
Exploring Coding Spot:
Understanding Parametric Contributions to LLM Coding Performance

Anonymous ACL submission

Abstract001

Large Language Models (LLMs) demonstrate002
strong code generation and comprehension abil-003
ities, yet the extent to which different program-004
ming languages are processed independently005
or within a shared parametric space remains006
unclear. Inspired by cognitive neuroscience,007
we introduce Coding Spot, a specialized para-008
metric region that facilitates coding capacity009
in LLMs. Our findings show that targeted010
modifications to this subset significantly af-011
fect coding performance while largely preserv-012
ing non-coding functionalities, suggesting that013
LLMs exhibit parametric specialization similar014
to function-specific brain regions. This indi-015
cates that coding knowledge may not be uni-016
formly distributed across the model but instead017
concentrated in distinct regions that play a cru-018
cial role in task-specific performance. Enhanc-019
ing our understanding of how LLMs internal-020
ize coding knowledge offers new directions for021
optimizing model architectures and improving022
code-related applications.023

1 Introduction024

Large Language Models (LLMs) have initiated a025

significant transformation in computational code026

processing, showcasing advanced capabilities in027

tasks such as code generation and comprehension028

across a wide range of programming languages029

(Chen et al., 2021; Austin et al., 2021; Li et al.,030

2022). Models such as Llama 3 (Dubey et al.,031

2024), GPT-4o (Achiam et al., 2023), and Claude032

3.5 Sonnet (Anthropic, 2024) have achieved consid-033

erable success, establishing themselves as essential034

tools for automating programming tasks and en-035

hancing developer productivity.036

Despite these successes, a fundamental question037

remains: how do these models internally represent038

and organize the coding knowledge necessary for039

such tasks? More specifically, it is unclear whether040

the knowledge required for programming tasks is041

Figure 1: Overview of the framework for extracting
and analyzing Coding Spot within LLMs. The process
begins with the model undergoing importance scoring
independently for n programming languages. The Im-
portance Scores extracted from each language are aggre-
gated for each parameter and then sorted in descending
order. The parameters within the top k% of Importance
Scores are defined as the Coding Spot

