Unroll Autoregressive Generation via Next-N-Token Prediction

Anonymous ACL submission

Abstract

Most of current large language models (LLMs)
based on next-token prediction suffer from
the failures both in teacher-forcing training
and autoregressive inference. Although non-
autoregressive approaches offer alternative so-
lutions to mitigate these problems, the difficulty
in model inference and enormous cost for long
text generation greatly impedes the application
in tasks a LLM is good at. We here present
a framework to predict next n tokens at once,
which bridges the gap between autoregressive
and non-autoregressive generation. According
to this framework, we propose to exploit mul-
tiple identical mask tokens appended after in-
put context together with a novel mask recipe
called future-aware self-attention mask for gen-
eration. Using this method, we finetune the
pretrained models of Qwen2 series and eval-
uate the derived models on five benchmarks.
Our finetuned model evidently surpasses those
trained using two existing methods under the
same condition. We also verify the great poten-
tial of our method in unrolling the autoregres-
sive generation and discuss several directions
for further improvement.

1 Introduction

In recent years, large language models (LLMs)
profoundly advance the application of text gen-
eration, ranging from text summarization (Lewis
et al., 2020; Zhang et al., 2020; Du et al., 2022)
and question-answering (Brown et al., 2020; Raffel
et al., 2020; Touvron et al., 2023) to code comple-
tion (Chen et al., 2021; Guo et al., 2022) and math-
ematical problem solving (Touvron et al., 2023;
Frieder et al., 2024; OpenAl et al., 2024). Nearly
all of these distinguished LLMs such as GPT-3
(Brown et al., 2020), LLaMA (Touvron et al., 2023)
and Qwen2 (Yang et al., 2024) take next-token
prediction (NTP) as the typical training task and
inference method. However, several types of fail-
ures induced from NTP cannot be neglected de-

spite of the superior performance of these LLMs
on many downstream tasks (Bachmann and Na-
garajan, 2024). Consequently, it is necessary and
meaningful for generative LLMs to explore new
approaches that essentially alter the conventional
methods of training and inference.

There are actually plenty of related work focus-
ing on non-autoregressive generation to avoid the
disadvantages of NTP-based approaches. One pop-
ular kind is to exploit diffusion process in con-
tinuous or discrete space to reconstruct the real
sentence from a corrupted sequence via iterative
denoising (Li et al., 2023), such as D3PM (Austin
et al., 2021), Diffusion-LM (Li et al., 2022), Dif-
fusionBERT (He et al., 2023) and AR-Diffusion
(Wu et al., 2023). Other methods employ an au-
toencoder or an energy function to generate an ex-
pected sentence iteratively (Ghazvininejad et al.,
2019; Savinov et al., 2022; Mireshghallah et al.,
2022), theoretically different from predicting the
next token conditioning on its preceding context.
Although effective in certain settings, the difficulty
of determining the length of target sequence dy-
namically and enormous computational cost for
long text generation impede the application of these
methods. Despite all this, non-autoregressive meth-
ods still inspire us to pursue more efficient and
effective way by generating multiple tokens in par-
allel.

In fact, predicting multiple tokens from one pass
has been reinvestigated recently to fulfill the need
of inference speedup. Stern et al. (2018) proposed
blockwise parallel decoding by predicting future
tokens at once and then verifying them in paral-
lel. Since the emergence of speculative decoding
(Leviathan et al., 2023; Chen et al., 2023), a lot
of researches focus on more practicable and effi-
cient means to produce future candidates for the tar-
get LLM, such as predicting from different decod-
ing heads (Cai et al., 2024; Gloeckle et al., 2024)
or though look-ahead embeddings (PaSS) (Monea

et al., 2023). However, most of these methods con-
sider multi-token prediction as an auxiliary means
to speed up the generation of NTP-based models,
instead of mitigating NTP-inherent failures.

Combining these excellent ideas, we formal-
ize the theoretical framework of next-n-token
prediction (NNTP). As the term suggests, NNTP
is just a generalized version of classical NTP to
produce multiple tokens simultaneously (e.g., Fig-
ure 1). As in Bachmann and Nagarajan’s (2024)
work, we propose to exploit multiple identical
mask tokens appended after input context, together
with a delicate mask recipe called future-aware
self-attention mask, to generate the continuation.
We then finetune several pretrained models of
Qwen2 series using different configurations of cer-
tain hyper-parameters through this method, and
evaluate the derived models on five benchmarks.
We firstly choose the best configuration and verify
the great potential of our method in unrolling the
autoregressive generation in the meantime. Then
we finetune the Qwen2 7B model using the best
configuration and compare our method with others.
Although our finetuned models exhibits slightly
inferior performance than the original, we still ob-
serve evident improvement compared to two exist-
ing methods under the same condition. Our method
significantly surpasses the work of Gloeckle et al.
(2024) with linear output heads by 0.059 accuracy
increase on MMLU, 0.185 on HellaSwag, 0.046 on
WinoGrande, 0.058 on RACE and 47.8 perplexity
decrease on LAMBADA, and slightly outperforms
PaSS (Monea et al., 2023) by 0.077 accuracy in-
crease on HellaSwag, 0.011 on RACE and 1.93
perplexity decrease on LAMBADA. Finally, we
analyze the error distribution over positions corre-
sponding to newly-generated tokens and discuss
several directions for further improvement.

Although predicting multiple tokens has been
studied before (Cai et al., 2024; Gloeckle et al.,
2024; Monea et al., 2023), the present work offers
the following contributions by conducting a thor-
ough investigation of NNTP at both training and
inference time.

