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ABSTRACT

Recurrent neural networks (RNNs) with deep test-time memorization modules,
such as Titans and TTT, represent a promising, linearly-scaling paradigm distinct
from Transformers. While these expressive models do not yet match the peak
performance of state-of-the-art Transformers, their potential has been largely un-
tapped due to prohibitively slow training and low hardware utilization. Existing
parallelization methods force a fundamental conflict governed by the chunksize
hyperparameter: large chunks boost speed but degrade performance, necessitat-
ing a fixed, suboptimal compromise. To solve this challenge, we introduce TNT,
a novel training paradigm that decouples training efficiency from inference per-
formance through a two-stage process. Stage one is an efficiency-focused pre-
training phase utilizing a hierarchical memory. A global module processes large,
hardware-friendly chunks for long-range context, while multiple parallel local
modules handle fine-grained details. Crucially, by periodically resetting local
memory states, we break sequential dependencies to enable massive context par-
allelization. Stage two is a brief fine-tuning phase where only the local memory
modules are adapted to a smaller, high-resolution chunksize, maximizing accu-
racy with minimal overhead. Evaluated on Titans and TTT models, TNT achieves
a substantial acceleration in training speed—up to 17× faster than the most ac-
curate baseline configuration—while simultaneously improving model accuracy.
This improvement removes a critical scalability barrier, establishing a practical
foundation for developing expressive RNNs and facilitating future work to close
the performance gap with Transformers.

1 INTRODUCTION

The demand for modeling long sequences highlights a fundamental limitation of standard softmax
attention (Vaswani et al., 2017): its quadratic complexity bottlenecks scaling. This has spurred
extensive research into more efficient architectures.

Among these emerging paradigms, a particularly powerful approach is rooted in test-time memo-
rization (Sun et al., 2024). Architectures leveraging this principle, which we refer to as deep mem-
ory modules, utilize a deep, online-adapted sub-network whose parameters are rapidly updated to
encode in-context information. Prominent examples include Titans (Behrouz et al., 2025d) and At-
las (Behrouz et al., 2025a). This method stands in sharp contrast to linear memory modules (Yang
et al., 2024a;b; Dao & Gu, 2024; Sun et al., 2023), which, despite their efficiency, are constrained by
matrix-valued hidden states and linear state transitions. By leveraging expressive non-linear objec-
tives and update rules, deep memory modules can theoretically overcome these limitations. While
these methods generally do not yet achieve the state-of-the-art performance of Transformers, they
represent a potentially promising paradigm for efficient sequence modeling, provided their training
bottlenecks can be resolved.

Despite their expressive advantages, deep memory modules lack the efficient training algorithms
of their linear counterparts, leading to low hardware utilization. Unlike linear memory modules,
which utilize hardware-efficient parallelization, deep memory modules face challenges stemming
from non-linear recurrences (e.g., LayerNorm between chunks) and the complexity of their deep
structures. In practice, these challenges constrain their training to more frequent online updates on
small data segments, resulting in poor computational throughput in training. This creates an in-
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Figure 1: The basic diagram for illustraing TNT memory hierarchy. In each row, the updates at the
same value of t ran at the same time (run in parrallel). t = 0 is the initialization of the memory.

herent tension, as these models typically rely on a fixed, small chunk size (e.g., 16 to 64 tokens)
to balance memory layer expressiveness against training efficiency. Consequently, this trade-off
between in-context learning capability and computational performance has become a critical bottle-
neck preventing the application of these models to truly long sequences in practice. Resolving this
fundamental tension is the primary goal of this work.

Recent work attempts to mitigate this issue. Zhang et al. (2025) combines large chunks with local
attention to enhance parallelism. However, this circumvents the inefficiency rather than solving it,
complicates the analysis by mixing memory and attention, and neglects the need for small chunks
(ideally 1) during inference. Concurrently, Guo et al. (2025) proposed a hierarchical memory sys-
tem, but it is limited to linear memory modules and does not support short-term memories.