uniformly distributed across the model’s param- 042

eters or if certain parameter subsets exhibit spe- 043

cialization for coding-related functionalities. This 044

question is reminiscent of findings in cognitive sci- 045

ence, where specific brain regions, such as Broca’s 046

and Wernicke’s areas, are specialized for language 047

processing (Broca et al., 1861; Wernicke, 1874). In- 048

spired by this analogy, we hypothesize that LLMs 049

may similarly exhibit task-specific parametric re- 050

gions, particularly those dedicated to coding tasks. 051

In this study, we introduce the concept of the 052

Coding Spot, a theoretical construct representing a 053

subset of parameters within LLMs that are partic- 054

ularly critical for code-related capabilities. Anal- 055

ogous to domain-specific regions in the brain, the 056

Coding Spot embodies a specialized parametric re- 057

gion that is crucial for the model’s proficiency in 058

coding tasks. By identifying and analyzing these 059

critical regions, we aim to provide new insights into 060

the internal parametric architecture of LLMs and 061

1

their ability to manage coding and general tasks.062

Our primary objective is to conduct a rigorous063

examination of the parametric structure of LLMs,064

with a focus on uncovering the role of the Coding065

Spot. We evaluate the consequences of modifying066

this subset of parameters on both coding and non-067

coding tasks, shedding light on the compartmen-068

talized nature of the LLMs’ internal architecture.069

This investigation offers a deeper understanding070

of how LLMs handle domain-specific knowledge071

and draws compelling parallels to the cognitive072

specialization observed in the human brain.073

2 Coding Spot074

Our methodology aims to identify and analyze the075

Coding Spot, a specialized subset of parameters076

crucial for coding proficiency in LLMs.077

Methodological Framework The core of our078

methodology is a systematic algorithm designed to079

identify critical subsets of parameters—termed the080

Coding Spot—from a large pool of LLM parame-081

ters. By employing parameter importance scoring,082

our framework efficiently isolates the parameters083

most relevant to coding tasks, drawing analogies084

to the specialization observed in the human brain,085

where distinct regions are responsible for different086

cognitive functions.087

Parameter Importance Scoring To isolate the088

Coding Spot, we begin by fine-tuning LLMs on089

datasets containing code from individual program-090

ming languages. The purpose of this fine-tuning is091

not to build a new task-specific model but to extract092

accurate parameter gradients via backpropagation.093

These gradients allow us to construct language-094

specific parameter subsets that are vital for coding095

tasks.096

Given a dataset Dl corresponding to a pro-097

gramming language l and a set of parameters098

θ = [θ1, θ2, . . . , θd], our goal is to estimate how099

changes in the loss function L(Dl, θ) relate to each100

parameter. Using the first-order Taylor expansion,101

the model’s loss in response to a specific parameter102

θj can be approximated as:103

L(Dl, θ) ≈ L(Dl, θ|θj=0) +
∂L(Dl, θ)

∂θj
· θj (1)104

This equation highlights how the loss is affected105

by parameter θj , informed by its gradient during106

fine-tuning. The parameter importance score I lj(θ),107

which quantifies each parameter’s contribution to 108

coding tasks, is computed as: 109

I lj(θ) ≈
∣∣∣∣∂L(Dl, θ)

∂θj

∣∣∣∣ · |θj | (2) 110

This score provides a direct measure of each 111

parameter’s relevance in the context of a specific 112

programming language l, revealing the most crit- 113

ical parameters for coding tasks. The role of the 114

fine-tuned model here is solely to facilitate precise 115

gradient extraction, not to be used in subsequent 116

analyses. 117

Aggregating Parametric Importance Across Di- 118

verse Languages Once we calculate the impor- 119

tance scores I lj(θ) for each parameter within in- 120

dividual languages, the next step is to aggregate 121

these scores across multiple languages. For each 122

parameter θj , we compute a total importance score 123

I total
j (θ) by summing the importance scores across 124

all languages in the set L: 125

I total
j (θ) =

∑
l∈L

I lj(θ) (3) 126

This aggregation captures the global importance 127

of each parameter, allowing us to identify parame- 128

ters that consistently influence coding tasks across 129

diverse languages. By sorting the parameters in 130

descending order based on their total importance 131

scores, we isolate a subset of parameters—referred 132

to as the Coding Spot—that are crucial for coding 133

proficiency. 134

Defining the Coding Spot The Coding Spot is 135

identified by selecting the top k% parameters from 136

the sorted list. These parameters, which consis- 137

tently demonstrate high importance across multiple 138

languages, form a concentrated subset responsible 139

for coding tasks. The value of k is empirically de- 140

termined to ensure that we capture the most critical 141

parameters while avoiding redundancy. 142

3 Experiments 143

The objective of our experimental evaluation is to 144

quantify the role and impact of the Coding Spot 145

in LLMs, particularly its influence on both task- 146

specific (e.g., coding) and general tasks (e.g., math- 147

ematical or commonsense reasoning). We systemat- 148

ically deactivate the identified Coding Spot parame- 149

ters to examine their specialization and robustness, 150

thus providing insights into the broader implica- 151

tions of parameter specialization in LLMs. 152

2

General Code
GSM8K HellaSwag MMLU TruthfulQA WinoGrande Avg. GTC (%) HumanEval

CodeLlama 7B Instruct

Original 18.12 48.32 39.54 39.21 64.56 41.95 87.2
0.0025% 1.90 36.01 24.63 39.32 53.51 31.07 (-25.93%) 22.56 (-74.13%)
0.01% 2.27 35.08 23.99 36.91 52.41 30.13 (-28.17%) 16.46 (-81.12%)
0.09% 0.23 27.23 22.94 49.72 51.38 30.30 (-27.77%) 1.83 (-97.90%)
0.25% 0.00 25.85 22.93 51.52 50.51 30.16 (-28.10%) 0.00 (-100.00%)