1. We present a framework of NNTP to predict
n subsequent tokens simultaneously by sum-
marizing previous work and explain three fea-
tures of this framework;

2. For the NNTP framework, we propose to ex-
ploit identical mask tokens together with a

novel mask recipe for generation and validate
its effectiveness on five benchmarks;

3. The potential in unrolling the process of au-
toregressive generation is clearly verified and
a simple yet effective technique is unveiled
to improve the ultimate performance of our
method.

We will introduce the framework of NNTP and
a new method based on it, and then present experi-
mental results in following sections.

2 Method

2.1 Framework of Next-N-Token Prediction

With the help of a language model, we can fun-
damentally estimate the likelihood of an arbitrary
sentence through the token sequence encoded from
it. Given the sequence x = {z1,z2,...,2} of a
sentence, the joint probability can be typically fac-
torized into the product of conditional probabilities
of next token via the chain rule

L1
p(x) = [[p(wislx<i), (D
i=0

where x<; denotes the prefix sequence of token
Zi+1. According to this formulation, it is natural
to induce the framework of next-token prediction
(NTP), which predicts a subsequent token condi-
tioning on its context at every step. So far, al-
most all of causal LLMs are built upon NTP via
teacher-forcing training and autoregressive infer-
ence (Bachmann and Nagarajan, 2024). We gener-
alize this concept and then formalize the framework
of next-n-token prediction (NNTP) by gathering
inspiration of recent advances in speculative decod-
ing and multi-token prediction (Cai et al., 2024;
Gloeckle et al., 2024; Monea et al., 2023).

As implied by its name, a language model based
on NNTP produces n subsequent tokens simultane-
ously conditioning on a given context. Supposing
{x1,29,...,2:} (c < L) is the given context of a
complete sentence mentioned above, we formalize
the language modeling via NNTP by refactorizing
the joint probability

p(X) = p(xla z2, ... ,CEL)
= p(‘,rla T2y ... 7:’UC)
p(-rc—‘rlu cee 7xc+n‘X§c)
p(xc—&—n—&—lv e 7«Tc+2n|X§c+n) (2)
P(Tetknts - - - 7xmin(L,c+(k+1)n)‘X§c+kn)7

Causal Language Model

Input Context

£

(2] (=] (=] (=) (=] () (6D

.

J

Y

Production Positions

Figure 1: An illustration of a causal language model with parallel inputs for next-n-token prediction. By appending
two mask tokens after input context, the model will generate three new tokens from one forward pass in this case.
The position in the sequence corresponding to each new token (Z7, s, Tg) is referred to as production position for

brevity.

where k + 1 = [£¢], indicating the total steps to

generate the whole sequence autoregressively.

We refer to the number of tokens n predicted
simultaneously from a single pass of a LLM as
unrolled stride for convenience. Accordingly, the
positions corresponding to these newly-generated
tokens as the continuation of input context are re-
ferred to as production positions for brevity (e.g.,
Figure 1). It is demonstrable that the steps of au-
toregression is inversely proportional to unrolled
stride at inference. This simple correlation grad-
ually bridges the gap between autoregressive and
non-autoregressive generation by varying the un-
rolled stride from small to large. Moreover, since
the unrolled stride during training is not required
to be identical to that at inference time, we use
Nirain aNd Ninfer S Notations in order to distinguish
one from the other. We formally conclude three
exciting features from NNTP framework:

1. Although it seems apparent that a NNTP-
based model produces tokens autoregres-
sively (Eq. 2), it actually behaves like non-
autoregressive generation when the inference
stride njprer becomes large enough;

2. A LLM trained with a large stride n,i, can be
normally used with any njus; smaller than or
equal to ny,iy at inference, i.€. Ninfer < Ntrain}

3. With particularly designed architecture, a

LLM can generate more tokens simultane-
ously than the predicted number during train-
ing, namely ninfer > Nrain-

Note that NNTP framework only works for
Transformer-based language models processing in-
puts parallelly (Vaswani et al., 2017), not recurrent

models emitting one token at a time like LSTM
(Merity et al., 2018) and Mamba (Gu and Dao,
2024).

2.2 Predict with Mask Tokens

According to the framework of NNTP, we intro-
duce a simple modification to generative LLMs
with Transformer as backbone (Vaswani et al.,
2017). As depicted in Figure 1, multiple identical
mask tokens are appended after the given context as
inputs. The number of mask tokens is evidently de-
termined by the unrolled stride 7ain OF Njnfer SPEC-
ified beforehand. A clear difference from PaSS is
that we replace all “look ahead” tokens with a same
mask token (Monea et al., 2023). Such modifica-
tion essentially leads to a similar model specialized
for teacherless training in Bachmann and Nagara-
jan’s (2024) work, which is also derived from PaSS
(Monea et al., 2023). An incredible advantage of
identical mask tokens in different production posi-
tions is that such architecture implements the third
feature of NNTP framework. In other words, we
can predict any number of subsequent tokens (i.e.,
unrestricted njnfer) from a forward pass, once the
mask embedding has been learned in training.

2.3 Future-aware Self-Attention Mask

In addition to identical mask tokens, we also pro-
pose a novel mask recipe termed as future-aware
mask for self-attention computation. Inspired by
the researches of UNILMv2 (Bao et al., 2020) and
GLM (Du et al., 2022), we come up with two types
of future-aware mask to enable certain queries of
interest to attend all future keys except for padding
ones:

* TypeI Only queries in production positions

T3 T2 x3 T4 3 Te [M] [M]

EEEEEEE
@2 EEEEEE
23 EENENENE
74 HEEE
s HEN

T6

T

—

M] Pl:od'ufztion
ositions

M]

Allow to attend |:| NOT allow to attend

Allow to attend for Type I, NOT for Type II

Figure 2: Two types of future-aware self-attention mask.
All mask tokens can attend each other and their pre-
ceding keys (green). For future-aware mask Type I,
the query in the first production position ¢ can attend
all mask tokens appended after input context (orange),
while on the contrary for Type II. Other queries are
strictly prevented from attending future keys (grey),
same as causal mask in Transformer (Vaswani et al.,
2017).

