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ABSTRACT
Cross-Domain Sequential Recommendation (CDSR) methods aim

to tackle the data sparsity and cold-start problems present in Single-

Domain Sequential Recommendation (SDSR). Existing CDSR works

design their elaborate structures relying on overlapping users to

propagate the cross-domain information. However, current CDSR

methods make closed-world assumptions, assuming fully overlap-

ping users across multiple domains and that the data distribution

remains unchanged from the training environment to the test envi-

ronment. As a result, these methods typically result in lower perfor-

mance on online real-world platforms due to the data distribution

shifts. To address these challenges under open-world assumptions,

we design an Adaptive Multi-Interest Debiasing framework for

cross-domain sequential recommendation (AMID), which consists

of a multi-interest information module (MIM) and a doubly ro-

bust estimator (DRE). Our framework is adaptive for open-world

environments and can improve the model of most off-the-shelf

single-domain sequential backbone models for CDSR. Our MIM

establishes interest groups that consider both overlapping and non-

overlapping users, allowing us to effectively explore user intent

and explicit interest. To alleviate biases across multiple domains,

we developed the DRE for the CDSR methods. We also provide a

theoretical analysis that demonstrates the superiority of our pro-

posed estimator in terms of bias and tail bound, compared to the

IPS estimator used in previous work. To promote related research in

the community under open-world assumptions, we collected an in-

dustry financial CDSR dataset from Alipay, called "MYbank-CDR".
Extensive offline experiments on four industry CDSR scenarios

including the Amazon and MYbank-CDR datasets demonstrate the

remarkable performance of our proposed approach. Additionally,

we conducted a standard A/B test on Alipay, a large-scale financial

platform with over one billion users, to validate the effectiveness

of our model under open-world assumptions.

CCS CONCEPTS
• Information systems → Recommender systems; • Comput-
ing methodologies→ Neural networks.

KEYWORDS
Open-world Assumptions, Cross-Domain Sequential Recommenda-

tion, Sequential Recommendation

1 INTRODUCTION
Single-domain sequential recommendation (SDSR) has garnered

wide attention in E-commerce recommender systems, for its abil-

ity to model dynamic user preferences based on their sequential

interactions. Nevertheless, traditional sequential recommendation

methods are often limited by data sparsity and the cold-start prob-

lem, affecting their recommendation performance [12, 17, 38].

User behaviors 
of Book domain

User behaviors 
of Movie domain

(a) Overlapping user (b) Non-overlapping user

? ?

?

(c) Unseen user

?

??

Open-world EnvironmentClosed-world Environment

Figure 1: While traditional methods [27, 49, 50] focus only on over-
lapping users (a) and a few methods [2, 19, 20] can handle non-
overlapping users (b), they still have some limitations. However, our
method not only considers users (a) and (b), but also assigns impor-
tance to unseen users (c).

To alleviate these problems, several Cross Domain Sequential

Recommendation (CDSR) approaches [14, 27, 29] have been pro-

posed to transfer the knowledge between the source domain and

target domain. Existing CDSR approaches commonly employ fea-

ture combination [27, 49, 52] or bi-directional transfer mapping

strategies [19, 20, 50] to enhance recommendation accuracy by

leveraging the overlapping users. Most of these methods conduct

experiments under closed-world assumptions, where multiple do-

mains share fully overlapping users and data distribution remains

unchanged from the training environment to the test environment.

However, such closed-world assumptions do not exist in industry

recommendation platforms, which operate under open-world as-

sumptions instead. In this study, the concept of the “open-world is

used in contrast to the closed world. The term "open-world" [44, 48]

is employed to describe and summarize the scenario, which contains

minority overlapping users among multiple domains and contains

the selection bias in modeling. In the open-world environment,

the input/output space expands, and data distribution shifts due to

unseen factors. Therefore, to enhance the model’s performance in

CDSR, it is imperative to address the challenges that arise under

open-world assumptions.

First of all, for multiple domains with few overlapping users, how
to construct the model with the non-overlapping users and improve
the recommendation performance? Most previous CDSR methods

cannot be directly extended to handle partially overlapping CDSR

settings, especially when there are only a few shared users across

domains that are often encountered in the real world. To address

this challenge, recent researches [6, 9, 20, 26] have explored the

use of graphic deep learning to enhance both overlapping and non-

overlapping user embeddings and propagate interest information

among non-overlapping users. More recently, Cao et al. [2] have

designed a graph neural network with a contrastive cross-domain

infomax objective to improve the learning of non-overlapping user

embeddings. Nevertheless, in partially overlapping CDSR scenarios,
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Figure 2: Solid lines denote the SDSR methods, while dashed lines denote the CDSR methods. Due to the lack of abundant overlapping users,
SASRec (SDSR) outperforms all the CDSR methods in the Movie domain.

such methods have great limitations and will drop their perfor-

mance under open-world assumptions. These CDSR approaches

still rely heavily on overlapping users, with more than 70% of users

being common across domains, to establish bridge connections

among multiple domains and perform knowledge aggregation and

transition processes.

The second challenge arises from an observation in open-world

scenarios: Recommender systems frequently engage primarily with

active users. In the training phase, some unexposed users who

are not exposed to the platform, and thus unbeknownst to the

models, may surface in the testing stage. This issue causes a perfor-

mance drop after adapting from an offline to an online environment

[30, 31, 46]. So, the second challenge is how to alleviate the selection
bias of the model in the environment with the data distribution shift?
CaseQ [46] learns context-specific representations of sequences

to capture temporal patterns in various environments. Similarly,

DCRec [47] proposes a novel debiasing contrastive learning para-

digm to address the popularity bias issue in single-domain recom-

mendation systems. However, these methods overlook the selection

bias among the domains that exists in open-world scenarios, lead-

ing to biased performance estimation. To address this selection bias,

[21] proposes an Inverse-Propensity-Score (IPS) estimator, yet often

suffering high variance.

In this paper, we first rethink cross-domain sequential recom-

mendation under open-world assumptions and identify the primary

challenges. To address these challenges, we propose an adaptive

multi-interest debiasing framework for CDSR, which includes a

multi-interest information module and a doubly robust estimator.

Our contributions are as follows.
1) To our best knowledge, this paper is the first effort addressing

the open-world challenges in CSDR. We conduct empirical analysis

and show that extending existing CDSR models to the open-world

environment yields two primary challenges that used to be over-

looked: i) How to construct a model in scenarios where the majority

of users are non-overlapping, without relying on overlapping users?

and ii) How to eliminate selection bias of the model with the data

distribution shift?

2) We design an Adaptive Multi-Interest Debiasing framework

for cross-domain sequential recommendation (AMID), which could
be integrated with most off-the-shelf SDSR methods [12, 17, 38].

It is composed of a multi-interest information module (MIM) and

a doubly robust estimator (DRE). MIM transfers cross-domain in-

formation for both overlapping and non-overlapping users, while

DRE eliminates selection bias and popularity bias to obtain unbi-

ased performance estimation. Moreover, we provide a theoretical

analysis that demonstrates the superiority of DRE in terms of bias

and tail bound, compared to the IPS estimator used in [21].

3) In order to foster further research in the community, partic-

ularly under open-world assumptions, we gathered a real-world

financial CDSR dataset from Alipay, called "MYbank-CDR". As far
as we are aware, "MYbank-CDR" is the first publicly available cross-

domain financial dataset. The collected dataset "MYbank-CDR" and

the source code will be made publicly available upon acceptance.

4)We demonstrate that our proposed AMID, when integrated

with multiple single-domain sequential recommendation models,

achieves state-of-the-art results compared to CDR, CDSR and de-

biasing methods. Additionally, we conduct online experiments to

validate the performance of our proposed framework in a real-world

CDSR financial platform with millions of daily traffic logs.

2 MOTIVATION: TOWARDS OPEN-WORLD
CDSR

Current CDSR methods conduct their experiments under closed-

world assumptions which assume that there exist fully or mostly

overlapping users across domains. However, in real-world applica-

tions, the number of overlapping users across domains is typically

a minority. To validate their performance in the open-world envi-

ronment, we perform motivational experiments on the Amazon

dataset with three single-domain sequential recommendation meth-

ods (BERT4Rec [38], GRU4Rec [12] and SASRec [17]) and three

cross-domain sequential recommendation methods (Pi-Net [27],

DASL [19] and C
2
DSR [2]). Following previous works [24, 45], we

vary the overlapping ratio
1
to simulate different CDSR scenar-

ios. We present a plot of the performance of the models from two

domains in Fig 2. In the Movie domain, SASRec (SDSR) achieves

the best performance. Similarly, in the Music domain with a 100%

overlapping ratio, SASRec (SDSR) outperforms DASL (CDSR). This

is attributed to the fact that existing CDSR methods rely on overlap-

ping users to construct their models or transfer information across

domains, which leads to a decrease in performance in a partially

1
It should be noticed that the overlapping ratio is not equivalent to the proportion of

overlapping users, but rather controls the number of existing overlapping users of the

training set.
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Figure 3: Selection bias can cause a distribution shift in the cross-domain sequential scenario with few overlapping users (control ratio is 25%).

overlapping scenario. Hence, this finding serves as a motivating

factor for us to design a high-performing CDSR model that can be

applied in the open-world environment (1st challenge). Further-
more, a counterintuitive phenomenon has been observed, where

SDSR methods exhibit a lesser reliance on overlapping users com-

pared to CDSR methods. In an ideal scenario, SDSR methods should

exhibit inferior performance compared to CDSR methods when the

overlapping user ratio is high. However, experimental results have

revealed that the performance gap actually diminishes as the ratio

decreases. Surprisingly, when the ratio is small, the performance

of a few SDSR methods outperforms CDSR methods, and in some

cases, even when the ratio is high.

To analyze the underlying cause for this phenomenon, we try to

visualize the distribution shift between the train set and the test set.

Figure 6 displays the t-SNE visualization of user embeddings
2
for

the train set (blue dots) and the test set (green dots). Training with

a 25% proportion simulates the situation where the training data in

a real-world scenario may suffer from unseen factors. We observed

that the distribution difference at 25% proportion is larger than

that at 100% proportion. These visualization results confirm that

the distribution shift from training to testing indeed exists in the

CDSR scenarios. The distribution shift often occurs in a real-world

platform under open-world assumptions. In real-world recommen-

dation systems, users to be exposed are sometimes selected by the

recommendation algorithm based on factors such as estimated con-

version rates and business rules. During training, only the data of

these exposed users are used because their interaction labels are

considered meaningful, while the unexposed users are overlooked.

