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Abstract

Large Language Models (LLMs) demonstrate
strong code generation and comprehension abil-
ities, yet the extent to which different program-
ming languages are processed independently
or within a shared parametric space remains
unclear. Inspired by cognitive neuroscience,
we introduce Coding Spot, a specialized para-
metric region that facilitates coding capacity
in LLMs. Our findings show that targeted
modifications to this subset significantly af-
fect coding performance while largely preserv-
ing non-coding functionalities, suggesting that
LLM:s exhibit parametric specialization similar
to function-specific brain regions. This indi-
cates that coding knowledge may not be uni-
formly distributed across the model but instead
concentrated in distinct regions that play a cru-
cial role in task-specific performance. Enhanc-
ing our understanding of how LLMs internal-
ize coding knowledge offers new directions for
optimizing model architectures and improving
code-related applications.

1 Introduction

Large Language Models (LLMs) have initiated a
significant transformation in computational code
processing, showcasing advanced capabilities in
tasks such as code generation and comprehension
across a wide range of programming languages
(Chen et al., 2021; Austin et al., 2021; Li et al.,
2022). Models such as Llama 3 (Dubey et al.,
2024), GPT-40 (Achiam et al., 2023), and Claude
3.5 Sonnet (Anthropic, 2024) have achieved consid-
erable success, establishing themselves as essential
tools for automating programming tasks and en-
hancing developer productivity.

Despite these successes, a fundamental question
remains: how do these models internally represent
and organize the coding knowledge necessary for
such tasks? More specifically, it is unclear whether
the knowledge required for programming tasks is
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Figure 1: Overview of the framework for extracting
and analyzing Coding Spot within LLMs. The process
begins with the model undergoing importance scoring
independently for n programming languages. The Im-
portance Scores extracted from each language are aggre-
gated for each parameter and then sorted in descending
order. The parameters within the top k% of Importance
Scores are defined as the Coding Spot

uniformly distributed across the model’s param-
eters or if certain parameter subsets exhibit spe-
cialization for coding-related functionalities. This
question is reminiscent of findings in cognitive sci-
ence, where specific brain regions, such as Broca’s
and Wernicke’s areas, are specialized for language
processing (Broca et al., 1861; Wernicke, 1874). In-
spired by this analogy, we hypothesize that LLMs
may similarly exhibit task-specific parametric re-
gions, particularly those dedicated to coding tasks.

In this study, we introduce the concept of the
Coding Spot, a theoretical construct representing a
subset of parameters within LLMs that are partic-
ularly critical for code-related capabilities. Anal-
ogous to domain-specific regions in the brain, the
Coding Spot embodies a specialized parametric re-
gion that is crucial for the model’s proficiency in
coding tasks. By identifying and analyzing these
critical regions, we aim to provide new insights into
the internal parametric architecture of LLMs and



their ability to manage coding and general tasks.
Our primary objective is to conduct a rigorous
examination of the parametric structure of LLMs,
with a focus on uncovering the role of the Coding
Spot. We evaluate the consequences of modifying
this subset of parameters on both coding and non-
coding tasks, shedding light on the compartmen-
talized nature of the LLMs’ internal architecture.
This investigation offers a deeper understanding
of how LLMs handle domain-specific knowledge
and draws compelling parallels to the cognitive
specialization observed in the human brain.

2 Coding Spot

Our methodology aims to identify and analyze the
Coding Spot, a specialized subset of parameters
crucial for coding proficiency in LLMs.

Methodological Framework The core of our
methodology is a systematic algorithm designed to
identify critical subsets of parameters—termed the
Coding Spot—from a large pool of LLM parame-
ters. By employing parameter importance scoring,
our framework efficiently isolates the parameters
most relevant to coding tasks, drawing analogies
to the specialization observed in the human brain,
where distinct regions are responsible for different
cognitive functions.

Parameter Importance Scoring To isolate the
Coding Spot, we begin by fine-tuning LLMs on
datasets containing code from individual program-
ming languages. The purpose of this fine-tuning is
not to build a new task-specific model but to extract
accurate parameter gradients via backpropagation.
These gradients allow us to construct language-
specific parameter subsets that are vital for coding
tasks.