(zg and [M] in Figure 2) can attend all future
keys, while others just attend themselves or
their history as in causal mask used in Trans-
former (Vaswani et al., 2017);

e Type II Slightly different from Type I, the
query in the first production position (zg in
Figure 2) only attends itself or keys preceding
it.

Even though both types of future-aware mask ba-
sically share similar mask matrices added to self-
attention logits before softmax, Type II makes it
possible to cache the keys and values of the last
context token (x¢ in Figure 2) for next inference
step. Such minor improvement eventually avoids
some redundant computation especially in generat-
ing very long sentence with a small unrolled stride.
We use future-aware mask Type I in following ex-
periments for the sake of better performance, unless
otherwise specified.

3 Experiments

We preprocess the English Wikipedia as training
corpus and then finetune different LLMs using two
approaches (See Appendix A). To evaluate the per-
formance of finetuned models, we carefully choose

five benchmarks about text comprehension and con-
tinuation: MMLU (Hendrycks et al., 2021b,a), Hel-
laSwag (Zellers et al., 2019), LAMBADA (Paperno
et al., 2019), WinoGrande (Sakaguchi et al., 2019)
and RACE (Lai et al., 2017). At last, experimen-
tal results are gathered and presented in following
subsections.

3.1 Unrolled Stride in Training

First of all, we investigate the effect of unrolled
stride during training on the ultimate performance
of finetuned models. Using Qwen2 1.5B as the base
model, we finetune it with the stride n,i, varying
from 2 to 16, and evaluate each derived model with
inference stride ninfer = 2,4, 8 respectively. We
use future-aware mask Type I by default in this
experiment. Experimental results on two kinds of
tasks, HellaSwag for multiple choice question and
LAMBADA for word prediction, are illustrated in
Figure 3a and 3b.

As we can see, too small strides (e.g., Nain = 2)
always lead to poor performance on both Hel-
laSwag and LAMBADA under all circumstances.
An interesting phenomenon is that all models
finetuned with large strides consistently produce
high accuracies on HellaSwag when the inference
strides are small (i.e., Neain > Ninfer).- We conjec-
ture that this is due to the ability of foreseeing fu-
ture tokens beyond current production positions in
every generation step, which is probably acquired
from finetuning via NNTP. The abnormal trend of
Nirain > Ninfer = 4 on LAMBADA may be caused
by very short answers restricting the potential of
NNTP (See Table 5). From Figure 3a and 3b, we
can find the best performance for njyer = 2, mod-
erate for njyrer = 4 and the worst for nipfer = 8
using each finetuned model on both benchmarks.
We leave this to next subsection for further inves-
tigation. If we intentionally keep the inference
stride same as the training one, a consecutive per-
formance drop can be observed by increasing the
unrolled strides. Through a rough theoretical anal-
ysis, the explosive complexity of NNTP at training
and inference time naturally takes responsibility
for this degradation (See Appendix C). According
to the results on HellaSwag and LAMBADA, we
choose Nqin = 4 for remaining experiments if not
specified.

3.2 Unrolled Stride at Inference

Besides the training stride, the unrolled stride at
inference may also have a significant impact on

0.5

Accuracy
o
=
&

0.4

2 3 4 6 8 10 13 16

Unrolled Stride in Training

(a)

[=3 ——ngn=4 e nun=6

0.5

Accuracy
°
=
&

0.4

0.3

Perplexity
S
8

2 3 4 6 8 10 13 16
Unrolled Stride in Training

(b)

[mwn=3 ——n=4 —mun=6

Perplexity

30

2 3 4 6 8 10 13 16
Unrolled Stride at Inference

()

2 3 4 6 8 10 13 16

Unrolled Stride at Inference

(d

Figure 3: Evaluation results of finetuned models corresponding to different unrolled strides in training and at
inference. The accuracies of derived models after finetuning Qwen2 1.5B with different training strides on
HellaSwag are illustrated in (a). (b) presents the perplexity of same models as (a) on LAMBADA benchmark. (c)
and (d) exhibit the performance of finetuned Qwen2 1.5B models when evaluating with different inference strides

on HellaSwag and LAMBADA respectively.

the evaluation results. We still finetune the Qwen2
1.5B model with different training stride N, =
3,4, 6 respectively, and then evaluate each derived
model with unrolled stride varying from 2 to 16.
As in previous experiment, we use future-aware
mask Type I as the default setting.

As depicted in Figure 3c, we discover that the
accuracy on HellaSwag decreases monotonically
with the increase of unrolled stride at inference.
A similar trend can be observed on LAMBADA
benchmark in Figure 3d, where the perplexity of
generated tokens becomes worse and worse if the
inference stride gets large. It is not surprising since
the search space of possible outputs grows expo-
nentially with the increasing inference stride (See
Appendix C). We also find the perplexity on LAM-
BADA remains unchanged for njs; > 4, due to

small answer length of each example in this dataset
(See Table 5). Specially, all of our finetuned models
achieve relatively poor yet acceptable performance
when the unrolled stride at inference exceeds the
training one (i.e., Ninfer > Nirain)- L NiS eXciting re-
sults clearly demonstrate the superiority of the third
feature of NNTP framework implemented through
identical mask tokens (Section 2.1). In order to
examine the potential of NNTP and expect rela-
tively better performance using finetuned models,
we choose niyrer = 4 to conduct following experi-
ments unless specified otherwise.

