
ically involve a more diverse set of node
and edge types, which reduces the like-
lihood that distinct graphs collapse into
identical intermediate states. However, in
synthetic graphs such as SBM (Martinkus
et al., 2022), which contain only a single
node type and binary edge types (denoting edge existence), state-clashing is susceptible to occur as
depicted in Table 14.
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Using SBM synthetic graph (Martinkus et al., 2022) as a representative, we conducted the same
quantitative analysis as done in Table 5. Due to the high computational cost of applying a full graph
isomorphism check on the original graphs, we adopted a practical approximation: for each of 72 test
and validation graphs, we randomly sampled 10 nodes and performed the state-clashing analysis.
This procedure was repeated over 3 random seeds to ensure consistency. The results show that MELD
mostly outperforms standard MDMs in terms of distinguishability.

D.6 STATE-CLASHING ON LARGE-SCALE GRAPH

Table 15: Number of graphs with distinct fingerprints
across varying timesteps in the Guacamol dataset, aver-
aged over 3 seeds.

Method T-100 T-75 T-50 T-25 T-1

MDM w/ cosine 144 144 144 134.3 4.7
MDM w/ polynomial 144 144 144 144 99.3
MDM w/ power-law 144 144 144 144 85.7
MELD 144 144 144 144 115.7

We further provide state-clashing analy-
sis on the large-scale Guacamol dataset.
Since direct graph isomorphism tests are
computationally infeasible to quantify the
degree of state-clashing, we use approx-
imate fingerprint-based hashing method
to count the number of graphs that are
provably distinct. Specifically, for each
intermediate graph, we compute a canon-
ical graph fingerprint using a set of graph
properties that remain unchanged under node relabeling. The fingerprint is constructed by combining
the numbers of nodes and edges, sorted list of node degrees, and sorted multisets of node and edge
types (including masked tokens). These components are concatenated into a canonical string (e.g.,
n4|e3|d:1,1,2,2|v:0,6,6,8|eattr:1,1,2) and passed through a SHA-1 hashing. Graphs are counted as
identical if their fingerprints match.

We sample molecules from Guacamol using the maximum graph size in its test set that has sufficient
number of samples (> 100), resulting in collecting 144 molecules with 58 nodes each. The results in
Table 15 below demonstrates that MELD retains substantially more distinct graph states at the last
timestep than baselines, even for larger molecules.

D.7 MORE EXAMPLES OF REVERSE PROCESS

We provide additional visualizations of reverse diffusion trajectories under MELD compared with
those from a fixed power-law (element-agnostic) schedule in Figure 6. Consistent with our earlier
analysis, MELD achieves faster reconstruction than standard MDMs. For instance, fragments begin
to unmask as early as t = T − 1, whereas the element-agnostic schedule only starts to recover them
at T/4 ≤ t ≤ T/8.

D.8 MOLECULE VISUALIZATION

In this section, we provide 2D visualization of molecules generated by MELD. As illustrated, MELD
generates chemically realistic molecules even for polymers dataset with larger number of atoms (i.e.,
|V| ≤ 50), verifying its robustness under various graph sizes.

E DIFFERENTIABLE SAMPLING WITH GUMBLE-SOFTMAX

As discussed in Section 4, we require a differentiable approximation of the categorical distribution to
optimize the noise scheduling network. We employ the Straight-Through Gumbel-Softmax (STGS)
trick Jang et al. (2017), which we detail below.

Let z ∈ RN denote the logits, and η > 0 be the temperature parameter. We first compute a soft
approximation of the categorical distribution psoft ∈ [0, 1]N via the Gumbel-Softmax:

psoft,k =
exp((zk + gk)/η)∑N
l=1 exp((zl + gl)/η)

, (5)

where gk = − log(− log(uk)) is a gumbel noise with uk ∼ Unif[0, 1] and zk is the k-th element of
the logits z. A discrete one-hot vector phard ∈ {0, 1}N is then obtained by taking the index with the
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Figure 6: More comparisons between element-agnostic power-law scheduling and MELD during
reconstruction on the ZINC250K dataset. With our proposed noise schedule, most reconstruction
occurs at earlier timesteps relative to element-agnostic approach.
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Figure 7: Visualization of molecules generated by MELD.