However, during the inference stage, estimated conversion scores

are required for all users, including the unexposed ones, in order

to determine the selection of users to be exposed in the recom-

mendation system. The rating data of these unexposed users are

missing not at random [4], leading to selection bias in the CDSR

scenario. Therefore, this raises another question: "How can we mit-

igate data selection bias across multiple domains in the open-world

environment?" (2nd challenge)

3 PRELIMINARIES
3.1 Problem Definition
In this paper, we consider a partially overlapping CDSR scenario

composed of multiple domainsZ = {𝑍1, ..., 𝑍 |Z | }. LetU = {𝑢1, ...,

2
The trained DASL [19] model is used to generate user embeddings.

𝑢 |U | }, V = {𝑣𝑍1

1
, ..., 𝑣

𝑍 |Z|
|V | } be the user set, item set, rating set. A

user who only has historical behaviors in one domain is referred to

as a non-overlapping user, while a user with historical behaviors in

multiple domains is referred to as an overlapping user. As a certain

user, denote S = {𝑆𝑍1 , ..., 𝑆𝑍 |Z| )} the corresponding sequential

behaviours of the users. For example, 𝑆𝑍1 = {𝑣1, ..., 𝑣𝑇 } represents
the single-domain sequence, where 𝑇 is a variable length. Given

the dataD = U×V , CDSR aims to develop a personalized ranking

function that utilizes the past item sequences frommultiple domains

of a user and predicts the next item (i.e. 𝑣𝑇+1) in each domain that

the user is most likely to choose.

Different from conventional cross-domain recommendation (CDR),

CDSR methods pay more attention to modeling sequential behavior

dependencies. Mathematically, the objective of CDR methods are

formulated as follows:

argmax 𝑃𝑋
(
𝑟𝑋𝑢,𝑣 = 𝑣 |𝑈𝑋 ,𝑈𝑌 ,𝑉𝑋

)
, if 𝑣 ∈ V𝑋 . (1)

where 𝑟𝑢,𝑣 denotes the prediction from user 𝑢 to item 𝑣 in domain

𝑋 . However, the objective of CDSR approaches is to predict the

next item for a given user 𝑢 based on their interaction sequences:

argmax 𝑃𝑋
(
𝑣𝑋|𝑆𝑋 |+1 = 𝑣 |𝑆𝑋 , 𝑆𝑌 ,𝑈𝑋 ,𝑈𝑌 ,𝑉𝑋

)
, if 𝑣 ∈ V𝑋 . (2)

3.2 Causal Graph
To tackle the issue of incomplete and insufficient observed infor-

mation, we construct a causal view and propose an adaptive multi-

interest debiasing framework. S𝑍
𝑈
, R𝑍

𝑈
, 𝑆𝐶𝑍

, and 𝐺𝐶 denote the

random variables of the historical event sequence, the observed rat-

ings, the domain-specific confounder, and the general confounder.

𝑂 , which represents the observed variable of the instance (𝑂 = 1,

observed;𝑂 = 0, unobserved), is decided by𝑂𝑍1
and𝑂𝑍2

commonly.

If a user is not observed in either of the two domains, 𝑂 is 0; other-

wise, it is 1. The SDSR methods focus on learning the specified con-

founder 𝑆𝐶𝑍
for a given user, while the previous CDSR approaches

construct models based on overlapping users to obtain the general

confounder 𝐺𝐶 . The links between (𝑆𝐶𝑍
, 𝐺𝐶 )→ R𝑍

𝑈
represent

the causal effect of the domain-specific and general confounders

on their interaction label. In observational studies [11, 28, 37], the

collected rating data is often unevenly presented, and the variables

S𝑍
𝑈
and R𝑍

𝑈
can affect the observation 𝑂 of a given instance. This

mechanism gives rise to selection bias, resulting in an inconsistent

3
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distribution of the observed rating data as compared to the ideal

test distribution.

From another perspective, the causal graph depicts two sources

of association between the causes 𝑆 and the outcome 𝑅: (1) the

desirable causal effect 𝑆→ (𝑆𝐶 ,𝐺𝐶)→ 𝑅; (2) the collision path 𝑆→
𝑂 ← 𝑅 that connects 𝑆 and 𝑅 through their common (conditioned

on) effects 𝑂 = 1. Analyses conditioned on 𝑂 = 1 may generate

spurious associations between 𝑆 and 𝑅. It is important to note that

the domains 𝑍1 and 𝑍2 commonly influence the observed variable.

Models learned from observed data may be affected by the issue of

selection bias. In the open-world environment, this is a critical issue

that must be addressed to prevent a drop in online performance.

3.3 Single-domain Sequential Recommendation
Methods

In this research, our primary objective is to develop a universal

cross-domain structure that can improve the performance of single-

domain sequential recommendation models by seamlessly integrat-

ing them into comprehensive CDSR models. To achieve this, we

first explore the fundamental mechanisms of the single-domain

sequential recommendation network.

Embedding layer.Wemap the fixed-length sequence 𝑆 = {𝑣1, ..., 𝑣𝑇 }
to a 𝑑-dimensional embedding space, which is achieved through

truncation or padding. Besides, a learnable parameter position em-

bedding matrix is utilized to enhance the chronologically ordered

information of the sequence. Specially, we get the sequence embed-

ding S𝑢 = {h′𝑣1 , ..., h
′
𝑣𝑇
} ∈ R𝑇×𝑑 .

Sequential information encoder. In the previous single-domain

sequential recommendation methods, they designed various se-

quential information encoders to extract short-/long-term item

relationships among the sequence. For example, GRU4Rec [12]

designs multiple GRU layers for the sequential recommendation.

SASRec [17] proposes stacking self-attention blocks with residual

connections, while BERT4Rec [38] develops the deep bidirectional

self-attention to model user behavior sequences. For convenience,

we obtain the enhanced sequential embedding via a function F
which represents their designed sequential information encoder.

This process is formulated as h𝑣1 , ..., h𝑣𝑇 = F (h′𝑣1 , ..., h
′
𝑣𝑇
).

4 METHODOLOGY
4.1 Multi-interest Information Module
In this section, we will introduce our multi-interest information

module, which can convert a normal SDSR model into a CDSR

model. The module consists of two steps: interest group construc-

tion and information propagation. For simplicity, we only include

two domains as examples and show the operation on them, but

our methods can be applied to multiple domains. Our design is

motivated by the goal of creating interest groups by identifying

users with similar preferences and sharing information as widely

as possible.

Group construction. Initially, we compute the group flag by eval-

uating the similarity between their sequences point-by-point. For

instance, consider two sequences 𝑺𝑍1

𝑢𝑖 ∈ R
𝑇×𝑑

and 𝑺𝑍2

𝑢 𝑗
∈ R𝑇×𝑑

from users 𝑢𝑖 and 𝑢 𝑗 in different domains. We then determine the

group flag among users as follows:

a′𝑖 𝑗 = max[(𝑺𝑍1

𝑢𝑖 W1) (𝑺𝑍2

𝑢 𝑗
W2)⊤] (3)

where W1, W2 ∈ R𝑑×𝑑 are the transformation matrix. The max

function is utilized to find the nearest similarity between user 𝑢𝑖
and 𝑢 𝑗 from 𝑇 ×𝑇 similarity relations. Last, we get the group flag

via the threshold determination where a𝑖 𝑗 = 1 means the users 𝑢𝑖
and 𝑢 𝑗 are in the same group.

a𝑖 𝑗 =
{

0 , a′𝑖 𝑗 < 𝑘

1 , a′𝑖 𝑗 ≥ 𝑘
(4)

Information propagation. After constructing the interest groups,
the cross-domain informationwill propagate among the same group.

The cross-domain message m
𝑢
𝑍
1

𝑖
←𝑢

𝑍
2

𝑗

∈ R𝑇×𝑑 can be obtained:

m
𝑢
𝑍
1

𝑖
←𝑢

𝑍
2

𝑗

= a𝑖 𝑗 · (𝑺𝑍2

𝑢 𝑗
W𝑖𝑝 ) (5)

where W𝑖𝑝 ∈ R𝑑×𝑑 is the trainable parameter to transfer the cross-

domain knowledge. When the user has the behaviors in multiple

domains, the message from the same user in a different domain (e.g.

m
𝑢
𝑍
1

𝑖
←𝑢

𝑍
2

𝑖

) will also be propagated. For the target user (e.g. 𝑢
𝑍1

𝑖
),

we concatenate all the information from other domains along the

last dimension to obtain the aggregated messagem′
𝑢
𝑍
1

𝑖

∈ R𝑇×𝑑×𝑁 ,

where 𝑁 is the number of the sampled users. We then use transfor-

mationmatrixW𝐶 ∈ R𝑁×1 andW𝐹 ∈ R𝑑×𝑑 to fuse the information

and get the enhanced sequence representation 𝑺∗𝑍𝑢𝑖 ∈ R
2𝑇×𝑑

con-

catenated with the initial sequence information, where the Squeeze

function reduces the dimension of the matrix. For users in other
domains, information propagation occurs in a similar man-
ner.

𝑺∗𝑍𝑢𝑖 = Concat(𝑺𝑍𝑢𝑖 , Squeeze(m
′
𝑢𝑍
𝑖
W𝐶 ))W𝐹 (6)

4.2 Prediction Layer
We construct a prediction layer to estimate the user’s 𝑢𝑖 preference

towards the target item 𝑣𝑘 as:

𝑟𝑍𝑢𝑖 ,𝑣𝑘 = 𝜎 (MLPs(Mean(𝑺∗𝑍𝑢𝑖 ) | |v
𝑍
𝑘
)) (7)

where MLPs consist of stacked MLP layers that take as input the

concatenation of enhanced sequence embedding and item embed-

ding. The sigmoid function is denoted by 𝜎 , and the Mean function

averages the embedding along the temporal dimension.