3.3 Future-aware Self-attention Mask

In spite of unrolled strides, the mask recipe also
plays an important role in improving the effective-
ness of NNTP-based language models. We fine-

HellaSwag (acc 1)
Ninfer = 2 Ninfer = 4 Ninfer = 8

LAMBADA;q (ppl 1)

Ninfer = 2 Ninfer = 4 Ninfer = 8

Future-aware Mask Type I 0.7059 0.5946
Future-aware Mask Type II | 0.7050 0.5909
Causal Mask 0.7023 0.5823

0.4732 10.77 11.92 11.96
0.4755 11.45 12.68 12.71
0.4373 12.90 14.38 14.43

Table 1: Comparison results of different mask recipes. We apply each mask recipe to the base Qwen2 7B model and
then finetune it with n,;, = 4. As for evaluation, we also employ the same mask recipe as training for each derived
model. Each model is evaluated with three different inference strides to reduce accidental bias.

tune Qwen2 7B model by employing three kinds of
mask recipes: two types of future-aware mask and
causal mask. The causal mask is firstly proposed
in Transformer (Vaswani et al., 2017) and widely
used in generative LLMs (Touvron et al., 2023;
Yang et al., 2024), which only allows each query to
attend its preceding keys or itself in self-attention
computation. We use the same mask recipe as in
finetuning when evaluating each derived model.
The resulting models are evaluated on HellaSwag
and LAMBADA benchmarks with different infer-
ence strides for fair comparison.

From Table 1, we can conclude that future-aware
self-attention mask substantially surpasses the con-
ventional causal mask, and future-aware mask Type
I generally works slightly better than Type II. Ob-
viously, the modification that allows queries in pro-
duction positions to attend future keys evidently
enhances the capability of generative LLLMs. The
superior performance of future-aware mask further
proves the great potential of foreseeing the future
when generating text via NNTP. As a consequence,
we use future-aware mask Type I during training
and at inference by default.

3.4 LLMs of Different Sizes

Using the chosen settings discussed in previous
subsections, we experiment with LLMs of various
sizes via NNTP. Based on pretrained models of
Qwen? series, we present the performance of both
original and finetuned models. The evaluation re-
sults of the former on five benchmarks are marked
with NTP and the later with NNTP as shown in
Table 2.

There is an obvious trend that large-sized models
outperform those of small sizes in terms of accu-
racy or perplexity on all benchmarks. It clearly
verifies one aspect of the well-known “scaling law”
that the performance of LLMs scales with model
size (Kaplan et al., 2020). Another phenomenon is
that all models finetuned via NNTP always fail to
achieve comparable performance to corresponding

base models without finetuning. According to Ta-
ble 2, our finetuned models only reach about 97%
of the original in terms of accuracy on MMLU,
75% on HellaSwag, 85% on WinoGrande and 80%
on RACE. Furthermore, we discover that the per-
formance gap between finetuned and original mod-
els correlates with the answer length of different
benchmark datasets. For example, we can observe
an evident degradation of our NNTP-based models
on HellaSwag with longest answers (29.44 tokens
in average), while our models exhibit comparable
performance on MMLU with just one token as an-
swers (Table 5). We conjecture that this is because
the complexity of NNTP grows with the increas-
ing unrolled strides at both training and inference
time (See Appendix C). It is worth to note that our
method essentially turns into a non-autoregressive
solution for tasks requiring short answers, such as
MMLU and LAMBADA. Therefore, our proposed
method exhibits a promising advantage in unrolling
the process of autoregressive generation.

3.5 Comparison with Other Methods

In this subsection, we compare our method with
two existing methods adapted from Gloeckle et al.
(2024) and Monea et al. (2023) respectively. In
order to adapt to the requirement of NNTP, we
reimplement both methods by changing the specu-
lative decoding into predicting multiple tokens at
once. We exploit the terms “Multi-token Heads”
and “Look-ahead Tokens” to represent the major
characteristic of each method and to distinguish
them from ours. Note that only linear output heads
are implemented in the “Multi-token Heads” model
for simplicity. Using Qwen2 7B pretrained weights,
we initialize and train a model through each of
these methods. The evaluation of two resulting
models and ours (marked with NNTP) is conducted
under a same condition, that is predicting 4 tokens
simultaneously from one pass. All experimental
results are presented in Table 3.

From Table 3, we can see that all models fine-

MMLU HellaSwag LAMBADA,;; WinoGrande RACE

acc T acc T ppl | acc T acc T

Qwen2 0.5B (NTP) 0.4405 0.4906 15.38 0.5777 0.3445
Qwen2 0.5B (NNTP) 0.4247 (0.96x) 0.3614 (0.74x) 213.56 0.5296 (0.92x) 0.2670 (0.78x)

Qwen2 1.5B (NTP) 0.5508 0.6548 6.93 0.6598 0.3665
Qwen2 1.5B (NNTP) 0.5397 (0.98x) 0.4369 (0.67x) 40.07 0.5580 (0.85x) 0.2852 (0.78x)

Qwen2 7B (NTP) 0.6946 0.7882 4.67 0.7222 0.3990
Qwen2 7B (NNTP) 0.6743 (0.97x) 0.5946 (0.75x) 11.92 0.6054 (0.84x) 0.3234 (0.81x)

Table 2: Performance of Qwen2 models of different sizes before and after finetuning. We choose original models of
Qwen?2 series without instruction tuning as base models. The original models are marked with NTP, while those

after finetuning with NNTP.