Given a dataset D; corresponding to a pro-
gramming language [ and a set of parameters
0 = [61,62,...,0,], our goal is to estimate how
changes in the loss function L( Dy, 6) relate to each
parameter. Using the first-order Taylor expansion,
the model’s loss in response to a specific parameter
6; can be approximated as:

dL(Dy,0)
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This equation highlights how the loss is affected

by parameter 6, informed by its gradient during
fine-tuning. The parameter importance score I ; (9),

which quantifies each parameter’s contribution to
coding tasks, is computed as:

OL(Dy,0)
06,

This score provides a direct measure of each
parameter’s relevance in the context of a specific
programming language [, revealing the most crit-
ical parameters for coding tasks. The role of the
fine-tuned model here is solely to facilitate precise
gradient extraction, not to be used in subsequent
analyses.

IL(0) ~ ‘ ‘ 16,1 )

Aggregating Parametric Importance Across Di-
verse Languages Once we calculate the impor-
tance scores [ ]l (0) for each parameter within in-
dividual languages, the next step is to aggregate
these scores across multiple languages. For each
parameter ¢/;, we compute a total importance score
I]t-"tal(é?) by summing the importance scores across
all languages in the set L:

1eu(9) = S T(0) ©)
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This aggregation captures the global importance
of each parameter, allowing us to identify parame-
ters that consistently influence coding tasks across
diverse languages. By sorting the parameters in
descending order based on their total importance
scores, we isolate a subset of parameters—referred
to as the Coding Spot—that are crucial for coding

proficiency.

Defining the Coding Spot The Coding Spot is
identified by selecting the top k% parameters from
the sorted list. These parameters, which consis-
tently demonstrate high importance across multiple
languages, form a concentrated subset responsible
for coding tasks. The value of k is empirically de-
termined to ensure that we capture the most critical
parameters while avoiding redundancy.

3 Experiments

The objective of our experimental evaluation is to
quantify the role and impact of the Coding Spot
in LLMs, particularly its influence on both task-
specific (e.g., coding) and general tasks (e.g., math-
ematical or commonsense reasoning). We systemat-
ically deactivate the identified Coding Spot parame-
ters to examine their specialization and robustness,
thus providing insights into the broader implica-
tions of parameter specialization in LLMs.



General Code
GSM8K HellaSwag MMLU TruthfulQA WinoGrande Avg. GTC (%) HumanEval
CodeLlama 7B Instruct
Original 18.12 48.32 39.54 39.21 64.56 41.95 87.2
0.0025 % 1.90 36.01 24.63 39.32 53.51 31.07 (-25.93%) | 22.56 (-74.13%)
0.01% 2.27 35.08 23.99 36.91 52.41 30.13 (-28.17%) | 16.46 (-81.12%)
0.09% 0.23 27.23 22.94 49.72 51.38 30.30 (-27.77%) | 1.83 (-97.90%)
0.25% 0.00 25.85 22.93 51.52 50.51 30.16 (-28.10%) _
Llama 3.1 8B Instruct
Original 76.72 59.10 67.96 54.08 73.64 66.30 97.56
0.0025% 2.35 44.47 42.32 43.61 60.14 38.58 (-41.81%)  20.12 (-79.38%)
0.01% 2.65 38.83 29.47 41.55 58.41 34.18 (-48.44%) | 9.76 (-90.00%)
0.09 % 0.61 26.82 23.57 49.58 49.17 29.95 (-54.83%)
0.25% 0.15 26.36 22.95 51.03 48.46 29.79 (-55.07%)
Llama 3.2 3B Instruct
Original 64.67 52.22 60.42 49.77 67.56 58.93 94.51
0.0025 % 2.35 41.39 38.71 45.07 55.96 36.70 (-37.73%) | 15.24 (-83.87%)
0.01% 2.20 36.31 30.30 45.66 53.75 33.64 (-42.91%) | 6.71 (-92.90%)
0.09% 1.29 26.66 23.36 50.53 49.49 30.27 (-48.64%)
0.25% 1.21 26.21 22.94 49.54 49.96 29.97 (-49.14%)

Table 1: Performance comparison of three LLMs on general and coding tasks after deactivating a percentage of
the model identified as Coding Spot. GTC represents General Task Change, and #< marks models with deactivated

parameters.