4.3 Doubly Robust Estimator for CDSR
In this part, we propose a novel doubly robust estimator, which

generalizes the traditional DR estimator [42] to the cross-domain

sequential scenarios. Suppose R̂𝑍 ∈ RU𝑍 ×V𝑍
be a prediction ma-

trix and R𝑍 ∈ RU𝑍 ×V𝑍
be a true rating matrix, the prediction

inaccuracy P and the doubly robust estimator E∗
DR

are defined as:

P =
1

|Z|
∑︁
𝑍 ∈Z

1

|D𝑍 |

∑︁
𝑢,𝑣∈D𝑍

𝑒𝑍𝑢,𝑣 . (8)

E∗
DR

=
1

|Z|
∑︁
𝑍 ∈Z

1

|D𝑍 |

∑︁
𝑢,𝑣∈D𝑍

(
𝑒𝑍𝑢,𝑣 +

𝑜𝑍𝑢,𝑣𝛿
𝑍
𝑢,𝑣

𝑝𝑍𝑢,𝑣

)
. (9)
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where 𝑒𝑍𝑢,𝑣 = |𝑟𝑍𝑢,𝑣 − 𝑟𝑍𝑢,𝑣 | or 𝑒𝑍𝑢,𝑣 = (𝑟𝑍𝑢,𝑣 − 𝑟𝑍𝑢,𝑣)2 via optional

measure metrics for MAE or MSE. The imputation error 𝑒𝑍𝑢,𝑣 =

𝑔𝜙𝑍 (Mean(𝑺∗𝑍𝑢 ) | |v𝑍 )) is computed by imputation model which

aims to estimate the prediction error 𝑒𝑢,𝑣 on the observed data. We

also learn the propensity 𝑝𝑢,𝑣 = 𝑔𝜓𝑍 (Mean(𝑺∗𝑍𝑢 ) | |v𝑍 )). The impu-

tation model𝑔𝜙𝑍 and the propensity model𝑔𝜓𝑍 are implemented in

a multi-task manner. The bias of the estimator is derived as follows.

Lemma 4.1 (Bias of DR Estimator). Given imputation errors

Ê𝑍 and learned propensities P̂𝑍 for all user-item pairs, the bias of

the DR estimator in the CDSR task is

Bias(E∗𝐷𝑅) =
1

|Z|
∑︁
𝑍 ∈Z


1

|D𝑍 |

������ ∑︁
𝑢,𝑣∈D𝑍

Δ𝑍𝑢,𝑣𝛿
𝑍
𝑢,𝑣

������
 (10)

where the imputation error 𝛿𝑍𝑢,𝑣 and the learned propensities Δ𝑍𝑢,𝑣
is defined as:

Δ𝑍𝑢,𝑣 =
𝑝𝑍𝑢,𝑣 − 𝑝𝑍𝑢,𝑣

𝑝𝑍𝑢,𝑣
, 𝛿𝑍𝑢,𝑣 = 𝑒𝑍𝑢,𝑣 − 𝑒𝑍𝑢,𝑣 (11)

Corollary 4.1 (Double Robustness). The DR estimator for

CDSR is unbiased when either imputed errors Ê𝑍 or learned propen-

sities P̂𝑍 are accurate for all user-item pairs.

Lemma 4.2 (Tail Bound of DR Estimator). Given imputation

errors Ê𝑍 and learned propensities P̂𝑍 , for any prediction matrix

R̂𝑍 , with probability 1-𝜂, the deviation of the DR estimator from its

expectation has the following tail bound in CDSR task.

��E∗𝐷𝑅 − EO [E
∗
𝐷𝑅 ]

�� ≤
√√√√√√ log( 2

𝜂
)

2 |Z | ( ∑
𝑍 ∈Z

|D𝑍 | )2
∑︁
𝑍 ∈Z


1

|D𝑍 |
∑︁

𝑢,𝑣∈D𝑍

(
𝛿𝑍𝑢,𝑣

𝑝𝑍𝑢,𝑣

)
2

(12)

Corollary 4.2 (Tail Bound Comparison). Suppose imputed

errors Ê𝑍 are such that 0 ≤ 𝑒𝑍𝑢,𝑣 ≤ 2𝑒𝑍𝑢,𝑣 for each 𝑢, 𝑣 ∈ D𝑍
, then

for any learned propensities P̂, the tail bound of the proposed esti-

mator will be lower than that of the IPS estimator which is utilized

in IPSCDR [21]. The proof of the lemmas and the corollaries are

demonstrated in Appendix A.

4.4 Joint learning
We apply an alternating training for joint learning. In the first step,

we train the imputation and prediction models on the observed

data by minimizing the proposed hybrid loss in the first step.

L𝑒 (𝜃,𝜙,𝜓 ) =
1

|Z |
∑︁
𝑍 ∈Z

©­« 1

| O𝑍 |
∑︁

𝑢,𝑣∈O𝑍
𝑒𝑢,𝑣 + 𝜆1

∑︁
𝑢,𝑣∈O𝑍

(𝑒𝑢,𝑣 − 𝑒𝑢,𝑣 )2
𝑝𝑢,𝑣

ª®¬
(13)

+ 𝜆2 | |𝜃 | |2𝐹 + 𝜆3 | |𝜙 | |
2

𝐹 + 𝜆4 | |𝜓 | |
2

𝐹 (14)

The Frobenius norm | |.| |2
𝐹
is used to measure the norm of matri-

ces. The hyperparameters 𝜆1,2,3,4 are used to control the trade-off

between regularization and the multiple loss. After training the

model on the observed data, we continue to train our prediction

model 𝜃 on D𝑍
to alleviate the bias.

L𝑟 (𝜃, 𝜙,𝜓 ) =
1

|Z|
∑︁
𝑧∈Z


1

|D𝑧 |
∑︁

𝑢,𝑣∈D𝑧

(
𝑒𝑢,𝑣 +

𝑜𝑢,𝑣 (𝑒𝑢,𝑣 − 𝑒𝑢,𝑣)
𝑝𝑢,𝑣

)
(15)

+ 𝜆5 | |𝜃 | |2𝐹 (16)

The label 𝑦𝑢,𝑣 is unavailable for the data point in the set D𝑍 − O𝑍 .
𝜆5 balances the regularization term. The learning process of our

framework is shown in Appendix B.

5 EXPERIMENTS
5.1 Experimental Setup
To conduct our experiments, we followed the methodology of previ-

ous research [2, 45] and used the Amazon datasets
3
, which consist

of 24 item domains. We selected two pairs of domains, namely

“Cloth-Sport" and “Phone-Elec", and formulated two different tasks.

Besides, we collect a Table 3 summarizes the statistics for each task.

To replicate selection bias in online platforms, we adjusted the non-

overlapping ratio K𝑢 for each dataset, selecting from {25%, 75%}.
Varying the ratio results in different numbers of non-overlapping

3
http://jmcauley.ucsd.edu/data/amazon/index 2014.html
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Table 1: Experimental results (%) on the bi-directional Cloth-Sport and Phone-Elec CDSR scenario with different K𝑢 .

Methods

Cloth-domain recommendation Sport-domain recommendation Phone-domain recommendation Elec-domain recommendation

K𝑢 =25% K𝑢 =75% K𝑢 =25% K𝑢 =75% K𝑢 =25% K𝑢 =75% K𝑢 =25% K𝑢 =75%

NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10

BERT4Rec [38] 1.42±0.13 2.96±0.15 2.28±0.19 4.43±0.46 2.96±0.25 5.60±0.34 4.19±0.18 7.77±0.24 6.13±0.16 10.87±0.24 6.20±0.17 11.07±0.47 8.24±0.22 13.05±0.33 10.58±0.07 17.28±0.05
GRU4Rec [12] 2.03±0.23 4.19±0.35 3.23±0.15 6.18±0.37 3.63±0.22 7.35±0.47 4.85±0.16 9.43±0.20 6.99±0.23 12.98±0.39 6.98±0.18 12.90±0.38 10.11±0.12 16.77±0.23 11.41±0.08 19.00±0.12
SASRec [17] 2.00±0.13 4.26±0.23 3.34±0.18 6.66±0.38 3.69±0.32 7.46±0.55 4.96±0.30 9.69±0.38 7.19±0.19 13.32±0.30 7.14±0.26 13.34±0.34 10.56±0.18 17.77±0.21 11.64±0.04 19.67±0.18

STAR [35] 1.97±0.27 4.19±0.39 3.37±0.15 6.54±0.28 3.40±0.29 7.10±0.51 4.77±0.18 9.29±0.15 6.96±0.24 13.30±0.45 7.13±0.18 13.71±0.51 9.72±0.17 16.38±0.26 11.18±0.13 19.00±0.29
MAMDR [25] 2.11±0.09 4.25±0.17 3.44±0.15 6.60±0.15 3.53±0.44 7.21±0.24 4.84±0.14 9.33±0.42 7.01±0.22 13.38±0.42 7.19±0.19 13.81±0.20 9.79±0.31 16.47±0.39 11.24±0.47 19.08±0.25
SSCDR [16] 2.02±0.18 4.21±0.36 3.42±0.24 6.57±0.17 3.45±0.24 7.14±0.40 4.81±0.29 9.31±0.57 6.99±0.39 13.35±0.45 7.21±0.35 13.83±0.30 9.75±0.27 16.45±0.27 11.27±0.31 19.13±0.33

Pi-Net [27] 1.84±0.26 3.82±0.38 2.77±0.20 5.56±0.32 3.37±0.17 7.05±0.22 4.56±0.25 8.81±0.34 7.02±0.26 12.68±0.50 7.11±0.26 12.95±0.36 10.00±0.11 16.33±0.28 11.64±0.06 19.34±0.26
DASL [19] 2.11±0.29 4.56±0.43 3.32±0.17 6.62±0.29 3.96±0.16 8.11±0.37 4.81±0.39 9.71±0.51 7.10±0.15 13.29±0.17 7.22±0.13 13.22±0.17 10.35±0.33 17.15±0.57 11.72±0.07 19.52±0.18
C
2
DSR [2] 2.27±0.18 4.73±0.35 3.31±0.07 6.62±0.24 3.74±0.26 7.99±0.42 5.18±0.10 10.31±0.07 7.54±0.15 14.04±0.23 7.30±0.19 13.96±0.44 10.71±0.13 17.98±0.10 11.74±0.03 20.04±0.21

DCRec [47] 2.22±0.14 4.37±0.12 3.49±0.08 6.51±0.12 3.85±0.14 7.72±0.27 5.21±0.15 10.08±0.26 7.18±0.08 13.58±0.13 7.15±0.07 13.21±0.25 10.48±0.14 17.84±0.22 11.79±0.08 20.01±0.09
BERT4Rec [38] + CaseQ [46] 2.24±0.16 4.41±0.13 3.45±0.07 6.48±0.13 3.82±0.15 7.69±0.29 5.28±0.16 10.04±0.27 7.25±0.07 13.52±0.14 7.19±0.06 13.33±0.26 10.56±0.13 17.77±0.23 11.88±0.07 19.98±0.10
GRU4Rec [12] + CaseQ [46] 2.20±0.15 4.50±0.25 3.58±0.09 6.57±0.19 3.98±0.18 7.76±0.46 5.30±0.14 10.08±0.18 7.28±0.18 13.34±0.29 7.38±0.17 13.52±0.28 10.59±0.15 17.88±0.23 11.98±0.07 20.04±0.14
SASRec [17] + CaseQ [46] 2.23±0.23 4.46±0.12 3.51±0.07 6.56±0.26 3.87±0.14 7.75±0.46 5.32±0.16 10.21±0.36 7.31±0.12 13.47±0.23 7.37±0.11 13.49±0.15 10.60±0.12 17.77±0.16 11.93±0.06 19.98±0.14