MMLU HellaSwag LAMBADA,,; WinoGrande RACE

acc T acc T ppld acc T acc T
Original (NTP) 0.6946 0.7882 4.67 0.7222 0.3990
Multi-token Heads 0.6156 0.4095 59.72 0.5596 0.2651
Look-ahead Tokens 0.6769 0.5180 13.85 0.6101 0.3129
Ours (NNTP) 0.6743 0.5946 11.92 0.6054 0.3234
Ours (NTP) 0.6743 0.7743 4.35 0.7088 0.3876
Ours (NNTP + NTP) 0.6743 0.7783 4.27 0.6993 0.4010

Table 3: Comparison results of different methods. The original is Qwen2 7B model without instruction tuning,
which serves as the base model for comparing other methods. “Multi-token Heads” and “Look-ahead Tokens”
represent two existing methods adapted from Gloeckle et al. (2024) and Monea et al. (2023) respectively. Our
finetuned model is particularly evaluated via three different ways, including next-token prediction (marked with
NTP), next-n-token prediction (NNTP) and using dynamic strides in decoding (NNTP + NTP). Three models
in the middle rows are actually finetuned and evaluated using the same setting, i.e., predicting 4 future tokens

simultaneously.

tuned and evaluated via NNTP are inferior to the
original model using NTP on five benchmarks, in-
cluding those trained through “Multi-token Heads”
and “Look-ahead Tokens”. It is quite reasonable
since NNTP is inherently more complex than NTP
in both stages of training and inference (See Ap-
pendix C). Regardless of such inferiority for now,
our method clearly outperforms other two methods,
especially on HellaSwag. “Multi-token Heads” per-
forms much worse than “Look-ahead Tokens” and
our method on all benchmarks, which may caused
by the lack of dependence among different output
heads of linear type. Contrarily, “Look-ahead To-
kens” can capture the dependence among tokens
in production positions partly through causal mask,
and ours through future-aware self-attention mask.
Moreover, our method obviously surpasses two
others by implementing the third feature of NNTP
framework, which is predicting any number of to-
kens from one pass at inference (Section 2.1).

We further investigate the underlying reasons
responsible for the degradation of NNTP-based
models. Using the finetuned model via NNTP, we

firstly evaluate it by autoregressively predicting
next token (marked with NTP). Inspired by the
idea of speculative decoding, we then use dynamic
unrolled stride at inference: (1) predicting n sub-
sequent tokens simultaneously as a candidate se-
quence at each step; (2) accepting the first token
(or first few tokens) in the candidate sequence and
feeding it together with preceding context to the
model for next step. The results of such decoding
are marked with “NNTP + NTP” for convenience.

According to Table 3, our model (NTP) exhibits
slightly inferior performance than the original if de-
coding via NTP. Such phenomenon partly demon-
strates that NNTP is a much harder task for training
than NTP, resulting in a less effective next-token
predictor than before finetuning. The contrary trend
on LAMBADA may be caused by short answers
in that dataset (See Appendix D). In spite of the
performance drop induced from training, we still
observe more severe degradation if changing the
decoding method via NTP to NNTP using the same
model (0.7743 to 0.5946 on HellaSwag, 4.35 to
11.92 on LAMBADA, 0.7088 to 0.6054 on Wino-

Grande and 0.3876 to 0.3234 on RACE). This fact
indicates that the decoding method becomes the
major bottleneck for development of our NNTP-
based method. At last, we experiment with a novel
decoding method using dynamic unrolled stride at
inference (NNTP + NTP), and surprisingly achieve
a slightly better results than the plain decoding via
NTP. Once again, this explicitly verifies the benefit
of foreseeing future tokens in every decoding step,
which is learned from NNTP.

4 Related work

Plenty of researches have explored diverse means
to predict multiple tokens simultaneously, mostly
under a condition of autoregressive inference. Stern
et al. (2018) proposed blockwise parallel decoding
by predicting future tokens at once and then verify-
ing them in parallel. After the emergence of specu-
lative decoding (Leviathan et al., 2023; Chen et al.,
2023), Cai et al. (2024) and Gloeckle et al. (2024)
improved the efficiency of autoregressive genera-
tion using future candidates produced from differ-
ent decoding heads from one pass. Furthermore,
parallel speculative sampling (PaSS) exploited ad-
ditional look-ahead embeddings to speed up de-
coding (Monea et al., 2023). Derived from PaSS,
Bachmann and Nagarajan (2024) repeated the same
special token ‘$’ many times for teacherless train-
ing, which happens to accord with our intuition of
identical mask tokens for all look-ahead positions.
Our method differs from the work mentioned above
in two aspects: 1) auxiliary or draft models are not
required to verify the future tokens predicted si-
multaneously; 2) a novel mask recipe instead of
vanilla causal mask is employed when computing
self-attention weights in each Transformer layer.
Beyond all these, we intend to mitigate the NTP-
inherent failures by unrolling the autoregressive
generation via NNTP.

Many kinds of mask recipes have been devised
to customize the computation of self-attention
weights in Transformer-based LLMs. The most
popular one is causal mask originally used in Trans-
former decoder (Vaswani et al., 2017). As the ris-
ing of masked language models like BERT (Devlin
etal., 2019) and causal language models like GPT-2
(Radford et al., 2019), many researchers made great
efforts to combine the advantages of both archi-
tectures through sophisticated self-attention mask.
UNILM integrated bidirectional, unidirectional and
sequence-to-sequence objectives into the unified

pre-training of a Transformer-based model, each of
which corresponds to a specific self-attention mask
(Dong et al., 2019). UNILMv?2 further employed
a complicated mask for self-attention to combine
autoencoding and partially autoregressive tasks to-
gether (Bao et al., 2020). GLM, from a slightly
different perspective, incorporated the autoregres-
sive objective into pre-training through a blank in-
filling task and a relevant mask (Du et al., 2022).
Although quite similar in terms of expression, our
proposed future-aware mask allows masked tokens
to attend each other, which is highly concise and
intuitive thanks to the lack of autoencoding task in
training (See section 2.3).