highest probability:

k∗ = argmax
k

psoft,k, phard,k =

{
1 if k = k∗

0 otherwise
(6)
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(a) Masking-based noise (b) Substitution-based noise (c) Collision probability across noise levels

Figure 8: (a) Illustration of masking-based noising, and (b) illustration of substitution-based noising.
(c) Quantitative comparison of state-clashing probabilities (Pr[Ct]) between masked and substitution-
based corruption. The analysis assumes L = 23 (average number of nodes in ZINC250K dataset) with
k = 2 differing positions. While the collision probability for masking (solid black line) approaches 1
as the noise level α → 1, substitution-based methods (dashed lines) exhibit negligible probabilities
that decrease further as vocabulary size |V| increases.

To retain gradient flow, we use the straight-through estimator to combine the discrete and continuous
components, i.e., set p = phard − sg(psoft) + psoft, where sg(·) denotes the stop-gradient operator.
This ensures that the forward pass uses the discretized one-hot vector p = phard, while the backward
pass treats p as the continuous psoft, allowing gradients to propagate through z, i.e., ∂p

∂z = ∂psoft
∂z .

F DISCUSSION WITH SUBSTITUTION-BASED CORRUPTION

Indeed, substitution-based corruption (illustrated in Figure 8 (b)) can theoretically produce multimodal
target distribution as well as masking-based corruption (depicted in Figure 8 (a)). However, the
probability of creating multimodal targets is negligible in substitution-based methods compared to
masking-based corruption. Below, we formalize this claim and demonstrate that state-clashing is a
dominant failure mode for MDMs using a toy example.

Formalizing state-clashing with collision probability. Let g denote a clean graph and g̃t the noisy
graph at time t. Consistent with our manuscript, we denote qt(g̃ | g) as the corruption kernel in
the forward diffusion process. We define the state-clashing as the event where distinct clean graphs
g1, g2, ... collapse into the same noisy graph g̃t during the forward diffusion process. To quantify this,
we consider the collision event Ct at time t for two distinct, independent graphs g1 ̸= g2:

Ct(g1, g2) := {g̃1 = g̃2 | g1 ̸= g2}, g̃1 ∼ qt(· | g1), g̃2 ∼ qt(· | g2). (7)

The severity of the collision is determined by the collision probability Pr[Ct(g1, g2)] =
∑

g̃ qt(g̃ |
g1)qt(g̃ | g2).

Derivation of collision probability. To compare two corruption approaches, consider a simplified
scenario where graphs are sequences of nodes of length L over a vocabulary V . Each node is
independently corrupted with probability α at specific timestep t. Take two clean sequences g1 and
g2 that differ at exactly k positions and are identical at L− k positions. Note that while graphs are
unordered, this element-wise comparison holds without loss of generality for permutation-equivariant
denoisers.

(1) Case A: Differing positions (g1(i) ̸= g2(i))

• Masked corruption: we keep the original token with probability 1 − α, otherwise with
probability α we replace it with a single special token [MASK]. A collision occurs only if
both tokens are masked. Thus, the collision probability pmask

diff is computed as:

pmask
diff = Pr[g̃1(i) = g̃2(i) | g1(i) ̸= g2(i)] = α2. (8)
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• Substitution corruption: we keep the original token with probability 1− α, otherwise with
probability α we randomly replace it with a token sampled uniformly from V . A collision
occurs if (i) one is kept and the other is substituted to that token, or (ii) both are substituted
to the same token. This leads to the collision probability psub

diff as follows:

psub
diff = Pr[g̃1(i) = g̃2(i) | g1(i) ̸= g2(i)] = 2 · α(1− α)

|V|
+

α2

|V|
=

α(2− α)

|V|
. (9)

(2) Case B: Identical positions (g1(i) = g2(i))

• Masked corruption: A match occurs if both tokens are (i) masked or (ii) kept. Thus, the
collision probability pmask

eq is computed as:

pmask
eq = α2 + (1− α)2. (10)

