
Unroll Autoregressive Generation via Next-N-Token Prediction

Anonymous ACL submission

Abstract001

Most of current large language models (LLMs)002
based on next-token prediction suffer from003
the failures both in teacher-forcing training004
and autoregressive inference. Although non-005
autoregressive approaches offer alternative so-006
lutions to mitigate these problems, the difficulty007
in model inference and enormous cost for long008
text generation greatly impedes the application009
in tasks a LLM is good at. We here present010
a framework to predict next n tokens at once,011
which bridges the gap between autoregressive012
and non-autoregressive generation. According013
to this framework, we propose to exploit mul-014
tiple identical mask tokens appended after in-015
put context together with a novel mask recipe016
called future-aware self-attention mask for gen-017
eration. Using this method, we finetune the018
pretrained models of Qwen2 series and eval-019
uate the derived models on five benchmarks.020
Our finetuned model evidently surpasses those021
trained using two existing methods under the022
same condition. We also verify the great poten-023
tial of our method in unrolling the autoregres-024
sive generation and discuss several directions025
for further improvement.026

1 Introduction027

In recent years, large language models (LLMs)028

profoundly advance the application of text gen-029

eration, ranging from text summarization (Lewis030

et al., 2020; Zhang et al., 2020; Du et al., 2022)031

and question-answering (Brown et al., 2020; Raffel032

et al., 2020; Touvron et al., 2023) to code comple-033

tion (Chen et al., 2021; Guo et al., 2022) and math-034

ematical problem solving (Touvron et al., 2023;035

Frieder et al., 2024; OpenAI et al., 2024). Nearly036

all of these distinguished LLMs such as GPT-3037

(Brown et al., 2020), LLaMA (Touvron et al., 2023)038

and Qwen2 (Yang et al., 2024) take next-token039

prediction (NTP) as the typical training task and040

inference method. However, several types of fail-041

ures induced from NTP cannot be neglected de-042

spite of the superior performance of these LLMs 043

on many downstream tasks (Bachmann and Na- 044

garajan, 2024). Consequently, it is necessary and 045

meaningful for generative LLMs to explore new 046

approaches that essentially alter the conventional 047

methods of training and inference. 048

There are actually plenty of related work focus- 049

ing on non-autoregressive generation to avoid the 050

disadvantages of NTP-based approaches. One pop- 051

ular kind is to exploit diffusion process in con- 052

tinuous or discrete space to reconstruct the real 053

sentence from a corrupted sequence via iterative 054

denoising (Li et al., 2023), such as D3PM (Austin 055

et al., 2021), Diffusion-LM (Li et al., 2022), Dif- 056

fusionBERT (He et al., 2023) and AR-Diffusion 057

(Wu et al., 2023). Other methods employ an au- 058

toencoder or an energy function to generate an ex- 059

pected sentence iteratively (Ghazvininejad et al., 060

2019; Savinov et al., 2022; Mireshghallah et al., 061

2022), theoretically different from predicting the 062

next token conditioning on its preceding context. 063

Although effective in certain settings, the difficulty 064

of determining the length of target sequence dy- 065

namically and enormous computational cost for 066

long text generation impede the application of these 067

methods. Despite all this, non-autoregressive meth- 068

ods still inspire us to pursue more efficient and 069

effective way by generating multiple tokens in par- 070

allel. 071

In fact, predicting multiple tokens from one pass 072

has been reinvestigated recently to fulfill the need 073

of inference speedup. Stern et al. (2018) proposed 074

blockwise parallel decoding by predicting future 075

tokens at once and then verifying them in paral- 076

lel. Since the emergence of speculative decoding 077

(Leviathan et al., 2023; Chen et al., 2023), a lot 078

of researches focus on more practicable and effi- 079

cient means to produce future candidates for the tar- 080

get LLM, such as predicting from different decod- 081

ing heads (Cai et al., 2024; Gloeckle et al., 2024) 082

or though look-ahead embeddings (PaSS) (Monea 083

1



et al., 2023). However, most of these methods con-084

sider multi-token prediction as an auxiliary means085

to speed up the generation of NTP-based models,086

instead of mitigating NTP-inherent failures.087

Combining these excellent ideas, we formal-088

ize the theoretical framework of next-n-token089

prediction (NNTP). As the term suggests, NNTP090

is just a generalized version of classical NTP to091

produce multiple tokens simultaneously (e.g., Fig-092

ure 1). As in Bachmann and Nagarajan’s (2024)093

work, we propose to exploit multiple identical094

mask tokens appended after input context, together095

with a delicate mask recipe called future-aware096

self-attention mask, to generate the continuation.097

We then finetune several pretrained models of098

Qwen2 series using different configurations of cer-099

tain hyper-parameters through this method, and100

evaluate the derived models on five benchmarks.101

We firstly choose the best configuration and verify102

the great potential of our method in unrolling the103

autoregressive generation in the meantime. Then104

we finetune the Qwen2 7B model using the best105

configuration and compare our method with others.106

Although our finetuned models exhibits slightly107

inferior performance than the original, we still ob-108

serve evident improvement compared to two exist-109

ing methods under the same condition. Our method110

significantly surpasses the work of Gloeckle et al.111

(2024) with linear output heads by 0.059 accuracy112

increase on MMLU, 0.185 on HellaSwag, 0.046 on113

WinoGrande, 0.058 on RACE and 47.8 perplexity114

decrease on LAMBADA, and slightly outperforms115

PaSS (Monea et al., 2023) by 0.077 accuracy in-116

crease on HellaSwag, 0.011 on RACE and 1.93117

perplexity decrease on LAMBADA. Finally, we118

analyze the error distribution over positions corre-119

sponding to newly-generated tokens and discuss120

several directions for further improvement.121

Although predicting multiple tokens has been122

studied before (Cai et al., 2024; Gloeckle et al.,123

2024; Monea et al., 2023), the present work offers124

the following contributions by conducting a thor-125

ough investigation of NNTP at both training and126

inference time.127

1. We present a framework of NNTP to predict128