Llama 3.1 8B Instruct

Original 76.72 59.10 67.96 54.08 73.64 66.30 97.56
0.0025% 2.35 44.47 42.32 43.61 60.14 38.58 (-41.81%) 20.12 (-79.38%)
0.01% 2.65 38.83 29.47 41.55 58.41 34.18 (-48.44%) 9.76 (-90.00%)
0.09% 0.61 26.82 23.57 49.58 49.17 29.95 (-54.83%) 0.00 (-100.00%)
0.25% 0.15 26.36 22.95 51.03 48.46 29.79 (-55.07%) 0.00 (-100.00%)

Llama 3.2 3B Instruct

Original 64.67 52.22 60.42 49.77 67.56 58.93 94.51
0.0025% 2.35 41.39 38.71 45.07 55.96 36.70 (-37.73%) 15.24 (-83.87%)
0.01% 2.20 36.31 30.30 45.66 53.75 33.64 (-42.91%) 6.71 (-92.90%)
0.09% 1.29 26.66 23.36 50.53 49.49 30.27 (-48.64%) 0.00 (-100.00%)
0.25% 1.21 26.21 22.94 49.54 49.96 29.97 (-49.14%) 0.00 (-100.00%)

Table 1: Performance comparison of three LLMs on general and coding tasks after deactivating a percentage of
the model identified as Coding Spot. GTC represents General Task Change, and marks models with deactivated
parameters.

3.1 Experimental Setup153

The experimental setup was carefully designed to154

ensure comprehensive evaluation of both special-155

ized and general model performance. Detailed in-156

formation about the datasets, models, and evalua-157

tion benchmarks can be found in Appendix B.158

Datasets Our study employed carefully cu-159

rated training datasets and evaluation benchmarks160

to rigorously assess both specialized and gen-161

eral performance aspects of the models. For162

the fine-tuning phase, models were trained on163

the nampdn-ai/tiny-codes (Nam Pham, 2023)164

dataset, meticulously filtered to include only pure165

code, thus excluding any content related to in-166

struction following or English language capabil-167

ities. This focus was crucial to exclude instruction-168

following and English abilities, ensuring that mod-169

els could extract and focus only on coding skills.170

For code-related task evaluation, we utilized171

the HumanEval benchmark (Chen et al., 2021),172

which assesses the models’ capabilities in gener-173

ating correct code solutions across a range of pro-174

gramming challenges. To evaluate general task pro-175

ficiency, we employed a diverse set of benchmarks176

including GSM8K (Cobbe et al., 2021) (assessing177

mathematical reasoning), HellaSwag (Zellers et al.,178

2019) (for commonsense reasoning), and MMLU179

(Hendrycks et al., 2020) (for multi-task evaluation),180

TruthfulQA (Lin et al., 2021) (to assess truthful-181

ness of responses), and WinoGrande (Sakaguchi182

et al., 2021) (for coreference reasoning). 183

Models We evaluated three state-of-the-art 184

LLMs of varying sizes: CodeLlama 7B Instruct 185

(Roziere et al., 2023), Llama 3.1 8B Instruct, and 186

Llama 3.2 3B Instruct (Dubey et al., 2024). These 187

models were chosen to assess how different archi- 188

tectures and scales influence the identification and 189

impact of the Coding Spot. During fine-tuning, 190

Python was excluded to test whether the Coding 191

Spot extends its functionality beyond language- 192

specific constraints, thereby assessing its gener- 193

alization across different coding environments. 194

Evaluation Metrics The primary metric for 195

code-related tasks was the HumanEval score, while 196

general tasks were evaluated using accuracy met- 197

rics on GSM8K, HellaSwag, and MMLU. The key 198

experimental procedure involved systematically 199

nullifying varying percentages of the Coding Spot 200

parameters and evaluating their impact on both 201

types of tasks. By excluding Python during fine- 202

tuning, we tested the hypothesis that the Coding 203

Spot reflects a broader coding proficiency, general- 204

izable across different programming languages. 205

4 Results 206

4.1 Main Results 207

The results clearly demonstrate the critical role of 208

the Coding Spot in both task-specific and general 209

task performance. As shown in Table 1, deacti- 210

vating even a small percentage of the most crucial 211

3

Avg. GTC (%) Code Change (%) Ms

CodeLlama 7B Instruct

Original 41.95 87.20 -
0.0025% -25.93% -74.13% 5.44
0.01% -28.17% -81.12% 5.52
0.09% -27.77% -97.90% 6.75
0.25% -28.10% -100.00% 6.82