To resolve this tension, we introduce TNT1, a novel training paradigm for deep memory modules.
Our core insight is that different components of the model should process information at different
granularities during distinct training stages. TNT begins with an efficiency-focused pre-training
stage designed to maximize throughput. This is achieved via a hierarchical memory system: a global
memory module operates on large, hardware-friendly chunks to capture long-range context, while
multiple local memory modules handle fine-grained details in parallel. Crucially, we introduce a
periodic reset mechanism for the local memory states. This breaks the sequential dependencies in-
herent even in non-linear RNNs (e.g., those with normalization between steps), enabling massive
context parallelization. This is a key innovation, as efficiently parallelizing non-linear recurrences
across the sequence length is a long-standing challenge, largely unsolved outside of Transformers
and specialized linear RNNs (where parallel scans apply). Subsequently, a performance-focused
fine-tuning stage adapts the model for optimal inference. During this stage, only the local memory
modules are adjusted to use smaller chunk sizes, achieving high-resolution accuracy with minimal
additional computational cost. This two-stage approach effectively decouples training efficiency
from inference performance, significantly improving training scalability while addressing a key lim-
itation of prior architectures. Furthermore, the local memory system itself can be hierarchical, em-
ploying multiple modules operating at different resolutions. This multi-resolution approach allows
the model to capture complex, multi-scale temporal dynamics more effectively than a single fixed
chunk size.

TNT is a general training paradigm applicable to any deep memory module rather than a specific
architecture. By decoupling training throughput from inference accuracy, we resolve a fundamen-
tal tension constraining prior work. This removes dependency on hardware-specific optimizations
for small chunks and enables flexible exploration of the architectural design space. We believe this
paradigm will open new research avenues towards replacing softmax attention. Our main contribu-
tions are summarized as follows:

• We identify three fundamental challenges limiting the scalability and performance of deep mem-
ory modules: 1) domain mismatch between memory compression and retrieval; 2) tradeoff be-
tween memory performance and computational efficiency; 3) chunksize mismatch between train-
ing and inference (Section 3).

1TNT can be viewed as an abbreviation of Two-stage Non-linear Training or TTT iNside TTT. It also hints
to its “explosive” impact on training efficiency.
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• We introduce Q-K Projection, an efficient mechanism to resolve the domain mismatch between
memory compression and retrieval (Section 4.1.2).

• We introduce a novel hierarchical memory architecture with periodic state resets, enabling context
parallelism for non-linear deep memory modules (Section 4.1).

• We introduce an efficient fine-tuning mechanism to address chunksize mismatch between training
and inference in deep memory modules (Section 4.2).

• Putting all above together, we introduce TNT, a general two-stage training paradigm that de-
couples training efficiency from inference performance by combining efficient pre-training with
high-resolution fine-tuning (Figure 1, Figure 3, Section 4).

• We validate TNT on the Titans architecture, achieving up to a 17.37× training speedup while
improving accuracy, significantly advancing the practicality of expressive RNNs (Section 5).

Problem Definition and Notations We aim to train a neural network with parameters θ ∈ Rdm

to perform next-token prediction. Given a sequence x = (x1, . . . , xL), the model’s objective is
to predict each token xt using the context of its preceding tokens (x1, . . . , xt−1). Following the
attention formulation, each token xt is represented by a d-dimensional vector. Each input token xt

is projected into query, key, and value vectors: qt, kt, vt ∈ Rd. For ease of notation in subsequent
chunkwise operations, we define a function ξ(i, j) := i− (i mod j), which finds the beginning of
the chunk containing index i for a chunk size j.

2 PRELIMINARY

This section reviews preliminaries. Expanded related work is in Appendix B.

2.1 DEEP MEMORY MODULES VIA TEST-TIME MEMORIZATION

A powerful paradigm for sequence modeling is Test-Time Memorization (Sun et al., 2024), which
enhances models by incorporating a secondary, rapidly adaptable neural network. Unlike the pri-
mary model parameters, or “slow weights” (θ) updated only during training, this approach introduces
“fast weights” (Schlag et al., 2021). These fast weights, denoted by W , parameterize a sub-network,
f(W, ·) : Rd → Rd, that is updated online-during both training and inference-based on incom-
ing tokens to dynamically store contextual information. While these modules do not yet achieve
SOTA results compared to Transformers (Arora et al., 2024; Behrouz et al., 2025a), improving their
training efficiency is crucial for enabling the wider experimentation needed to close this gap.

