

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TNT: IMPROVING CHUNKWISE TRAINING FOR TEST-TIME MEMORIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Recurrent neural networks (RNNs) with deep test-time memorization modules, such as Titans and TTT, represent a promising, linearly-scaling paradigm distinct from Transformers. While these expressive models do not yet match the peak performance of state-of-the-art Transformers, their potential has been largely untapped due to prohibitively slow training and low hardware utilization. Existing parallelization methods force a fundamental conflict governed by the chunksize hyperparameter: large chunks boost speed but degrade performance, necessitating a fixed, suboptimal compromise. To solve this challenge, we introduce TNT, a novel training paradigm that decouples training efficiency from inference performance through a two-stage process. Stage one is an efficiency-focused pre-training phase utilizing a hierarchical memory. A global module processes large, hardware-friendly chunks for long-range context, while multiple parallel local modules handle fine-grained details. Crucially, by periodically resetting local memory states, we break sequential dependencies to enable massive context parallelization. Stage two is a brief fine-tuning phase where only the local memory modules are adapted to a smaller, high-resolution chunksize, maximizing accuracy with minimal overhead. Evaluated on Titans and TTT models, TNT achieves a substantial acceleration in training speed—up to 17 \times faster than the most accurate baseline configuration—while simultaneously improving model accuracy. This improvement removes a critical scalability barrier, establishing a practical foundation for developing expressive RNNs and facilitating future work to close the performance gap with Transformers.

1 INTRODUCTION

The demand for modeling long sequences highlights a fundamental limitation of standard softmax attention (Vaswani et al., 2017): its quadratic complexity bottlenecks scaling. This has spurred extensive research into more efficient architectures.

Among these emerging paradigms, a particularly powerful approach is rooted in test-time memorization (Sun et al., 2024). Architectures leveraging this principle, which we refer to as **deep memory modules**, utilize a deep, online-adapted sub-network whose parameters are rapidly updated to encode in-context information. Prominent examples include Titans (Behrouz et al., 2025d) and Atlas (Behrouz et al., 2025a). This method stands in sharp contrast to **linear memory modules** (Yang et al., 2024a;b; Dao & Gu, 2024; Sun et al., 2023), which, despite their efficiency, are constrained by matrix-valued hidden states and linear state transitions. By leveraging expressive non-linear objectives and update rules, deep memory modules can theoretically overcome these limitations. While these methods generally do not yet achieve the state-of-the-art performance of Transformers, they represent a potentially promising paradigm for efficient sequence modeling, provided their training bottlenecks can be resolved.

Despite their expressive advantages, deep memory modules lack the efficient training algorithms of their linear counterparts, leading to low hardware utilization. Unlike linear memory modules, which utilize hardware-efficient parallelization, deep memory modules face challenges stemming from non-linear recurrences (e.g., LayerNorm between chunks) and the complexity of their deep structures. In practice, these challenges constrain their training to more frequent online updates on small data segments, resulting in poor computational throughput in training. This creates an in-

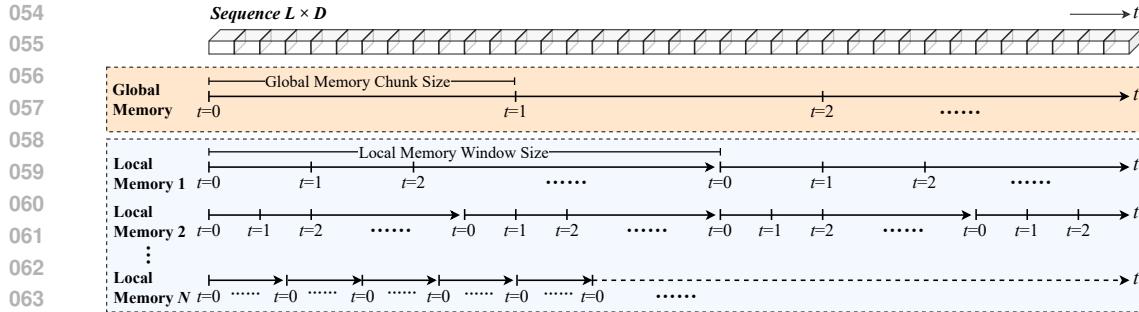


Figure 1: The basic diagram for illustrating TNT memory hierarchy. In each row, the updates at the same value of t ran at the same time (run in parallel). $t = 0$ is the initialization of the memory.

herent tension, as these models typically rely on a fixed, small chunk size (e.g., 16 to 64 tokens) to balance memory layer expressiveness against training efficiency. Consequently, this trade-off between in-context learning capability and computational performance has become a critical bottleneck preventing the application of these models to truly long sequences in practice. Resolving this fundamental tension is the primary goal of this work.

Recent work attempts to mitigate this issue. Zhang et al. (2025) combines large chunks with local attention to enhance parallelism. However, this circumvents the inefficiency rather than solving it, complicates the analysis by mixing memory and attention, and neglects the need for small chunks (ideally 1) during inference. Concurrently, Guo et al. (2025) proposed a hierarchical memory system, but it is limited to linear memory modules and does not support short-term memories.

To resolve this tension, we introduce TNT¹, a novel training paradigm for deep memory modules. Our core insight is that different components of the model should process information at different granularities during distinct training stages. TNT begins with an **efficiency-focused pre-training stage** designed to maximize throughput. This is achieved via a hierarchical memory system: a **global memory** module operates on large, hardware-friendly chunks to capture long-range context, while multiple **local memory** modules handle fine-grained details in parallel. Crucially, we introduce a periodic reset mechanism for the local memory states. This breaks the sequential dependencies inherent even in non-linear RNNs (e.g., those with normalization between steps), enabling massive context parallelization. This is a key innovation, as efficiently parallelizing *non-linear* recurrences across the sequence length is a long-standing challenge, largely unsolved outside of Transformers and specialized linear RNNs (where parallel scans apply). Subsequently, a **performance-focused fine-tuning stage** adapts the model for optimal inference. During this stage, only the local memory modules are adjusted to use smaller chunk sizes, achieving high-resolution accuracy with minimal additional computational cost. This two-stage approach effectively decouples training efficiency from inference performance, significantly improving training scalability while addressing a key limitation of prior architectures. Furthermore, the local memory system itself can be hierarchical, employing multiple modules operating at different resolutions. This *multi-resolution* approach allows the model to capture *complex, multi-scale temporal dynamics* more effectively than a single fixed chunk size.

TNT is a general training paradigm applicable to any deep memory module rather than a specific architecture. By decoupling training throughput from inference accuracy, we resolve a fundamental tension constraining prior work. This removes dependency on hardware-specific optimizations for small chunks and enables flexible exploration of the architectural design space. We believe this paradigm will open new research avenues towards replacing softmax attention. Our main contributions are summarized as follows:

- We identify three fundamental challenges limiting the scalability and performance of deep memory modules: 1) domain mismatch between memory compression and retrieval; 2) tradeoff between memory performance and computational efficiency; 3) chunksize mismatch between training and inference (Section 3).

¹TNT can be viewed as an abbreviation of *Two-stage Non-linear Training* or *TTT iNside TTT*. It also hints to its “explosive” impact on training efficiency.

- 108 • We introduce Q-K Projection, an efficient mechanism to resolve the domain mismatch between
109 memory compression and retrieval (Section 4.1.2).
- 110 • We introduce a novel hierarchical memory architecture with periodic state resets, enabling context
111 parallelism for non-linear deep memory modules (Section 4.1).
- 112 • We introduce an efficient fine-tuning mechanism to address chunksize mismatch between training
113 and inference in deep memory modules (Section 4.2).
- 114 • Putting all above together, we introduce TNT, a general two-stage training paradigm that de-
115 couples training efficiency from inference performance by combining efficient pre-training with
116 high-resolution fine-tuning (Figure 1, Figure 3, Section 4).
- 117 • We validate TNT on the Titans architecture, achieving up to a $17.37 \times$ training speedup while
118 improving accuracy, significantly advancing the practicality of expressive RNNs (Section 5).

120 **Problem Definition and Notations** We aim to train a neural network with parameters $\theta \in \mathbb{R}^{d_m}$
121 to perform next-token prediction. Given a sequence $\mathbf{x} = (x_1, \dots, x_L)$, the model’s objective is
122 to predict each token x_t using the context of its preceding tokens (x_1, \dots, x_{t-1}) . Following the
123 attention formulation, each token x_t is represented by a d -dimensional vector. Each input token \mathbf{x}_t
124 is projected into query, key, and value vectors: $q_t, k_t, v_t \in \mathbb{R}^d$. For ease of notation in subsequent
125 chunkwise operations, we define a function $\xi(i, j) := i - (i \bmod j)$, which finds the beginning of
126 the chunk containing index i for a chunk size j .

128 2 PRELIMINARY

130 This section reviews preliminaries. Expanded related work is in Appendix B.

132 2.1 DEEP MEMORY MODULES VIA TEST-TIME MEMORIZATION

134 A powerful paradigm for sequence modeling is Test-Time Memorization (Sun et al., 2024), which
135 enhances models by incorporating a secondary, rapidly adaptable neural network. Unlike the pri-
136 mary model parameters, or “slow weights” (θ) updated only during training, this approach introduces
137 “fast weights” (Schlag et al., 2021). These fast weights, denoted by W , parameterize a sub-network,
138 $f(W, \cdot) : \mathbb{R}^d \rightarrow \mathbb{R}^d$, that is updated online-during both training and inference-based on incom-
139 ing tokens to dynamically store contextual information. While these modules do not yet achieve
140 SOTA results compared to Transformers (Arora et al., 2024; Behrouz et al., 2025a), improving their
141 training efficiency is crucial for enabling the wider experimentation needed to close this gap.