Llama 3.1 8B Instruct

Original 66.30 97.56 -
0.0025% -41.81% -79.38% 2.70
0.01% -48.44% -90.00% 2.65
0.09% -54.83% -100.00% 2.61
0.25% -55.07% -100.00% 2.60

Llama 3.2 3B Instruct

Original 58.93 94.51 -
0.0025% -37.73% -83.87% 3.41
0.01% -42.91% -92.90% 3.34
0.09% -48.64% -100.00% 3.19
0.25% -49.14% -100.00% 3.15

Table 2: Comparison of LLM performance after Cod-
ing Spot parameter deactivation. GTC (%) and Code
Change (%) show changes in accuracy for general and
coding tasks. Ms measures task-specific impact.
marks models with deactivated parameters.

parameters caused a significant decline in perfor-212

mance across the benchmarks.213

For code-related tasks, such as HumanEval,214

Llama 3.1 8B Instruct, which initially achieved215

a score of 97.56, saw its performance plummet to216

zero when 0.09% or 0.25% of the Coding Spot217

parameters were deactivated. This sharp decline218

highlights the essential role of these parameters in219

maintaining coding proficiency and suggests that220

the Coding Spot encapsulates critical knowledge221

for code generation, generalizable across different222

programming languages.223

For general tasks, such as GSM8K (mathemati-224

cal reasoning), performance similarly exhibited no-225

table declines when Coding Spot parameters were226

deactivated. This indicates that the parameters crit-227

ical for coding tasks also contribute to broader cog-228

nitive functions, underscoring the polysemantic na-229

ture of the Coding Spot. However, tasks such as230

HellaSwag (commonsense reasoning) were less af-231

fected, indicating that distinct neural components232

may govern different general tasks, reflecting a233

modular structure within LLMs.234

4.2 Impact of Coding Spot on Performance235

Our further exploration provides insights into the236

intricate dynamics between task-specific and gen-237

eral performance upon Coding Spot parameter de-238

activation. The monosemanticity score Ms, crafted 239

to evaluate the changes in output across special- 240

ized and general tasks, is sensitive to the extent of 241

parameter removal: 242

Ms =
∆Coding Task Performance

1 + ∆General Task Performance
(4) 243

Table 2 illustrates that Llama 3.1 and 3.2 mod- 244

els attained their highest monosemanticity scores 245

with a minimal deactivation (0.0025%), signifying 246

that even a small fraction of parameter alteration 247

can disproportionately influence coding tasks while 248

leaving general capabilities relatively unscathed. 249

This suggests a high density of critically functional 250

parameters in these models, reflecting precise and 251

efficient organization of the Coding Spot. Con- 252

versely, for CodeLlama, more extensive deactiva- 253

tion (0.25%) achieved peak scores, which may be 254

attributed to its robust coding specialization derived 255

from extensive training on diverse code repositories. 256

This hints at a broader parametric allocation for 257

coding tasks, confirming the presence of a more ex- 258

tensive Coding Spot compared to instruction-tuned 259

models like Llama 3.1 8B. 260

Our findings reveal that Coding Spot parame- 261

ters play crucial roles in tasks requiring logical and 262

numerical reasoning. This is evident from the per- 263

formance drop in the GSM8K benchmark, where 264

mathematical reasoning—a domain overlapping 265

with coding capabilities—is assessed. While com- 266

monsense reasoning tasks like HellaSwag remained 267

stable, the decline in complex, math-related tasks 268

highlights the essential nature of Coding Spot pa- 269

rameters. These parameters not only enhance cod- 270

ing abilities but also support high-level problem- 271

solving tasks, emphasizing their versatile roles 272

within LLMs across broader cognitive functions. 273

5 Conclusion 274

We introduced the Coding Spot, a specialized pa- 275

rameter subset in LLMs essential for both code gen- 276

eration and general tasks. Our experiments demon- 277

strate that deactivating even a small percentage of 278

these parameters leads to significant performance 279

declines, confirming their critical role. These find- 280

ings suggest that the Coding Spot supports multiple 281

domains, offering valuable insights for future work 282

