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ABSTRACT

Instruction tuning has proven effective in enhancing Large Language Models’
(LLMs) performance on downstream tasks. However, real-world fine-tuning
faces inherent conflicts between model providers’ intellectual property protection,
clients’ data privacy requirements, and tuning costs. While recent approaches like
split learning and offsite tuning demonstrate promising architectures for privacy-
preserving fine-tuning, there is a gap in systematically addressing the multidimen-
sional trade-offs required for diverse real-world deployments. We propose sev-
eral indicative evaluation metrics to guide design trade-offs for privacy-preserving
fine-tuning and a series of example designs, collectively named GuardedTuning;
they result from novel combinations of system architectures with adapted privacy-
enhancement methods and emerging computation techniques. Each design repre-
sents distinct trade-offs across model utility, privacy guarantees, and costs. Exper-
imental results demonstrate that these designs protect against data reconstruction
attacks while maintaining competitive fine-tuning performance.

1 INTRODUCTION

Large Language Models (LLMs) (Zhang et al., [2022; [Touvron et al.,|2023) have demonstrated ex-
ceptional performance across a wide range of natural language processing tasks. Through pretrain-
ing on massive text corpora, these models learn rich language representations and knowledge that
exhibit strong generalization capabilities across various downstream tasks. Although LLMs typi-
cally demonstrate reasonable zero-shot learning abilities, research shows that fine-tuning on specific
tasks can significantly improve model performance on these tasks (Wei et al.,[2021). Fine-tuning the
LLMs with domain-specific data has emerged as an important paradigm to adapt pre-trained LLMs
to better suit some domain-specific tasks.

Due to substantial computational investments, model providers consider these LLMs proprietary
assets and want to guard against leakage. Conversely, even though some model providers offer fine-
tuning services through APIs (e.g., OpenAl fine-tuning APIs [ﬂ), it requires the client to upload their
private data to the model provider, fine-tuning clients might want to safeguard the fine-tuning data
even against model providers due to the sensitivity of the data or regulation requirements. Overall,
the requirements of real-world fine-tuning solutions are diverse and subject to sometimes conflicting
participating parties’ concerns, particularly regarding privacy and budget.

To address these privacy conflicts between fine-tuning participants, Recent privacy-preserving ap-
proaches like split learning (Vepakomma et al., 2018; |Wang et al., |2023) and offsite tuning (Xiao
et al.l 2023)) propose new system architectures that partition the training process between providers
and users, where only model intermediate values or compressed model components are exchanged
rather than raw input data. Different system architectures enable distinct trade-offs that fit some
fine-tuning requirements but not others. In addition, privacy-enhancement methods, some of which
choose to add noise with respect to different optimization objectives to either input or intermediate
data, further broaden the privacy-preserving fine-tuning solution design space.

We advocate evaluating these emerging privacy-preserving fine-tuning designs using multiple met-
rics but not any single one. We propose using metrics in three categories, utility, privacy (of each
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participating party), and tuning cost, for both design evaluation and to help navigate the design
trade-offs necessary to meet diverse real-world requirements. We acknowledge that different sys-
tem architectures, combined with different privacy-enhancement methods, could result in various
solutions with distinct utility, privacy, and cost characteristics.

To showcase how different design trade-offs impact the metrics and hence help navigate the design
space, we produce a series of example designs for privacy-preserving fine-tuning, collectively named
GuardedTuning, from novel combinations of system architectures, adapted privacy-enhancement
methods and emerging computation techniques. We articulate the trade-offs underneath these de-
signs and their differences from existing ones in the literature in section[3and present some prelimi-
nary quantitative results on the evaluation metrics these designs achieve in sectiond] Our experiment
results demonstrate that GuardedTuning effectively protects both server’s model weights and client’s
data privacy, reducing data reconstruction attacks effectiveness to below 50% and decreasing com-
munication cost by up to 73.7%, while the degrade of fine-tuned model utility is < 1.5% in almost
all of the cases.