142 In this work, we focus on a similar/relevant principle: **deep memory modules** (Irie et al., 2021;
143 Sun et al., 2024; Behrouz et al., 2025d;a;c). In contrast to **linear memory modules** (Sun et al.,
144 2023; Yang et al., 2024b; Dao & Gu, 2024; Karami & Mirrokni, 2025; Hu et al., 2025), which are
145 characterized by linear state transitions, deep memory modules employ non-linear recurrence rules
146 and complex memory structures.

147 The core mechanism of a deep memory module can be distilled into two sequential operations for
148 each input token: 1. *Memory Compression* and 2. *Memory Retrieval*. These are formally defined as:

$$149 \text{Memory Compression: } W_t \leftarrow W_{t-1} - \eta_t \nabla_W \mathcal{L}(f(W_{t-1}, k_t), v_t) \quad (1)$$

$$150 \text{Memory Retrieval: } o_t = f(W_t, q_t) \quad (2)$$

152 In *Memory Compression*, the fast weights W are updated via gradient descent, guided by a self-
153 supervised loss $\mathcal{L}(\cdot, \cdot)$ (e.g., MSE) and a learned learning rate η_t . The objective associates a trans-
154 formed key, $f(W_{t-1}, k_t)$, with its value, v_t , compressing information into the fixed-size neural
155 memory (Wang et al., 2025; Behrouz et al., 2025b). In *Memory Retrieval*, the updated W_t processes
156 a query q_t to produce o_t . These two operations are performed iteratively for each token.

158 2.2 CHUNKWISE PARALLEL TRAINING

160 The sequential dependency (W_t depends on W_{t-1}) in Eqs. 1-2 prevents parallelization across the
161 sequence length. To address this, deep memory modules adopt chunkwise parallel training (Hua
et al., 2022; Sun et al., 2023) to enable hardware-efficient training.

162 The core principle is to divide the input sequence into non-overlapping chunks of size C . Within
 163 each chunk, an approximation of the gradient of the loss for every token is computed with respect
 164 to the fast-weight state from the beginning of that chunk. This formulation breaks the sequential
 165 token-to-token dependency for gradient calculation, which allows the updates for all tokens within
 166 the chunk to be computed in parallel. The formal operations for a token at time step t are as follows:
 167

$$168 \text{Chunkwise Memory Compression: } W_t \leftarrow W_{\xi(t,C)} - \sum_{\tau=\xi(t,C)}^t \eta_\tau \nabla_W \mathcal{L}(f(W_{\xi(t,C)}, k_\tau), v_\tau) \quad (3)$$

$$170 \text{Chunkwise Memory Retrieval: } o_t = f(W_t, q_t) \quad (4)$$

171 Here, $W_{\xi(t,C)}$ denotes the state of the fast weights at the start of the chunk containing token t (See
 172 the definition of $\xi(\cdot, \cdot)$ at the end of Section 1). Although the update to obtain W_t still depends on
 173 prior tokens within its chunk, the summation of gradients can be implemented efficiently using par-
 174 allel operations (e.g., cumulative summation), significantly improving hardware utilization during
 175 training. However, a sequential dependency remains: the final state of the fast weights from the k -th
 176 chunk, W_{kC} , is used as the initial state for the $(k + 1)$ -th chunk.
 177

178 3 CHALLENGES IN DEEP MEMORY MODULES

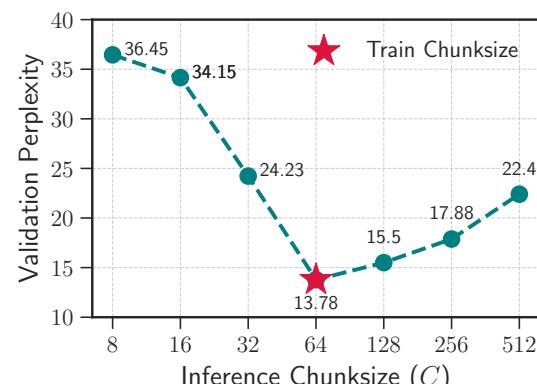
180 While chunkwise parallelization enables deep memory modules to train on long sequences, this
 181 paradigm introduces significant challenges that limit their practical performance and scalability. In
 182 this section, we outline three fundamental challenges with deep memory modules.
 183

184 **Challenge 1: Lack of Efficient Training Implementations.** A primary challenge for deep mem-
 185 ory modules is the inefficiency of their training process, which leads to poor hardware utilization.
 186 While chunkwise parallelization theoretically enables sub-quadratic scaling, in practice, the training
 187 throughput lags significantly behind that of linear memory modules. This discrepancy arises from a
 188 fundamental tension between model expressiveness and computational efficiency.
 189

190 To maintain a fine-grained learning signal, deep
 191 memory modules require small chunk sizes
 192 (e.g., 16-64 tokens) (Sun et al., 2024), which
 193 fail to saturate accelerators, making training
 194 memory-bound (rather than compute-bound).
 195 While linear memory modules use customized
 196 kernels (e.g., leveraging SRAM) (Sun et al.,
 197 2023; Gu & Dao, 2023; Qin et al., 2024; Yang
 198 et al., 2024a;c), this relies on linear state trans-
 199 sitions and is incompatible with the large, non-
 linear states of deep memory modules.
 200

201 The consequence is that deep memory mod-
 202 ules suffer from extremely low FLOPs util-
 203 ization, often falling below 5-10% of peak
 204 hardware performance (Zhang et al., 2025).
 205 This severe inefficiency makes pre-training pro-
 206 hibitively slow and costly, creating a major bot-
 207 tleneck that undermines the practical applica-
 208 tion of these expressive models to truly long sequences.
 209

210 **Challenge 2: Inconsistency Between Memory Compression and Retrieval.** A fundamental in-
 211 consistency exists between how the memory sub-network is trained and how it is utilized. During
 212 Memory Compression (Eq. 1), the sub-network $f(W, \cdot)$ is optimized to learn a mapping from the
 213 key space to the value space by associating keys (k_t) with values (v_t). However, during Memory
 214 Retrieval (Eq. 2), the network is queried using a query vector (q_t) instead of a key. This substitu-
 215 tion violates the intended input domain of the learned function, creating a discrepancy between the
 training objective and the retrieval task. This domain shift can degrade the integrity of the learned
 mapping and limit the model’s retrieval performance. Our empirical validation can be found in
 Section 5.4



216 Figure 2: Sensitivity of inference chunk size on
 217 a 550M Titans model pre-trained with $C = 64$.
 218 Performance is optimal when the inference chunk
 219 size matches the training one.
 220

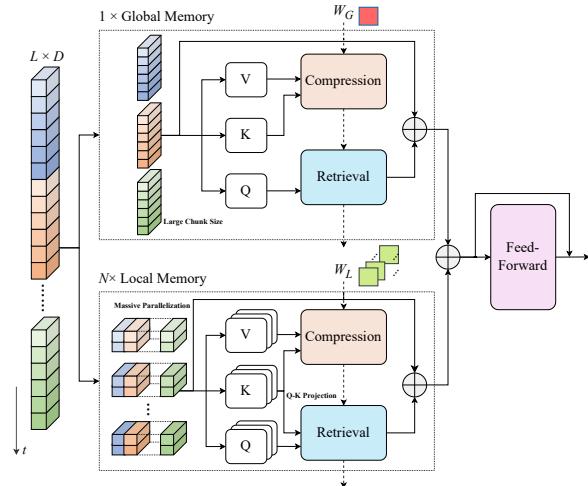
216 **Challenge 3: Performance Sensitivity to a Fixed Pre-training Chunksize.** The chunk size hy-
 217 perparameter, C , governs the trade-off between training throughput and model expressiveness. Cur-
 218 rent practice for deep memory modules is to use the same fixed chunk size for both pre-training
 219 and inference. However, we observe that inference-time performance is highly sensitive to this pre-
 220 training choice. For example, as shown in Figure 2, a model pre-trained with a chunk size of 64
 221 achieves optimal perplexity only when evaluated with that same chunk size.

222 This result reveals a critical train-test mismatch and contradicts the intuition that smaller chunks at
 223 inference should yield superior performance by capturing fine-grained dependencies with a “fresher”
 224 learning signal. Instead, the model becomes over-specialized to the specific chunk resolution seen
 225 during training. This inflexibility is a significant limitation; ideally, a model pre-trained with a large,
 226 hardwarefriendly chunk size should be adaptable enough to perform even better with smaller, more
 227 precise chunk sizes at inference. Current deep memory modules fail to achieve this adaptability.

229 4 TNT: AN IMPROVED TRAINING FRAMEWORK FOR DEEP MEMORY

230 To address the challenges outlined in
 231 Section 3, we introduce TNT, an im-
 232 proved training paradigm for deep mem-
 233 ory modules. Our framework is struc-
 234 tured around a two-stage process designed to
 235 resolve the inherent tension between train-
 236 ing efficiency and inference performance:
 237 an **Efficiency-focused Pre-training Stage**
 238 and a **Performance-focused Fine-tuning**
 239 **Stage**.

240 The first stage maximizes training
 241 throughput by introducing a novel hier-
 242 archical memory architecture that enables
 243 unprecedented parallelism, directly ad-
 244 dressing the challenges of low hardware
 245 utilization and inconsistent memory
 246 objectives (Challenges 1-2). The second
 247 stage employs an efficient fine-tuning
 248 strategy that adapts the model to high-
 249 resolution, small-chunk inference, resolving the sensitivity to the pre-training chunk size (Challenge
 250 3). This two-stage approach effectively decouples training efficiency from inference performance,
 251 overcoming a key limitation of prior deep memory architectures.