n subsequent tokens simultaneously by sum-129

marizing previous work and explain three fea-130

tures of this framework;131

2. For the NNTP framework, we propose to ex-132

ploit identical mask tokens together with a133

novel mask recipe for generation and validate 134

its effectiveness on five benchmarks; 135

3. The potential in unrolling the process of au- 136

toregressive generation is clearly verified and 137

a simple yet effective technique is unveiled 138

to improve the ultimate performance of our 139

method. 140

We will introduce the framework of NNTP and 141

a new method based on it, and then present experi- 142

mental results in following sections. 143

2 Method 144

2.1 Framework of Next-N-Token Prediction 145

With the help of a language model, we can fun- 146

damentally estimate the likelihood of an arbitrary 147

sentence through the token sequence encoded from 148

it. Given the sequence x = {x1, x2, . . . , xL} of a 149

sentence, the joint probability can be typically fac- 150

torized into the product of conditional probabilities 151

of next token via the chain rule 152

p(x) =

L−1∏
i=0

p(xi+1|x≤i), (1) 153

where x≤i denotes the prefix sequence of token 154

xi+1. According to this formulation, it is natural 155

to induce the framework of next-token prediction 156

(NTP), which predicts a subsequent token condi- 157

tioning on its context at every step. So far, al- 158

most all of causal LLMs are built upon NTP via 159

teacher-forcing training and autoregressive infer- 160

ence (Bachmann and Nagarajan, 2024). We gener- 161

alize this concept and then formalize the framework 162

of next-n-token prediction (NNTP) by gathering 163

inspiration of recent advances in speculative decod- 164

ing and multi-token prediction (Cai et al., 2024; 165

Gloeckle et al., 2024; Monea et al., 2023). 166

As implied by its name, a language model based 167

on NNTP produces n subsequent tokens simultane- 168

ously conditioning on a given context. Supposing 169

{x1, x2, . . . , xc} (c < L) is the given context of a 170

complete sentence mentioned above, we formalize 171

the language modeling via NNTP by refactorizing 172

the joint probability 173

p(x) = p(x1, x2, . . . , xL)

= p(x1, x2, . . . , xc)

p(xc+1, . . . , xc+n|x≤c)

p(xc+n+1, . . . , xc+2n|x≤c+n)

. . .

p(xc+kn+1, . . . , xmin(L,c+(k+1)n)|x≤c+kn),

(2)
174

2



Figure 1: An illustration of a causal language model with parallel inputs for next-n-token prediction. By appending
two mask tokens after input context, the model will generate three new tokens from one forward pass in this case.
The position in the sequence corresponding to each new token (x̂7, x̂8, x̂9) is referred to as production position for
brevity.

where k + 1 =
⌈
L−c
n

⌉
, indicating the total steps to175

generate the whole sequence autoregressively.176

We refer to the number of tokens n predicted177

simultaneously from a single pass of a LLM as178

unrolled stride for convenience. Accordingly, the179

positions corresponding to these newly-generated180

tokens as the continuation of input context are re-181

ferred to as production positions for brevity (e.g.,182

Figure 1). It is demonstrable that the steps of au-183

toregression is inversely proportional to unrolled184

stride at inference. This simple correlation grad-185

ually bridges the gap between autoregressive and186

non-autoregressive generation by varying the un-187

rolled stride from small to large. Moreover, since188

the unrolled stride during training is not required189

to be identical to that at inference time, we use190

ntrain and ninfer as notations in order to distinguish191

one from the other. We formally conclude three192

exciting features from NNTP framework:193

1. Although it seems apparent that a NNTP-194

based model produces tokens autoregres-195

sively (Eq. 2), it actually behaves like non-196

autoregressive generation when the inference197

stride ninfer becomes large enough;198

2. A LLM trained with a large stride ntrain can be199

normally used with any ninfer smaller than or200

equal to ntrain at inference, i.e. ninfer ≤ ntrain;201

3. With particularly designed architecture, a202

LLM can generate more tokens simultane-203

ously than the predicted number during train-204

ing, namely ninfer > ntrain.205

Note that NNTP framework only works for206

Transformer-based language models processing in-207

puts parallelly (Vaswani et al., 2017), not recurrent208

models emitting one token at a time like LSTM 209

(Merity et al., 2018) and Mamba (Gu and Dao, 210

2024). 211

2.2 Predict with Mask Tokens 212

According to the framework of NNTP, we intro- 213

duce a simple modification to generative LLMs 214

with Transformer as backbone (Vaswani et al., 215

2017). As depicted in Figure 1, multiple identical 216

mask tokens are appended after the given context as 217

inputs. The number of mask tokens is evidently de- 218

termined by the unrolled stride ntrain or ninfer spec- 219

ified beforehand. A clear difference from PaSS is 220

that we replace all “look ahead” tokens with a same 221

mask token (Monea et al., 2023). Such modifica- 222

tion essentially leads to a similar model specialized 223

for teacherless training in Bachmann and Nagara- 224

jan’s (2024) work, which is also derived from PaSS 225

(Monea et al., 2023). An incredible advantage of 226

identical mask tokens in different production posi- 227

tions is that such architecture implements the third 228

feature of NNTP framework. In other words, we 229

can predict any number of subsequent tokens (i.e., 230

unrestricted ninfer) from a forward pass, once the 231

mask embedding has been learned in training. 232

2.3 Future-aware Self-Attention Mask 233

In addition to identical mask tokens, we also pro- 234

pose a novel mask recipe termed as future-aware 235

mask for self-attention computation. Inspired by 236

the researches of UNILMv2 (Bao et al., 2020) and 237

GLM (Du et al., 2022), we come up with two types 238

of future-aware mask to enable certain queries of 239

interest to attend all future keys except for padding 240

ones: 241

• Type I Only queries in production positions 242

3



Figure 2: Two types of future-aware self-attention mask.
All mask tokens can attend each other and their pre-
ceding keys (green). For future-aware mask Type I,
the query in the first production position x6 can attend
all mask tokens appended after input context (orange),
while on the contrary for Type II. Other queries are
strictly prevented from attending future keys (grey),
same as causal mask in Transformer (Vaswani et al.,
2017).