3.1 Experimental Setup

The experimental setup was carefully designed to
ensure comprehensive evaluation of both special-
ized and general model performance. Detailed in-
formation about the datasets, models, and evalua-
tion benchmarks can be found in Appendix B.

Datasets Our study employed carefully cu-
rated training datasets and evaluation benchmarks
to rigorously assess both specialized and gen-
eral performance aspects of the models. For
the fine-tuning phase, models were trained on
the nampdn-ai/tiny-codes (Nam Pham, 2023)
dataset, meticulously filtered to include only pure
code, thus excluding any content related to in-
struction following or English language capabil-
ities. This focus was crucial to exclude instruction-
following and English abilities, ensuring that mod-
els could extract and focus only on coding skills.
For code-related task evaluation, we utilized
the HumanEval benchmark (Chen et al., 2021),
which assesses the models’ capabilities in gener-
ating correct code solutions across a range of pro-
gramming challenges. To evaluate general task pro-
ficiency, we employed a diverse set of benchmarks
including GSMS8K (Cobbe et al., 2021) (assessing
mathematical reasoning), HellaSwag (Zellers et al.,
2019) (for commonsense reasoning), and MMLU
(Hendrycks et al., 2020) (for multi-task evaluation),
Truthful QA (Lin et al., 2021) (to assess truthful-
ness of responses), and WinoGrande (Sakaguchi

et al., 2021) (for coreference reasoning).

Models We evaluated three state-of-the-art
LLMs of varying sizes: CodeLlama 7B Instruct
(Roziere et al., 2023), Llama 3.1 8B Instruct, and
Llama 3.2 3B Instruct (Dubey et al., 2024). These
models were chosen to assess how different archi-
tectures and scales influence the identification and
impact of the Coding Spot. During fine-tuning,
Python was excluded to test whether the Coding
Spot extends its functionality beyond language-
specific constraints, thereby assessing its gener-
alization across different coding environments.

Evaluation Metrics The primary metric for
code-related tasks was the HumanEval score, while
general tasks were evaluated using accuracy met-
rics on GSMB8K, HellaSwag, and MMLU. The key
experimental procedure involved systematically
nullifying varying percentages of the Coding Spot
parameters and evaluating their impact on both
types of tasks. By excluding Python during fine-
tuning, we tested the hypothesis that the Coding
Spot reflects a broader coding proficiency, general-
izable across different programming languages.

4 Results
4.1 Main Results

The results clearly demonstrate the critical role of
the Coding Spot in both task-specific and general
task performance. As shown in Table 1, deacti-
vating even a small percentage of the most crucial



Avg. GTC (%) Code Change (%) M,
CodeLlama 7B Instruct

Original 41.95 87.20 -
0.0025% -25.93% -74.13% 5.44
0.01% -28.17% -81.12% 5.52
0.09 % -27.77% -97.90% 6.75
0.25% -28.10% -100.00% 6.82

Llama 3.1 8B Instruct

Original 66.30 97.56 -
0.0025% -41.81% -79.38% 2.70
0.01% -48.44% -90.00% 2.65
0.09 % -54.83% -100.00% 2.61
0.25% -55.07% -100.00% 2.60

Llama 3.2 3B Instruct

Original 58.93 94.51 -
0.0025% -37.73% -83.87% 341
0.01% -42.91% -92.90% 3.34
0.09 % -48.64% -100.00% 3.19
0.25% -49.14% -100.00% 3.15

Table 2: Comparison of LLM performance after Cod-
ing Spot parameter deactivation. GTC (%) and Code
Change (%) show changes in accuracy for general and
coding tasks. M, measures task-specific impact.
marks models with deactivated parameters.

parameters caused a significant decline in perfor-
mance across the benchmarks.

For code-related tasks, such as HumanEval,
Llama 3.1 8B Instruct, which initially achieved
a score of 97.56, saw its performance plummet to
zero when 0.09% or 0.25% of the Coding Spot
parameters were deactivated. This sharp decline
highlights the essential role of these parameters in
maintaining coding proficiency and suggests that
the Coding Spot encapsulates critical knowledge
for code generation, generalizable across different
programming languages.