252 Figure 3: Architectural overview of TNT Stage 1.

253 4.1 TNT STAGE 1: EFFICIENT-FOCUSED PRE-TRAINING

254 4.1.1 TNT MEMORY COMPRESSION: HIERARCHY MEMORY

255 Sequential state dependency prevents context parallelism (processing sequence shards in parallel
 256 across devices). To enable this, we propose that all parallel shards initialize their **local memory** with
 257 the same learned state, W_{init} . This breaks inter-chunk dependency, allowing massive parallelization.
 258 However, this causes local memory modules to lose the global context. To solve this, we introduce
 259 a **global memory** module, parameterized by V , that operates in parallel with the sharded local
 260 memories. The global memory processes the sequence with a relatively large chunk size (e.g.,
 261 2048 or greater), allowing it to efficiently capture long-range dependencies while maintaining high
 262 hardware utilization. This creates a hierarchical system where local memories handle fine-grained
 263 information within parallel shards, while the global memory provides the overarching context.

264 This hierarchical structure is flexible; a model can be designed with 1 global and N local memory
 265 modules, each operating at a different resolution. For clarity of illustration, we will assume the
 266 simplest case where $N = 1$. We defer the generalized formulation of TNT to Appendix F. We now
 267 formally define our memory compression mechanism.

270

271 **TNT Memory Compression Rule.** The hierarchical memory is updated as follows:

272 **Global Memory Update.** The global memory state V evolves sequentially across the input
273 with a large chunk size C_G .

274

$$275 V_{(k+1)C_G} \leftarrow V_{kC_G} - \sum_{t=kC_G}^{(k+1)C_G} \eta_t \nabla_V \mathcal{L}(f(V_{kC_G}, k_t), v_t) \quad k = \{0, \dots, L//C_G\} \quad (5)$$

276

277 **Local Memory Update.** The local memory W operates in parallel on sequence shards of
278 length S_L . Within each shard, updates use a smaller chunk size C_L .

279

$$280 W_t \leftarrow \begin{cases} W_{\text{init}} & \text{if } 0 \equiv t \pmod{S_L} \\ W_{t-1} - \sum_{\tau=\xi(t, C_L)}^t \eta_\tau \nabla_W \mathcal{L}(f(W_{\xi(t, C_L)}, k_\tau), v_\tau) & \text{Otherwise} \end{cases} \quad (6)$$

281

282

283 The global memory update (Eq. 5) follows a standard chunkwise formulation where the state is
284 carried over sequentially between large chunks. To maximize training throughput, the gradient for
285 all tokens within a global chunk is computed with respect to the initial state of that chunk, allowing
286 for a highly parallelized update.

287 In contrast, the local memory update (Eq. 6) introduces our key innovation: a periodic state reset.
288 This rule enforces that the local memory state, W_t , is reset to a shared, learnable initial state W_{init} at
289 the beginning of each segment of length S_L . This periodic reset is the critical mechanism that breaks
290 the long-range sequential dependency across the input, thereby enabling true context parallelism for
291 the fine-grained local memory modules.

292 The hierarchical design of deep memory modules boosts training efficiency through a two-pronged
293 approach. Global modules create hardware-saturating, compute-intensive operations by processing
294 large chunks. Concurrently, the local memory’s reset mechanism enables context parallelism, where
295 the sequence is processed as independent chunks that can be distributed across devices or stacked
296 on a single accelerator to substantially increase training throughput.

297 4.1.2 TNT MEMORY RETRIEVAL: Q-K PROJECTION

298 As identified in Challenge 2, the memory compression step (Eq. 6) optimizes $f(W, \cdot)$ to map the key
299 space to the value space. However, at retrieval, the network is queried using a query vector, q_t , which
300 may lie outside the learned key domain, degrading performance. To resolve this, we propose *Q-K*
301 *Projection*: projecting the query q_t onto the subspace spanned by previously observed keys. This
302 ensures the input to the memory function is in the space memory was trained on. The final output
303 combines retrieval from the global memory (raw query) and the local memory (projected query).
304 We apply projection only locally as its fine-grained nature makes it more sensitive to the mismatch

305

306 **TNT Memory Retrieval Rule.** The hierarchical memory is retrieved as follows:

307

$$308 o_t = f(V_{\xi(t, C_G)}, q_t) + f\left(W_t, \sum_{\tau=\xi(t, C_L)}^t \frac{k_\tau k_\tau^\top}{\|k_\tau\|^2} q_t\right) \quad (7)$$

309

310

311 Crucially, this Q-K Projection does not require storing all past keys, which would be computationally
312 and memory prohibitive. Instead, the projection matrix, $\sum_{\tau=1}^t \frac{k_\tau k_\tau^\top}{\|k_\tau\|^2} \in \mathbb{R}^{d \times d}$, can be maintained as
313 a running sum. This results in a constant-size state that is updated efficiently in a chunkwise parallel
314 manner. Since many modern deep memory modules normalize the query (q_t) and key (k_t) vectors
315 by their L2 norm, the denominator in the Q-K projection can simplify to $\sum_{\tau=1}^t k_\tau k_\tau^\top$. We provide
316 further details on this efficient implementation in Appendix D.

317

318 4.2 TNT STAGE 2: PERFORMANCE-FOCUSED FINE-TUNING AT FINER RESOLUTION

319

320 Having addressed training efficiency in Stage 1, we now turn to optimizing for inference performance.
321 An intuitive approach to enhance model resolution would be to evaluate the pre-trained
322 model using a smaller chunk size. However, as established in Challenge 3, a direct mismatch be-
323 tween the pre-training and evaluation chunk sizes leads to significant performance degradation.

324
 325 Table 1: TNT reaches the target training loss up to 17 \times faster than the baseline Titans. The table
 326 compares the time required for different 150M models to reach the same target loss 3.20.

327 Models	328 Implementation	329 C or C'_L	330 Training Time (hrs)	331 Speedup
328 Titans	329 JAX	330 8	331 19.48	332 1.00 \times
328 Titans	329 JAX	330 16	331 10.79	332 1.81 \times
328 Titans	329 JAX	330 32	331 6.45	332 3.02 \times
328 Titans	329 JAX	330 64	331 4.18	332 4.67 \times
328 Titans	329 JAX	330 128	331 3.71	332 5.25 \times
328 Transformer (w/o gating)	329 JAX	330 -	331 1.74	332 11.18 \times
328 Transformer (w gating)	329 JAX	330 -	331 1.38	332 14.10 \times
328 Transformer (w/o gating)	329 FlashAttention (Pallas)	330 -	331 1.23	332 15.90 \times
328 Transformer (w gating)	329 FlashAttention (Pallas)	330 -	331 0.96	332 20.22 \times
334 TNT	335 JAX	336 {8}	337 2.54	338 7.68 \times
334 TNT	335 JAX	336 {16}	337 1.65	338 11.78 \times
334 TNT	335 JAX	336 {32}	337 1.22	338 15.92 \times
334 TNT	335 JAX	336 {64}	337 1.12	338 17.37 \times
334 TNT	335 JAX	336 {128}	337 1.16	338 16.75 \times

339 Our key insight is that this train-test discrepancy can be rectified with minimal computational over-
 340 head. We empirically observe that a brief fine-tuning phase, where the pre-trained model is updated
 341 for a small number of steps using a smaller local memory chunk size, not only recovers but often
 342 surpasses the original performance.

343 Based on this finding, we introduce Stage 2 of our TNT framework: a **Performance-focused Fine-**
 344 **tuning Stage**. In this stage, we continue training the efficiently pre-trained model with a smaller
 345 local chunk size ($C'_L < C_L$). This process adapts the model to the higher resolution required for
 346 optimal inference at a fraction of the cost of pre-training. By doing so, Stage 2 directly resolves
 347 Challenge 3, bridging the gap between the large chunk sizes required for efficient training and the
 348 small chunk sizes that yield the best performance at inference.

349 This two-stage process decouples pre-training efficiency from inference requirements. The bulk of
 350 training uses maximum throughput (large chunks), while the final model is produced with minimal
 351 overhead. Furthermore, fine-tuning specializes the model for the ideal inference scenario: a local
 352 chunk size of one ($C'_L = 1$). This aligns with the standard prefill-and-decode paradigm of auto-
 353 regressive generation. The global memory handles the context prefill, and the optimized local memory
 354 handles iterative decoding.

355 5 EXPERIMENTS

356 We empirically evaluate our two-stage training framework, TNT. While TNT is model-agnostic, we
 357 instantiate it with a strong deep memory model, Titans (Behrouz et al., 2025d), to demonstrate its
 358 effectiveness. We validate claims about training time and model accuracy in our experiments.

359 5.1 EXPERIMENTAL SETUP

360 **Baselines.** We compare against several strong long-context architectures. Our primary comparison
 361 is Titans (Behrouz et al., 2025d), our base model. We also benchmark against vanilla Transformer
 362 (Vaswani et al., 2017), Gated Transformer (Qiu et al., 2025), and TTT (Sun et al., 2024).