(x6 and [M] in Figure 2) can attend all future243

keys, while others just attend themselves or244

their history as in causal mask used in Trans-245

former (Vaswani et al., 2017);246

• Type II Slightly different from Type I, the247

query in the first production position (x6 in248

Figure 2) only attends itself or keys preceding249

it.250

Even though both types of future-aware mask ba-251

sically share similar mask matrices added to self-252

attention logits before softmax, Type II makes it253

possible to cache the keys and values of the last254

context token (x6 in Figure 2) for next inference255

step. Such minor improvement eventually avoids256

some redundant computation especially in generat-257

ing very long sentence with a small unrolled stride.258

We use future-aware mask Type I in following ex-259

periments for the sake of better performance, unless260

otherwise specified.261

3 Experiments262

We preprocess the English Wikipedia as training263

corpus and then finetune different LLMs using two264

approaches (See Appendix A). To evaluate the per-265

formance of finetuned models, we carefully choose266

five benchmarks about text comprehension and con- 267

tinuation: MMLU (Hendrycks et al., 2021b,a), Hel- 268

laSwag (Zellers et al., 2019), LAMBADA (Paperno 269

et al., 2019), WinoGrande (Sakaguchi et al., 2019) 270

and RACE (Lai et al., 2017). At last, experimen- 271

tal results are gathered and presented in following 272

subsections. 273

3.1 Unrolled Stride in Training 274

First of all, we investigate the effect of unrolled 275

stride during training on the ultimate performance 276

of finetuned models. Using Qwen2 1.5B as the base 277

model, we finetune it with the stride ntrain varying 278

from 2 to 16, and evaluate each derived model with 279

inference stride ninfer = 2, 4, 8 respectively. We 280

use future-aware mask Type I by default in this 281

experiment. Experimental results on two kinds of 282

tasks, HellaSwag for multiple choice question and 283

LAMBADA for word prediction, are illustrated in 284

Figure 3a and 3b. 285

As we can see, too small strides (e.g., ntrain = 2) 286

always lead to poor performance on both Hel- 287

laSwag and LAMBADA under all circumstances. 288

An interesting phenomenon is that all models 289

finetuned with large strides consistently produce 290

high accuracies on HellaSwag when the inference 291

strides are small (i.e., ntrain > ninfer). We conjec- 292

ture that this is due to the ability of foreseeing fu- 293

ture tokens beyond current production positions in 294

every generation step, which is probably acquired 295

from finetuning via NNTP. The abnormal trend of 296

ntrain > ninfer = 4 on LAMBADA may be caused 297

by very short answers restricting the potential of 298

NNTP (See Table 5). From Figure 3a and 3b, we 299

can find the best performance for ninfer = 2, mod- 300

erate for ninfer = 4 and the worst for ninfer = 8 301

using each finetuned model on both benchmarks. 302

We leave this to next subsection for further inves- 303

tigation. If we intentionally keep the inference 304

stride same as the training one, a consecutive per- 305

formance drop can be observed by increasing the 306

unrolled strides. Through a rough theoretical anal- 307

ysis, the explosive complexity of NNTP at training 308

and inference time naturally takes responsibility 309

for this degradation (See Appendix C). According 310

to the results on HellaSwag and LAMBADA, we 311

choose ntrain = 4 for remaining experiments if not 312

specified. 313

3.2 Unrolled Stride at Inference 314

Besides the training stride, the unrolled stride at 315

inference may also have a significant impact on 316

4



(a) (b)

(c) (d)

Figure 3: Evaluation results of finetuned models corresponding to different unrolled strides in training and at
inference. The accuracies of derived models after finetuning Qwen2 1.5B with different training strides on
HellaSwag are illustrated in (a). (b) presents the perplexity of same models as (a) on LAMBADA benchmark. (c)
and (d) exhibit the performance of finetuned Qwen2 1.5B models when evaluating with different inference strides
on HellaSwag and LAMBADA respectively.

the evaluation results. We still finetune the Qwen2317

1.5B model with different training stride ntrain =318

3, 4, 6 respectively, and then evaluate each derived319

model with unrolled stride varying from 2 to 16.320

As in previous experiment, we use future-aware321

mask Type I as the default setting.322

As depicted in Figure 3c, we discover that the323

accuracy on HellaSwag decreases monotonically324

with the increase of unrolled stride at inference.325

A similar trend can be observed on LAMBADA326

benchmark in Figure 3d, where the perplexity of327

generated tokens becomes worse and worse if the328

inference stride gets large. It is not surprising since329

the search space of possible outputs grows expo-330

nentially with the increasing inference stride (See331

Appendix C). We also find the perplexity on LAM-332

BADA remains unchanged for ninfer ≥ 4, due to333

small answer length of each example in this dataset 334

(See Table 5). Specially, all of our finetuned models 335

achieve relatively poor yet acceptable performance 336

when the unrolled stride at inference exceeds the 337

training one (i.e., ninfer > ntrain). This exciting re- 338

sults clearly demonstrate the superiority of the third 339

feature of NNTP framework implemented through 340

identical mask tokens (Section 2.1). In order to 341

examine the potential of NNTP and expect rela- 342

tively better performance using finetuned models, 343

we choose ninfer = 4 to conduct following experi- 344

ments unless specified otherwise. 345

3.3 Future-aware Self-attention Mask 346

In spite of unrolled strides, the mask recipe also 347

plays an important role in improving the effective- 348

ness of NNTP-based language models. We fine- 349

5



HellaSwag (acc ↑) LAMBADAstd (ppl ↓)
ninfer = 2 ninfer = 4 ninfer = 8 ninfer = 2 ninfer = 4 ninfer = 8

Future-aware Mask Type I 0.7059 0.5946 0.4732 10.77 11.92 11.96
Future-aware Mask Type II 0.7050 0.5909 0.4755 11.45 12.68 12.71
Causal Mask 0.7023 0.5823 0.4373 12.90 14.38 14.43

Table 1: Comparison results of different mask recipes. We apply each mask recipe to the base Qwen2 7B model and
then finetune it with ntrain = 4. As for evaluation, we also employ the same mask recipe as training for each derived
model. Each model is evaluated with three different inference strides to reduce accidental bias.