5 Discussion

In this work, we formalize the framework of next-n-
token prediction (NNTP), which bridges the gap be-
tween autoregressive and non-autoregressive gener-
ation. Based on existing LLMs, we then propose to
exploit multiple identical mask tokens appended af-
ter input context together with a novel mask recipe
called future-aware mask for generation. Through
several experiments, we verify the great potential
of our method in unrolling the autoregressive gen-
eration. We also demonstrate the superiority of our
method compared to two others under the same
condition. At last, we analyze the complexity of
NNTP and investigate the error distribution over
production positions.

There are several aspects concerning with NNTP
and related methods to be improved in the future.
The first is to sample an optimal sequence from
multiple distributions of future tokens over a large
vocabulary. The intuitive way of sampling each
token independently may lead to an inconsistent
output, such as illegal set phrase. Another aspect is
to use adaptive unrolled stride at inference, similar
to dynamic inference stride in Section 3.5. A trivial
idea of re-generating “hard” tokens (e.g., nouns and
verbs) with high uncertainty in last step may help
to significantly improve the quality of generated
text.

6 Limitations

Although next-n-token prediction (NNTP) exhibits
great potential in unrolling the process of au-
toregressive generation, there still exists certain
shortcomings impeding the practical application
of NNTP-based methods. An obvious limitation
is that NNTP-based LLMs rely on a context long

enough to generate its continuation. Fortunately,
most of generative tasks usually offer an informa-
tive prompt to steer the response from a LLM, mak-
ing this limitation insignificant. Another drawback
lies in the inferior performance to LLMs based
on next-token prediction (NTP). One major rea-
son behind this may be the inefficiency of teacher-
less training adopted by NNTP-based methods, in
which only a tiny portion of tokens in each example
are constructed as labels for training. Additionally,
due to the enormous complexity of NNTP, related
methods require new techniques for both training
and inference to match the performance of those
based on NTP.

References

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel
Tarlow, and Rianne van den Berg. 2021. Structured
denoising diffusion models in discrete state-spaces.
In Advances in Neural Information Processing Sys-
tems, volume 34, pages 17981-17993. Curran Asso-
ciates, Inc.

Gregor Bachmann and Vaishnavh Nagarajan. 2024. The
pitfalls of next-token prediction. In Proceedings of
the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learning
Research, pages 2296-2318. PMLR.

Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan
Yang, Xiaodong Liu, Yu Wang, Songhao Piao, Jian-
feng Gao, Ming Zhou, and Hsiao-Wuen Hon. 2020.
Unilmv2: pseudo-masked language models for uni-
fied language model pre-training. In Proceedings of
the 37th International Conference on Machine Learn-
ing, ICML’20. JMLR.org.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, and 12 others. 2020. Language models are
few-shot learners. In Advances in Neural Information
Processing Systems, volume 33, pages 1877-1901.
Curran Associates, Inc.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
Jason D. Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple LLM inference acceleration frame-
work with multiple decoding heads. In Forty-first
International Conference on Machine Learning.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model
decoding with speculative sampling.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Pondé, Jared Kaplan, Harrison Ed-
wards, Yura Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, and 34 others. 2021. Eval-
uating large language models trained on code. ArXiv,
abs/2107.03374.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language model
pre-training for natural language understanding and

generation. Curran Associates Inc., Red Hook, NY,
USA.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. GLM:
General language model pretraining with autoregres-
sive blank infilling. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 320-335,
Dublin, Ireland. Association for Computational Lin-
guistics.

Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths,
Tommaso Salvatori, Thomas Lukasiewicz, Philipp
Petersen, and Julius Berner. 2024. Mathematical ca-
pabilities of chatgpt. Advances in neural information
processing systems, 36.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2024. A framework for few-shot language
model evaluation.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6112—
6121, Hong Kong, China. Association for Computa-
tional Linguistics.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Roziere,
David Lopez-Paz, and Gabriel Synnaeve. 2024. Bet-
ter & faster large language models via multi-token
prediction. In Forty-first International Conference
on Machine Learning.

https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Ste-
fanie Tellex. 2019. Openwebtext corpus. http:
//Skylion@07.github.io/OpenWebTextCorpus.

Albert Gu and Tri Dao. 2024. Mamba: Linear-time
sequence modeling with selective state spaces.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. UniXcoder: Unified cross-
modal pre-training for code representation. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 72127225, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Zhengfu He, Tianxiang Sun, Qiong Tang, Kuanning
Wang, Xuanjing Huang, and Xipeng Qiu. 2023. Dif-
fusionBERT: Improving generative masked language
models with diffusion models. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
4521-4534, Toronto, Canada. Association for Com-
putational Linguistics.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew
Critch, Jerry Li, Dawn Song, and Jacob Steinhardt.
2021a. Aligning ai with shared human values. Pro-
ceedings of the International Conference on Learning
Representations (ICLR).

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021b. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. RACE: Large-scale ReAd-
ing comprehension dataset from examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 785—
794, Copenhagen, Denmark. Association for Compu-
tational Linguistics.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, ICML’23.
JMLR.org.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training

10

for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871-7880, Online. Association for Computa-
tional Linguistics.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S
Liang, and Tatsunori B Hashimoto. 2022. Diffusion-
Im improves controllable text generation. In Ad-
vances in Neural Information Processing Systems,
volume 35, pages 4328-4343. Curran Associates,
Inc.

Yifan Li, Kun Zhou, Wayne Xin Zhao, and Ji-Rong Wen.
2023. Diffusion models for non-autoregressive text
generation: a survey. In Proceedings of the Thirty-
Second International Joint Conference on Artificial
Intelligence, IJCAI *23.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. Regularizing and optimizing LSTM
language models. In International Conference on
Learning Representations.

Fatemehsadat Mireshghallah, Kartik Goyal, and Taylor
Berg-Kirkpatrick. 2022. Mix and match: Learning-
free controllable text generationusing energy lan-
guage models. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 401-415,
Dublin, Ireland. Association for Computational Lin-
guistics.