In this work, we focus on a similar/relevant principle: deep memory modules (Irie et al., 2021;
Sun et al., 2024; Behrouz et al., 2025d;a;c). In contrast to linear memory modules (Sun et al.,
2023; Yang et al., 2024b; Dao & Gu, 2024; Karami & Mirrokni, 2025; Hu et al., 2025), which are
characterized by linear state transitions, deep memory modules employ non-linear recurrence rules
and complex memory structures.

The core mechanism of a deep memory module can be distilled into two sequential operations for
each input token: 1. Memory Compression and 2. Memory Retrieval. These are formally defined as:

Memory Compression: Wt ←Wt−1 − ηt∇WL
(
f(Wt−1, kt), vt

)
(1)

Memory Retrieval: ot = f(Wt, qt) (2)

In Memory Compression, the fast weights W are updated via gradient descent, guided by a self-
supervised loss L(·, ·) (e.g., MSE) and a learned learning rate ηt. The objective associates a trans-
formed key, f(Wt−1, kt), with its value, vt, compressing information into the fixed-size neural
memory (Wang et al., 2025; Behrouz et al., 2025b). In Memory Retrieval, the updated Wt processes
a query qt to produce ot. These two operations are performed iteratively for each token.

2.2 CHUNKWISE PARALLEL TRAINING

The sequential dependency (Wt depends on Wt−1) in Eqs. 1-2 prevents parallelization across the
sequence length. To address this, deep memory modules adopt chunkwise parallel training (Hua
et al., 2022; Sun et al., 2023) to enable hardware-efficient training.
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The core principle is to divide the input sequence into non-overlapping chunks of size C. Within
each chunk, an approximation of the gradient of the loss for every token is computed with respect
to the fast-weight state from the beginning of that chunk. This formulation breaks the sequential
token-to-token dependency for gradient calculation, which allows the updates for all tokens within
the chunk to be computed in parallel. The formal operations for a token at time step t are as follows:

Chunkwise Memory Compression: Wt ←Wξ(t,C) −
t∑

τ=ξ(t,C)

ητ∇WL
(
f(Wξ(t,C), kτ ), vτ

)
(3)

Chunkwise Memory Retrieval: ot = f(Wt, qt) (4)
Here, Wξ(t,C) denotes the state of the fast weights at the start of the chunk containing token t (See
the definition of ξ(·, ·) at the end of Section 1). Although the update to obtain Wt still depends on
prior tokens within its chunk, the summation of gradients can be implemented efficiently using par-
allel operations (e.g., cumulative summation), significantly improving hardware utilization during
training. However, a sequential dependency remains: the final state of the fast weights from the k-th
chunk, WkC , is used as the initial state for the (k + 1)-th chunk.

3 CHALLENGES IN DEEP MEMORY MODULES

While chunkwise parallelization enables deep memory modules to train on long sequences, this
paradigm introduces significant challenges that limit their practical performance and scalability. In
this section, we outline three fundamental challenges with deep memory modules.

Challenge 1: Lack of Efficient Training Implementations. A primary challenge for deep mem-
ory modules is the inefficiency of their training process, which leads to poor hardware utilization.
While chunkwise parallelization theoretically enables sub-quadratic scaling, in practice, the training
throughput lags significantly behind that of linear memory modules. This discrepancy arises from a
fundamental tension between model expressiveness and computational efficiency.
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Figure 2: Sensitivity of inference chunk size on
a 550M Titans model pre-trained with C = 64.
Performance is optimal when the inference chunk
size matches the training one.