tune Qwen2 7B model by employing three kinds of350

mask recipes: two types of future-aware mask and351

causal mask. The causal mask is firstly proposed352

in Transformer (Vaswani et al., 2017) and widely353

used in generative LLMs (Touvron et al., 2023;354

Yang et al., 2024), which only allows each query to355

attend its preceding keys or itself in self-attention356

computation. We use the same mask recipe as in357

finetuning when evaluating each derived model.358

The resulting models are evaluated on HellaSwag359

and LAMBADA benchmarks with different infer-360

ence strides for fair comparison.361

From Table 1, we can conclude that future-aware362

self-attention mask substantially surpasses the con-363

ventional causal mask, and future-aware mask Type364

I generally works slightly better than Type II. Ob-365

viously, the modification that allows queries in pro-366

duction positions to attend future keys evidently367

enhances the capability of generative LLMs. The368

superior performance of future-aware mask further369

proves the great potential of foreseeing the future370

when generating text via NNTP. As a consequence,371

we use future-aware mask Type I during training372

and at inference by default.373

3.4 LLMs of Different Sizes374

Using the chosen settings discussed in previous375

subsections, we experiment with LLMs of various376

sizes via NNTP. Based on pretrained models of377

Qwen2 series, we present the performance of both378

original and finetuned models. The evaluation re-379

sults of the former on five benchmarks are marked380

with NTP and the later with NNTP as shown in381

Table 2.382

There is an obvious trend that large-sized models383

outperform those of small sizes in terms of accu-384

racy or perplexity on all benchmarks. It clearly385

verifies one aspect of the well-known “scaling law”386

that the performance of LLMs scales with model387

size (Kaplan et al., 2020). Another phenomenon is388

that all models finetuned via NNTP always fail to389

achieve comparable performance to corresponding390

base models without finetuning. According to Ta- 391

ble 2, our finetuned models only reach about 97% 392

of the original in terms of accuracy on MMLU, 393

75% on HellaSwag, 85% on WinoGrande and 80% 394

on RACE. Furthermore, we discover that the per- 395

formance gap between finetuned and original mod- 396

els correlates with the answer length of different 397

benchmark datasets. For example, we can observe 398

an evident degradation of our NNTP-based models 399

on HellaSwag with longest answers (29.44 tokens 400

in average), while our models exhibit comparable 401

performance on MMLU with just one token as an- 402

swers (Table 5). We conjecture that this is because 403

the complexity of NNTP grows with the increas- 404

ing unrolled strides at both training and inference 405

time (See Appendix C). It is worth to note that our 406

method essentially turns into a non-autoregressive 407

solution for tasks requiring short answers, such as 408

MMLU and LAMBADA. Therefore, our proposed 409

method exhibits a promising advantage in unrolling 410

the process of autoregressive generation. 411

3.5 Comparison with Other Methods 412

In this subsection, we compare our method with 413

two existing methods adapted from Gloeckle et al. 414

(2024) and Monea et al. (2023) respectively. In 415

order to adapt to the requirement of NNTP, we 416

reimplement both methods by changing the specu- 417

lative decoding into predicting multiple tokens at 418

once. We exploit the terms “Multi-token Heads” 419

and “Look-ahead Tokens” to represent the major 420

characteristic of each method and to distinguish 421

them from ours. Note that only linear output heads 422

are implemented in the “Multi-token Heads” model 423

for simplicity. Using Qwen2 7B pretrained weights, 424

we initialize and train a model through each of 425

these methods. The evaluation of two resulting 426

models and ours (marked with NNTP) is conducted 427

under a same condition, that is predicting 4 tokens 428

simultaneously from one pass. All experimental 429

results are presented in Table 3. 430

From Table 3, we can see that all models fine- 431

6



MMLU HellaSwag LAMBADAstd WinoGrande RACE
acc ↑ acc ↑ ppl ↓ acc ↑ acc ↑

Qwen2 0.5B (NTP) 0.4405 0.4906 15.38 0.5777 0.3445
Qwen2 0.5B (NNTP) 0.4247 (0.96x) 0.3614 (0.74x) 213.56 0.5296 (0.92x) 0.2670 (0.78x)
Qwen2 1.5B (NTP) 0.5508 0.6548 6.93 0.6598 0.3665

Qwen2 1.5B (NNTP) 0.5397 (0.98x) 0.4369 (0.67x) 40.07 0.5580 (0.85x) 0.2852 (0.78x)
Qwen2 7B (NTP) 0.6946 0.7882 4.67 0.7222 0.3990

Qwen2 7B (NNTP) 0.6743 (0.97x) 0.5946 (0.75x) 11.92 0.6054 (0.84x) 0.3234 (0.81x)

Table 2: Performance of Qwen2 models of different sizes before and after finetuning. We choose original models of
Qwen2 series without instruction tuning as base models. The original models are marked with NTP, while those
after finetuning with NNTP.

MMLU HellaSwag LAMBADAstd WinoGrande RACE
acc ↑ acc ↑ ppl ↓ acc ↑ acc ↑

Original (NTP) 0.6946 0.7882 4.67 0.7222 0.3990
Multi-token Heads 0.6156 0.4095 59.72 0.5596 0.2651
Look-ahead Tokens 0.6769 0.5180 13.85 0.6101 0.3129

Ours (NNTP) 0.6743 0.5946 11.92 0.6054 0.3234
Ours (NTP) 0.6743 0.7743 4.35 0.7088 0.3876

Ours (NNTP + NTP) 0.6743 0.7783 4.27 0.6993 0.4010

Table 3: Comparison results of different methods. The original is Qwen2 7B model without instruction tuning,
which serves as the base model for comparing other methods. “Multi-token Heads” and “Look-ahead Tokens”
represent two existing methods adapted from Gloeckle et al. (2024) and Monea et al. (2023) respectively. Our
finetuned model is particularly evaluated via three different ways, including next-token prediction (marked with
NTP), next-n-token prediction (NNTP) and using dynamic strides in decoding (NNTP + NTP). Three models
in the middle rows are actually finetuned and evaluated using the same setting, i.e., predicting 4 future tokens
simultaneously.