2 THREAT MODEL AND DESIGN TRADE-OFFS

In our privacy-preserving fine-tuning setting, we consider an honest-but-curious model provider
(also referred to as server) that has access to the pre-trained model weights. Fine-tuning client pro-
vides data for fine-tuning training and inferences. The fine-tuning training and inference could be
split between these two parties. While faithfully following the fine-tuning protocol, the server can
not be fully trusted and might try to look into the client’s data by performing data reconstruction at-
tacks(DRAs) during either training or inference phases using the activations or gradients transmitted
from client. Conversely, the model provider also needs to protect their intellectual property. So they
cannot hand over the pre-trained model to the client.

There is a vast design space to produce a specific fine-tuning design that satisfies the privacy con-
cerns of both the server and the client, as well as other requirements arising from, for instance,
the utility of the tuned model and operation budgets. We propose to use the following metrics to
evaluate different solutions and leverage the metrics as guidance to arrive at the right balance when
making concrete design choices for a specific set of requirements: 1. The utility of the fine-tuned
model; 2. The privacy of clients’ data for fine-tuning training; 3. The privacy of clients’ data for
inference with fine-tuned model; 4. The server’s model privacy; 5. Communication cost associated
with fine-tuning.

Our concrete designs below show how to navigate the trade-offs among these metrics.

3 GUARDEDTUNING ARCHITECTURES

3.1 ONLINE GUARDEDTUNING

Inspired by the split learning, we propose Online GuardedTuning, as shown in Figure (1| In this
design, the server distributes several bottom and top transformer layers of a pre-trained LLM to the
client for collaborative fine-tuning. We call the layers clients hold adapter layers, and those servers
kept as backbone layers. During fine-tuning training, the client and server exchange activations for
forward pass and gradients for backward propagation. Client data privacy is enhanced by avoiding
plain text transfers to the server, though this introduces additional communication cost during both
fine tuning and inference.

This design has a utility-cost trade-off: while adapter layers in the client always require fine-tuning,
the server can choose to fine-tune the backbone layers or not—the second choice results in lower
overall cost but with a reduced model utility. Prior research (Wu et al.| 2024; Xiao et al., [2023)
suggests that fine-tuning a few selected layers of the model can still yield reasonable performance,
slightly lower than fully fine-tuning.

Through the activations uploaded by clients, the server can reconstruct clients’ data via DRAs (Song
& Raghunathanl 2020; [Chen et al., [2024) with > 90% attack effectiveness, rendering the fine-
tuning design useless as client data is close to having no protection. Existing solutions like Pri-
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vateLoRA(Wang et al.,|2023)), despite retaining embedding layer, head layer and low-rank adapters
locally, remain vulnerable to server-side DRAs due to unprotected activation transmission.

To defend against such attacks and realize better client data privacy, we introduce two novel privacy-
enhancing methods that can be composed into several GuardedTuning designs. These methods help
partially dwarf such DRAs at the cost of a small amount of extra computation for data perturbation.

First, We apply a distance decorrelation tech-
nique, adapted from the Nopeek (Vepakomma
et al 2020), to transform activations output SR lic T ’_,-§e-""-er-m
from the input adapter layers. Vepakomma
et al. identify that the distance correlation
dCor(z,0(x)) between input data x and acti-
vations 6(x) indicates the risk of input data be-
ing inverted from intermediary representations,
they incorporate dCor(x, 6(x)) as a regulariza-
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propriate representation of distances in the high-dimensional embedding space in LLMs. After
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1
quantize. :
tion term in the training loss function. By min- uari, B i SR
imizing dCor(z,6(x)) during training, they Crdperiaeri] 1| |1 SEEOMERRES,
b H . "\ quantize, uantize /* in Gradfie
could mitigate DRAs. Unlike Nopeek, which Adeptoriayerd ) | | \aumnize/” Rdeamniie//, | Removed n Gradfree
1l [ GuardedTuning.
LIBL
1

L =L(f(z),y) + AdCor(emb(z), 8(z)) ()

where f represent the LLM, 6 denotes the input adapter layers, dCor() denotes the distance corre-
lation function(Vepakomma et al.,[2020), and A represents the regularization weight.

However, adding a regularization term alone cannot protect fine-tuning data in early training stages.
To address this limitation, we additionally apply a quantization-based technique that protects the
beginning stage of the training. During transmission, the sender quantizes the inlier values of acti-
vations and gradients while preserving outliers:

Q(A) = {round (P,:?,Z)n—lim (20— 1)) ?fA < P,(A) @
A if A> P,(A)

4= JQA) s +min(4) if bit-width(Q(A)) = b \

- {Q(A) if bit-width(Q(A)) = 32 &)

where s = w is the scaling factor transmitted with min(A) and quantized values Q(A).