To maintain a fine-grained learning signal, deep
memory modules require small chunk sizes
(e.g., 16-64 tokens) (Sun et al., 2024), which
fail to saturate accelerators, making training
memory-bound (rather than compute-bound).
While linear memory modules use customized
kernels (e.g., leveraging SRAM) (Sun et al.,
2023; Gu & Dao, 2023; Qin et al., 2024; Yang
et al., 2024a;c), this relies on linear state tran-
sitions and is incompatible with the large, non-
linear states of deep memory modules.

The consequence is that deep memory mod-
ules suffer from extremely low FLOPs uti-
lization, often falling below 5-10% of peak
hardware performance (Zhang et al., 2025).
This severe inefficiency makes pre-training pro-
hibitively slow and costly, creating a major bot-
tleneck that undermines the practical applica-
tion of these expressive models to truly long sequences.

Challenge 2: Inconsistency Between Memory Compression and Retrieval. A fundamental in-
consistency exists between how the memory sub-network is trained and how it is utilized. During
Memory Compression (Eq. 1), the sub-network f(W, ·) is optimized to learn a mapping from the
key space to the value space by associating keys (kt) with values (vt). However, during Memory
Retrieval (Eq. 2), the network is queried using a query vector (qt) instead of a key. This substitu-
tion violates the intended input domain of the learned function, creating a discrepancy between the
training objective and the retrieval task. This domain shift can degrade the integrity of the learned
mapping and limit the model’s retrieval performance. Our empirical validation can be found in
Section 5.4
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Challenge 3: Performance Sensitivity to a Fixed Pre-training Chunksize. The chunk size hy-
perparameter, C, governs the trade-off between training throughput and model expressiveness. Cur-
rent practice for deep memory modules is to use the same fixed chunk size for both pre-training
and inference. However, we observe that inference-time performance is highly sensitive to this pre-
training choice. For example, as shown in Figure 2, a model pre-trained with a chunk size of 64
achieves optimal perplexity only when evaluated with that same chunk size.

This result reveals a critical train-test mismatch and contradicts the intuition that smaller chunks at
inference should yield superior performance by capturing fine-grained dependencies with a ”fresher”
learning signal. Instead, the model becomes over-specialized to the specific chunk resolution seen
during training. This inflexibility is a significant limitation; ideally, a model pre-trained with a large,
hardwarefriendly chunk size should be adaptable enough to perform even better with smaller, more
precise chunk sizes at inference. Current deep memory modules fail to achieve this adaptability.

4 TNT: AN IMPROVED TRAINING FRAMEWORK FOR DEEP MEMORY
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Figure 3: Architectural overview of TNT Stage 1.

To address the challenges outlined in
Section 3, we introduce TNT, an im-
proved training paradigm for deep mem-
ory modules. Our framework is structured
around a two-stage process designed to re-
solve the inherent tension between train-
ing efficiency and inference performance:
an Efficiency-focused Pre-training Stage
and a Performance-focused Fine-tuning
Stage.

The first stage maximizes training
throughput by introducing a novel hierar-
chical memory architecture that enables
unprecedented parallelism, directly ad-
dressing the challenges of low hardware
utilization and inconsistent memory
objectives (Challenges 1-2). The second
stage employs an efficient fine-tuning
strategy that adapts the model to high-
resolution, small-chunk inference, resolving the sensitivity to the pre-training chunk size (Challenge
3). This two-stage approach effectively decouples training efficiency from inference performance,
overcoming a key limitation of prior deep memory architectures.

4.1 TNT STAGE 1: EFFICIENT-FOCUSED PRE-TRAINING

4.1.1 TNT MEMORY COMPRESSION: HIERARCHY MEMORY

Sequential state dependency prevents context parallelism (processing sequence shards in parallel
across devices). To enable this, we propose that all parallel shards initialize their local memory with
the same learned state, Winit. This breaks inter-chunk dependency, allowing massive parallelization.
However, this causes local memory modules to lose the global context. To solve this, we introduce
a global memory module, parameterized by V , that operates in parallel with the sharded local
memories. The global memory processes the sequence with a relatively large chunk size (e.g.,
2048 or greater), allowing it to efficiently capture long-range dependencies while maintaining high
hardware utilization. This creates a hierarchical system where local memories handle fine-grained
information within parallel shards, while the global memory provides the overarching context.