Giovanni Monea, Armand Joulin, and Edouard Grave.
2023. Pass: Parallel speculative sampling. arXiv
preprint arXiv:2311.13581.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, and
262 others. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Denis Paperno, German Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernandez. 2019. The lambada dataset.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2019. Winogrande: An ad-
versarial winograd schema challenge at scale. arXiv
preprint arXiv:1907.10641.

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2312.00752
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2023.acl-long.248
https://doi.org/10.18653/v1/2023.acl-long.248
https://doi.org/10.18653/v1/2023.acl-long.248
https://doi.org/10.18653/v1/2023.acl-long.248
https://doi.org/10.18653/v1/2023.acl-long.248
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.24963/ijcai.2023/750
https://doi.org/10.24963/ijcai.2023/750
https://doi.org/10.24963/ijcai.2023/750
https://doi.org/10.18653/v1/2022.acl-long.31
https://doi.org/10.18653/v1/2022.acl-long.31
https://doi.org/10.18653/v1/2022.acl-long.31
https://doi.org/10.18653/v1/2022.acl-long.31
https://doi.org/10.18653/v1/2022.acl-long.31
https://arxiv.org/abs/2303.08774
https://doi.org/10.5281/zenodo.2630551

Nikolay Savinov, Junyoung Chung, Mikolaj Binkowski,
Erich Elsen, and Aaron van den Oord. 2022. Step-
unrolled denoising autoencoders for text generation.
In International Conference on Learning Representa-
tions.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.
2018. Blockwise parallel decoding for deep autore-
gressive models. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates,
Inc.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. ArXiv,
abs/2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Tong Wu, Zhihao Fan, Xiao Liu, Hai-Tao Zheng, Yeyun
Gong, yelong shen, Jian Jiao, Juntao Li, zhongyu
wei, Jian Guo, Nan Duan, and Weizhu Chen. 2023.
Ar-diffusion: Auto-regressive diffusion model for
text generation. In Advances in Neural Information
Processing Systems, volume 36, pages 39957-39974.
Curran Associates, Inc.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, and
43 others. 2024. Qwen?2 technical report. Preprint,
arXiv:2407.10671.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2020. Pegasus: pre-training with extracted
gap-sentences for abstractive summarization. In Pro-
ceedings of the 37th International Conference on
Machine Learning, ICML’20. JMLR.org.

A Training Details

We collect and preprocess the English Wikipedia
(about 13G in text) as training corpus to finetune
different LLMs. Due to the limitation of avail-
able computational resources, we employ two ap-
proaches to finetune base models of various sizes,
either updating all parameters or a few portion
with LoRA (Hu et al., 2022). The optimizer used
in training is AdamW with 1 0.9, 2 0.95 and

11

weight decay 0.01. Other settings including total
steps, learning rate and batch size used in fine-
tuning are listed in Table 4. “Multi-token Heads”
and “Look-ahead Tokens” represent two baselines
trained through existing methods (Gloeckle et al.,
2024; Monea et al., 2023). We train both models
for more steps in order to achieve more stable and
better performance on downstream tasks.

B Dataset Statistics

To evaluate the capability of finetuned models,
we carefully choose five benchmarks concerning
text comprehension and continuation, including
MMLU (Hendrycks et al., 2021b,a), HellaSwag
(Zellers et al., 2019), LAMBADA (Paperno et al.,
2019), WinoGrande (Sakaguchi et al., 2019) and
RACE (Lai et al.,, 2017). We use the toolkit
“Im-evaluation-harness” under zero-shot setting for
evaluation on all benchmarks (Gao et al., 2024).
We also develop the decoding method via next-
n-token prediction based on the codes of “lm-
evaluation-harness”. Since the lengths of answers
for each benchmark greatly affect the measures
calculated through next-n-token prediction, we an-
alyze the average and maximum answer length for
all benchmark datasets in Table 5.

C Complexity of NNTP

We firstly review the basic problem for causal lan-
guage modeling, that is fo find the best word (or
token) sequence as the continuation conditioning
on a given context. Taking the following sentence
with target sequence consisting of n = 3 words
as an example, the task for training a LLM is to
predict the target words (bold text).

Alice likes to chat with her friends on the phone .

A language model trained via next-n-token predic-
tion (NNTP) significantly differs from one using
next-token prediction (NTP). NTP-based models
are typically trained via teacher-forcing rather than
teacherless employed in NNTP. Teacher-forcing
essentially decomposes the above task into three
sub-tasks of predicting next token individually, im-
plemented simply by causal mask in each Trans-
former block.

Alice likes to chat with her friends on the
Alice likes to chat with her friends on the phone
Alice likes to chat with her friends on the phone .

If the vocabulary size of a LLM is denoted by V,
the number of possible next tokens would thus be

https://arxiv.org/abs/2407.10671

Total Steps

Base Model Tirain g;?;ﬁ:tlzrs Learning Rate gther

Batch Size yperparameters
Qwen2 0.5B 4 100% (all) 20k/3e-5/64
Qwen2 1.5B 2/3/4/6/8/10/13/16 100% (all) 20k/3e-5/64
Qwen2 7B 4 2.33% (LoRA) 20k/3e-4/64 r =064, =38
Multi-token Heads 4 100% (all) 100k/1e-5/64
Look-ahead Tokens 4 2.33% (LoRA) 100k/le-4/64 r =64, a =38

Table 4: Training settings used to finetune different models. “Multi-token Heads” represents the resulting model
with linear output heads trained using the method from Gloeckle et al. (2024), while “Look-ahead Tokens” is
finetuned after adding multiple “look-ahead” embeddings as in PaSS (Monea et al., 2023).