The quantization bits b and the p-th percentile threshold are determined locally by the sender. Our
experiments show that quantization introduces controlled noise that helps realize better privacy pro-
tection without leading to significant model performance degradation after fine-tuning.

We note that quantization also helps reduce communication costs since the transmitted data is
smaller in size than split learning designs. Additional techniques could be included in this design
to reduce communication costs further. For instance, by leveraging emerging trusted computing
technologies, like hardware-assisted secure GPU sharing (Corporation, [2023), or confidential com-
puting techniques that enable two parties sharing the same host machine with privacy attestation by
cloud vendors (Microsoft, 2024), it is possible to run separated components of the fine-tuning design
on the same machine, even on the same GPU, with similar privacy protection as running them on
different machines. While the communication volume is the same, the time of achieving a similar
amount of communication significantly improves if employing these techniques, such as NVLink.
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3.2 GRADFREE GUARDEDTUNING

Although Online GuardedTuning offers substantial decreases in the DRAs attack effectiveness as
shown in our evaluations in section ff] we note that privacy attacks like gradient matching-based
DRAs (Chen et al.| 2024} Deng et al., [2021) can still marginally improve DRA’s performance. We
introduce a design called Gradfree GuardedTuning, which favors better client data privacy than
Online GuardedTuning at the cost of a slight decrease in model utility.

As shown in Figure[I] in Gradfree GuardedTuning, we choose to fine-tune only the output adapter;
by doing so, it removes the gradient backpropagation between the client and server required in
online GuardedTuning. Removing the gradient backpropagation provides full defense against gra-
dient matching-based DRAs. Although the absence of gradient transmission disallows some other
privacy-enhancing methods like decorrelation operations, we still can apply method like quantiza-
tion on activations in this design, this method provides substantive defense to several DRAs.

3.3 OFFLINE GUARDEDTUNING

To realize better client data privacy, we de-
sign offline GuardedTuning, an enhancement to

offsite-tuning (Xiao et al.,2023)). This design is
as shown in Figure |2| Similar to offsite tuning,
in our design, during fine-tuning training, the
server provides clients with adapter layers and
an emulator constructed through uniform lay-
ers dropping from the backbone. This emulator
enables clients to simulate the backbone layers
and run fine-tuning training entirely within the
client, thereby protecting fine-tuning data from
server-side data reconstruction attacks during
training. The design trade-off is to sacrifice
the sever model privacy to a certain degree (be-
cause the emulator leaks information about the
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base model) in exchange for complete client
training data privacy.

In offsite tuning, the client is supposed to trans- Figure 2: Architecture for Offline GuardedTuning.

fer their fine-tuned input and output layers to

the server and run the entire inference there,

leaving the inference-time client data vulnerable. To address this privacy limitation, in offline guard-
edtuning, we choose to let the client keep the input and output adapter layers, only transferring ac-
tivations to the server for inference. Furthermore, we co-train decorrelation operators during the
fine-tuning training phase and use the decorrlation-tuned input adapter layers during inference for
activation values, to protect inference data against DRAs. By adding decorrelation operation, our
design enhances client inference data privacy with a small amount of data perturbation cost.

Xiao et al. (Xiao et al.l [2023)) observe that the emulator, coupled with fine-tuned adapters, their
inference performance may be significantly weaker than the base model’s zero-shot. Therefore, in
our design, we choose to use the backbone layers in the server instead of the emulator for inference,
a similar design choice in offsite learning. This low emulator inference performance might indicate
a lower knowledge capacity in the emulator and, thus, a lower risk of allowing the client to reverse-
engineer the base model using an emulator or leverage it for other downstream tasks.

4 EVALUATIONS

In this section, we evaluate the three proposed GuardedTuning designs and show how their trade-offs
affect the utility, privacy, and cost metrics.
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4.1 EXPERIMENT SETUP

Datasets. We evaluate GuardedTuning on four reasoning task datasets: ARC-Easy (Clark
et al.l 2018) and OpenBookQA (Mihaylov et al.l [2018)) for multiple-choice scientific reasoning,
PIQA (Bisk et al., 2020) for binary physical commonsense reasoning, and WebQuestions (Berant
et al.| 2013) for open-domain question answering.