364 **Training and TNT Configuration.** We train 150M parameter models following (Behrouz et al.,
 365 2025d), using a T5 tokenizer (32k vocab). We use the AdamW optimizer (Loshchilov & Hutter,
 366 2017) with 0.1 weight decay and a cosine schedule (peak LR 1×10^{-3}). Experiments are conducted
 367 on a TPUs v4 pod (2x2x2 topology, model parallelism 2). For TNT, the N local modules configuration
 368 is denoted by their chunksizes, $C_L = \{C_{L,1}, \dots, C_{L,N}\}$. For instance, $C_L = \{8, 16\}$ indicates two
 369 local modules with chunksizes 8 and 16. The global memory uses $C_G = 2048$.

370 **Experimental Configurations.** For efficiency benchmarks (Sec. 5.2), we vary context length (2k-32k)
 371 with a 0.5M token batch size and local window $S_L = 2048$. For performance evaluation (Sec 5.3),
 372 we use a 16k context length, 1M token batch size, and $S_L = 4096$.

374 5.2 FASTER MEMORY TRAINING WITH TNT

375 **Linear Runtime Scaling with Sequence Length.** We first analyze single-step runtime performance
 376 by varying the sequence length while keeping the number of tokens per batch fixed. As shown
 377 in Figure 4, TNT’s runtime grows linearly with sequence length, in contrast to the quadratic growth

378 of Titans and standard attention. This scaling advantage is significant at long contexts. At a 32K sequence length, TNT is **5.1× faster** than a comparable Titans model with the same memory chunksize ($C_L = C = 16$). We also observe that larger local chunk sizes consistently improve TNT’s speed; with $C_L = \{128\}$, TNT is **1.3× faster** than the highly optimized FlashAttention kernel (Dao, 2024).

383 TNT’s highly parallelizable architecture
 384 achieves a runtime that scales linearly with
 385 sequence length, a key advantage over the
 386 quadratic complexity of standard attention.
 387 Although models like Titans are also the-
 388oretically linear, their inherent sequential
 389 dependencies impede effective paralleliza-
 390 tion, resulting in poor hardware utilization
 391 and slower wall-clock times on long
 392 sequences. As sequence length increases,
 393 TNT’s superior scalability creates a crossover
 394 point where it becomes significantly faster.
 395 This efficiency is most pronounced at very
 396 long contexts; for instance, at a sequence
 397 length of 32K, a native JAX implementation
 398 of TNT ($C_L = 128$) outperforms even the
 399 highly optimized FlashAttention kernel,
 400 confirming its suitability for demanding
 401 long-context training scenarios.

402 **Time-to-Quality Comparison.** We next translate these single-step runtime gains into a practical
 403 time-to-quality setting. As shown in Table 1, our TNT framework significantly accelerates the to-
 404 tal training time required to reach a target model quality. Our best configuration achieves this up
 405 to **17.4× faster** than the original Titans baseline. This efficiency gain is fundamental to the archi-
 406 tecture; for instance, using an identical local memory chunksize of 8, TNT is already **7.7× faster**
 407 than its Titans counterpart. While competitive with standard vanilla Transformers in JAX, our
 408 implementation does not yet outperform highly optimized baselines like the Gated Transformer with
 409 FlashAttention (Dao et al., 2022). This is an expected result, as TNT currently lacks a custom kernel,
 410 which we leave for future work. Nonetheless, these results establish TNT as an efficient foundation
 411 for research on recurrent models, with a clear path toward matching the speed of state-of-the-art
 412 Transformers.

414 5.3 TNT IMPROVES MODEL QUALITY

416 Our TNT framework significantly enhances model quality, outperforming strong RNN-based base-
 417 lines and standard Transformer implementations. As detailed in Table 2, the initial **Stage 1 pre-**
 418 **training** is highly effective on its own. Our best Stage 1 model achieves an average perplexity of
 419 **23.13**, a marked improvement over the best-performing Titans model (25.07) and the vanilla Trans-
 420 former (23.58). While TNT does not fully match the perplexity of the state-of-the-art Gated Trans-
 421 former (22.39), it achieves a higher average accuracy on common-sense reasoning tasks (**41.0%** vs.
 422 39.7%). At this scale, we consider perplexity a more stable metric for language modeling capability,
 423 as downstream task accuracy can be subject to higher variance.

424 Furthermore, the **Stage 2 fine-tuning** process offers an efficient method to further boost perfor-
 425 mance. This stage is computationally inexpensive, requiring only an additional 5% of the original
 426 pre-training compute (see Table 4), yet it consistently lowers the average perplexity to a final value
 427 of **23.09**. These results validate TNT as an effective framework for producing high-quality models
 428 that surpass the limitations of prior RNN-based architectures and stand as a strong alternative to
 429 standard Transformers.

431 5.4 ABLATION STUDY

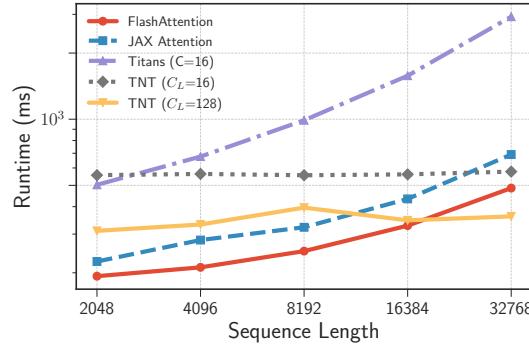


Figure 4: Runtime comparison of different models and implementations across varying sequence lengths, with the number of tokens per batch fixed at 0.5M. Additional results are presented in Figure 5.

432
 433 **Table 2: Performance of TNT (150M parameters) and baselines on language modeling and**
 434 **common-sense reasoning tasks, trained on 10B tokens. For TNT models, we only use 1 global**
 435 **memory and use C_G to denote the global chunksize and the N local modules configuration is de-**
 436 **noted by their chunksizes, $C_L = \{C_{L,1}, \dots, C_{L,N}\}$. For instance, $C_L = \{8, 16\}$ indicates two local**
 437 **modules with chunksizes 8 and 16. The best results within a block are highlighted. The detailed**
 438 **training time is reported in Table 4**

Model	C_G	C or C_L	C4 ppl \downarrow	FineWeb ppl \downarrow	PG19 ppl \downarrow	Avg. ppl \downarrow	PIQA acc \uparrow	Hella. acc \uparrow	ARC-e acc \uparrow	CSQA acc \uparrow	Avg. acc \uparrow
150M params / 10B tokens											
Transformer (w/o gating)	-	-	20.98	20.59	29.18	23.58	62.0	30.9	34.8	25.5	38.3
Transformer (w gating)	-	-	19.82	19.61	27.75	22.39	63.3	32.2	36.8	26.7	39.7
DeltaNet (2024c)	-	-	22.49	22.36	31.84	25.56	62.6	32.2	35.9	27.0	39.4
GatedDeltaNet (2025)	-	-	21.25	21.37	30.60	24.40	63.0	31.1	35.2	27.8	39.3
TTT (2024)	-	256	24.18	24.31	34.36	27.62	60.6	30.8	34.1	26.9	38.1
Titans (2025d)	-	256	23.53	24.13	33.73	27.13	61.3	30.8	35.1	27.8	38.8
Titans	-	8	22.25	22.07	30.90	25.07	60.8	32.0	35.5	27.8	39.0
TNT Stage 1: Efficiency-Focused Pre-training											
TNT Stage 1	2048	{8}	21.04	21.01	30.24	24.10	61.8	32.8	37.4	30.3	40.6
	2048	{8,16}	20.74	20.73	29.94	23.80	63.5	32.4	37.4	30.6	41.0
	2048	{4,8,16}	20.47	20.43	29.43	23.44	62.9	32.4	36.4	28.9	40.2
	2048	{4,8,16,32}	20.15	20.17	29.08	23.13	63.2	32.0	36.7	30.3	40.6
TNT Stage 2: Performance-Focused Fine-tuning on Stage 1 models											
TNT Stage 2	2048	{1}	20.86	20.91	30.21	23.99	63.2	32.8	37.4	30.1	40.9
	2048	{2,4}	20.65	20.70	29.97	23.77	63.4	32.5	37.3	30.2	40.9
	2048	{2,4,8}	20.32	20.35	29.42	23.36	64.0	32.0	36.9	28.1	40.3
	2048	{2,4,8,16}	20.10	20.13	29.05	23.09	63.5	32.3	37.4	30.2	40.9

455 We conducted an ablation study to validate
 456 TNT’s key design choices, with results summa-
 457 rized in Table 3.

458 **Hierarchical Memory.** The effectiveness of
 459 our hierarchical design is evident. Increment-
 460 ally adding local memory modules consist-
 461 ently improves performance over the Titans
 462 baseline, reducing perplexity from 23.53 to
 463 20.15 with four local modules. Conversely,
 464 removing the global memory is detrimental (PPL
 465 increases to 25.60), confirming its critical role
 466 in capturing long-range dependencies that are
 467 otherwise lost due to the local memories’ reset
 468 mechanism.

469 **Q-K Projection.** The query-key projection proves essential for performance. Its removal incurs a
 470 substantial penalty (PPL increases from 21.04 to 22.01), validating our hypothesis that it is necessary
 471 to mitigate the compression-retrieval mismatch (Challenge 2).

472 **Stage 2 Fine-tuning.** Applying Stage 2 fine-tuning further enhances model capabilities, improving
 473 both language modeling (20.86 PPL) and common-sense reasoning (40.9%). This demonstrates its
 474 effectiveness in adapting the pre-trained models for high-resolution inference.