on optimizing LLM architectures to enhance both 283

task-specific and general capabilities. 284

4

Limitations285

While our study provides significant insights into286

the structure and function of Large Language Mod-287

els (LLMs), certain limitations must be acknowl-288

edged transparently. One of the primary limitations289

is the empirical selection of the threshold percent-290

age k% for identifying the Coding Spot. Although291

empirical processes are commonly utilized to ap-292

proximate optimal configurations when theoretical293

guidance is lacking, we recognize this approach294

may not guarantee absolute optimality across all295

LLM architectures. Future research could bene-296

fit from developing more robust, mathematically297

grounded methods for threshold determination.298

Additionally, our methodology involves nullify-299

ing the Coding Spot by setting the parameters to300

zero. Although this strategy effectively isolates the301

impact of these parameters, it might raise questions302

about interpretability, given the inherently posi-303

tive and negative distribution of parameter weights.304

Setting them to zero provides a clear baseline for305

assessing their absence. However, we acknowledge306

this raises potential questions about non-zero alter-307

natives, which might lead to different and perhaps308

unexpected model dynamics. While this alterna-309

tive strategy has dividends in preserving network310

activity, introducing non-zero values could result311

in uncontrolled variance and divergent behaviors,312

rendering the results less interpretable. Thus, while313

this is an interesting avenue for future exploration,314

particularly for understanding robustness and sensi-315

tivity, the decision for zeroing parameters remains316

justified given current interpretability and control-317

lability needs.318

Our study was conducted exclusively using319

Llama models. This decision was intentional, de-320

signed to facilitate direct intra-architecture compar-321

isons. A consistent model framework minimizes322

extraneous variability, allowing for a more focused323

analysis of parameter significance across different324

conditions. While this approach inherently limits325

our findings’ generalizability to non-Llama archi-326

tectures, it ensures robust internal comparison and327

serves as a strong foundation for future studies that328

can expand to more diverse LLM families.329

While these constraints may be seen as potential330

shortcomings, we view them as informed choices331

given the current study’s scope and analytical goals.332

They provide a baseline upon which future refine-333

ments and broader model inclusivity can be built.334

Ethics Statement 335

This research adheres to ethical guidelines in both 336

the design and execution of experiments. The 337

LLMs evaluated in this study were trained using 338

publicly available data, and no private or sensi- 339

tive information was involved. However, we ac- 340

knowledge that LLMs, including those optimized 341

for code generation, can raise concerns regarding 342

fairness, bias, and security. It is important that fu- 343

ture applications of this research take into account 344

potential risks related to the misuse of automated 345

code generation tools, especially in safety-critical 346

contexts. We encourage further research on ad- 347

dressing these ethical concerns and ensuring the 348

responsible deployment of LLM technologies. 349

References 350

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama 351
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, 352
Diogo Almeida, Janko Altenschmidt, Sam Altman, 353
Shyamal Anadkat, et al. 2023. Gpt-4 technical report. 354
arXiv preprint arXiv:2303.08774. 355

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and 356
Dan Klein. 2016. Neural module networks. In Pro- 357
ceedings of the IEEE conference on computer vision 358
and pattern recognition, pages 39–48. 359

Anthropic. 2024. Introducing claude 3.5 sonnet. 360

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten 361
Bosma, Henryk Michalewski, David Dohan, Ellen 362
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021. 363
Program synthesis with large language models. arXiv 364
preprint arXiv:2108.07732. 365