BERT4Rec [38] + IPSCDR [21] 1.95±0.11 3.96±0.20 2.82±0.31 5.55±0.73 3.65±0.22 7.06±0.33 4.93±0.29 9.46±0.21 7.29±0.19 13.20±0.32 7.47±0.33 13.46±0.67 9.71±0.24 15.75±0.30 11.94±0.15 19.66±0.20
GRU4Rec [12] + IPSCDR [21] 2.53±0.13 4.93±0.44 3.79±0.18 7.11±0.42 4.24±0.28 8.50±0.36 5.64±0.16 10.60±0.20 7.58±0.22 13.90±0.49 7.84±0.26 14.16±0.54 10.69±0.07 17.78±0.12 12.18±0.10 20.33±0.17
SASRec [17] + IPSCDR [21] 2.48±0.10 4.92±0.22 3.67±0.08 6.82±0.22 4.10±0.26 8.13±0.46 5.55±0.15 10.59±0.26 7.61±0.15 14.05±0.15 7.95±0.14 14.27±0.19 10.80±0.12 18.03±0.21 12.26±0.12 20.36±0.32

BERT4Rec [38] +MIM 1.80±0.23 3.68±0.41 2.24±0.13 4.48±0.20 2.83±0.18 5.45±0.33 4.11±0.31 7.79±0.47 6.83±0.13 11.81±0.25 6.84±0.14 12.11±0.34 8.41±0.13 13.38±0.16 11.23±0.17 18.39±0.34
GRU4Rec [12] + MIM 2.58±0.07 4.88±0.09 3.63±0.13 6.61±0.30 4.47±0.30 8.50±0.40 5.62±0.18 10.58±0.25 7.88±0.23 14.31±0.34 7.75±0.32 14.39±0.30 11.06±0.17 18.18±0.25 12.21±0.10 20.32±0.17
SASRec [17] +MIM 2.67±0.24 5.11±0.36 3.88±0.24 7.03±0.45 4.48±0.25 8.74±0.30 5.66±0.18 10.58±0.26 7.99±0.17 14.77±0.13 7.84±0.18 14.36±0.33 11.31±0.11 18.69±0.14 12.32±0.14 20.67±0.30

BERT4Rec [38] + AMID 2.99±0.07 5.70±0.13 3.79±0.15 7.09±0.32 4.73±0.29 9.30±0.41 5.70±0.12 10.63±0.36 7.95±0.23 14.49±0.36 8.15±0.33 14.85±0.28 11.26±0.07 18.58±0.27 12.16±0.09 20.08±0.31
GRU4Rec [12] + AMID 3.10±0.17 5.95±0.16 3.94±0.15 7.30±0.30 4.89±0.10 9.42±0.28 5.90±0.17 11.01±0.17 8.33±0.09* 15.49±0.50* 8.34±0.21* 15.29±0.29* 11.74±0.07* 19.50±0.08* 12.53±0.11* 20.85±0.20*
SASRec [17] + AMID 3.20±0.22* 6.14±0.33* 4.19±0.10* 7.62±0.20* 4.97±0.15* 9.48±0.22* 5.96±0.14* 11.04±0.26* 8.20±0.10 14.99±0.16 8.32±0.20 14.96±0.15 11.71±0.23 19.28±0.23 12.52±0.13 20.79±0.20

Improvement(%) 26.48 24.54 10.55 7.17 17.22 11.53 5.67 4.15 9.46 10.25 4.91 7.15 8.70 8.15 2.20 2.41

*
"*" denotes statistically significant improvements (𝑝 < 0.05), as determined by a paired t-test comparison with the second best result in each case.

Table 2: Experimental results (%) on the bi-directional Loan-Fund and Loan-Account CDSR scenario with different K𝑢 .

Methods

Loan-domain recommendation Fund-domain recommendation Loan-domain recommendation Account-domain recommendation

K𝑢 =25% K𝑢 =75% K𝑢 =25% K𝑢 =75% K𝑢 =25% K𝑢 =75% K𝑢 =25% K𝑢 =75%

NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10

BERT4Rec [38] 33.12±0.26 41.19±0.29 35.76±0.38 45.55±0.36 21.73±0.58 32.45±0.86 21.56±0.79 34.13±0.96 27.49±0.21 37.15±0.25 27.89±0.70 40.03±0.22 32.84±0.50 43.16±0.33 34.05±0.49 45.49±0.15
GRU4Rec [12] 35.01±0.19 44.15±0.27 36.04±0.19 46.25±0.13 25.94±0.51 38.26±0.24 26.55±0.32 38.57±0.27 29.01±0.68 40.48±0.22 29.01±0.51 41.43±0.16 34.17±0.28 45.32±0.18 34.28±0.15 46.07±0.22
SASRec [17] 35.02±0.36 44.03±0.44 36.06±0.18 46.24±0.15 26.07±0.34 38.47±0.58 27.29±0.55 39.68±0.38 29.47±0.41 40.42±0.25 29.81±0.85 41.15±0.45 34.16±0.59 45.33±0.33 34.22±0.32 46.09±0.14

STAR [35] 34.35±0.17 43.07±0.28 35.64±0.19 45.75±0.33 26.17±0.52 38.15±0.37 26.71±0.30 38.70±0.36 29.06±0.49 39.58±0.24 29.06±0.36 40.97±0.20 34.34±0.45 44.77±0.13 34.35±0.21 45.89±0.11
MAMDR [25] 34.38±0.14 43.15±0.26 35.72±0.17 45.88±0.31 26.20±0.49 38.28±0.35 26.80±0.28 38.78±0.32 29.08±0.46 39.66±0.22 29.12±0.39 41.06±0.23 34.39±0.30 44.80±0.21 34.46±0.15 46.03±0.14
SSCDR [16] 34.41±0.11 43.23±0.23 35.62±0.10 45.80±0.32 26.27±0.40 38.19±0.54 26.82±0.41 38.91±0.42 29.12±0.43 39.70±0.33 29.11±0.40 41.00±0.51 34.21±0.25 44.72±0.60 34.37±0.55 46.16±0.34

Pi-Net [27] 34.76±0.33 43.63±0.36 36.01±0.22 45.91±0.18 24.66±1.48 37.23±0.55 24.37±0.72 37.58±0.66 28.98±0.34 39.86±0.47 29.09±0.51 41.24±0.30 34.36±0.24 45.26±0.12 34.33±0.40 46.15±0.20
DASL [19] 35.16±0.35 44.34±0.42 35.96±0.17 46.22±0.08 26.44±0.57 38.35±0.52 25.55±0.51 38.59±0.39 29.09±0.44 40.31±0.51 29.16±0.36 41.4s3±0.25 34.69±0.31 45.36±0.31 34.55±0.13 46.07±0.22
C
2
DSR [2] 34.78±0.44 43.52±0.46 35.99±0.27 46.15±0.21 23.54±0.37 36.34±0.73 26.57±0.39 38.42±0.41 28.48±0.23 40.18±0.39 29.08±0.31 41.45±0.29 33.54±0.27 45.37±0.17 34.02±0.39 46.42±0.17

DCRec [47] 33.43±0.21 41.97±0.57 35.44±0.35 45.58±0.41 21.21±0.79 34.73±0.39 24.41±0.40 37.22±0.51 27.51±0.39 38.41±0.43 28.60±0.48 40.65±0.58 32.99±0.39 43.89±0.19 33.81±0.21 45.69±0.31
BERT4Rec [38] + CaseQ [46] 35.29±0.16 44.25±0.20 35.81±0.09 45.96±0.14 26.26±0.43 38.54±0.26 27.38±0.19 39.20±0.22 29.49±0.18 40.46±0.09 30.37±0.11 41.32±0.14 34.77±0.13 45.25±0.26 34.62±0.11 46.43±0.08
GRU4Rec [12] + CaseQ [46] 35.35±0.11 44.11±0.20 35.82±0.06 45.94±0.09 26.47±0.51 38.71±0.36 27.35±0.16 39.26±0.14 29.42±0.11 40.47±0.15 30.39±0.19 41.44±0.25 34.77±0.14 45.18±0.28 34.44±0.11 46.39±0.18
SASRec [17] + CaseQ [46] 35.37±0.14 44.21±0.20 35.83±0.10 45.89±0.18 26.44±0.30 38.53±0.25 27.48±0.12 39.22±0.13 29.41±0.12 40.59±0.19 30.35±0.18 41.39±0.16 34.84±0.12 45.47±0.15 34.56±0.18 46.34±0.20

BERT4Rec [38] + IPSCDR [21] 33.56±0.34 42.05±0.47 35.56±0.29 45.70±0.25 21.39±0.86 34.82±0.49 24.57±0.33 37.34±0.34 27.68±0.31 38.35±0.41 28.58±0.44 40.63±0.41 32.92±0.46 43.96±0.25 33.76±0.25 45.67±0.20
GRU4Rec [12] + IPSCDR [21] 34.37±0.16 42.99±0.28 35.79±0.15 46.00±0.15 26.45±0.57 38.43±0.39 26.95±0.62 39.14±0.36 28.76±0.48 40.04±0.48 28.64±0.29 41.07±0.17 33.92±0.50 45.27±0.16 34.21±0.20 46.15±0.13
SASRec [17] + IPSCDR [21] 34.42±0.35 43.08±0.37 36.03±0.25 46.43±0.07 26.24±0.31 38.65±0.29 28.05±0.28 39.89±0.17 29.12±0.47 40.07±0.20 30.08±0.24 41.40±0.07 33.83±0.26 45.10±0.26 34.27±0.12 46.41±0.12

BERT4Rec [38] + MIM 33.47±0.45 41.45±0.49 36.10±0.24 46.02±0.24 21.81±0.95 33.42±0.90 22.71±1.12 35.23±0.58 27.76±0.50 37.92±0.25 28.97±0.68 40.83±0.11 33.30±0.48 43.81±0.43 34.25±0.48 45.73±0.15
GRU4Rec [12] +MIM 35.50±0.12 44.59±0.18 36.42±0.21 46.56±0.10 26.48±0.91 38.54±0.51 26.97±0.72 39.13±0.48 29.28±0.64 40.74±0.22 29.28±0.48 41.82±0.17 34.96±0.40 46.01±0.19 34.86±0.44 46.51±0.19
SASRec [17] + MIM 35.40±0.31 44.31±0.47 36.48±0.16 46.54±0.08 26.73±0.36 39.00±0.12 28.15±0.36 40.30±0.38 29.98±0.46 40.66±0.24 30.54±0.49 41.48±0.34 34.61±0.32 45.75±0.08 34.64±0.55 46.47±0.17