tuned and evaluated via NNTP are inferior to the432

original model using NTP on five benchmarks, in-433

cluding those trained through “Multi-token Heads”434

and “Look-ahead Tokens”. It is quite reasonable435

since NNTP is inherently more complex than NTP436

in both stages of training and inference (See Ap-437

pendix C). Regardless of such inferiority for now,438

our method clearly outperforms other two methods,439

especially on HellaSwag. “Multi-token Heads” per-440

forms much worse than “Look-ahead Tokens” and441

our method on all benchmarks, which may caused442

by the lack of dependence among different output443

heads of linear type. Contrarily, “Look-ahead To-444

kens” can capture the dependence among tokens445

in production positions partly through causal mask,446

and ours through future-aware self-attention mask.447

Moreover, our method obviously surpasses two448

others by implementing the third feature of NNTP449

framework, which is predicting any number of to-450

kens from one pass at inference (Section 2.1).451

We further investigate the underlying reasons452

responsible for the degradation of NNTP-based453

models. Using the finetuned model via NNTP, we454

firstly evaluate it by autoregressively predicting 455

next token (marked with NTP). Inspired by the 456

idea of speculative decoding, we then use dynamic 457

unrolled stride at inference: (1) predicting n sub- 458

sequent tokens simultaneously as a candidate se- 459

quence at each step; (2) accepting the first token 460

(or first few tokens) in the candidate sequence and 461

feeding it together with preceding context to the 462

model for next step. The results of such decoding 463

are marked with “NNTP + NTP” for convenience. 464

According to Table 3, our model (NTP) exhibits 465

slightly inferior performance than the original if de- 466

coding via NTP. Such phenomenon partly demon- 467

strates that NNTP is a much harder task for training 468

than NTP, resulting in a less effective next-token 469

predictor than before finetuning. The contrary trend 470

on LAMBADA may be caused by short answers 471

in that dataset (See Appendix D). In spite of the 472

performance drop induced from training, we still 473

observe more severe degradation if changing the 474

decoding method via NTP to NNTP using the same 475

model (0.7743 to 0.5946 on HellaSwag, 4.35 to 476

11.92 on LAMBADA, 0.7088 to 0.6054 on Wino- 477

7



Grande and 0.3876 to 0.3234 on RACE). This fact478

indicates that the decoding method becomes the479

major bottleneck for development of our NNTP-480

based method. At last, we experiment with a novel481

decoding method using dynamic unrolled stride at482

inference (NNTP + NTP), and surprisingly achieve483

a slightly better results than the plain decoding via484

NTP. Once again, this explicitly verifies the benefit485

of foreseeing future tokens in every decoding step,486

which is learned from NNTP.487

4 Related work488

Plenty of researches have explored diverse means489

to predict multiple tokens simultaneously, mostly490

under a condition of autoregressive inference. Stern491

et al. (2018) proposed blockwise parallel decoding492

by predicting future tokens at once and then verify-493

ing them in parallel. After the emergence of specu-494

lative decoding (Leviathan et al., 2023; Chen et al.,495

2023), Cai et al. (2024) and Gloeckle et al. (2024)496

improved the efficiency of autoregressive genera-497

tion using future candidates produced from differ-498

ent decoding heads from one pass. Furthermore,499

parallel speculative sampling (PaSS) exploited ad-500

ditional look-ahead embeddings to speed up de-501

coding (Monea et al., 2023). Derived from PaSS,502

Bachmann and Nagarajan (2024) repeated the same503

special token ‘$’ many times for teacherless train-504

ing, which happens to accord with our intuition of505

identical mask tokens for all look-ahead positions.506

Our method differs from the work mentioned above507

in two aspects: 1) auxiliary or draft models are not508

required to verify the future tokens predicted si-509

multaneously; 2) a novel mask recipe instead of510

vanilla causal mask is employed when computing511

self-attention weights in each Transformer layer.512

Beyond all these, we intend to mitigate the NTP-513

inherent failures by unrolling the autoregressive514

generation via NNTP.515

Many kinds of mask recipes have been devised516

to customize the computation of self-attention517

weights in Transformer-based LLMs. The most518

popular one is causal mask originally used in Trans-519

former decoder (Vaswani et al., 2017). As the ris-520

ing of masked language models like BERT (Devlin521

et al., 2019) and causal language models like GPT-2522

(Radford et al., 2019), many researchers made great523

efforts to combine the advantages of both archi-524

tectures through sophisticated self-attention mask.525

UNILM integrated bidirectional, unidirectional and526

sequence-to-sequence objectives into the unified527

pre-training of a Transformer-based model, each of 528

which corresponds to a specific self-attention mask 529

(Dong et al., 2019). UNILMv2 further employed 530

a complicated mask for self-attention to combine 531

autoencoding and partially autoregressive tasks to- 532

gether (Bao et al., 2020). GLM, from a slightly 533

different perspective, incorporated the autoregres- 534

sive objective into pre-training through a blank in- 535

filling task and a relevant mask (Du et al., 2022). 536

Although quite similar in terms of expression, our 537

proposed future-aware mask allows masked tokens 538

to attend each other, which is highly concise and 539

intuitive thanks to the lack of autoencoding task in 540

training (See section 2.3). 541

5 Discussion 542

In this work, we formalize the framework of next-n- 543

token prediction (NNTP), which bridges the gap be- 544

tween autoregressive and non-autoregressive gener- 545

ation. Based on existing LLMs, we then propose to 546

exploit multiple identical mask tokens appended af- 547

ter input context together with a novel mask recipe 548

called future-aware mask for generation. Through 549

several experiments, we verify the great potential 550

of our method in unrolling the autoregressive gen- 551

eration. We also demonstrate the superiority of our 552

method compared to two others under the same 553

condition. At last, we analyze the complexity of 554

NNTP and investigate the error distribution over 555

production positions. 556

There are several aspects concerning with NNTP 557

and related methods to be improved in the future. 558

The first is to sample an optimal sequence from 559

multiple distributions of future tokens over a large 560

vocabulary. The intuitive way of sampling each 561

token independently may lead to an inconsistent 562

output, such as illegal set phrase. Another aspect is 563

to use adaptive unrolled stride at inference, similar 564

to dynamic inference stride in Section 3.5. A trivial 565

idea of re-generating “hard” tokens (e.g., nouns and 566

verbs) with high uncertainty in last step may help 567

to significantly improve the quality of generated 568

text. 569

6 Limitations 570

Although next-n-token prediction (NNTP) exhibits 571

great potential in unrolling the process of au- 572

toregressive generation, there still exists certain 573

shortcomings impeding the practical application 574

of NNTP-based methods. An obvious limitation 575

is that NNTP-based LLMs rely on a context long 576

8



enough to generate its continuation. Fortunately,577

most of generative tasks usually offer an informa-578

tive prompt to steer the response from a LLM, mak-579

ing this limitation insignificant. Another drawback580

lies in the inferior performance to LLMs based581

on next-token prediction (NTP). One major rea-582

son behind this may be the inefficiency of teacher-583

less training adopted by NNTP-based methods, in584

which only a tiny portion of tokens in each example585

are constructed as labels for training. Additionally,586

due to the enormous complexity of NNTP, related587

methods require new techniques for both training588

and inference to match the performance of those589

based on NTP.590

References591

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel592
Tarlow, and Rianne van den Berg. 2021. Structured593
denoising diffusion models in discrete state-spaces.594
In Advances in Neural Information Processing Sys-595
tems, volume 34, pages 17981–17993. Curran Asso-596
ciates, Inc.597

Gregor Bachmann and Vaishnavh Nagarajan. 2024. The598
pitfalls of next-token prediction. In Proceedings of599
the 41st International Conference on Machine Learn-600
ing, volume 235 of Proceedings of Machine Learning601
Research, pages 2296–2318. PMLR.602

Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan603
Yang, Xiaodong Liu, Yu Wang, Songhao Piao, Jian-604
feng Gao, Ming Zhou, and Hsiao-Wuen Hon. 2020.605
Unilmv2: pseudo-masked language models for uni-606
fied language model pre-training. In Proceedings of607
the 37th International Conference on Machine Learn-608
ing, ICML’20. JMLR.org.609

Tom Brown, Benjamin Mann, Nick Ryder, Melanie610
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind611
Neelakantan, Pranav Shyam, Girish Sastry, Amanda612
Askell, Sandhini Agarwal, Ariel Herbert-Voss,613
Gretchen Krueger, Tom Henighan, Rewon Child,614
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens615
Winter, and 12 others. 2020. Language models are616
few-shot learners. In Advances in Neural Information617
Processing Systems, volume 33, pages 1877–1901.618
Curran Associates, Inc.619

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,620
Jason D. Lee, Deming Chen, and Tri Dao. 2024.621
Medusa: Simple LLM inference acceleration frame-622
work with multiple decoding heads. In Forty-first623
International Conference on Machine Learning.624

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,625
Jean-Baptiste Lespiau, Laurent Sifre, and John626
Jumper. 2023. Accelerating large language model627
decoding with speculative sampling.628