Dataset #examples Average Answer Length Maximum Answer Length

(#tokens) (#tokens)
MMLU 14015 1.0 1
HellaSwag 40145 29.44 80
LAMBADA 4 5151 1.46 5
WinoGrande 2534 5.61 20
RACE 4033 7.65 25

Table 5: Statistics of five benchmarks for evaluation. The answer length is measured by counting the continued
tokens to be generated after input context for each example. We use the tokenizer of Qwen2 7B model to produce
the answer sequences and collect statistical results in this table.

Training Inference
NTP O(nV) O(%5)

n

NNTP O(V") O(V")

Table 6: Approximate complexity (i.e., intrinsic difficulty of causal language modeling) of NNTP and NTP in
training and at inference. The prerequisite of the analysis here is to predict n subsequent tokens from one forward
pass in different ways. V' denotes the vocabulary size of a particular LLM.

V' for each sub-task above. Ignoring the efficacy rable output with the former. Ignoring the impact
of the LLM, the intrinsic difficulty of causal lan- of different LLMs, we can hence approximate the
guage modeling (i.e., complexity) can be roughly inference complexity for each attempt with the size
estimated by the size of search space, namely the of search space divided by the number of forward
number of possible solutions for the whole task. passes, thus O(V™) for NNTP and O(¥-) for NTP.
Apparently, the complexity of teacher-forcing for To sum up, a LLM based on NNTP tries to learn
a single pass using a single example is O(nV) by ~ from a much harder task than NTP in training, and
sequentially combining different sub-tasks together. endeavor to generate text with clearly fewer at-
Similarly, we can infer the complexity of teacher- tempts at inference (Table 6). Note that the results
less training O (V") used by NNTP, which is expo- presented in Table 6 are derived after neglecting
nentially larger than teacher-forcing. many relevant factors (e.g., different models and

As for inference, a LLM trained via NNTP nor- capabilities). Even so, the complexity trend of
mally generates n subsequent tokens simultane- NNTP versus NTP still holds true if the test LLMs
ously from one forward pass. As a contrast, n share a similar structure and are in the same level

forward passes are conducted autoregressively via of generation ability.
NTP in order to produce a target sequence of same
length as above. Although the total number of
possible newly-generated sequences from NNTP We additionally analyze the error distribution over
is generally identical to that from NTP, the later ~ production positions to uncover the underlying
actually makes more attempts to achieve a compa- cause of particular phenomena presented in Section

D Error Distribution

12

o

Cross Entropy Loss
-]

L L 1 L L 1

B oo —

L L L L L

1st 2nd 3rd 4th Sth 6th 7th 8th 9

th

10th 11th 12th 13th 14th 15th 16th

Production Position

Figure 4: Error distribution over production positions. Using different inference strides, we compute the average
cross-entropy loss for each production position over 30k examples of diverse lengths. The order of production
position is ranked by minimum distance of corresponding token from input context in the actual sequence. For
example, 1st indicates the position of last context token, and 2nd is that of the first mask token appended after input

context.

3. To avoid the sample selection bias, we randomly
choose 30k documents from the OpenWebText cor-
pus (Gokaslan et al., 2019) and truncate the token
sequence of each document to a random length as
an example. Using our finetuned model derived
from Qwen2 7B, we calculate the average cross-
entropy loss in each production position for differ-
ent inference strides. The experimental results are
illustrated in Figure 4.

We discover an obvious trend that the errors in-
crease with production position farther away from
input context before the 7th position, and decrease
dramatically and then stay stable starting from the
7th production position (Figure 4). The reason that
the finetuned model tends to generate accurate to-
kens in the left end of production positions may
be the closeness to input context according to the
actual order, in which case the model is able to
foresee many future tokens even if they are beyond
the positions for new generations in current step.
Consequently, we always achieve superior results
if training with large unrolled stride and generating
with a small one (Figure 3a and 3c).

On the other hand, generated tokens in the mid-
dle or right end of all production positions bring
more uncertainty to the final output if using large
inference stride. We conjecture that the lack of
known context with strong local relations to the
generated tokens may be the cause of potential er-
rors in these tokens, which essentially accounts for
the significant degradation when nipfer = Nirain I

13

Figure 3c. However, the evident peak in the 6th po-
sition beats our knowledge about NNTP and LLM.
We unfortunately fail to explain such unusual be-
havior of the finetuned model through extra experi-
ments, and thus make more effort to investigate it
in our future work.

As in previous experiments, we find some incon-
sistent phenomena on LAMBADA benchmark (Fig-
ure 3b and Table 3). The crucial fact affecting the
performance of finetuned models on LAMBADA
is probably the short answers in this dataset, which
makes the models finetuned with large strides less
effective than using small training strides (Figure
3b). As discussed above, only a few tokens in the
left end of production positions are taken as final
output due to small answer length, even if using a
very large stride at inference. In addition, a small
portion of examples have an answer length larger
than one token, among which our model still bene-
fits from the foreseeing ability learned via NNTP.
As a consequence, generated tokens tend to match
the actual answers with little errors (Figure 4), re-
sulting in a better result than the original (4.35 vs
4.67 as in Table 3). Through the comprehensive
analysis, we discover an effective way to improve
the performance using NNTP, that is using a large
stride during training and a small one at inference.

	Introduction
	Method
	Framework of Next-N-Token Prediction
	Predict with Mask Tokens
	Future-aware Self-Attention Mask

	Experiments
	Unrolled Stride in Training
	Unrolled Stride at Inference
	Future-aware Self-attention Mask
	LLMs of Different Sizes
	Comparison with Other Methods

	Related work
	Discussion
	Limitations
	Training Details
	Dataset Statistics
	Complexity of NNTP
	Error Distribution