476 6 CONCLUSION

477 We introduce TNT, a two-stage training framework that resolves the fundamental conflict between
 478 training efficiency and inference performance in deep memory modules. By leveraging a hierar-
 479 chical memory architecture with periodic state resets, TNT enables massive context parallelism
 480 during pre-training, followed by efficient fine-tuning for high-resolution inference. Our experiments
 481 demonstrate up to a $17\times$ speedup compared to the most accurate RNN baselines while simultane-
 482 ously improving performance. TNT removes a critical scalability bottleneck, significantly impro-
 483 ving the practicality of deep memory modules and facilitating future research to close the performance
 484 gap with Transformers.

455 **Table 3: Ablation study on TNT.** The results show
 456 the contribution of each proposed change to the
 457 deep memory modules.

TNT	N	Language Modeling ppl \downarrow	C.S. Reasoning acc \uparrow
Base Model (Titans)	-	23.53	38.8
TNT Stage 1 (1 Global Memory)			
+1 Local Memory	1	21.04	40.6
+2 Local Memory	2	20.74	41.0
+3 Local Memory	3	20.47	40.2
+4 Local Memory	4	20.15	40.6
TNT Stage 1	1	21.04	40.6
w/o global memory	-	25.60	35.5
w/o Q-K projection	1	22.01	36.4
w Stage 2	1	20.86	40.9

486 REFERENCES
487

488 Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, James Zou, Atri
489 Rudra, and Christopher Ré. Simple linear attention language models balance the recall-throughput
490 tradeoff. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=e93ffDcpH3>.

491

492 Ali Behrouz, Zeman Li, Praneeth Kacham, Majid Daliri, Yuan Deng, Peilin Zhong, Meisam Razaviyayn, and Vahab Mirrokni. Atlas: Learning to optimally memorize the context at test time.
493 *arXiv preprint arXiv:2505.23735*, 2025a.

494

495 Ali Behrouz, Meisam Razaviyayn, Peilin Zhong, and Vahab Mirrokni. It's all connected: A journey
496 through test-time memorization, attentional bias, retention, and online optimization, 2025b. URL
497 <https://arxiv.org/abs/2504.13173>.

498

499 Ali Behrouz, Meisam Razaviyayn, Peilin Zhong, and Vahab Mirrokni. It's all connected: A jour-
500 ney through test-time memorization, attentional bias, retention, and online optimization. *arXiv*
501 *preprint arXiv:2504.13173*, 2025c.

502

503 Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time. *Ad-
504 vances in Neural Information Processing Systems*, 38, 2025d.

505

506 Róbert Csordás, Christopher Potts, Christopher D Manning, and Atticus Geiger. Recurrent neural
507 networks learn to store and generate sequences using non-linear representations. In *Proceedings*
508 *of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP*, pp.
509 248–262, 2024.

510

511 Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In
512 *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=mZn2Xyh9Ec>.

513

514 Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
515 structured state space duality. *arXiv preprint arXiv:2405.21060*, 2024.

516

517 Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
518 efficient exact attention with io-awareness. *Advances in neural information processing systems*,
519 35:16344–16359, 2022.

520

521 Xavier Gonzalez, Andrew Warrington, Jimmy Smith, and Scott Linderman. Towards scalable and
522 stable parallelization of nonlinear rnns. *Advances in Neural Information Processing Systems*, 37:
523 5817–5849, 2024.

524

525 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv*
526 *preprint arXiv:2312.00752*, 2023.

527

528 Han Guo, Songlin Yang, Tarushii Goel, Eric P Xing, Tri Dao, and Yoon Kim. Log-linear attention.
529 *arXiv preprint arXiv:2506.04761*, 2025.

530

531 Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, and
532 Daniela Rus. Liquid structural state-space models. In *The Eleventh International Confer-
533 ence on Learning Representations*, 2023. URL <https://openreview.net/forum?id=g4OTKRKfS7R>.

534

535 Donald Olding Hebb. *The organization of behavior: A neuropsychological theory*. Psychology
536 press, 2005.

537

538 John J Hopfield. Neural networks and physical systems with emergent collective computational
539 abilities. *Proceedings of the national academy of sciences*, 79(8):2554–2558, 1982.

540

541 Jerry Yao-Chieh Hu, Dennis Wu, and Han Liu. Provably optimal memory capacity for modern
542 hopfield models: Transformer-compatible dense associative memories as spherical codes. *arXiv*
543 *preprint arXiv:2410.23126*, 2024.

540 Jiaxi Hu, Yongqi Pan, Jusen Du, Disen Lan, Xiaqiang Tang, Qingsong Wen, Yuxuan Liang, and
 541 Weigao Sun. Comba: Improving nonlinear rnns with closed-loop control. *arXiv preprint*
 542 *arXiv:2506.02475*, 2025.

543 Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc V. Le. Transformer quality in linear time, 2022.
 544 URL <https://arxiv.org/abs/2202.10447>.

546 Kazuki Irie, Imanol Schlag, Robert Csordas, and Jurgen Schmidhuber. Going beyond linear trans-
 547 formers with recurrent fast weight programmers. *Advances in neural information processing*
 548 *systems*, 34:7703–7717, 2021.

549 Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
 550 Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL <https://kellerjordan.github.io/posts/muon/>.

553 M. Karami and V. Mirrokni. Lattice: Learning to efficiently compress the memory, 2025.

555 Mahdi Karami, Ali Behrouz, Praneeth Kacham, and Vahab Mirrokni. TRELLIS: Learning to com-
 556 press key-value memory in attention models. In *Second Conference on Language Modeling*, 2025.
 557 URL <https://openreview.net/forum?id=r61s1FNY1j>.

558 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 559 *arXiv:1412.6980*, 2014.

561 Dmitry Krotov. Hierarchical associative memory. *arXiv preprint arXiv:2107.06446*, 2021.

563 Dmitry Krotov and John J Hopfield. Dense associative memory for pattern recognition. *Advances*
 564 *in neural information processing systems*, 29, 2016.

565 Xiaoyu Li, Yuanpeng Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. On the expressive power of
 566 modern hopfield networks. *arXiv preprint arXiv:2412.05562*, 2024.

568 Yi Heng Lim, Qi Zhu, Joshua Selfridge, and Muhammad Firmansyah Kasim. Parallelizing
 569 non-linear sequential models over the sequence length. In *The Twelfth International Confer-
 570 ence on Learning Representations*, 2024. URL <https://openreview.net/forum?id=E34A1VLN0v>.

572 Bo Liu, Rui Wang, Lemeng Wu, Yihao Feng, Peter Stone, and Qiang Liu. Longhorn: State space
 573 models are amortized online learners. *arXiv preprint arXiv:2407.14207*, 2024.

575 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 576 *arXiv:1711.05101*, 2017.

577 Carlo Lucibello and Marc Mézard. Exponential capacity of dense associative memories. *Physical*
 578 *Review Letters*, 132(7):077301, 2024.

580 William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space mod-
 581 els. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=QZgo9JZpLq>.

583 Tsendsuren Munkhdalai and Hong Yu. Neural semantic encoders. In *Proceedings of the conference.*
 584 *Association for Computational Linguistics. Meeting*, volume 1, pp. 397. NIH Public Access, 2017.

586 Tsendsuren Munkhdalai, Alessandro Sordoni, Tong Wang, and Adam Trischler. Metalearned neural
 587 memory. *Advances in Neural Information Processing Systems*, 32, 2019.

588 Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
 589 Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for
 590 the transformer era. *arXiv preprint arXiv:2305.13048*, 2023.

592 Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
 593 Cheah, Teddy Ferdinand, Haowen Hou, Przemysław Kazienko, et al. Eagle and finch: Rwkv with
 matrix-valued states and dynamic recurrence. *arXiv preprint arXiv:2404.05892*, 2024.

594 Bo Peng, Ruichong Zhang, Daniel Goldstein, Eric Alcaide, Haowen Hou, Janna Lu, William Merrill,
 595 Guangyu Song, Kaifeng Tan, Saiteja Utpala, et al. “Rwkv-7” goose” with expressive dynamic state
 596 evolution. *arXiv preprint arXiv:2503.14456*, 2025.

597

598 Hao Peng, Jungo Kasai, Nikolaos Pappas, Dani Yogatama, Zhaofeng Wu, Lingpeng Kong, Roy
 599 Schwartz, and Noah A. Smith. ABC: Attention with bounded-memory control. In Smaranda
 600 Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings of the 60th Annual Meet-
 601 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 7469–7483,
 602 Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
 603 acl-long.515. URL <https://aclanthology.org/2022.acl-long.515/>.

604 DL Prados and SC Kak. Neural network capacity using delta rule. *Electronics Letters*, 25(3):
 605 197–199, 1989.

606

607 Zhen Qin, Weigao Sun, Dong Li, Xuyang Shen, Weixuan Sun, and Yiran Zhong. Various lengths,
 608 constant speed: Efficient language modeling with lightning attention. In *Forty-first International
 609 Conference on Machine Learning*, 2024.

610

611 Zihan Qiu, Zekun Wang, Bo Zheng, Zeyu Huang, Kaiyue Wen, Songlin Yang, Rui Men, Le Yu, Fei
 612 Huang, Suozhi Huang, et al. Gated attention for large language models: Non-linearity, sparsity,
 613 and attention-sink-free. *arXiv preprint arXiv:2505.06708*, 2025.

614

615 Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Lukas Gru-
 616 ber, Markus Holzleitner, Thomas Adler, David Kreil, Michael K Kopp, Günter Klambauer, Jo-
 617 hannes Brandstetter, and Sepp Hochreiter. Hopfield networks is all you need. In *International
 618 Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=tL89RnzIiCd>.

619

620 Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
 621 programmers. In *International Conference on Machine Learning*, pp. 9355–9366. PMLR, 2021.