BERT4Rec [38] + AMID 36.55±0.26 46.57±0.15 36.79±0.29* 46.88±0.08* 27.43±0.35 38.79±0.94 27.10±1.28 38.82±1.03 30.69±0.98 41.42±0.40 30.21±1.37 41.42±0.22 35.57±0.95 46.60±0.20 35.17±0.62 46.46±0.08
GRU4Rec [12] + AMID 36.53±0.11 46.54±0.10 36.56±0.11 46.85±0.13 27.52±0.41 39.38±0.26 27.05±0.47 39.36±0.38 30.78±0.51 41.76±0.31 30.62±0.52 42.08±0.16 35.66±0.22 46.71±0.08 35.38±0.47 46.64±0.04
SASRec [17] + AMID 36.76±0.09* 46.73±0.10* 36.58±0.12 46.76±0.11 27.79±0.49* 39.92±0.47* 28.48±0.51* 40.54±0.20* 31.64±0.46* 42.01±0.17* 32.24±0.39* 42.45±0.24* 36.30±0.21* 46.86±0.18* 36.66±0.11* 47.13±0.17*

Improvement(%) 3.93 5.60 2.11 0.97 4.99 3.13 1.53 1.63 7.29 3.50 6.09 2.44 4.19 3.06 6.08 1.51

users across domains, with a higher K𝑢 indicating a less biased

environment. Following previous CDSR literature [2, 19, 27], we

employed the leave-one-out technique to evaluate the performance

of our developed model. In order to ensure an unbiased evaluation,

we adopt the methodology employed in previous works [18, 51],

wherein we randomly select 999 negative items (i.e., items that the

user has not interacted with) and combine them with 1 positive

item (i.e., a ground-truth interaction) to form our recommendation

candidates for the ranking test. We evaluated our model using the

normalized discounted cumulative gain (NDCG@10) and hit rate

(HR@10) metrics, which are common in CDSR literature. For all

comparative models, we ran each experiment five times and re-

ported the results by mean and variance. Further details about our

experimental setup are in Appendix C.1.

Table 3: Statistics on the Amazon datasets.

Dataset Users Items Ratings #Overlap Avg.length Density

Amazon

Cloth 27,519 9,481 161,010

16,337

4.39 0.06%

Sport 107,984 40,460 851,553 7.58 0.02%

Amazon

Phone 41,829 17,943 194,121

7,857

4.53 0.03%

Elec 27,328 12,655 170,426 6.19 0.05%

MYbank

Loan 39,557,003 61,934 227,079,281

29,476,198

1.82 0.01%

Fund 48,439,382 13,927 133,836,385 2.57 0.02%

MYbank

Loan 39,557,003 61,934 227,079,281

37,821,145

1.82 0.01%

Account 92,692,975 21,599 278,948,331 2.31 0.01%

#Overlap: the number of overlapping users across domains.
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5.2 Performance Comparisons
Compared Methods. We compare our method with three classes

of baselines: (1) Single-domain sequential recommendation meth-

ods, i.e., BERT4Rec [38], GRU4Rec [12] and SASRec [17]. (2) Con-

ventional Cross-domain recommendation methods, i.e., STAR [35],

MAMDR [25], SSCDR [16]. (3) Cross-domain sequential recom-

mendation methods, i.e., Pi-Net [27], DASL [19] and C
2
DSR [2]. (4)

Debiased recommendation methods, i.e., DCRec [47], CaseQ [46]

and IPSCDR [21]. A detailed introduction to these baselines can

be found in Appendix C.2. As shown in Table 4, our AMID is the

most versatile and universal approach which considers propagat-

ing cross-domain knowledge for both overlapping users and non-

overlapping users and can combine with most off-the-shelf SDSR

backbone models. Regarding the debiasing frameworks [46, 47],

our AMID approach can simultaneously alleviate multiple types of

bias, especially selection bias, from multiple domains. Additionally,

our proposed doubly robust estimator for CDSR has a low variance,

which is different from the IPS estimator from IPSCDR [21] with

high variance [8].

Table 4: Comparisons with existing baselines along different dimensions.

Method Cross-domain Scenario Debiasing Framework
Fully Partially Non-overlap Universal Domain Variance Universal

Pi-Net [27] ✓ - - - - - -

DASL [19] ✓ ✓ - - - - -

C
2
DSR [2] ✓ ✓ - - - - -

STAR [35] ✓ ✓ - - - - -

MAMDR [25] ✓ ✓ - ✓ - - -

SSCDR [16] ✓ ✓ - - - - -

DCRec [47] - - - - Single - -

CaseQ [46] - - - - Single - ✓
IPSCDR [21] ✓ ✓ - ✓ Multiple High ✓
AMID(Ours) ✓ ✓ ✓ ✓ Multiple Low ✓

Quantitative Results. Tables 1–2 present the quantitative com-

parison results on two CDSR tasks with different selection bias

magnitudes. A larger K𝑢 indicates a less biased scenario. The best

results of each column are highlighted in boldface, while the second-

best results are underlined. As expected, the performance of all

models increases with increasing K𝑢 , since more biased scenarios

may make it harder for models to converge. Our analysis yields

the following insightful findings: (1) In most cases, the debiasing

baselines, which eliminate the biases produced in domains, per-

form better than the CDSR baselines in more biased scenarios (i.e.

K𝑢 = 25%). (2) In a more biased scenario with smaller K𝑢 , our
framework achieves more significant performance compared to the

second-best models, indicating that our AMID effectively alleviates

the bias. (3) Benefitting from the low variance in our estimator, our

AMID is more unbiased and performs better than IPSCDR.

Model Efficiency. All comparative models are trained and tested

on the same machine, which has a single NVIDIA GeForce A100

with 80GB memory and an Intel Core i7-8700K CPU with 64G RAM.

Notably, the number of parameters for typical C
2
DSR, SASRec +

CaseQ, SASRec + IPSCDR, and SASRec + AMID were of the same

order of magnitude, denoted as 0.276M, 0.210M, 0.192M, and 0.193M.

The training/testing efficiencies of C
2
DSR, SASRec +CaseQ, SASRec

+ IPSCDR, and SASRec + AMID in processing one batch of samples

are 0.130s/0.049s, 0.083s/0.027s, 0.143s/0.045s, and 0.111s/0.032s,

respectively. Therefore, our AMID achieves superior performance

enhancements in open-world CDSR scenarios while maintaining

promising time efficiency.

Ablation Study. To better evaluate the effectiveness of each key

component in our approach, we conducted an ablation study by

comparing it with a variant that only utilized MIM. Notably, we

did not include a variant that only employed DRE, as our approach

would degrade into an SDSR method in the absence of MIM. How-

ever, our variant equipped with only the multi-interest information

module (MIM) still achieves state-of-the-art results in most cases.

This is because our proposed module can effectively propagate

potential interest information among both overlapping and non-

overlapping users.

5.3 Online A/B Test
We conduct large-scale online A/B tests on open-world financial

CDSR scenarios with partially overlapping users. In the online

serving platform, a large number of users participate in one or

multiple financial domains, such as purchasing funds, mortgage

loans, or discounting bills. Specifically, we selected three popular

domains - “Loan," “Fund," and “Account" - from the serving platform,

with partially overlapping users, as the targets of our online testing.

We calculate the average statistics of online traffic logs for one day

and present them in Table 5. For the control group, we adopt the

current online solution for recommending themes to users, which

is a cross-domain sequential recommendation method that utilizes

noisy auxiliary behaviors directly. For the experiment group, we

equip our method with a mature SDSR approach that has achieved

remarkable success in the business. We evaluate the results based

on three metrics: the number of users who have been exposed to

the service, the number of users who have clicked inside the service,

and the conversion rate of the service (denoted by # exposure, #

clk, and CVR, respectively). All of the results are reported as the

lift compared to the control group and presented in Table 6. In a

fourteen-day online A/B test, our method improved the average

exposure by 9.65%, the click rate by 5.69%, and the CVR by 1.32% in

the three domains.

Table 5: Average statistics of online traffic logs for 1 day.

Dataset Users Items Ratings #Overlap Density

Loan 14,345,278 41,156 683,125,459

1,109,493

0.12%

Fund 1,219,254 3,104 1,194,405 0.03%

Account 3,461,290 8,925 9,147,610 0.03%

Table 6: Online A/B testing results from 9.15 to 9.28, 2023

# exposure # clk CVR

Loan Domain +9.89% +5.27% +1.42%

Fund Domain +7.32% +4.94% +0.98%

Account Domain +11.73% +6.85% +1.57%

5.4 Hyperparameter Analysis
The threshold 𝑘 for the group.We conduct ablation experiments

by varying the threshold 𝑘 ∈ {0.5, 0.6, 0.7, 0.8, 0.9} to investigate

the impact of the threshold 𝑘 on constructing interest groups in

the multi-interest information module. Our results show that a
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larger threshold 𝑘 (0.5→ 0.7) leads to better performance, as more

related interest information can be transferred. However, when the

threshold 𝑘 is increased beyond 0.7, the model’s performance drops

due to noise interference and redundant information. Therefore, to

achieve superior performance, we set the threshold 𝑘 to 0.7.

The number of the sampled users. To explore the impact of the

number of sampled users on the multi-interest information module,

we conduct ablation experiments varying the number of sampled

users from 128 to 1024. Our findings suggest that an increase in

the number of sampled users initially improves the recommenda-

tion performance, but it eventually declines when the matching

neighbors reach 1024. This observation indicates that having too

few sampled users would provide insufficient transferred informa-

tion, while too many sampled users could introduce interference

noise and compromise the model’s performance. In practice, we

select the number of sampled users to be 512 as it results in the

best performance for our model. More analysis and results can be

found in Appendix C.3.
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Figure 6: Impact of the threshold 𝑘 and the number of the sampled users.

6 RELATEDWORK
Conventional cross-domain recommendation has emerged as a

promising solution for mitigating data sparsity and cold-start issues

encountered in single-domain recommendation systems. Early CDR

studies [14, 23] have primarily focused on developing approaches

that transfer cross-domain knowledge by relying on overlapping

users. However, real-world CDR scenarios often do not satisfy strict

overlapping requirements and exhibit only a small fraction of com-

mon users across domains. To tackle this challenge, recent methods

[25, 35]) have proposed a network structure comprising shared and

domain-specific networks to effectively capture the unique char-

acteristics and commonalities across all domains simultaneously.

While these CDR approaches incorporate valuable information

from relevant domains to enhance performance in the target do-

main, they still encounter difficulties in addressing the contextual

sequential dependencies within users’ interaction history, which

are essential for comprehensive modeling in CDSR tasks.