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 629
Yuan, Henrique Pondé, Jared Kaplan, Harrison Ed- 630
wards, Yura Burda, Nicholas Joseph, Greg Brockman, 631
Alex Ray, Raul Puri, Gretchen Krueger, Michael 632
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, 633
Brooke Chan, Scott Gray, and 34 others. 2021. Eval- 634
uating large language models trained on code. ArXiv, 635
abs/2107.03374. 636

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 637
Kristina Toutanova. 2019. BERT: Pre-training of 638
deep bidirectional transformers for language under- 639
standing. In Proceedings of the 2019 Conference of 640
the North American Chapter of the Association for 641
Computational Linguistics: Human Language Tech- 642
nologies, Volume 1 (Long and Short Papers), pages 643
4171–4186, Minneapolis, Minnesota. Association for 644
Computational Linguistics. 645

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi- 646
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou, 647
and Hsiao-Wuen Hon. 2019. Unified language model 648
pre-training for natural language understanding and 649
generation. Curran Associates Inc., Red Hook, NY, 650
USA. 651

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, 652
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. GLM: 653
General language model pretraining with autoregres- 654
sive blank infilling. In Proceedings of the 60th An- 655
nual Meeting of the Association for Computational 656
Linguistics (Volume 1: Long Papers), pages 320–335, 657
Dublin, Ireland. Association for Computational Lin- 658
guistics. 659

Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, 660
Tommaso Salvatori, Thomas Lukasiewicz, Philipp 661
Petersen, and Julius Berner. 2024. Mathematical ca- 662
pabilities of chatgpt. Advances in neural information 663
processing systems, 36. 664

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider- 665
man, Sid Black, Anthony DiPofi, Charles Foster, 666
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, 667
Haonan Li, Kyle McDonell, Niklas Muennighoff, 668
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey 669
Schoelkopf, Aviya Skowron, Lintang Sutawika, and 670
5 others. 2024. A framework for few-shot language 671
model evaluation. 672

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and 673
Luke Zettlemoyer. 2019. Mask-predict: Parallel de- 674
coding of conditional masked language models. In 675
Proceedings of the 2019 Conference on Empirical 676
Methods in Natural Language Processing and the 677
9th International Joint Conference on Natural Lan- 678
guage Processing (EMNLP-IJCNLP), pages 6112– 679
6121, Hong Kong, China. Association for Computa- 680
tional Linguistics. 681

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Roziere, 682
David Lopez-Paz, and Gabriel Synnaeve. 2024. Bet- 683
ter & faster large language models via multi-token 684
prediction. In Forty-first International Conference 685
on Machine Learning. 686

9

https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633


Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Ste-687
fanie Tellex. 2019. Openwebtext corpus. http:688
//Skylion007.github.io/OpenWebTextCorpus.689

Albert Gu and Tri Dao. 2024. Mamba: Linear-time690
sequence modeling with selective state spaces.691

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming692
Zhou, and Jian Yin. 2022. UniXcoder: Unified cross-693
modal pre-training for code representation. In Pro-694
ceedings of the 60th Annual Meeting of the Associa-695
tion for Computational Linguistics (Volume 1: Long696
Papers), pages 7212–7225, Dublin, Ireland. Associa-697
tion for Computational Linguistics.698

Zhengfu He, Tianxiang Sun, Qiong Tang, Kuanning699
Wang, Xuanjing Huang, and Xipeng Qiu. 2023. Dif-700
fusionBERT: Improving generative masked language701
models with diffusion models. In Proceedings of the702
61st Annual Meeting of the Association for Compu-703
tational Linguistics (Volume 1: Long Papers), pages704
4521–4534, Toronto, Canada. Association for Com-705
putational Linguistics.706

Dan Hendrycks, Collin Burns, Steven Basart, Andrew707
Critch, Jerry Li, Dawn Song, and Jacob Steinhardt.708
2021a. Aligning ai with shared human values. Pro-709
ceedings of the International Conference on Learning710
Representations (ICLR).711

Dan Hendrycks, Collin Burns, Steven Basart, Andy712
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-713
hardt. 2021b. Measuring massive multitask language714
understanding. Proceedings of the International Con-715
ference on Learning Representations (ICLR).716

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-717
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu718
Chen. 2022. LoRA: Low-rank adaptation of large719
language models. In International Conference on720
Learning Representations.721

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B722
Brown, Benjamin Chess, Rewon Child, Scott Gray,723
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.724
Scaling laws for neural language models. arXiv725
preprint arXiv:2001.08361.726

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,727
and Eduard Hovy. 2017. RACE: Large-scale ReAd-728
ing comprehension dataset from examinations. In729
Proceedings of the 2017 Conference on Empirical730
Methods in Natural Language Processing, pages 785–731
794, Copenhagen, Denmark. Association for Compu-732
tational Linguistics.733

Yaniv Leviathan, Matan Kalman, and Yossi Matias.734
2023. Fast inference from transformers via spec-735
ulative decoding. In Proceedings of the 40th Interna-736
tional Conference on Machine Learning, ICML’23.737
JMLR.org.738

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan739
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,740
Veselin Stoyanov, and Luke Zettlemoyer. 2020.741
BART: Denoising sequence-to-sequence pre-training742

for natural language generation, translation, and com- 743
prehension. In Proceedings of the 58th Annual Meet- 744
ing of the Association for Computational Linguistics, 745
pages 7871–7880, Online. Association for Computa- 746
tional Linguistics. 747

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S 748
Liang, and Tatsunori B Hashimoto. 2022. Diffusion- 749
lm improves controllable text generation. In Ad- 750
vances in Neural Information Processing Systems, 751
volume 35, pages 4328–4343. Curran Associates, 752
Inc. 753

Yifan Li, Kun Zhou, Wayne Xin Zhao, and Ji-Rong Wen. 754
2023. Diffusion models for non-autoregressive text 755
generation: a survey. In Proceedings of the Thirty- 756
Second International Joint Conference on Artificial 757
Intelligence, IJCAI ’23. 758

Stephen Merity, Nitish Shirish Keskar, and Richard 759
Socher. 2018. Regularizing and optimizing LSTM 760
language models. In International Conference on 761
Learning Representations. 762

Fatemehsadat Mireshghallah, Kartik Goyal, and Taylor 763
Berg-Kirkpatrick. 2022. Mix and match: Learning- 764
free controllable text generationusing energy lan- 765
guage models. In Proceedings of the 60th Annual 766
Meeting of the Association for Computational Lin- 767
guistics (Volume 1: Long Papers), pages 401–415, 768
Dublin, Ireland. Association for Computational Lin- 769
guistics. 770