Paul Broca et al. 1861. Remarks on the seat of the fac- 366
ulty of articulated language, following an observation 367
of aphemia (loss of speech). Bulletin de la Société 368
Anatomique, 6(330-357):27. 369

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 370
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka- 371
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 372
Greg Brockman, et al. 2021. Evaluating large 373
language models trained on code. arXiv preprint 374
arXiv:2107.03374. 375

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 376
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 377
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 378
Nakano, et al. 2021. Training verifiers to solve math 379
word problems. arXiv preprint arXiv:2110.14168. 380

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 381
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 382
Akhil Mathur, Alan Schelten, Amy Yang, Angela 383
Fan, et al. 2024. The llama 3 herd of models. arXiv 384
preprint arXiv:2407.21783. 385

5

https://www.anthropic.com/news/claude-3-5-sonnet

Nelson Elhage, Tristan Hume, Catherine Olsson,386
Nicholas Schiefer, Tom Henighan, Shauna Kravec,387
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain,388
Carol Chen, et al. 2022. Toy models of superposition.389
arXiv preprint arXiv:2209.10652.390

Jerry A. Fodor. 1983. The Modularity of Mind. The391
MIT Press, Cambridge, MA.392

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,393
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.394
2020. Measuring massive multitask language under-395
standing. arXiv preprint arXiv:2009.03300.396

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,397
Bruna Morrone, Quentin De Laroussilhe, Andrea398
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.399
Parameter-efficient transfer learning for nlp. In In-400
ternational conference on machine learning, pages401
2790–2799. PMLR.402

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,403
Julian Schrittwieser, Rémi Leblond, Tom Eccles,404
James Keeling, Felix Gimeno, Agustin Dal Lago,405
et al. 2022. Competition-level code generation with406
alphacode. Science, 378(6624):1092–1097.407

Stephanie Lin, Jacob Hilton, and Owain Evans. 2021.408
Truthfulqa: Measuring how models mimic human409
falsehoods. arXiv preprint arXiv:2109.07958.410

Nam Pham. 2023. tiny-codes (revision c13428e).411

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten412
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,413
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.414
Code llama: Open foundation models for code. arXiv415
preprint arXiv:2308.12950.416

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-417
ula, and Yejin Choi. 2021. Winogrande: An adver-418
sarial winograd schema challenge at scale. Commu-419
nications of the ACM, 64(9):99–106.420

Karen Simonyan and Andrew Zisserman. 2014. Very421
deep convolutional networks for large-scale image422
recognition. arXiv preprint arXiv:1409.1556.423

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.424
Axiomatic attribution for deep networks. In Interna-425
tional conference on machine learning, pages 3319–426
3328. PMLR.427

Carl Wernicke. 1874. Der aphasische Symptomencom-428
plex: eine psychologische Studie auf anatomischer429
Basis. Cohn & Weigert.430

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-431
berg. 2021. Bitfit: Simple parameter-efficient432
fine-tuning for transformer-based masked language-433
models. arXiv preprint arXiv:2106.10199.434

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali435
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a436
machine really finish your sentence? arXiv preprint437
arXiv:1905.07830.438