For general tasks, such as GSM8K (mathemati-
cal reasoning), performance similarly exhibited no-
table declines when Coding Spot parameters were
deactivated. This indicates that the parameters crit-
ical for coding tasks also contribute to broader cog-
nitive functions, underscoring the polysemantic na-
ture of the Coding Spot. However, tasks such as
HellaSwag (commonsense reasoning) were less af-
fected, indicating that distinct neural components
may govern different general tasks, reflecting a
modular structure within LLMs.

4.2 Impact of Coding Spot on Performance

Our further exploration provides insights into the
intricate dynamics between task-specific and gen-
eral performance upon Coding Spot parameter de-

activation. The monosemanticity score Mg, crafted
to evaluate the changes in output across special-
ized and general tasks, is sensitive to the extent of
parameter removal:

_ ACoding Task Performance
1 4 AGeneral Task Performance

“)

S

Table 2 illustrates that Llama 3.1 and 3.2 mod-
els attained their highest monosemanticity scores
with a minimal deactivation (0.0025%), signifying
that even a small fraction of parameter alteration
can disproportionately influence coding tasks while
leaving general capabilities relatively unscathed.
This suggests a high density of critically functional
parameters in these models, reflecting precise and
efficient organization of the Coding Spot. Con-
versely, for CodeLlama, more extensive deactiva-
tion (0.25%) achieved peak scores, which may be
attributed to its robust coding specialization derived
from extensive training on diverse code repositories.
This hints at a broader parametric allocation for
coding tasks, confirming the presence of a more ex-
tensive Coding Spot compared to instruction-tuned
models like Llama 3.1 8B.

Our findings reveal that Coding Spot parame-
ters play crucial roles in tasks requiring logical and
numerical reasoning. This is evident from the per-
formance drop in the GSM8K benchmark, where
mathematical reasoning—a domain overlapping
with coding capabilities—is assessed. While com-
monsense reasoning tasks like HellaSwag remained
stable, the decline in complex, math-related tasks
highlights the essential nature of Coding Spot pa-
rameters. These parameters not only enhance cod-
ing abilities but also support high-level problem-
solving tasks, emphasizing their versatile roles
within LLMs across broader cognitive functions.

5 Conclusion

We introduced the Coding Spot, a specialized pa-
rameter subset in LLMs essential for both code gen-
eration and general tasks. Our experiments demon-
strate that deactivating even a small percentage of
these parameters leads to significant performance
declines, confirming their critical role. These find-
ings suggest that the Coding Spot supports multiple
domains, offering valuable insights for future work
on optimizing LLM architectures to enhance both
task-specific and general capabilities.



Limitations

While our study provides significant insights into
the structure and function of Large Language Mod-
els (LLMs), certain limitations must be acknowl-
edged transparently. One of the primary limitations
is the empirical selection of the threshold percent-
age k% for identifying the Coding Spot. Although
empirical processes are commonly utilized to ap-
proximate optimal configurations when theoretical
guidance is lacking, we recognize this approach
may not guarantee absolute optimality across all
LLM architectures. Future research could bene-
fit from developing more robust, mathematically
grounded methods for threshold determination.

Additionally, our methodology involves nullify-
ing the Coding Spot by setting the parameters to
zero. Although this strategy effectively isolates the
impact of these parameters, it might raise questions
about interpretability, given the inherently posi-
tive and negative distribution of parameter weights.
Setting them to zero provides a clear baseline for
assessing their absence. However, we acknowledge
this raises potential questions about non-zero alter-
natives, which might lead to different and perhaps
unexpected model dynamics. While this alterna-
tive strategy has dividends in preserving network
activity, introducing non-zero values could result
in uncontrolled variance and divergent behaviors,
rendering the results less interpretable. Thus, while
this is an interesting avenue for future exploration,
particularly for understanding robustness and sensi-
tivity, the decision for zeroing parameters remains
justified given current interpretability and control-
lability needs.

Our study was conducted exclusively using
Llama models. This decision was intentional, de-
signed to facilitate direct intra-architecture compar-
isons. A consistent model framework minimizes
extraneous variability, allowing for a more focused
analysis of parameter significance across different
conditions. While this approach inherently limits
our findings’ generalizability to non-Llama archi-
tectures, it ensures robust internal comparison and
serves as a strong foundation for future studies that
can expand to more diverse LLM families.