Cross-domain sequential recommendation is designed to im-

prove recommendations for SR tasks that involve items from multi-

ple domains. Pi-Net [27] and PSJNet [39] devise the gating mech-

anisms to transfer the information among the overlapping users.

Similarly, DASL [19] designs a dual-attention mechanism to bidirec-

tionally transfer user preferences within the overlapping users. The

interaction bipartite graph [9, 26] is constructed to propagate the

information among users. C
2
DSR [2] introduces a contrastive ob-

jective combined with GNNs to enhance the representation of user

preferences. However, these works construct their cross-domain

unit relying on the overlapping users under closed-world assump-

tions, leading to worse performance in the open-world case.

Debias for recommender systems are proposed to alleviate the

widespread bias in the user behavior observed data, including the

selection bias [5, 10], position bias [13, 15], exposure bias [22, 33]

and popularity bias [1, 46]. To address selection bias in RS, two stan-

dard approaches have been proposed: the error-imputation-based

(EIB) approach and the inverse-propensity-scoring (IPS) approach.

The EIB approach [37] estimates the prediction error for missing

ratings, while the IPS approach [34, 43] reduces selection bias by

optimizing the risk function with the inverse propensity score. Re-

cently, [21] proposes an IPS estimator for cross-domain scenarios

with multiple restrictions. However, EIB methods may have a large

bias due to imputation inaccuracy [7], and propensity-based meth-

ods may suffer from high variance [32], leading to non-optimal

results. [40] propose a self-normalized inverse propensity scoring

estimator to reduce the variance of the IPS estimator. To design a

less biased estimator, the doubly robust model [42] integrates the

imputation model with the propensity score for the single-domain

recommendation.

7 CONCLUSIONS AND DISCUSSIONS
In this paper, we conduct a thorough study of existing CDSR meth-

ods under open-world assumptions. To overcome the challenges,

we devise an adaptive multi-interest debiasing framework that in-

cludes a multi-interest information module (MIM) and a doubly

robust estimator (DRE) for CDSR. MIM utilizes the user behaviors

to build the interest groups and propagate the information among

both overlapping and non-overlapping users, while DRE introduces

a cross-domain debiasing estimator to reduce the estimation bias in

an open-world environment. Besides, we collect a financial industry

dataset from Alipay, which includes over one billion users. Exten-

sive offline and online experiments show the remarkable efficacy of

our approach, as it outperforms existing methods including CDSR

methods and debiasing methods in various evaluation metrics.

Limitations. Our MIM constructs interest groups between pairs

of domains, which share cross-domain knowledge as widely as

possible. In the real-world platform, commercial activities are usu-

ally composed of multiple domains. However, constructing all the

groups for |Z| domains has a time complexity of O(|Z|2), which
can become quite time-consuming as the number of domains in-

creases. Therefore, it is important to develop more efficient methods

for constructing groups among multiple domains in future work.
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A APPENDIX A: PROOFS OF LEMMAS AND
THEOREMS

Lemma 4.1 (Bias of DR Estimator). Given imputation errors Ê𝑍

and learned propensities P̂𝑍 for all user-item pairs, the bias of the

DR estimator in the CDSR task is

Bias(E∗𝐷𝑅) =
1

|Z|
∑︁
𝑍 ∈Z


1

|D𝑍 |

������ ∑︁
𝑢,𝑣∈D𝑍

Δ𝑍𝑢,𝑣𝛿
𝑍
𝑢,𝑣

������
 (17)

Proof. According to the definition of the bias, we can derive

the bias of the DR estimator for CDSR as follows.

Bias(E∗𝐷𝑅) (18)

= |P − EO [E∗𝐷𝑅] |, (19)

=

������ 1

|Z|
∑︁
𝑍 ∈Z


1

|D𝑍 |

∑︁
𝑢,𝑣∈D𝑍

(
𝑒𝑍𝑢,𝑣 − 𝑒𝑍𝑢,𝑣 −

𝑝𝑍𝑢,𝑣𝛿
𝑍
𝑢,𝑣

𝑝𝑍𝑢,𝑣

)
������ , (20)

=

������ 1

|Z|
∑︁
𝑍 ∈Z


1

|D𝑍 |

∑︁
𝑢,𝑣∈D𝑍

(
𝛿𝑍𝑢,𝑣 −

𝑝𝑍𝑢,𝑣𝛿
𝑍
𝑢,𝑣

𝑝𝑍𝑢,𝑣

)
������ , (21)

=

������ 1

|Z|
∑︁
𝑍 ∈Z


1

|D𝑍 |

∑︁
𝑢,𝑣∈D𝑍

(
(𝑝𝑍𝑢,𝑣 − 𝑝𝑍𝑢,𝑣)𝛿𝑍𝑢,𝑣

𝑝𝑍𝑢,𝑣

)
������ , (22)

=
1

|Z|
∑︁
𝑍 ∈Z


1

|D𝑍 |

������ ∑︁
𝑢,𝑣∈D𝑍

Δ𝑍𝑢,𝑣𝛿
𝑍
𝑢,𝑣

������
 , (23)

(24)

which completes the proof. Following the previous works [36, 42],

the imputation error 𝛿𝑍𝑢,𝑣 and the learned propensities Δ𝑍𝑢,𝑣 is de-
fined as:

𝛿𝑍𝑢,𝑣 = 𝑒𝑍𝑢,𝑣 − 𝑒𝑍𝑢,𝑣, Δ𝑍𝑢,𝑣 =
𝑝𝑍𝑢,𝑣 − 𝑝𝑍𝑢,𝑣

𝑝𝑍𝑢,𝑣
(25)

□

Corollary 4.1 (Double Robustness). The DR estimator for

CDSR is unbiased when either imputed errors Ê𝑍 or learned propen-

sities P̂𝑍 are accurate for all user-item pairs.

Proof. In one respect, when the imputation error is accurate,

we have 𝛿𝑍𝑢,𝑣 = 0 for 𝑢, 𝑣 ∈ D𝑍
. In this case, the bias of the DR

estimator for CDSR is computed by

Bias(E∗𝐷𝑅) (26)

=
1

|Z|
∑︁
𝑍 ∈Z


1

|D𝑍 |

������ ∑︁
𝑢,𝑣∈D𝑍

Δ𝑍𝑢,𝑣𝛿
𝑍
𝑢,𝑣

������
 , (27)

=
1

|Z|
∑︁
𝑍 ∈Z


1

|D𝑍 |

������ ∑︁
𝑢,𝑣∈D𝑍

Δ𝑍𝑢,𝑣 · 0

������
 , (28)

= 0. (29)

In the other respect, when the learned propensities are accurate,

we have Δ𝑍𝑢,𝑣 = 0 for 𝑢, 𝑣 ∈ D𝑍
. In such case, we can compute the

bias of the DR estimator for CDSR by

Bias(E∗𝐷𝑅) (30)

=
1

|Z|
∑︁
𝑍 ∈Z


1

|D𝑍 |

������ ∑︁
𝑢,𝑣∈D𝑍

Δ𝑍𝑢,𝑣𝛿
𝑍
𝑢,𝑣

������
 , (31)

=
1

|Z|
∑︁
𝑍 ∈Z


1

|D𝑍 |

������ ∑︁
𝑢,𝑣∈D𝑍

0 · 𝛿𝑍𝑢,𝑣

������
 , (32)

= 0. (33)

When either imputed errors or learned propensities are accurate, the

bias of the proposed estimator is accurate. The proof is completed.

□

Lemma 4.2 (Tail Bound of DR Estimator). Given imputation

errors Ê𝑍 and learned propensities P̂𝑍 , for any prediction matrix

R̂𝑍 , with probability 1-𝜂, the deviation of the DR estimator from its

expectation has the following tail bound in CDSR task.��E∗𝐷𝑅 − EO [E
∗
𝐷𝑅]

�� ≤ (34)√√√√√√ log( 2𝜂 )
2|Z|( ∑

𝑍 ∈Z
|D𝑍 |)2

∑︁
𝑍 ∈Z


1

|D𝑍 |

∑︁
𝑢,𝑣∈D𝑍

(
𝛿𝑍𝑢,𝑣

𝑝𝑍𝑢,𝑣

)
2 (35)

Proof. To avoid cluttering the notation, we introduce a random

variable X𝑍𝑢,𝑣 denoted by

X𝑍𝑢,𝑣 = 𝑒𝑍𝑢,𝑣 +
𝑜𝑍𝑢,𝑣𝛿

𝑍
𝑢,𝑣

𝑝𝑍𝑢,𝑣
(36)

Considering the observation indicator 𝑜𝑍𝑢,𝑣 follows a Bernoulli distri-

bution with probability 𝑝𝑍𝑢,𝑣 , we can obtain the distribution pattern

of the random variable X𝑍𝑢,𝑣 as follows.

𝑃 (X𝑍𝑢,𝑣) =
{

𝑝𝑍𝑢,𝑣 , X𝑍𝑢,𝑣 = 𝑒𝑍𝑢,𝑣 + 𝜅𝑍𝑢,𝑣
1 − 𝑝𝑍𝑢,𝑣 , X𝑍𝑢,𝑣 = 𝑒𝑍𝑢,𝑣

(37)

where 𝜅𝑍𝑢,𝑣 is given by

𝜅𝑍𝑢,𝑣 =
𝑒𝑍𝑢,𝑣 − 𝑒𝑍𝑢,𝑣

𝑝𝑍𝑢,𝑣
=
𝛿𝑍𝑢,𝑣

𝑝𝑍𝑢,𝑣
(38)
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Determining the interval [𝑒𝑍𝑢,𝑣, 𝑒𝑍𝑢,𝑣 + 𝜅𝑍𝑢,𝑣] for the random variable

𝜅𝑍𝑢,𝑣 of size 𝜅
𝑍
𝑢,𝑣 with probability 1 is a simple process. This is facil-

itated by the assumption that the observation indicators 𝑜𝑍𝑢,𝑣 are

independent random variables, which ensures that the random vari-

ables 𝜅𝑍𝑢,𝑣 are also independent. The general form of Hoeffding’s

inequality for bounded random variables [41] can be expressed as

39. Let 𝑋1, ..., 𝑋𝑁 be independent random variables. For each 𝑖 , we

assume that 𝑋𝑖 ∈ [𝑎𝑖 , 𝑏𝑖 ]. For any 𝜖 > 0, we have the inequality

𝑃

(����� 𝑁∑︁
𝑖=1

𝑋𝑖 −
𝑁∑︁
𝑖=1

E(𝑋𝑖 )
����� ≥ 𝜖

)
≤ 2 exp

©­­­­«
−2𝜖2𝑁 2

𝑁∑
𝑖=1
(𝑏𝑖 − 𝑎𝑖 )2

ª®®®®¬
(39)

According to Hoeffding’s inequality, for any 𝜖 > 0, we have the

following inequality

𝑃
©­«
������ 1

|Z |
∑︁
𝑍 ∈Z

1

|D𝑍 |


∑︁

𝑢,𝑣∈D𝑍

X𝑍𝑢,𝑣

 −
1

|Z |
∑︁
𝑍 ∈Z

1

|D𝑍 |


∑︁

𝑢,𝑣∈D𝑍

EO (X𝑍𝑢,𝑣 )

������ ≥ 𝜖

ª®¬
(40)

≤ 2 exp

©­­­­«
−2𝜖2

( ∑
𝑍 ∈Z

��𝐷𝑍
��)2

1

|Z|
∑

𝑍 ∈Z
1

|D𝑍 |
∑

𝑢,𝑣∈D𝑍

(𝜅𝑍𝑢,𝑣 )2

ª®®®®¬
(41)

To solve for 𝜖 , one can set the right side of the inequality to be 𝜂

and proceed with the following steps.