• Substitution corruption: The corrupted tokens match if (i) both tokens are retained or (ii)
both are substituted to the same token or (iii) one is kept and the other is substituted to the
same token. The collision probability for psub

eq is:

psub
eq = (1− α)2 +

α2

|V|
+ 2

α(1− α)

|V|
= (1− α)2 +

α(2− α)

|V|
. (11)

Assuming independence across positions, the total collision probability is the product over all sites:

Pr[Ct(g1, g2)]mask = (pmask
diff )k(pmask

eq )L−k, Pr[Ct(g1, g2)]sub = (psub
diff)

k(psub
eq )L−k. (12)

For positions where two graph elements differ, the ratio of collision probabilities is:

pmask
diff

psub
diff

=
α2

α(2−α)
|V|

=
|V|α
2− α

. (13)

This ratio exceeds 1 whenever α > 2
|V|+1 . For a typical vocabulary size in molecular datasets (e.g.,

|V| = 9 for ZINC250K) masked corruption yields a higher collision probability for all α > 0.2. A
similar trend applies to identical positions (peq). Since the term (1− α)2 is common to both methods,
the inequality is determined by the remaining corruption terms, which follows the same ratio derived
above.

Crucially, in the intermediate and later stages of diffusion (where α → 1), this gap becomes extreme.
As α → 1, the collision probability for masking approaches 1, whereas for substitution, it approaches
(1/|V|)L, where distinct graphs are highly scattered. That is, limα→1

Pr[Ct(g1,g2)]mask
Pr[Ct(g1,g2)]sub

≈ |V|L.

We visualize the gap between Pr[Ct(g1, g2)]mask and Pr[Ct(g1, g2)]sub in Figure 8 (c). The plot
confirms that the gap becomes extreme as α → 1. Specifically, when α = 1, the ratio
Pr[Ct(g1, g2)]mask/Pr[Ct(g1, g2)]sub ≈ 1016. This confirms that while substitution can theoreti-
cally produce multimodal targets, the probability of such an event is orders of magnitude lower than
masking with fair amount of vocabulary. Thus, state-clashing is much more pertinent to MDMs.

G COMPARISON BETWEEN STATE-CLASHING AND SYMMETRY-BREAKING

Several prior work (Lawrence et al., 2025; Laabid et al., 2025; Wang et al., 2024; Kaba & Ravan-
bakhsh, 2022) have introduced the concept of symmetry-breaking in self-symmetric inputs. For
instance, Lawrence et al. (2025) and Laabid et al. (2025) identified that equivariant denoiser is unable
to yield less symmetric output from highly self-symmetric noisy input. In this section, we provide
two examples where state-clashing and symmetry-breaking formulations clearly differ.
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Figure 9: (a) Illustration of state-clashing between two non-isomers, collapsing into the asymmetric
intermediate state. (b) Example case when the equivariant denoiser fails to reconstruct the original
molecule from g

(2)
t , although state-clashing does not happen.

State-clashing on non-symmetric intermediate states. We point out that state-clashing can occur
even for non-symmetric cases, not only covering self-symmetric inputs. As illustrated in Figure 9 (a),
masking the fluorine atom and bond in 2-Fluoroethanol (g(1)0 ) produces the same masked state as
masking the chlorine atom and bond in 2-Chloroethanol (g(2)0 ). The collapsed masked state is not
self-symmetric, yet the denoiser still faces a multimodal reconstruction target. We clarify that our
emphasis is on mismatch between the joint distribution and the product of marginal distribution for
denoising labels, e.g., p(x1, x2) ̸= p(x1)p(x2). This can happen even when there exists no symmetry
in intermediate states nor the reconstruction targets.

Symmetry breaking for non-clashing states. In contrast, symmetry breaking can help even when
there exist no state-clashing, which we depict an example in Figure 9 (b). Here, even when no state-
clashing happens between distinct graphs, the reconstruction will fail for permutation-equivariant
neural networks.

Thus, (a) state-clashing and (b) symmetry breaking refers to distinct problems arising from lack
of expressive power in (a) element-wise independent prediction and (b) permutation equivariant
architectures used by the decoder, respectively.
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