While these constraints may be seen as potential
shortcomings, we view them as informed choices
given the current study’s scope and analytical goals.
They provide a baseline upon which future refine-
ments and broader model inclusivity can be built.

Ethics Statement

This research adheres to ethical guidelines in both
the design and execution of experiments. The
LLMs evaluated in this study were trained using
publicly available data, and no private or sensi-
tive information was involved. However, we ac-
knowledge that LLMs, including those optimized
for code generation, can raise concerns regarding
fairness, bias, and security. It is important that fu-
ture applications of this research take into account
potential risks related to the misuse of automated
code generation tools, especially in safety-critical
contexts. We encourage further research on ad-
dressing these ethical concerns and ensuring the
responsible deployment of LLM technologies.
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A Related Work

Research on the coding capabilities of LLMs has
gained significant attention, with models such as
Llama 3 (Dubey et al., 2024), GPT-40 (Achiam
et al., 2023), and Claude 3.5 Sonnet (Anthropic,
2024) demonstrating strong performance in gener-
ating code across various programming languages.
These models have successfully automated pro-
gramming tasks by producing syntactically correct
and logically coherent code. However, the under-
lying mechanisms that enable such capabilities re-
main unclear, particularly regarding how coding
knowledge is distributed and organized within the
model’s parameters. Understanding this parametric
specialization is key to improving LLMs’ ability to
handle tasks such as code generation and compre-
hension.

LLM interpretability is a critical area of re-
search aimed at uncovering how models process
and store knowledge. Traditional techniques, such
as saliency maps and gradient-based approaches
(Simonyan and Zisserman, 2014; Sundararajan
et al., 2017), have provided insights into neural net-
work behavior by identifying feature importance.
However, the scale and complexity of LLMs pose
unique challenges in pinpointing the specific pa-
rameter subsets responsible for coding proficiency.
This limitation has motivated the development of
targeted methods for understanding the internal
mechanisms of LLMs, especially in specialized
tasks like code generation.

Our work draws inspiration from theories of
modularity in both biological systems and artifi-
cial models. In cognitive science, the concept of
modularity suggests that certain brain regions spe-
cialize in distinct functions, such as Broca’s and
Wernicke’s areas for language processing (Fodor,
1983). Similarly, modularity has been proposed in
neural networks, where specific neurons or regions
are believed to specialize in particular tasks (An-
dreas et al., 2016). Building on this analogy, we
introduce the Coding Spot, a specialized paramet-
ric region within LL.Ms dedicated to handling pro-
gramming tasks. By identifying such parametric
specialization, we aim to provide deeper insights
into the internal architecture of LLMs and their
proficiency in code-related tasks.

Recent advancements in parameter efficiency
techniques, such as adapters (Houlsby et al., 2019)
and parameter-efficient fine-tuning methods (Za-
ken et al., 2021), highlight the growing interest in
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improving model adaptability without retraining
the entire network. These methods emphasize the
importance of selectively fine-tuning critical pa-
rameter subsets for task-specific performance. Our
work contributes to this field by offering a struc-
tured approach to identifying and optimizing task-
critical parameters, specifically for coding tasks
within LLMs.

Additionally, the concepts of monosemantic and
polysemantic neurons (Elhage et al., 2022) have
shaped our understanding of parameter specializa-
tion. Monosemantic neurons, which respond to
specific stimuli, provide a framework for investi-
gating parameter contributions within LLMs. In
the context of code generation, identifying these
specialized neurons or parameters is crucial for
understanding task-specific organization. Our pro-
posed Coding Spot builds on this concept, positing
that certain parameter subsets are responsible for
coding tasks while preserving general non-coding
functionalities.

In summary, our research builds on existing work
in LLM interpretability, modularity, and parame-
ter efficiency. By introducing the Coding Spot,
we bridge theoretical insights from cognitive sci-
ence with practical advances in artificial model
specialization, offering a novel framework for un-
derstanding and optimizing the coding capabilities
of LLMs.

B Experimental Setup

Datasets

To evaluate the performance of our methodology,
we use the nampdn-ai/tiny-codes (Nam Pham,
2023) dataset, which includes Bash, C#, C++, Go,
Java, JavaScript, Julia, Ruby, Rust, and TypeScript.
This dataset offers a diverse environment for fine-
tuning LLMs on language-specific benchmarks, al-
lowing a comprehensive evaluation of coding ca-
pabilities. The dataset includes real-world code
samples for assessing both code generation and
comprehension tasks within each language.