This hierarchical structure is flexible; a model can be designed with 1 global and N local memory
modules, each operating at a different resolution. For clarity of illustration, we will assume the
simplest case where N = 1. We defer the generalized formulation of TNT to Appendix F. We now
formally define our memory compression mechanism.

5
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TNT Memory Compression Rule. The hierarchical memory is updated as follows:

Global Memory Update. The global memory state V evolves sequentially across the input
with a large chunk size CG.

V(k+1)CG
← VkCG

−
(k+1)CG∑
t=kCG

ηt∇V L (f(VkCG
, kt), vt) k = {0, . . . , L//CG} (5)

Local Memory Update. The local memory W operates in parallel on sequence shards of
length SL. Within each shard, updates use a smaller chunk size CL.

Wt ←
{

Winit if 0 ≡ t (mod SL)
Wt−1 −

∑t
τ=ξ(t,CL) ητ∇WL

(
f(Wξ(t,CL), kτ ), vτ

)
Otherwise (6)

The global memory update (Eq. 5) follows a standard chunkwise formulation where the state is
carried over sequentially between large chunks. To maximize training throughput, the gradient for
all tokens within a global chunk is computed with respect to the initial state of that chunk, allowing
for a highly parallelized update.

In contrast, the local memory update (Eq. 6) introduces our key innovation: a periodic state reset.
This rule enforces that the local memory state, Wt, is reset to a shared, learnable initial state Winit at
the beginning of each segment of length SL. This periodic reset is the critical mechanism that breaks
the long-range sequential dependency across the input, thereby enabling true context parallelism for
the fine-grained local memory modules.

The hierarchical design of deep memory modules boosts training efficiency through a two-pronged
approach. Global modules create hardware-saturating, compute-intensive operations by processing
large chunks. Concurrently, the local memory’s reset mechanism enables context parallelism, where
the sequence is processed as independent chunks that can be distributed across devices or stacked
on a single accelerator to substantially increase training throughput.
4.1.2 TNT MEMORY RETRIEVAL: Q-K PROJECTION

As identified in Challenge 2, the memory compression step (Eq. 6) optimizes f(W, ·) to map the key
space to the value space. However, at retrieval, the network is queried using a query vector, qt, which
may lie outside the learned key domain, degrading performance. To resolve this, we propose Q-K
Projection: projecting the query qt onto the subspace spanned by previously observed keys. This
ensures the input to the memory function is in the space memory was trained on. The final output
combines retrieval from the global memory (raw query) and the local memory (projected query).
We apply projection only locally as its fine-grained nature makes it more sensitive to the mismatch

TNT Memory Retrieval Rule. The hierarchical memory is retrieved as follows:

ot = f(Vξ(t,CG), qt) + f

Wt,

t∑
τ=ξ(t,CL)

kτk
⊤
τ

∥kτ∥2
qt

 (7)

Crucially, this Q-K Projection does not require storing all past keys, which would be computationally
and memory prohibitive. Instead, the projection matrix,

∑t
τ=1

kτk
⊤
τ

∥kτ∥2 ∈ Rd×d, can be maintained as
a running sum. This results in a constant-size state that is updated efficiently in a chunkwise parallel
manner. Since many modern deep memory modules normalize the query (qt) and key (kt) vectors
by their L2 norm, the denominator in the Q-K projection can simplify to

∑t
τ=1 kτk

⊤
τ . We provide

further details on this efficient implementation in Appendix D.

4.2 TNT STAGE 2: PERFORMANCE-FOCUSED FINE-TUNING AT FINER RESOLUTION

Having addressed training efficiency in Stage 1, we now turn to optimizing for inference perfor-
mance. An intuitive approach to enhance model resolution would be to evaluate the pre-trained
model using a smaller chunk size. However, as established in Challenge 3, a direct mismatch be-
tween the pre-training and evaluation chunk sizes leads to significant performance degradation.