Evaluated Models. We conducted experiments using OPT-1.3B and OPT-6.7B models (Zhang
et al.,[2022).

Experiment Configurations. In experiments using OPT-1.3B, the client holds the first and last two
layers as adapters with the server keeping 20 backbone layers (8 layers for the backbone emula-
tor), while in experiments involving OPT-6.7B, 3 adapter layers for both input and output, and 26
backbone layers (14 layers for the emulator). During fine-tuning, we set the decorrelation weight
A to 5 in Equation |1} employ 8-bit quantization for transmission, and use the 99th percentile as the
quantization threshold in Equation 2]

Metrics. @ We measure client data privacy through state-of-the-art DRAs (BiSR(b) and
BiSR(f)) (Chen et al., 2024)) during both fine-tuning and inference phases. Attack effectiveness is
quantified using ROUGE-L F1 scores, with higher scores indicating greater privacy leakage. DRAs
are conducted via three stages: inverter training with distributed adapters, initial reconstruction us-
ing server activations, and optimization through activations/gradients. We conduct evaluations every
100 training steps, averaging results across 5 independent batches. For the designs that involve gra-
dient exchange (split learning-based fine-tuning, online GuardedTuning), we apply gradient-based
BiSR(b) during fine-tuning. Otherwise, we employ BiSR(f) to attack the activations from forward
propagation during fine-tuning and inference. For server model privacy, we use the number of
shared model layers as a quantitative proxy metric. Model utility is measured as task-specific accu-
racy using Im-evaluation-harness (EleutherAll [2024). To evaluate communication cost, we quantify
the data transmission volume between client and server during the fine-tuning process.

Baseline. We use traditional split learning-based fine-tuning(SL tuning) (Vepakomma et al., [2018])
and offsite tuning(Xiao et al.| 2023) as our baseline.

4.2 EXPERIMENT RESULTS

We evaluate all the GuardedTuning designs on OPT-1.3B and OPT-6.7B models. Table |1| shows
OPT-1.3B results on the utility and privacy trade-off, that all designs reach reasonable utility-privacy
balance: all surpass OPT-1.3B’s zero-shot task accuracy, achieve slightly lower accuracy than SL
tuning baseline that has no defense to state-or-the-art DRAs while significantly reducing the server’s
DRA attack effectiveness to less than 50% (a decrease of at least 40% from the baseline) during both
fine-tuning and inference phases. Additionally, our quantization-dequantization mechanism reduces
communication cost by up to 73.7% during fine-tuning.

Both online and Gradfree GuardedTuning designs send 4 pre-train model layers to the client in
OPT-1.3B model experiment, which is the server’s model privacy cost. Gradfree GuardedTuning
mitigates DRAs by eliminating backpropagation to the server. However, by only training output
adapter layers, it incurs a cost of reduced model utility. Offline GuardedTuning provides the strongest
client-data privacy by keeping client data entirely local during fine-tuning, also protecting inference
privacy through keep the fine-tuned adapters locally during the inference phase. Using the emulator
for fine-tuning degrades the model utility slightly compared to online GuardedTuning but still better
than Gradfree GuardedTuning, consistent with observations in offsite-tuning (Xiao et al., [2023).
There are potentially bigger risks to sever model privacy since the client has the emulator generated
from the base model. We leave risk quantification of an emulator for future investigation.

Trade-offs between utility and privacy results on OPT-6.7B are shown in Table 2] For these ex-
periments, we opt for a choice that fine-tunes only the adapter layers in both SL tuning and online
GuardedTuning. This choice leads to computation cost savings, and even with that reduced resource
for fine-tuning, all tuned models still achieve utility higher than zero-shot. We observe similar pri-
vacy and utility characteristics to our OPT-1.3B experiments.
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Table 1: Utility and privacy trade-offs on OPT-1.3B.