A Related Work 439

Research on the coding capabilities of LLMs has 440

gained significant attention, with models such as 441

Llama 3 (Dubey et al., 2024), GPT-4o (Achiam 442

et al., 2023), and Claude 3.5 Sonnet (Anthropic, 443

2024) demonstrating strong performance in gener- 444

ating code across various programming languages. 445

These models have successfully automated pro- 446

gramming tasks by producing syntactically correct 447

and logically coherent code. However, the under- 448

lying mechanisms that enable such capabilities re- 449

main unclear, particularly regarding how coding 450

knowledge is distributed and organized within the 451

model’s parameters. Understanding this parametric 452

specialization is key to improving LLMs’ ability to 453

handle tasks such as code generation and compre- 454

hension. 455

LLM interpretability is a critical area of re- 456

search aimed at uncovering how models process 457

and store knowledge. Traditional techniques, such 458

as saliency maps and gradient-based approaches 459

(Simonyan and Zisserman, 2014; Sundararajan 460

et al., 2017), have provided insights into neural net- 461

work behavior by identifying feature importance. 462

However, the scale and complexity of LLMs pose 463

unique challenges in pinpointing the specific pa- 464

rameter subsets responsible for coding proficiency. 465

This limitation has motivated the development of 466

targeted methods for understanding the internal 467

mechanisms of LLMs, especially in specialized 468

tasks like code generation. 469

Our work draws inspiration from theories of 470

modularity in both biological systems and artifi- 471

cial models. In cognitive science, the concept of 472

modularity suggests that certain brain regions spe- 473

cialize in distinct functions, such as Broca’s and 474

Wernicke’s areas for language processing (Fodor, 475

1983). Similarly, modularity has been proposed in 476

neural networks, where specific neurons or regions 477

are believed to specialize in particular tasks (An- 478

dreas et al., 2016). Building on this analogy, we 479

introduce the Coding Spot, a specialized paramet- 480

ric region within LLMs dedicated to handling pro- 481

gramming tasks. By identifying such parametric 482

specialization, we aim to provide deeper insights 483

into the internal architecture of LLMs and their 484

proficiency in code-related tasks. 485

Recent advancements in parameter efficiency 486

techniques, such as adapters (Houlsby et al., 2019) 487

and parameter-efficient fine-tuning methods (Za- 488

ken et al., 2021), highlight the growing interest in 489

6

https://doi.org/10.57967/hf/0937

improving model adaptability without retraining490

the entire network. These methods emphasize the491

importance of selectively fine-tuning critical pa-492

rameter subsets for task-specific performance. Our493

work contributes to this field by offering a struc-494

tured approach to identifying and optimizing task-495

critical parameters, specifically for coding tasks496

within LLMs.497

Additionally, the concepts of monosemantic and498

polysemantic neurons (Elhage et al., 2022) have499

shaped our understanding of parameter specializa-500

tion. Monosemantic neurons, which respond to501

specific stimuli, provide a framework for investi-502

gating parameter contributions within LLMs. In503

the context of code generation, identifying these504

specialized neurons or parameters is crucial for505

understanding task-specific organization. Our pro-506

posed Coding Spot builds on this concept, positing507

that certain parameter subsets are responsible for508

coding tasks while preserving general non-coding509

functionalities.510

In summary, our research builds on existing work511

in LLM interpretability, modularity, and parame-512

ter efficiency. By introducing the Coding Spot,513

we bridge theoretical insights from cognitive sci-514

ence with practical advances in artificial model515

specialization, offering a novel framework for un-516

derstanding and optimizing the coding capabilities517

of LLMs.518

B Experimental Setup519

Datasets520

To evaluate the performance of our methodology,521

we use the nampdn-ai/tiny-codes (Nam Pham,522

2023) dataset, which includes Bash, C#, C++, Go,523

Java, JavaScript, Julia, Ruby, Rust, and TypeScript.524

This dataset offers a diverse environment for fine-525

tuning LLMs on language-specific benchmarks, al-526

lowing a comprehensive evaluation of coding ca-527

pabilities. The dataset includes real-world code528

samples for assessing both code generation and529

comprehension tasks within each language.530

During preprocessing, non-code content was fil-531

tered out, and language-specific tokenization was532

applied to retain the syntactic and semantic in-533