6
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Table 1: TNT reaches the target training loss up to 17× faster than the baseline Titans. The table
compares the time required for different 150M models to reach the same target loss 3.20.

Models Implementation C or CL Training Time (hrs) Speedup
Titans JAX 8 19.48 1.00×
Titans JAX 16 10.79 1.81×
Titans JAX 32 6.45 3.02×
Titans JAX 64 4.18 4.67×
Titans JAX 128 3.71 5.25×
Transformer (w/o gating) JAX - 1.74 11.18×
Transformer (w gating) JAX - 1.38 14.10×
Transformer (w/o gating) FlashAttention (Pallas) - 1.23 15.90×
Transformer (w gating) FlashAttention (Pallas) - 0.96 20.22×
TNT JAX {8} 2.54 7.68×
TNT JAX {16} 1.65 11.78×
TNT JAX {32} 1.22 15.92×
TNT JAX {64} 1.12 17.37×
TNT JAX {128} 1.16 16.75×

Our key insight is that this train-test discrepancy can be rectified with minimal computational over-
head. We empirically observe that a brief fine-tuning phase, where the pre-trained model is updated
for a small number of steps using a smaller local memory chunk size, not only recovers but often
surpasses the original performance.

Based on this finding, we introduce Stage 2 of our TNT framework: a Performance-focused Fine-
tuning Stage. In this stage, we continue training the efficiently pre-trained model with a smaller
local chunk size (C ′

L < CL). This process adapts the model to the higher resolution required for
optimal inference at a fraction of the cost of pre-training. By doing so, Stage 2 directly resolves
Challenge 3, bridging the gap between the large chunk sizes required for efficient training and the
small chunk sizes that yield the best performance at inference.

This two-stage process decouples pre-training efficiency from inference requirements. The bulk of
training uses maximum throughput (large chunks), while the final model is produced with minimal
overhead. Furthermore, fine-tuning specializes the model for the ideal inference scenario: a local
chunk size of one (C ′

L = 1). This aligns with the standard prefill-and-decode paradigm of autore-
gressive generation. The global memory handles the context prefill, and the optimized local memory
handles iterative decoding.

5 EXPERIMENTS
We empirically evaluate our two-stage training framework, TNT. While TNT is model-agnostic, we
instantiate it with a strong deep memory model, Titans (Behrouz et al., 2025d), to demonstrate its
effectiveness. We validate claims about training time and model accuracy in our experiments.
5.1 EXPERIMENTAL SETUP

Baselines. We compare against several strong long-context architectures. Our primary comparison
is Titans (Behrouz et al., 2025d), our base model. We also benchmark against vanilla Transformer
(Vaswani et al., 2017), Gated Transformer (Qiu et al., 2025), and TTT (Sun et al., 2024).

Training and TNT Configuration. We train 150M parameter models following (Behrouz et al.,
2025d), using a T5 tokenizer (32k vocab). We use the AdamW optimizer (Loshchilov & Hutter,
2017) with 0.1 weight decay and a cosine schedule (peak LR 1×10−3). Experiments are conducted
on a TPUv4 pod (2x2x2 topology, model parallelism 2). For TNT, the N local modules configuration
is denoted by their chunksizes, CL = {CL,1, ..., CL,N}. For instance, CL = {8, 16} indicates two
local modules with chunksizes 8 and 16. The global memory uses CG = 2048.

Experimental Configurations. For efficiency benchmarks (Sec. 5.2), we vary context length (2k-32k)
with a 0.5M token batch size and local window SL = 2048. For performance evaluation (Sec 5.3),
we use a 16k context length, 1M token batch size, and SL = 4096.

5.2 FASTER MEMORY TRAINING WITH TNT

Linear Runtime Scaling with Sequence Length. We first analyze single-step runtime perfor-
mance by varying the sequence length while keeping the number of tokens per batch fixed. As shown
in Figure 4, TNT’s runtime grows linearly with sequence length, in contrast to the quadratic growth

7
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of Titans and standard attention. This scaling advantage is significant at long contexts. At a 32K se-
quence length, TNT is 5.1× faster than a comparable Titans model with the same memory chunksize
(CL = C = 16). We also observe that larger local chunk sizes consistently improve TNT’s speed;
with CL = {128}, TNT is 1.3× faster than the highly optimized FlashAttention kernel (Dao, 2024).