622

623 Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
 624 networks. *Neural Computation*, 4(1):131–139, 1992.

625

626 Jürgen Schmidhuber. Reducing the ratio between learning complexity and number of time varying
 627 variables in fully recurrent nets. In *ICANN’93: Proceedings of the International Conference on
 628 Artificial Neural Networks Amsterdam, The Netherlands 13–16 September 1993 3*, pp. 460–463.
 Springer, 1993.

629

630 Mark Schöne, Babak Rahmani, Heiner Kremer, Fabian Falck, Hitesh Ballani, and Jannes Gladrow.
 631 Implicit language models are rnns: Balancing parallelization and expressivity. *arXiv preprint
 632 arXiv:2502.07827*, 2025.

633

634 Julien Siems, Timur Carstensen, Arber Zela, Frank Hutter, Massimiliano Pontil, and Riccardo
 635 Grazzi. Deltaproduct: Increasing the expressivity of deltanet through products of householders.
 636 *arXiv preprint arXiv:2502.10297*, 2025.

637

638 Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for se-
 639 quence modeling. In *The Eleventh International Conference on Learning Representations*, 2023.
 640 URL <https://openreview.net/forum?id=Ai8Hw3AXqks>.

641

642 Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
 643 Chen, Xiaolong Wang, Sanmi Koyejo, et al. Learning to (learn at test time): Rnns with expressive
 644 hidden states. *arXiv preprint arXiv:2407.04620*, 2024.

645

646 Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
 647 Furu Wei. Retentive network: A successor to transformer for large language models. *arXiv
 648 preprint arXiv:2307.08621*, 2023.

649

650 Matteo Tiezzi, Michele Casoni, Alessandro Betti, Tommaso Guidi, Marco Gori, and Stefano
 651 Melacci. On the resurgence of recurrent models for long sequences: Survey and research op-
 652 portunities in the transformer era. *arXiv preprint arXiv:2402.08132*, 2024.

648 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
649 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
650 *tion processing systems*, 30, 2017.

651

652 Ke Alexander Wang, Jiaxin Shi, and Emily B. Fox. Test-time regression: a unifying framework
653 for designing sequence models with associative memory, 2025. URL [https://arxiv.org/](https://arxiv.org/abs/2501.12352)
654 [abs/2501.12352](https://arxiv.org/abs/2501.12352).

655 Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
656 transformers with hardware-efficient training. In *International Conference on Machine Learning*,
657 pp. 56501–56523. PMLR, 2024a.

658

659 Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transform-
660 ers with the delta rule over sequence length. *Advances in neural information processing systems*,
661 37:115491–115522, 2024b.

662

663 Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transform-
664 ers with the delta rule over sequence length. In *The Thirty-eighth Annual Conference on Neural*
Information Processing Systems, 2024c.

665

666 Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
667 delta rule. *arXiv preprint arXiv:2412.06464*, 2025.

668

669 Tianyuan Zhang, Sai Bi, Yicong Hong, Kai Zhang, Fujun Luan, Songlin Yang, Kalyan
670 Sunkavalli, William T Freeman, and Hao Tan. Test-time training done right. *arXiv preprint*
arXiv:2505.23884, 2025.

671

672 Yu Zhang, Songlin Yang, Rui-Jie Zhu, Yue Zhang, Leyang Cui, Yiqiao Wang, Bolun Wang, Freda
673 Shi, Bailin Wang, Wei Bi, et al. Gated slot attention for efficient linear-time sequence modeling.
Advances in Neural Information Processing Systems, 37:116870–116898, 2024.

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703

A LLM USAGE

704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
We acknowledge the use of a large language model (LLM) solely for improving the linguistic quality and clarity of this manuscript. The model was not used for ideation, research methodology, or generating the scientific content presented in this work.708
709

B ADDITIONAL RELATED WORK

710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
Modern Linear Recurrent Neural Networks Due to the quadratic complexity of transformers, recently developing alternative architectures have gained attention, which led to the development of efficient recurrent alternatives (Tieuzzi et al., 2024). Initial advancements in this domain, starts with models such as RetNet (Sun et al., 2023), RWKV (Peng et al., 2023), and S5 (Smith et al., 2023), which employed data-independent transition matrices coupled with Hebbian-like update mechanisms. Subsequently, a second generation of models emerged, incorporating input-dependent parameters within these linear architectures (e.g., linear RNNs (Hasani et al., 2023; Smith et al., 2023), RWKV6 (Peng et al., 2024)). These models also explored more expressive memory updating rules, notably those based on the delta rule (Peng et al., 2025; Schlag et al., 2021; Yang et al., 2024b;a; Liu et al., 2024). Further evolution in this line of research has extended these memory architectures to deeper models, while concurrently utilizing delta-rule-like update mechanisms (Sun et al., 2024) or data-dependent momentum-based update rules with forget gating (Behrouz et al., 2025d). More recently, to augment the performance of delta-rule-based sequential models, Siems et al. (2025) have proposed the application of multiple gradient descent updates per token, thereby yielding more expressive sequence models, particularly in state tracking tasks. In addition to the above fast linear recurrent sequence models, several studies have focused on RNNs with non-linear recurrence (Behrouz et al., 2025d;b;a; Csordás et al., 2024; Merrill et al., 2024; Lim et al., 2024; Schöne et al., 2025; Karami & Mirrokni, 2025; Gonzalez et al., 2024), and how their training can be faster (Gonzalez et al., 2024; Lim et al., 2024; Schöne et al., 2025).756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100750
100751
100752
100753
100754
100755
100756
100757
100758
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100770
100771
100772
100773
100774
100775
100776
100777
100778
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100790
100791
100792
100793
100794
100795
100796
100797
100798
100799
100800
100801
100802
100803
100804
100805
100806
100807
100808
100809
100810
100811
100812
100813
100814
100815
100816
100817
100818
100819
100820
100821
100822
100823
100824
100825
100826
100827
100828
100829
100830
100831
100832
100833
100834
100835
100836
100837
100838
100839
100840
100841
100842
100843
100844
100845
100846
100847
100848
100849
100850
100851
100852
100853
100854
100855
100856
100857
100858
100859
100860
100861
100862
100863
100864
100865
100866
100867
100868
100869
100870
100871
100872
100873
100874
100875
100876
100877
100878
100879
100880
100881
100882
100883
100884
100885
100886
100887
100888
100889
100890
100891
100892
100893
100894
100895
100896
100897
100898
100899
100900
100901
100902
100903
100904
100905
100906
100907
100908
100909
100910
100911
100912
100913
100914
100915
100916
100917
100918
100919
100920
100921
100922
100923
100924
100925
100926
100927
100928
100929
100930
100931
100932
100933
100934
100935
100936
100937
100938
100939
100940
100941
100942
100943
100944
100945
100946
100947
100948
100949
100950
100951
100952
100953
100954
100955
100956
100957
100958
100959
100960
100961
100962
100963
100964
100965
100966
100967
100968
100969
100970
100971
100972
100973
100974
100975
100976
100977
100978
100979
100980
100981
100982
100983
100984
100985
100986
100987
100988
100989
100990
100991
100992
100993
100994
100995
100996
100997
100998
100999
1001000
1001001
1001002
1001003
1001004
1001005
1001006
1001007
1001008
1001009
10010010
10010011
10010012
10010013
10010014
10010015
10010016
10010017
10010018
10010019
100100100
100100101
100100102
100100103
100100104
100100105
100100106
100100107
100100108
100100109
100100110
100100111
100100112
100100113
100100114
100100115
100100116
100100117
100100118
100100119
100100120
100100121
100100122
100100123
100100124
100100125
100100126
100100127
100100128
100100129
100100130
100100131
100100132
100100133
100100134
100100135
100100136
100100137
100100138
100100139
100100140
100100141
100100142
100100143
100100144
100100145
100100146
100100147
100100148
100100149
100100150
100100151
100100152
100100153
100100154
100100155
100100156
100100157
100100158
100100159
100100160
100100161
100100162
100100163
100100164
100100165
100100166
100100167
100100168
100100169
100100170
100100171
100100172
100100173
100100174
10010

756 calcualted as:

$$757 \quad 758 \quad 759 \quad o_t = f \left(W_t, \sum_{\tau=1}^t \frac{k_\tau k_\tau^\top}{\|k_\tau\|^2} q_t \right). \quad (8)$$

760 Given a normalization of keys, i.e., $\|k_\tau\|_2 = 1$, this formulation, can be re-written as:

$$761 \quad 762 \quad 763 \quad o_t = f \left(W_t, \sum_{\tau=1}^t k_\tau k_\tau^\top q_t \right), \quad (9)$$

764 in which the second element, $\sum_{\tau=1}^t k_\tau k_\tau^\top q_t$, is equivalent to a simple forward pass for query q_t over
765 a linear memory module of $\mathcal{M}'_t = \sum_{\tau=1}^t k_\tau k_\tau^\top$ with recurrence of:

$$766 \quad \mathcal{M}'_t = \mathcal{M}'_{t-1} + k_t k_t^\top. \quad (10)$$

768 Such formulation of QK-Projection can remind us the two-pass process of memory bounded Trans-
769 formers (Peng et al., 2022; Zhang et al., 2024; Karami et al., 2025), where in the simple linear
770 attention form (Peng et al., 2022), the retrieval process can be written as:

$$771 \quad W_t = W_{t-1} + \varphi_t v_t^\top, \quad (11)$$

$$772 \quad 773 \quad 774 \quad o_t = W_t \text{ softmax} \left(\left(\sum_{\tau=1}^t k_\varphi \varphi_\tau^\top \right) q_t \right). \quad (12)$$

775 Comparing with above two-pass process of ABC (Peng et al., 2022), our QK-projection method is
776 applicable to both deep and linear memory. Furthermore, parameters of φ_t as well as k_t are tied and
777 so the learning process is considerably easier, making the model more adaptable to new data/tasks.
778 Moreover, when employ this projection in the local memory, we only do the summations starting
779 from the “reset” state of the memory rather than starting from $\tau = 1$.