During preprocessing, non-code content was fil-
tered out, and language-specific tokenization was
applied to retain the syntactic and semantic in-
tegrity of each programming language, ensuring an
accurate evaluation of the models.

It is critical to remove non-coding content, as
our focus is on discerning the specific parameters
that contribute to coding prowess. Inclusion of text
related to instruction-following abilities or general

reasoning could inadvertently skew the importance
scores, misleadingly suggesting the relevance of
parameters that are not genuinely integral to cod-
ing functions. This rigorous filtering guarantees
that our analysis truly isolates the Coding Spot re-
sponsible for coding, avoiding confounding factors
associated with unrelated linguistic tasks.

Languages and Benchmarks

In our study, we selected a diverse set of pro-
gramming languages—Bash, C#, C++, Go, Java,
JavaScript, Julia, Ruby, Rust, and TypeScript. This
selection covers a broad spectrum of programming
paradigms, providing a comprehensive evaluation
of the models’ abilities across various coding styles
and syntax.

We employed the HumanEval (Chen et al., 2021)
benchmark, which is widely recognized for testing
the Large Language Models’ capability to generate
code that is both syntactically correct and function-
ally coherent. This benchmark offers a structured
framework for evaluating the proficiency of models
in managing diverse coding tasks.

In addition to the coding benchmarks, our study
included several other datasets aimed at assessing
models on a variety of reasoning and task-specific
abilities. The GSM8K (Cobbe et al., 2021) bench-
mark was used to evaluate mathematical reasoning
capabilities, challenging models to solve arithmetic
and logic problems effectively. HellaSwag (Zellers
et al., 2019), a benchmark designed for common-
sense reasoning, offered insights into the LLMs’
ability to navigate narrative completion tasks with
contextual understanding.

For multi-task evaluation, we integrated MMLU
(Hendrycks et al., 2020), which tests models on
a wide range of academic and professional sub-
jects, offering a holistic view of their reasoning
and knowledge synthesis across disciplines. Truth-
fulQA (Lin et al., 2021) was employed to assess
the truthfulness of model responses, pushing LLMs
to adhere closely to factuality and truth in their out-
puts. Lastly, WinoGrande (Sakaguchi et al., 2021)
tested coreference reasoning, emphasizing the abil-
ity to resolve pronouns based on contextual cues,
thereby evaluating linguistic and contextual coher-
ence.

These non-coding benchmarks collectively pro-
vide a rigorous and diverse assessment framework,
ensuring a comprehensive evaluation of the LLMs
beyond code generation, highlighting their versa-
tility and adaptability across different reasoning



scenarios and tasks.

Models

Our experiments are conducted using three state-of-
the-art models: CodelLlama 7B Instruct (Roziere
et al., 2023), Llama 3.1 8B Instruct (Dubey et al.,
2024), and Llama 3.2 3B Instruct (Dubey et al.,
2024). These models were selected for their dis-
tinct capabilities and architectural strengths, pro-
viding a diverse set of test subjects for our study on
parametric specialization.

The CodeLlama 7B Instruct model is particularly
noteworthy for its expertise in code-related tasks.
It is pre-trained on a vast corpus of coding-specific
data, enabling it to navigate complex coding chal-
lenges with precision and efficiency. Its architec-
ture is fine-tuned for tasks that require generating
syntactically and semantically accurate code, mak-
ing it an ideal candidate for testing the Coding Spot
hypothesis in environments demanding high-level
coding proficiency.

On the other hand, Llama 3.1 8B Instruct and
Llama 3.2 3B Instruct offer robust performance
across a broader range of instructional content be-
yond pure coding, including natural language un-
derstanding and generalized reasoning. These mod-
els provide insight into how the Coding Spot can
extend its specialized responsibilities across varied
cognitive demands. Their sizeable parameter sets
and nuanced training regimes allow them to adapt
well to fine-tuning on language-specific datasets,
providing a comprehensive view of parameter spe-
cialization and monosemantic behavior across dif-
ferent scales and instruction types.
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