𝜂 = 2 exp

©­­­­­­«
−2𝜖2

( ∑
𝑍 ∈Z

��𝐷𝑍
��)2

1

|Z |
∑

𝑍 ∈Z
1

|D𝑍 |
∑

𝑢,𝑣∈D𝑍

(𝜅𝑍𝑢,𝑣)2

ª®®®®®®¬
(42)

⇐⇒ log(𝜂
2

) =
−2𝜖2

( ∑
𝑍 ∈Z

��𝐷𝑍
��)2

1

|Z |
∑

𝑍 ∈Z
1

|D𝑍 |
∑

𝑢,𝑣∈D𝑍

(𝜅𝑍𝑢,𝑣)2
(43)

⇐⇒ 𝜖 =

√√√√√√ log( 2𝜂 )

2|Z|( ∑
𝑍 ∈Z

��𝐷𝑍
��)2 ∑︁

𝑍 ∈Z


1

|D𝑍 |

∑︁
𝑢,𝑣∈D𝑍

(𝜅𝑍𝑢,𝑣)2
 (44)

⇐⇒ 𝜖 =

√√√√√√ log( 2𝜂 )

2|Z|( ∑
𝑍 ∈Z

��𝐷𝑍
��)2 ∑︁

𝑍 ∈Z


1

|D𝑍 |

∑︁
𝑢,𝑣∈D𝑍

(
𝛿𝑍𝑢,𝑣

𝑝𝑍𝑢,𝑣
)2

 (45)

The proof is completed. □

Corollary 4.2 (Tail Bound Comparison). Suppose imputed

errors Ê𝑍 are such that 0 ≤ 𝑒𝑍𝑢,𝑣 ≤ 2𝑒𝑍𝑢,𝑣 for each𝑢, 𝑣 ∈ D𝑍
, then for

any learned propensities P̂, the tail bound of the proposed estimator

will be lower than that of the IPS estimator which is utilized in

IPSCDR [21].

Proof. We can derive the following inequalities

0 ≤ 𝑒𝑍𝑢,𝑣 ≤ 2𝑒𝑍𝑢,𝑣 for 𝑍 ∈ Z for 𝑢, 𝑣 ∈ D𝑍
(46)

=⇒ 𝑒𝑍𝑢,𝑣 − 𝑒𝑍𝑢,𝑣 ≤ 𝑒𝑍𝑢,𝑣 (47)

=⇒ (𝛿𝑍𝑢,𝑣)2 ≤ (𝑒𝑍𝑢,𝑣)2 (48)

=⇒

√√√(
𝛿𝑍𝑢,𝑣

𝑝𝑍𝑢,𝑣

)
2

≤

√√√(
𝑒𝑍𝑢,𝑣

𝑝𝑍𝑢,𝑣

)
2

(49)

=⇒

√√√√√√ log( 2𝜂 )

2|Z|( ∑
𝑍 ∈Z

��𝐷𝑍
��)2 ∑︁

𝑍 ∈Z


1

|D𝑍 |

∑︁
𝑢,𝑣∈D𝑍

(
𝛿𝑍𝑢,𝑣

𝑝𝑍𝑢,𝑣
)2

 (50)

≤

√√√√√√ log( 2𝜂 )

2|Z|( ∑
𝑍 ∈Z

��𝐷𝑍
��)2 ∑︁

𝑍 ∈Z


1

|D𝑍 |

∑︁
𝑢,𝑣∈D𝑍

(
𝑒𝑍𝑢,𝑣

𝑝𝑍𝑢,𝑣
)2

 (51)

□

In the last inequality, the first row denotes the tail bound of the

DR estimator for CDSR and the second row denotes the tail bound

of the IPS estimator for CDSR [21, 34]. This completes the proof.

B APPENDIX B: METHODOLOGY
Following the previous work [42], we also adopt a joint learning

mechanism for training our model. The optimization procedures

are shown in Alg. 1.

Algorithm 1 The optimization scheme of AMID.

Input: The true ratings R, the learned propensities P̂ from ob-

served data O.
1: for step 𝑞 ∈ {1, ..., 𝑄} do
2: Sample a batch of user-item pairs in multiple domainsZ

from O.
3: Compute the loss function L𝑒 .
4: Update the model parameter 𝜃𝑞+1← 𝜃𝑞 − 𝜂∇𝜃L𝑒 (𝜃, 𝜙,𝜓 )
5: Update the propensities model parameter 𝜙𝑞+1 ← 𝜙𝑞 −

𝜂∇𝜙L𝑒 (𝜃, 𝜙,𝜓 )
6: Update the imputation model parameter 𝜓𝑞+1 ← 𝜓𝑞 −

𝜂∇𝜓L𝑒 (𝜃, 𝜙,𝜓 )
7: end for
8: for step 𝑞 ∈ {1, ..., 𝑄 ′} do
9: Sample a batch of user-item pairs in multiple domainsZ

from D.

10: Compute the loss function L𝑟 .
11: Update the model parameter 𝜃𝑞+1← 𝜃𝑞 − 𝜂′∇𝜃L𝑟 (𝜃, 𝜙,𝜓 )
12: end for

C APPENDIX C: EXPERIMENTS
C.1 Experiment Setup
Evaluation Metrics In each domain, we divided the users into

three sets: 80% for training, 10% for validation, and 10% for testing.

To preprocess the data, items with fewer than 10 interactions and

users with fewer than 5 interactions in their respective domains

were filtered out, following the approach of previous studies [3, 45].
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This ensured that the embeddings learned by the users/items were

representative of their source domain. A non-overlapping ratio K𝑢
was introduced to control the number of non-overlapping users and

simulate different debiased scenarios. For example, in the Amazon

"Cloth-Sport" dataset with K𝑢 = 25%, the number of overlapped

users in the training set was calculated as (27,519 + 107,984 - 16,377

* 2) * 0.25 * 0.8 = 20,549. The same sampling strategy was applied

to the validation set, while the test set was not downsampled. This

sampling strategy can simulate the occurrence of selection bias in

the open-world environment, where the training set mainly consists

of users who are more likely to be selected or exposed, while the

test set covers a wider range of users without careful selection. All

evaluation metrics used in this study indicate better performance

with higher values. Regarding the unseen users in D, we use the

non-overlapping users who were not selected for the observed data

as a substitute for unseen users. We remove the actual ratings for

the unseen users while retaining their sequences.

Parameter Settings To ensure a fair comparison between differ-

ent approaches, we set the same hyper-parameters for all of them.

Specifically, we fixed the embedding dimension to 128, batch size

to 512, learning rate to 0.001, and negative sampling number to 1

for training and 199 for validation and testing. We used the Adam

optimizer to update all parameters. For the comparison baselines,

we adopted the hyper-parameter values reported in the official liter-

ature. In the case of SDSR models combined with our model, we did

not modify the hyper-parameters of the SDSR models. Additionally,

the threshold value to control the group flag 𝑘 is set to 0.7 and the

size of the sampled users is set to the batch size. We set 𝜆1 = 0.01

and 𝜆2,3,4,5 = 1𝑒−4. The learning rate for the first step with loss L𝑒
is 1𝑒−3 and the rate for the second step with loss L𝑟 is 1𝑒−5.

C.2 Compared methods
Single-domain sequential recommendation methods:

BERT4Rec [38] designs a bidirectional self-attention network to
model user behavior sequences. To prevent information leakage and

optimize the training of the bidirectional model, a Cloze objective

is used to predict the randomly masked items in the sequence by

considering both their left and right context. The implementation

of BERT4Rec in PyTorch can be found at the URL
4
.

GRU4Rec [12] tackles the issue of modeling sparse sequential

data while also adapting RNN models to the recommender system.

To achieve this, the authors propose a new ranking loss function

that is specifically designed for training these models. The imple-

mentation of GRU4Rec in PyTorch can be found at the URL
5
.

SASRec [17] is a self-attention based sequential model that ad-

dresses the challenge of balancing model parsimony and complex-

ity in recommendation systems. By using an attention mechanism,

SASRec identifies relevant items in a user’s action history and

predicts the next item based on relatively few actions, while also

capturing long-term semantics like an RNN. This enables SASRec

to perform well in both extremely sparse and denser datasets. The

implementation of SASRec in PyTorch can be found at the URL
6
.

Conventional Cross-domain recommendation methods:

4
https://github.com/jaywonchung/BERT4Rec-VAE-Pytorch

5
https://github.com/hungpthanh/GRU4REC-pytorch

6
https://github.com/pmixer/SASRec.pytorch

STAR [35] aims to train a single model to serve multiple do-

mains by leveraging data from all domains simultaneously. The

model captures the unique characteristics of each domain while also

modeling the commonalities between different domains. It achieves

this by using a network structure consisting of two factorized net-

works for each domain: one shared network that is common to all

domains and one domain-specific network tailored to each domain.

The weights of these two networks are combined to generate a

unified network. The implementation of Pi-Net in Tensorflow can

be found at the URL
7
.

MAMDR [25] presents a novel model agnostic learning frame-

work called MAMDR for multi-domain recommendation (MDR). It

addresses the challenges of varying data distribution and conflicts

between domains in MDR. MAMDR incorporates a Domain Nego-

tiation strategy to alleviate conflicts and a Domain Regularization

approach to improve parameter generalizability. It can be applied to

any model structure for multi-domain recommendation. The work

also includes a scalable MDR platform used in Taobao for serving

thousands of domains without specialists. In the comparsion, we

utilize their official implementation in Tensorflow, which can be

found at the URL
8
.