Giovanni Monea, Armand Joulin, and Edouard Grave. 771
2023. Pass: Parallel speculative sampling. arXiv 772
preprint arXiv:2311.13581. 773

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, 774
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale- 775
man, Diogo Almeida, Janko Altenschmidt, Sam Alt- 776
man, Shyamal Anadkat, Red Avila, Igor Babuschkin, 777
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim- 778
ing Bao, Mohammad Bavarian, Jeff Belgum, and 779
262 others. 2024. Gpt-4 technical report. Preprint, 780
arXiv:2303.08774. 781

Denis Paperno, Germán Kruszewski, Angeliki Lazari- 782
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro 783
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel 784
Fernández. 2019. The lambada dataset. 785

Alec Radford, Jeff Wu, Rewon Child, David Luan, 786
Dario Amodei, and Ilya Sutskever. 2019. Language 787
models are unsupervised multitask learners. 788

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 789
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 790
Wei Li, and Peter J. Liu. 2020. Exploring the limits 791
of transfer learning with a unified text-to-text trans- 792
former. J. Mach. Learn. Res., 21(1). 793

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga- 794
vatula, and Yejin Choi. 2019. Winogrande: An ad- 795
versarial winograd schema challenge at scale. arXiv 796
preprint arXiv:1907.10641. 797

10

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2312.00752
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2023.acl-long.248
https://doi.org/10.18653/v1/2023.acl-long.248
https://doi.org/10.18653/v1/2023.acl-long.248
https://doi.org/10.18653/v1/2023.acl-long.248
https://doi.org/10.18653/v1/2023.acl-long.248
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.24963/ijcai.2023/750
https://doi.org/10.24963/ijcai.2023/750
https://doi.org/10.24963/ijcai.2023/750
https://doi.org/10.18653/v1/2022.acl-long.31
https://doi.org/10.18653/v1/2022.acl-long.31
https://doi.org/10.18653/v1/2022.acl-long.31
https://doi.org/10.18653/v1/2022.acl-long.31
https://doi.org/10.18653/v1/2022.acl-long.31
https://arxiv.org/abs/2303.08774
https://doi.org/10.5281/zenodo.2630551


Nikolay Savinov, Junyoung Chung, Mikolaj Binkowski,798
Erich Elsen, and Aaron van den Oord. 2022. Step-799
unrolled denoising autoencoders for text generation.800
In International Conference on Learning Representa-801
tions.802

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.803
2018. Blockwise parallel decoding for deep autore-804
gressive models. In Advances in Neural Information805
Processing Systems, volume 31. Curran Associates,806
Inc.807

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier808
Martinet, Marie-Anne Lachaux, Timothée Lacroix,809
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal810
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard811
Grave, and Guillaume Lample. 2023. Llama: Open812
and efficient foundation language models. ArXiv,813
abs/2302.13971.814

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob815
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz816
Kaiser, and Illia Polosukhin. 2017. Attention is all817
you need. In Advances in Neural Information Pro-818
cessing Systems, volume 30. Curran Associates, Inc.819

Tong Wu, Zhihao Fan, Xiao Liu, Hai-Tao Zheng, Yeyun820
Gong, yelong shen, Jian Jiao, Juntao Li, zhongyu821
wei, Jian Guo, Nan Duan, and Weizhu Chen. 2023.822
Ar-diffusion: Auto-regressive diffusion model for823
text generation. In Advances in Neural Information824
Processing Systems, volume 36, pages 39957–39974.825
Curran Associates, Inc.826

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,827
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan828
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-829
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian830
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, and831
43 others. 2024. Qwen2 technical report. Preprint,832
arXiv:2407.10671.833

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali834
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a835
machine really finish your sentence? In Proceedings836
of the 57th Annual Meeting of the Association for837
Computational Linguistics.838

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-839
ter J. Liu. 2020. Pegasus: pre-training with extracted840
gap-sentences for abstractive summarization. In Pro-841
ceedings of the 37th International Conference on842
Machine Learning, ICML’20. JMLR.org.843

A Training Details844

We collect and preprocess the English Wikipedia845

(about 13G in text) as training corpus to finetune846

different LLMs. Due to the limitation of avail-847

able computational resources, we employ two ap-848

proaches to finetune base models of various sizes,849

either updating all parameters or a few portion850

with LoRA (Hu et al., 2022). The optimizer used851

in training is AdamW with β1 0.9, β2 0.95 and852

weight decay 0.01. Other settings including total 853

steps, learning rate and batch size used in fine- 854

tuning are listed in Table 4. “Multi-token Heads” 855

and “Look-ahead Tokens” represent two baselines 856

trained through existing methods (Gloeckle et al., 857

2024; Monea et al., 2023). We train both models 858

for more steps in order to achieve more stable and 859

better performance on downstream tasks. 860

B Dataset Statistics 861

To evaluate the capability of finetuned models, 862

we carefully choose five benchmarks concerning 863

text comprehension and continuation, including 864

MMLU (Hendrycks et al., 2021b,a), HellaSwag 865

(Zellers et al., 2019), LAMBADA (Paperno et al., 866

2019), WinoGrande (Sakaguchi et al., 2019) and 867

RACE (Lai et al., 2017). We use the toolkit 868

“lm-evaluation-harness” under zero-shot setting for 869

evaluation on all benchmarks (Gao et al., 2024). 870

We also develop the decoding method via next- 871

n-token prediction based on the codes of “lm- 872

evaluation-harness”. Since the lengths of answers 873

for each benchmark greatly affect the measures 874

calculated through next-n-token prediction, we an- 875

alyze the average and maximum answer length for 876

all benchmark datasets in Table 5. 877

C Complexity of NNTP 878

We firstly review the basic problem for causal lan- 879

guage modeling, that is to find the best word (or 880

token) sequence as the continuation conditioning 881

on a given context. Taking the following sentence 882

with target sequence consisting of n = 3 words 883

as an example, the task for training a LLM is to 884

predict the target words (bold text). 885

Alice likes to chat with her friends on the phone . 886

A language model trained via next-n-token predic- 887

tion (NNTP) significantly differs from one using 888

next-token prediction (NTP). NTP-based models 889

are typically trained via teacher-forcing rather than 890

teacherless employed in NNTP. Teacher-forcing 891

essentially decomposes the above task into three 892

sub-tasks of predicting next token individually, im- 893

plemented simply by causal mask in each Trans- 894

former block. 895

Alice likes to chat with her friends on the 896

Alice likes to chat with her friends on the phone 897

Alice likes to chat with her friends on the phone . 898

If the vocabulary size of a LLM is denoted by V , 899

the number of possible next tokens would thus be 900

11

https://arxiv.org/abs/2407.10671


Base Model
Trainable
Parameters

Total Steps
Other
Hyperparameters

ntrain Learning Rate
Batch Size

Qwen2 0.5B 4 100% (all) 20k/3e-5/64
Qwen2 1.5B 2/3/4/6/8/10/13/16 100% (all) 20k/3e-5/64
Qwen2 7B 4 2.33% (LoRA) 20k/3e-4/64 r = 64, α = 8

Multi-token Heads 4 100% (all) 100k/1e-5/64
Look-ahead Tokens 4 2.33% (LoRA) 100k/1e-4/64 r = 64, α = 8

Table 4: Training settings used to finetune different models. “Multi-token Heads” represents the resulting model
with linear output heads trained using the method from Gloeckle et al. (2024), while “Look-ahead Tokens” is
finetuned after adding multiple “look-ahead” embeddings as in PaSS (Monea et al., 2023).