Designs Metrics OPT-1.3B
OpenbookQA ARC-Easy PIQA ‘WebQs
Zero Shot Accuracy 23.4% 56.9% 71.6% 4.6%
SL tuning Accuracy 31.4% 61.3% 75.2% 31.2%
(2-20-2) Fine-tune privacy 89.4 94.4 86.3 88.2
Inference privacy 84.6 92.4 83.1 875
Communication cost(GB) 15.2 13.3 326.1 14.1
offsite tuning Accuracy 29.1% 59.4% 74.5% 27.2%
(2-20(8)-2) Fine-tune privacy N/A N/A N/A N/A
Inference privacy 100 100 100 100
Communication cost(GB) 35 35 35 35
online GT Accuracy 30.7% 60.2% 73.9% 32.2%
(2-20-2) Fine-tune privacy 37.7 41.1 28.0 38.7
Inference privacy 30.1 30.5 24.8 212
Communication cost(GB) 4.6 4.1 85.7 43
Gradfree GT Accuracy 28.2% 57.8% 73.1% 26.9%
(2-20-2) Fine-tune privacy 34.7 37.1 27.5 24.0
Inference privacy 329 27.1 26.3 21.6
Communication cost(GB) 2.7 2.5 42.8 2.6
offline GT Accuracy 29.0% 59.2% 73.2% 27.4%
(2-20(8)-2) Fine-tune privacy N/A N/A N/A N/A
Inference privacy 304 30.1 24.6 21.3
Communication cost(GB) 2.6 2.6 2.6 2.6

! »Fine-tune privacy” and "Inference privacy” values represent the DRA attack effectiveness(ROUGE-
L F1) achieved during the respective phases; the lower, the better privacy.

2 ”N/A” means the selected privacy attacks are infeasible.

3 The nums below each design name show num of layers for (input adapter-backbone(emulator))-
output adapter). Those in red are layers given to the client.

Table 2: Utility and privacy trade-offs on OPT-6.7B.

Designs Metrics OPT-6.78
OpenbookQA ARC-Easy PIQA WebQs
Zero Shot Accuracy 27.6% 65.6% 76.2% 8.8%
SL tuning Accuracy 34.9% 68.4% 78.1% 33.9%
(3-26-3) Fine-tune privacy 85.1 93.2 89.4 89.1
Inference privacy 83.9 92.7 85.2 87.3
Communication cost(GB) 33.6 29.8 655.5 31.3
offsite tuning Accuracy 33.5% 67.2% 77.8% 30.9%
(3-26(14)-3) Fine-tune privacy N/A N/A N/A N/A
Inference privacy 100 100 100 100
Communication cost(GB) 21.8 21.8 21.8 21.8
online GT Accuracy 33.6% 67.8% 77.9% 31.7%
(3-26-3) Fine-tune privacy 46.2 46.9 27.6 39.5
Inference privacy 35.6 41.7 26.3 242
Communication cost(GB) 124 114 172.5 11.8
Gradfree GT Accuracy 32.1% 66.4% 76.9% 30.4%
(3-26-3) Fine-tune privacy 42.6 44.1 27.1 339
Inference privacy 41.5 425 274 325
Communication cost(GB) 8.7 8.2 88.7 8.4
offline GT Accuracy 33.2% 67.1% 77.2% 30.1%
(3-26(14)-3) Fine-tune privacy N/A N/A N/A N/A
Inference privacy 34.6 375 19.7 29.3
Communication cost(GB) 16.8 16.8 16.8 16.8

! Fine-tune privacy” and "Inference privacy” values represent the DRA attack effectiveness(ROUGE-
L F1) achieved during the respective phases; the lower, the better privacy.

2 ”N/A” means the selected privacy attacks are infeasible.

3 The nums below each design name show num of layers for (input adapter-backbone(emulator))-
output adapter). Those in red are layers given to the client.
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5 CONCLUSION

In this paper, we address the challenge of producing privacy-preserving fine-tuning designs that
balance protecting the client’s data privacy, model provider’s intellectual property, and the overall
tuning cost. We introduce several novel designs, collectively named GuardedTuning. Through these
designs, we showcase how to make design tradeoffs to meet various model utility, privacy, and cost
requirements for real-world deployments. Through experiments, we demonstrate that each of our
designs achieves distinct tradeoffs through selective combinations of architecture and novel privacy-
enhancement methods, and they all provide defenses against some state-of-the-art privacy attacks
on client data.
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