SSCDR [16] addresses the challenge of inferring preferences

for cold-start users based on their preferences observed in other

domains. SSCDR proposes a semi-supervised mapping approach

that effectively learns the cross-domain relationship even with

limited labeled data. It learns latent vectors for users and items

in each domain and encodes their interactions as distances. The

framework then trains a cross-domain mapping function using both

labeled data from overlapping users and unlabeled data from all

items. SSCDR also incorporates an effective inference technique

that predicts latent vectors for cold-start users by aggregating their

neighborhood information.

Cross-domain sequential recommendation methods:
Pi-Net [27] simultaneously generates recommendations for two

domains and shares user behaviors at each timestamp to address the

challenges of identifying different user behaviors under the same

account and discriminating behaviors from one domain that could

improve recommendations in another. By leveraging parallel infor-

mation sharing, Pi-Net improves recommendation accuracy and

efficiency for cross-domain scenarios in the Shared-account Cross-

domain Sequential Recommendation task. The implementation of

Pi-Net in Tensorflow can be found at the URL
9
.

DASL [19] addresses the limitation of previous cross-domain

sequential recommendation models by considering bidirectional

latent relations of user preferences across source-target domain

pairs, providing enhanced cross-domain CTR predictions for both

domains simultaneously. The proposed approach features a dual

learning mechanism and includes the dual Embedding and dual At-

tention components to extract user preferences in both domains and

provide cross-domain recommendations through a dual-attention

learning mechanism. The implementation of DASL in Tensorflow

can be found at the URL
10
.

7
https://github.com/RManLuo/MAMDR/tree/master

8
https://github.com/RManLuo/MAMDR/tree/master

9
https://github.com/mamuyang/PINet

10
https://github.com/lpworld/DASL
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C2DSR [2] enhances recommendation accuracy by addressing

the bottleneck of the transferringmodule and jointly learning single-

and cross-domain user preferences through leveraging intra- and

inter-sequence item relationships. This approach overcomes the

limitations of previous methods and captures precise user prefer-

ences. The implementation of C
2
DSR in PyTorch can be found at

the URL
11
.

Debiasing methods for recommendation:
DCRec [47] is a new recommendation paradigm that claims to

unify sequential pattern encoding with global collaborative rela-

tion modeling. It attempts to address the issues of label shortage

and the inability of current contrastive learning methods to tackle

popularity bias and disentangle user conformity and real interest.

The implementation of DCRec in PyTorch can be found at the URL

12
.

CaseQ [46] is proposed to alleviate the effects of popularity

bias and temporal distribution shift in a single-domain sequential

recommendation from training to testing. To achieve this, CaseQ

employs a hierarchical branching structure combined with a learn-

ing objective based on backdoor adjustment, which enables the

learning of context-specific representations. The implementation

of CaseQ in PyTorch can be found at the URL
13
.

IPSCDR [21] has developed a novel Inverse-Propensity-Score

(IPS) estimator that is tailored for cross-domain scenarios. The ap-

proach also incorporates three types of restrictions for propensity

score learning. By utilizing these methods, IPSCDR effectively alle-

viates domain biases, including selection bias and popularity bias,

when transferring user information between domains. As there is

no official code release available, we have reconstructed the code

for IPSCDR by adapting a related IPS-based framework. The imple-

mentation of the IPS-based framework in PyTorch can be found at

the URL
14
.

C.3 Hyperparameter Analysis
The trade-off parameter 𝜆1. To evaluate the impact of the trade-

off parameter 𝜆1 in the loss function, we conduct a series of ex-

periments with different values of 𝜆1 = 0.001, 0.01, 0.1 to search

for the optimal value for our AMID model. The experiments are

run five times and the results are reported by mean and variance.

From the results in Table 7-8, it can be observed that the SDSR

models with 𝜆 = 0.01 achieved the best performance on both the

Cloth-Sport and Phone-Elec scenarios with differentK𝑢 . Moreover,

in the Cloth-Sport scenario, the models with 𝜆 = 0.001 perform

better than those with 𝜆 = 0.1, while in the Phone-Elec scenario,

the models with 𝜆 = 0.1 perform better than those with 𝜆 = 0.001.

The threshold 𝑘 for the group. We conduct ablation exper-

iments by varying the threshold 𝑘 ∈ {0.5, 0.6, 0.7, 0.8, 0.9} to in-

vestigate the impact of the threshold 𝑘 on constructing interest

groups in the multi-interest information module. We measure the

average evaluation scores using NDCG@10 and HR@10 on the

Cloth-Sport and Phone-Elec scenarios. Our results show that a

larger threshold 𝑘 (0.5→ 0.7) leads to better performance, as more

related interest information can be transferred. However, when the

11
https://github.com/cjx96/C2DSR

12
https://github.com/HKUDS/DCRec

13
https://github.com/chr26195/caseq

14
https://github.com/samikhenissi/IPS_MF

threshold 𝑘 is increased beyond 0.7, the model’s performance drops

due to noise interference and redundant information. Therefore, to

achieve superior performance, we set the threshold 𝑘 to 0.7.

The number of the sampled users. To explore the impact

of the number of sampled users on the multi-interest information

module, we conduct ablation experiments varying the number of

sampled users from 128 to 1024. We measure the average evaluation

scores (NDCG@10 and HR@10) for both Cloth-Sport and Phone-

Elec scenarios, and the results are shown in Figure 8. Our findings

suggest that an increase in the number of sampled users initially

improves the recommendation performance, but it eventually de-

clines when the matching neighbors reach 1024. This observation

indicates that having too few sampled users would provide insuffi-

cient transferred information, while too many sampled users could

introduce interference noise and compromise the model’s perfor-

mance. In practice, we select the number of sampled users to be

512 as it results in the best performance for our model.

D POTENTIAL SOCIETAL IMPACTS
We propose an adaptive multi-interest debiasing framework to en-

hance the performance of most off-the-shelf SDSR methods. By

utilizing our approach, e-commerce companies can recommend

more relevant products to users and increase their revenue. Fur-

thermore, our model AMID devises a debiasing framework that

attends to minority users and explores their potential interests. As a

result, our work promotes fairness in the recommender system and

may help mitigate social inequality that may arise from algorithmic

biases.

13
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Table 7: Hyperparameter anaysis (%) of 𝜆1 on the bi-directional Cloth-Sport CDR scenario with different K𝑢 .

Methods

Cloth-domain recommendation Sport-domain recommendation

K𝑢=25% K𝑢=75% K𝑢=25% K𝑢=75%

NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10

𝜆1 = 0.001 :
BERT4Rec [38] + AMID 2.89±0.10 5.63±0.12 3.74±0.21 6.98±0.25 4.65±0.27 9.17±0.30 5.63±0.21 10.55±0.43
GRU4Rec [12] + AMID 3.01±0.15 5.82±0.19 3.79±0.13 7.20±0.32 4.77±0.11 9.32±0.31 5.81±0.22 10.91±0.25
SASRec [17] + AMID 3.08±0.29 6.05±0.35 4.11±0.09 7.50±0.27 4.88±0.19 9.36±0.25 5.87±0.22 10.94±0.20

𝜆1 = 0.01 :
BERT4Rec [38] + AMID 2.99±0.07 5.70±0.13 3.79±0.15 7.09±0.32 4.73±0.29 9.30±0.41 5.70±0.12 10.63±0.36
GRU4Rec [12] + AMID 3.10±0.17 5.95±0.16 3.94±0.15 7.30±0.30 4.89±0.10 9.42±0.28 5.90±0.17 11.01±0.17
SASRec [17] + AMID 3.20±0.22 6.14±0.33 4.19±0.10 7.62±0.20 4.97±0.15 9.48±0.22 5.96±0.14 11.04±0.26

𝜆1 = 0.1 :
BERT4Rec [38] + AMID 2.75±0.12 5.51±0.15 3.56±0.10 6.88±0.39 4.50±0.27 9.13±0.51 5.50±0.17 10.44±0.34
GRU4Rec [12] + AMID 2.91±0.19 5.76±0.13 3.79±0.14 7.11±0.29 4.68±0.09 9.24±0.34 5.73±0.15 10.79±0.31
SASRec [17] + AMID 3.02±0.21 5.97±0.28 3.99±0.15 7.40±0.17 4.75±0.11 9.25±0.30 5.77±0.19 10.83±0.24

Table 8: Hyperparameter anaysis (%) of 𝜆1 on the bi-directional Phone-Elec CDR scenario with different K𝑢 .

Methods

Phone-domain recommendation Elec-domain recommendation

K𝑢=25% K𝑢=75% K𝑢=25% K𝑢=75%

NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10

𝜆1 = 0.001 :
BERT4Rec [38] + AMID 7.67±0.25 14.18±0.41 7.88±0.39 14.54±0.21 10.87±0.14 18.29±0.30 11.83±0.15 19.77±0.37
GRU4Rec [12] + AMID 8.05±0.13 15.20±0.45 8.08±0.10 15.02±0.23 11.44±0.10 19.21±0.14 12.25±0.15 20.58±0.25
SASRec [17] + AMID 7.94±0.11 14.69±0.09 8.05±0.32 14.68±0.23 11.40±0.29 19.03±0.24 12.21±0.15 20.48±0.19

𝜆1 = 0.01 :
BERT4Rec [38] + AMID 7.95±0.23 14.49±0.36 8.15±0.33 14.85±0.28 11.26±0.07 18.58±0.27 12.16±0.09 20.08±0.31
GRU4Rec [12] + AMID 8.33±0.09 15.49±0.50 8.34±0.21 15.29±0.29 11.74±0.07 19.50±0.08 12.53±0.11 20.85±0.20
SASRec [17] + AMID 8.20±0.10 14.99±0.16 8.32±0.20 14.96±0.15 11.71±0.23 19.28±0.23 12.52±0.13 20.79±0.20

𝜆1 = 0.1 :
BERT4Rec [38] + AMID 7.78±0.19 14.23±0.32 8.01±0.40 14.68±0.31 11.08±0.13 18.39±0.25 11.97±0.11 19.89±0.20
GRU4Rec [12] + AMID 8.14±0.15 15.28±0.39 8.15±0.19 15.12±0.25 11.55±0.11 19.35±0.10 12.41±0.16 20.66±0.22
SASRec [17] + AMID 8.05±0.21 14.83±0.13 8.15±0.19 14.78±0.20 11.52±0.15 19.08±0.19 12.33±0.10 20.62±0.12
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Figure 7: The results of SASRec+AMID with different threshold 𝑘 on the Cloth-Sport & Phone-Elec scenarios. 25% and 75% denotes different K𝑢 .
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Figure 8: The results of SASRec+AMID with different number of the sampled users on the Cloth-Sport & Phone-Elec scenarios. 25% and 75% denotes different K𝑢 .
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