Dataset #examples
Average Answer Length Maximum Answer Length

(#tokens) (#tokens)
MMLU 14015 1.0 1
HellaSwag 40145 29.44 80
LAMBADAstd 5151 1.46 5
WinoGrande 2534 5.61 20
RACE 4033 7.65 25

Table 5: Statistics of five benchmarks for evaluation. The answer length is measured by counting the continued
tokens to be generated after input context for each example. We use the tokenizer of Qwen2 7B model to produce
the answer sequences and collect statistical results in this table.

Training Inference
NTP O(nV ) O(V

n

n )
NNTP O(V n) O(V n)

Table 6: Approximate complexity (i.e., intrinsic difficulty of causal language modeling) of NNTP and NTP in
training and at inference. The prerequisite of the analysis here is to predict n subsequent tokens from one forward
pass in different ways. V denotes the vocabulary size of a particular LLM.

V for each sub-task above. Ignoring the efficacy901

of the LLM, the intrinsic difficulty of causal lan-902

guage modeling (i.e., complexity) can be roughly903

estimated by the size of search space, namely the904

number of possible solutions for the whole task.905

Apparently, the complexity of teacher-forcing for906

a single pass using a single example is O(nV ) by907

sequentially combining different sub-tasks together.908

Similarly, we can infer the complexity of teacher-909

less training O(V n) used by NNTP, which is expo-910

nentially larger than teacher-forcing.911

As for inference, a LLM trained via NNTP nor-912

mally generates n subsequent tokens simultane-913

ously from one forward pass. As a contrast, n914

forward passes are conducted autoregressively via915

NTP in order to produce a target sequence of same916

length as above. Although the total number of917

possible newly-generated sequences from NNTP918

is generally identical to that from NTP, the later919

actually makes more attempts to achieve a compa-920

rable output with the former. Ignoring the impact 921

of different LLMs, we can hence approximate the 922

inference complexity for each attempt with the size 923

of search space divided by the number of forward 924

passes, thus O(V n) for NNTP and O(V
n

n ) for NTP. 925

To sum up, a LLM based on NNTP tries to learn 926

from a much harder task than NTP in training, and 927

endeavor to generate text with clearly fewer at- 928

tempts at inference (Table 6). Note that the results 929

presented in Table 6 are derived after neglecting 930

many relevant factors (e.g., different models and 931

capabilities). Even so, the complexity trend of 932

NNTP versus NTP still holds true if the test LLMs 933

share a similar structure and are in the same level 934

of generation ability. 935

D Error Distribution 936

We additionally analyze the error distribution over 937

production positions to uncover the underlying 938

cause of particular phenomena presented in Section 939

12



Figure 4: Error distribution over production positions. Using different inference strides, we compute the average
cross-entropy loss for each production position over 30k examples of diverse lengths. The order of production
position is ranked by minimum distance of corresponding token from input context in the actual sequence. For
example, 1st indicates the position of last context token, and 2nd is that of the first mask token appended after input
context.

3. To avoid the sample selection bias, we randomly940

choose 30k documents from the OpenWebText cor-941

pus (Gokaslan et al., 2019) and truncate the token942

sequence of each document to a random length as943

an example. Using our finetuned model derived944

from Qwen2 7B, we calculate the average cross-945

entropy loss in each production position for differ-946

ent inference strides. The experimental results are947

illustrated in Figure 4.948

We discover an obvious trend that the errors in-949

crease with production position farther away from950

input context before the 7th position, and decrease951

dramatically and then stay stable starting from the952

7th production position (Figure 4). The reason that953

the finetuned model tends to generate accurate to-954

kens in the left end of production positions may955

be the closeness to input context according to the956

actual order, in which case the model is able to957

foresee many future tokens even if they are beyond958

the positions for new generations in current step.959

Consequently, we always achieve superior results960

if training with large unrolled stride and generating961

with a small one (Figure 3a and 3c).962

On the other hand, generated tokens in the mid-963

dle or right end of all production positions bring964

more uncertainty to the final output if using large965

inference stride. We conjecture that the lack of966

known context with strong local relations to the967

generated tokens may be the cause of potential er-968

rors in these tokens, which essentially accounts for969

the significant degradation when ninfer ≥ ntrain in970

Figure 3c. However, the evident peak in the 6th po- 971

sition beats our knowledge about NNTP and LLM. 972

We unfortunately fail to explain such unusual be- 973

havior of the finetuned model through extra experi- 974

ments, and thus make more effort to investigate it 975

in our future work. 976

As in previous experiments, we find some incon- 977

sistent phenomena on LAMBADA benchmark (Fig- 978

ure 3b and Table 3). The crucial fact affecting the 979

performance of finetuned models on LAMBADA 980

is probably the short answers in this dataset, which 981

makes the models finetuned with large strides less 982

effective than using small training strides (Figure 983

3b). As discussed above, only a few tokens in the 984

left end of production positions are taken as final 985

output due to small answer length, even if using a 986

very large stride at inference. In addition, a small 987

portion of examples have an answer length larger 988

than one token, among which our model still bene- 989

fits from the foreseeing ability learned via NNTP. 990

As a consequence, generated tokens tend to match 991

the actual answers with little errors (Figure 4), re- 992

sulting in a better result than the original (4.35 vs 993

4.67 as in Table 3). Through the comprehensive 994

analysis, we discover an effective way to improve 995

the performance using NNTP, that is using a large 996

stride during training and a small one at inference. 997

13


	Introduction
	Method
	Framework of Next-N-Token Prediction
	Predict with Mask Tokens
	Future-aware Self-Attention Mask

	Experiments
	Unrolled Stride in Training
	Unrolled Stride at Inference
	Future-aware Self-attention Mask
	LLMs of Different Sizes
	Comparison with Other Methods

	Related work
	Discussion
	Limitations
	Training Details
	Dataset Statistics
	Complexity of NNTP
	Error Distribution