tegrity of each programming language, ensuring an534

accurate evaluation of the models.535

It is critical to remove non-coding content, as536

our focus is on discerning the specific parameters537

that contribute to coding prowess. Inclusion of text538

related to instruction-following abilities or general539

reasoning could inadvertently skew the importance 540

scores, misleadingly suggesting the relevance of 541

parameters that are not genuinely integral to cod- 542

ing functions. This rigorous filtering guarantees 543

that our analysis truly isolates the Coding Spot re- 544

sponsible for coding, avoiding confounding factors 545

associated with unrelated linguistic tasks. 546

Languages and Benchmarks 547

In our study, we selected a diverse set of pro- 548

gramming languages—Bash, C#, C++, Go, Java, 549

JavaScript, Julia, Ruby, Rust, and TypeScript. This 550

selection covers a broad spectrum of programming 551

paradigms, providing a comprehensive evaluation 552

of the models’ abilities across various coding styles 553

and syntax. 554

We employed the HumanEval (Chen et al., 2021) 555

benchmark, which is widely recognized for testing 556

the Large Language Models’ capability to generate 557

code that is both syntactically correct and function- 558

ally coherent. This benchmark offers a structured 559

framework for evaluating the proficiency of models 560

in managing diverse coding tasks. 561

In addition to the coding benchmarks, our study 562

included several other datasets aimed at assessing 563

models on a variety of reasoning and task-specific 564

abilities. The GSM8K (Cobbe et al., 2021) bench- 565

mark was used to evaluate mathematical reasoning 566

capabilities, challenging models to solve arithmetic 567

and logic problems effectively. HellaSwag (Zellers 568

et al., 2019), a benchmark designed for common- 569

sense reasoning, offered insights into the LLMs’ 570

ability to navigate narrative completion tasks with 571

contextual understanding. 572

For multi-task evaluation, we integrated MMLU 573

(Hendrycks et al., 2020), which tests models on 574

a wide range of academic and professional sub- 575

jects, offering a holistic view of their reasoning 576

and knowledge synthesis across disciplines. Truth- 577

fulQA (Lin et al., 2021) was employed to assess 578

the truthfulness of model responses, pushing LLMs 579

to adhere closely to factuality and truth in their out- 580

puts. Lastly, WinoGrande (Sakaguchi et al., 2021) 581

tested coreference reasoning, emphasizing the abil- 582

ity to resolve pronouns based on contextual cues, 583

thereby evaluating linguistic and contextual coher- 584

ence. 585

These non-coding benchmarks collectively pro- 586

vide a rigorous and diverse assessment framework, 587

ensuring a comprehensive evaluation of the LLMs 588

beyond code generation, highlighting their versa- 589

tility and adaptability across different reasoning 590

7

scenarios and tasks.591

Models592

Our experiments are conducted using three state-of-593

the-art models: CodeLlama 7B Instruct (Roziere594

et al., 2023), Llama 3.1 8B Instruct (Dubey et al.,595

2024), and Llama 3.2 3B Instruct (Dubey et al.,596

2024). These models were selected for their dis-597

tinct capabilities and architectural strengths, pro-598

viding a diverse set of test subjects for our study on599

parametric specialization.600

The CodeLlama 7B Instruct model is particularly601

noteworthy for its expertise in code-related tasks.602

It is pre-trained on a vast corpus of coding-specific603

data, enabling it to navigate complex coding chal-604

lenges with precision and efficiency. Its architec-605

ture is fine-tuned for tasks that require generating606

syntactically and semantically accurate code, mak-607

ing it an ideal candidate for testing the Coding Spot608

hypothesis in environments demanding high-level609

coding proficiency.610

On the other hand, Llama 3.1 8B Instruct and611

Llama 3.2 3B Instruct offer robust performance612

across a broader range of instructional content be-613

yond pure coding, including natural language un-614

derstanding and generalized reasoning. These mod-615

els provide insight into how the Coding Spot can616

extend its specialized responsibilities across varied617

cognitive demands. Their sizeable parameter sets618

and nuanced training regimes allow them to adapt619

well to fine-tuning on language-specific datasets,620

providing a comprehensive view of parameter spe-621

cialization and monosemantic behavior across dif-622

ferent scales and instruction types.623

8

	Introduction
	Coding Spot
	Experiments
	Experimental Setup

	Results
	Main Results
	Impact of Coding Spot on Performance

	Conclusion
	Related Work
	Experimental Setup