781 D EFFICIENT IMPLEMENTATION OF QK-PROJECTION

783 This section details the efficient, parallelizable implementation of the QK-Projection mechanism.
784 We demonstrate that this projection can be integrated into the chunkwise training paradigm without
785 introducing sequential bottlenecks, thereby preserving the training efficiency of the TNT architec-
786 ture.

787 The QK-Projection relies on a projection matrix, \mathcal{M}_t , which accumulates the outer products of keys
788 within the current local memory shard (length S_L). Assuming normalized keys ($\|k_\tau\| = 1$), this
789 matrix is defined by the following recurrence:

$$790 \quad 791 \quad 792 \quad \mathcal{M}_t = \begin{cases} k_t k_t^\top & \text{if } t \equiv 1 \pmod{S_L} \\ \mathcal{M}_{t-1} + k_t k_t^\top & \text{otherwise} \end{cases}$$

793 This rule ensures that the projection state \mathcal{M}_t is reset at the beginning of each shard, mirroring the
794 reset of the local memory state W_t . The local memory retrieval is then computed as $f(W_t, \mathcal{M}_t q_t)$.

795 **Chunkwise Parallel Computation.** To maintain training efficiency, \mathcal{M}_t is computed in a chunk-
796 parallel manner. For any time step t within a chunk of size C_L , the projection matrix can be decom-
797 posed into two components:

$$798 \quad 799 \quad 800 \quad 801 \quad 802 \quad \mathcal{M}_t = \underbrace{\mathcal{M}_{\xi(t, C_L) - 1}}_{\text{Carry-over State}} + \underbrace{\sum_{\tau=\xi(t, C_L)}^t k_\tau k_\tau^\top}_{\text{Intra-chunk Sum}}$$

803 The first term is the final state from the previous chunk, which is carried over. The second term, the
804 intra-chunk sum, is computed efficiently for all steps in the chunk simultaneously using a parallel
805 prefix sum (scan) operation over the sequence of outer products $\{k_\tau k_\tau^\top\}$.

806 This implementation preserves end-to-end parallelism. The state passed between chunks is a sin-
807 gle, constant-size matrix ($d \times d$), incurring minimal overhead. The periodic reset is handled by
808 re-initializing this carry-over state at shard boundaries. Thus, QK-Projection enhances the model’s
809 retrieval mechanism without compromising the training efficiency fundamental to the TNT archi-
tecture.

810 E TNT APPLICABILITY
811

812 In this paper, we have focused on showing the effectiveness and efficiency of TNT and so for the
813 sake of clarity, we use a simple memory module that optimizes its inner-loop with gradient descent.
814 However, TNT recipes are applicable to different deep memory and non-linear architectures. For
815 example, one can adapt the gating formulation in Titans (Behrouz et al., 2025d) or Mamba2 (Dao
816 & Gu, 2024) for each of the local memories as well as the global memory. Another potential ex-
817 ploration is to incorporate closed feedback loop in the objective of the inner-loop as it has done in
818 Hu et al. (2025). Similarly, one can employ more expressive optimizers as the inner-loop optimizers
819 such as gradient descent with momentum, AdamW (Kingma & Ba, 2014), or muon (Jordan et al.,
820 2024) as it has been done by Behrouz et al. (2025a); Zhang et al. (2025). While exploring all these
821 combinations with TNT is a promising direction, for the sake of clarity and space constraint, we
822 leave them for future studies.
823

824 F TNT GENERALIZATION FORMULATION
825

826 The TNT architecture can be generalized to a hierarchical system comprising one global memory
827 and N parallel local memories. This allows the model to capture information at multiple timescales
828 and resolutions simultaneously. Each local memory, denoted by $W^{(i)}$ for $i \in \{1, \dots, N\}$, operates
829 with its own distinct chunk size C_{L_i} , shard length S_{L_i} , and learnable initial state $W_{\text{init}}^{(i)}$.
830

831 F.1 GENERALIZED MEMORY UPDATE
832

833 The update rules are extended as follows: the single global memory evolves sequentially, while the
834 N local memories are updated in parallel, each with its independent schedule.
835

836 **Global Memory Update.** The global memory state V is updated sequentially with a large chunk
837 size C_G , identical to the base case.
838

$$V_{(k+1)C_G} \leftarrow V_{kC_G} - \sum_{t=kC_G}^{(k+1)C_G} \eta_t \nabla_V \mathcal{L}(f(V_{kC_G}, k_t), v_t) \quad (13)$$

841 **N-Local Memories Update.** Each of the N local memories $W^{(i)}$ operates in parallel. The state
842 of each memory is reset periodically according to its specific shard length S_{L_i} , enabling multi-
843 resolution context parallelism.
844

$$W_t^{(i)} \leftarrow \begin{cases} W_{\text{init}}^{(i)} & \text{if } 0 \equiv t \pmod{S_{L_i}} \\ W_{t-1}^{(i)} - \sum_{\tau=\xi(t, C_{L_i})}^t \eta_\tau \nabla_{W^{(i)}} \mathcal{L}(f(W_{\xi(t, C_{L_i})}^{(i)}, k_\tau), v_\tau) & \text{Otherwise} \end{cases} \quad (14)$$

848 where $i = 1, \dots, N$.
849

850 F.2 GENERALIZED MEMORY RETRIEVAL
851

852 During retrieval, the final output is a composition of the outputs from the global memory and all N
853 local memories. The global memory uses the raw query q_t , while each local memory uses a Q-K
854 projection tailored to its specific context window, determined by its chunk size C_{L_i} .
855

856 **TNT Generalized Retrieval Rule.** The hierarchical memory is retrieved by summing the contrib-
857 utions from each memory module.
858

$$o_t = f(V_{\xi(t, C_G)}, q_t) + \sum_{i=1}^N f\left(W_t^{(i)}, \sum_{\tau=\xi(t, C_{L_i})}^t \frac{k_\tau k_\tau^\top}{\|k_\tau\|^2} q_t\right) \quad (15)$$

862 This formulation allows the network to integrate long-range dependencies from the global mem-
863 ory with fine-grained, parallel-processed information from a diverse set of local memories, each
864 specializing in different temporal patterns.
865

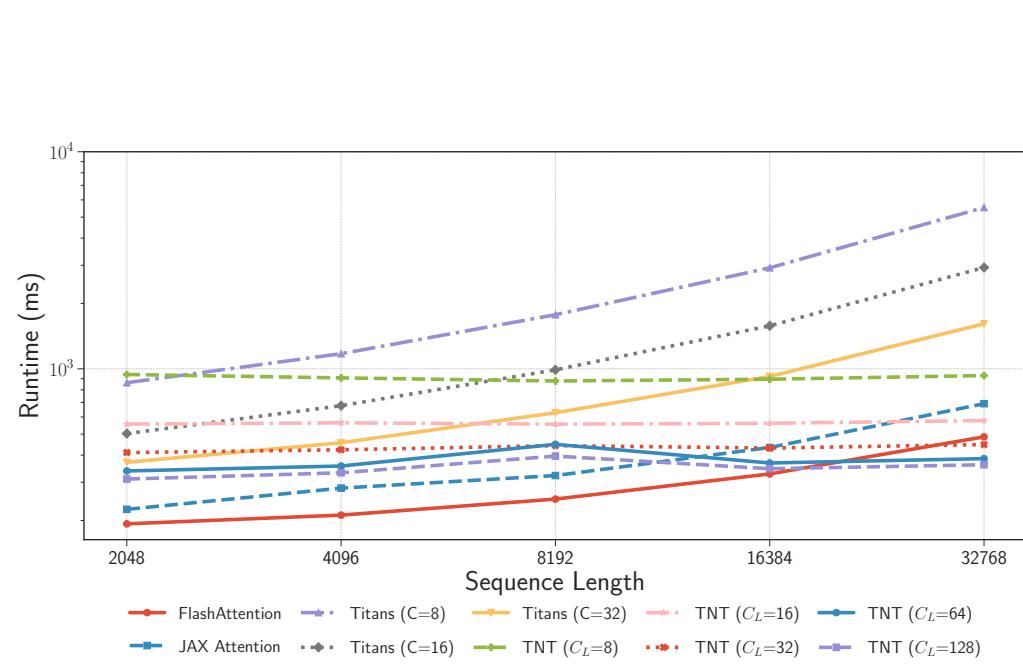


Figure 5: Runtime comparison of different models and implementations across varying sequence lengths, with the number of tokens per batch fixed at 0.5M.

Table 4: Training time for 150M parameter models trained on 10B tokens. For TNT models, the global chunksize is fixed at $C_G = 2048$, and C_L denotes the set of chunksizes for the local memory modules.

Model	C or C_L	Training Time (hrs)
150M params / 10B tokens		
Transformer (w/o gating)	-	0.80
Transformer (w gating)	-	0.82
TTT (2024)	256	1.69
Titans (2025d)	256	1.99
Titans	8	8.44
TNT Stage 1		
TNT Stage 1	{8}	3.06
	{8,16}	4.24
	{4,8,16}	5.00
	{4,8,16,32}	5.55
TNT Stage 2		
TNT Stage 2	{1}	0.15
	{2,4}	0.23
	{2,4,8}	0.26
	{2,4,8,16}	0.46

918 G SUMMARY OF REVISIONS AND ADDITIONAL EXPERIMENTS

920 We thank the reviewers for their insightful feedback. In response to their comments, we have con-
 921 ducted several additional experiments and made revisions, which we summarize below.
 922

923 1. **Scaling of Local Memory Depth (N).** In response to Reviewer g52o’s query about the
 924 benefit of $N > 4$ local modules, we experimented with increasing the local memory depth
 925 from $N = 1$ to $N = 9$. As shown in Table 5, performance steadily improves with depth:
 926 average perplexity decreases from 24.10 to 22.97, and downstream accuracy increases from
 927 40.6 to 41.6. This demonstrates that deeper local memory continuously improves per-
 928 formance, highlighting the potential of the TNT framework.
 929

930 2. **Impact of Global Memory Chunk Size (C_G).** To address questions from Reviewers g52o
 931 and NKDU, we evaluated the effect of varying the global chunk size C_G from 32 to 8192.
 932 The results are in Table 6. We observed that while a smaller $C_G = 128$ yields a slightly
 933 better average perplexity (23.21) than our original $C_G = 2048$ (23.23), the improvement
 934 is marginal. We find this minor gain does not justify the additional computational cost,
 935 as smaller chunks reduce opportunities for parallelization. Therefore, our original setup
 936 provides a strong balance between performance and computational efficiency.
 937

938 3. **Impact of Local Memory Chunk Size (C_L).** Per Reviewer g52o’s request, we fixed the
 939 global memory ($C_G = 2048$) and varied the local memory chunk size C_L . As shown in Ta-
 940 ble 7, our results indicate that smaller local memory chunk sizes generally yield improved
 941 performance.
 942

943 4. **Optimal Local Memory Configurations.** To address Reviewer g52o’s question about se-
 944 lecting optimal chunk sizes for multi-local setups, we experimented with different memory
 945 hierarchies (Table 8). We found that the optimal configuration utilizes heterogeneous lo-
 946 cal memories with different resolutions. As a practical heuristic, we suggest starting with
 947 an exponential progression (e.g., $2^1, 2^2, \dots, 2^N$ or $4^1, 4^2, \dots, 4^N$ for N local memories).
 948 Based on our experience, this rule of thumb generally yields strong performance.
 949

950 5. **Additional Baselines and Table Clarity.** In response to Reviewer 2mkd’s concern about
 951 the number of baselines and clarity in Table 2, we have revised the table and added two
 952 modern RNN baselines: Deltanet (Yang et al., 2024c) and Gated Deltanet (Yang et al.,
 953 2025). As shown in the updated table, TNT (23.09 PPL) significantly outperforms both
 954 Deltanet (25.56 PPL) and Gated Deltanet (24.40 PPL), further demonstrating the effective-
 955 ness of our framework.
 956

957 Table 5: The scaling behavior of local memory depth (N) on model performance. The depth is
 958 varied from $N = 1$ to $N = 9$. A clear improvement in performance is observed as the depth
 959 increases.
 960

961 Model	962 C_G	963 C or C_L	964 C4 ppl ↓	965 FineWeb ppl ↓	966 PG19 ppl ↓	967 Avg. ppl ↓	968 PIQA acc ↑	969 Hella. acc ↑	970 ARC-e acc ↑	971 CSQA acc ↑	972 Avg. acc ↑
150M params / 10B tokens											
TNT Stage 1	2048	{8}	21.04	21.01	30.24	24.10	61.8	32.8	37.4	30.3	40.6
	2048	{8,16}	20.74	20.73	29.94	23.80	63.5	32.4	37.4	30.6	41.0
	2048	{4,8,16}	20.47	20.43	29.43	23.44	62.9	32.4	36.4	28.9	40.2
	2048	{4,8,16,32}	20.15	20.17	29.08	23.13	63.2	32.0	36.7	30.3	40.6
	2048	{4,8,16,32,64}	20.13	20.25	29.63	23.34	63.0	32.3	36.8	32.3	41.1
	2048	{4,8,16,32,64,128}	20.08	20.22	29.66	23.32	64.0	32.6	37.3	32.6	41.6
	2048	{4,8,16,32,64,128,256}	19.96	20.10	29.56	23.21	63.2	32.6	37.5	32.6	41.5
	2048	{4,8,16,32,64,128,256,512}	19.84	19.98	29.27	23.03	62.7	32.5	36.5	32.5	41.0
	2048	{4,8,16,32,64,128,256,512,1024}	19.74	19.92	29.24	22.97	63.7	32.9	37.0	32.9	41.6

972
973
974
975 **Table 6: Impact of global memory chunk size on the TNT model’s performance. This is evaluated**
976 **at four fixed local memory sizes ($C_L = \{4, 8, 16, 32\}$). No clear correlation was observed between**
977 **global chunk size and performance.**

Model	C_G	C or C_L	C4 ppl ↓	FineWeb ppl ↓	PG19 ppl ↓	Avg. ppl ↓	PIQA acc ↑	Hella. acc ↑	ARC-e acc ↑	CSQA acc ↑	Avg. acc ↑
150M params / 10B tokens											
TNT Stage 1	32	{4,8,16,32}	20.28	20.31	29.26	23.28	63.1	32.8	37.6	29.6	40.8
	128	{4,8,16,32}	20.27	20.29	29.16	23.24	63.4	33.2	37.3	30.3	41.1
	256	{4,8,16,32}	20.22	20.25	29.17	23.21	62.9	32.9	38.4	30.0	41.0
	512	{4,8,16,32}	20.26	20.28	29.26	23.27	64.1	32.8	36.8	29.6	40.8
	1024	{4,8,16,32}	20.25	20.31	29.34	23.30	64.0	32.4	36.8	29.6	40.7
	2048	{4,8,16,32}	20.20	20.23	29.26	23.23	63.4	32.7	37.0	29.6	40.7
	4096	{4,8,16,32}	20.26	20.30	29.25	23.27	63.2	32.4	37.9	29.9	40.8
	8192	{4,8,16,32}	20.29	20.30	29.24	23.28	63.1	32.1	37.3	28.7	40.3

980
981
982
983
984
985
986
987
988
989
990
991
992 **Table 7: Impact of local memory chunk size on the TNT model’s performance. We use a fixed**
993 **global memory ($C_G = 2048$) and vary the chunksize size C_L of a single local memory. Smaller**
994 **local memory sizes are shown to yield improved performance.**

Model	C_G	C or C_L	C4 ppl ↓	FineWeb ppl ↓	PG19 ppl ↓	Avg. ppl ↓	PIQA acc ↑	Hella. acc ↑	ARC-e acc ↑	CSQA acc ↑	Avg. acc ↑
150M params / 10B tokens											
TNT Stage 1	2048	{2}	20.86	20.90	30.16	23.97	63.3	32.4	36.2	28.3	40.1
	2048	{4}	21.02	21.04	30.39	24.15	63.9	32.5	37.5	29.9	41.0
	2048	{8}	21.04	21.01	30.24	24.10	61.8	32.8	37.4	30.3	40.6
	2048	{16}	21.08	21.03	30.28	24.13	63.3	31.5	36.4	30.3	40.4
	2048	{32}	21.06	21.04	30.24	24.11	62.8	32.0	36.4	27.6	39.7
	2048	{64}	21.17	21.15	30.48	24.26	62.8	32.8	36.5	29.3	40.4
	2048	{128}	21.39	21.39	30.80	24.53	63.5	31.8	35.6	28.7	39.9
	2048	{256}	21.53	21.57	31.12	24.74	62.6	31.9	38.0	30.1	40.6
	2048	{512}	21.74	21.81	31.45	25.00	62.3	31.4	36.1	28.0	39.4
	2048	{1024}	22.18	22.24	32.21	25.54	61.9	30.9	36.6	28.9	39.6
	2048	{2048}	22.79	22.83	33.06	26.23	62.2	31.5	35.8	26.7	39.1

1008
1009
1010
1011
1012 **Table 8: This analysis investigates different local memory configurations. We observe that the**
1013 **best performance is achieved with an optimal configuration of heterogeneous local memories (i.e.,**
1014 **having different resolutions), which aligns with the core hypothesis of TNT.**

Model	C_G	C or C_L	C4 ppl ↓	FineWeb ppl ↓	PG19 ppl ↓	Avg. acc ↑	PIQA acc ↑	Hella. acc ↑	ARC-e acc ↑	CSQA acc ↑	Avg.
150M params / 10B tokens											
TNT Stage 1	2048	{4,8,16}	20.47	20.43	29.43	23.44	62.9	32.4	36.4	28.9	40.2
	2048	{4,8,32}	20.36	20.33	29.37	23.35	62.6	32.6	36.9	28.2	40.1
	2048	{4,8,64}	20.38	20.39	29.45	23.40	63.1	32.2	36.8	29.4	40.4
	2048	{4,8,128}	20.46	20.50	29.51	23.49	62.7	31.7	35.5	27.4	39.3
	2048	{4,16,64}	20.37	20.36	29.35	23.36	62.7	32.9	37.3	29.5	40.6
	2048	{4,16,128}	20.43	20.44	29.44	23.44	63.5	32.5	38.1	29.7	41.0
	2048	{4,16,256}	20.54	20.56	29.67	23.59	63.2	32.5	36.2	28.1	40.0
	2048	{4,16,512}	20.60	20.62	29.79	23.67	62.7	32.0	35.8	27.3	39.5