2048 4096 8192 16384 32768

Sequence Length

103

R
un

ti
m

e
(m

s)

FlashAttention

JAX Attention

Titans (C=16)

TNT (CL=16)

TNT (CL=128)

Figure 4: Runtime comparison of different mod-
els and implementations across varying sequence
lengths, with the number of tokens per batch fixed at
0.5M. Additional results are presented in Figure 5.

TNT’s highly parallelizable architecture
achieves a runtime that scales linearly with
sequence length, a key advantage over the
quadratic complexity of standard attention.
Although models like Titans are also the-
oretically linear, their inherent sequential
dependencies impede effective paralleliza-
tion, resulting in poor hardware utilization
and slower wall-clock times on long
sequences. As sequence length increases,
TNT’s superior scalability creates a crossover
point where it becomes significantly faster.
This efficiency is most pronounced at very
long contexts; for instance, at a sequence
length of 32K, a native JAX implementation
of TNT (CL = 128) outperforms even the
highly optimized FlashAttention kernel,
confirming its suitability for demanding
long-context training scenarios.

Time-to-Quality Comparison. We next translate these single-step runtime gains into a practical
time-to-quality setting. As shown in Table 1, our TNT framework significantly accelerates the to-
tal training time required to reach a target model quality. Our best configuration achieves this up
to 17.4× faster than the original Titans baseline. This efficiency gain is fundamental to the archi-
tecture; for instance, using an identical local memory chunksize of 8, TNT is already 7.7× faster
than its Titans counterpart. While competitive with standard vanilla Transformers in JAX, our im-
plementation does not yet outperform highly optimized baselines like the Gated Transformer with
FlashAttention (Dao et al., 2022). This is an expected result, as TNT currently lacks a custom kernel,
which we leave for future work. Nonetheless, these results establish TNT as an efficient foundation
for research on recurrent models, with a clear path toward matching the speed of state-of-the-art
Transformers.

5.3 TNT IMPROVES MODEL QUALITY

Our TNT framework significantly enhances model quality, outperforming strong RNN-based base-
lines and standard Transformer implementations. As detailed in Table 2, the initial Stage 1 pre-
training is highly effective on its own. Our best Stage 1 model achieves an average perplexity of
23.13, a marked improvement over the best-performing Titans model (25.07) and the vanilla Trans-
former (23.58). While TNT does not fully match the perplexity of the state-of-the-art Gated Trans-
former (22.39), it achieves a higher average accuracy on common-sense reasoning tasks (41.0% vs.
39.7%). At this scale, we consider perplexity a more stable metric for language modeling capability,
as downstream task accuracy can be subject to higher variance.

Furthermore, the Stage 2 fine-tuning process offers an efficient method to further boost perfor-
mance. This stage is computationally inexpensive, requiring only an additional 5% of the original
pre-training compute (see Table 4), yet it consistently lowers the average perplexity to a final value
of 23.09. These results validate TNT as an effective framework for producing high-quality models
that surpass the limitations of prior RNN-based architectures and stand as a strong alternative to
standard Transformers.

5.4 ABLATION STUDY
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Table 2: Performance of TNT (150M parameters) and baselines on language modeling and
common-sense reasoning tasks, trained on 10B tokens. For TNT models, we only use 1 global
memory and use CG to denote the global chunksize and the N local modules configuration is de-
noted by their chunksizes, CL = {CL,1, ..., CL,N}. For instance, CL = {8, 16} indicates two local
modules with chunksizes 8 and 16. The best results within a block are highlighted . The detailed
training time is reported in Table 4

Model CG C or CL C4 FineWeb PG19 Avg. PIQA Hella. ARC-e CSQA Avg.
ppl ↓ ppl ↓ ppl ↓ ppl ↓ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑

150M params / 10B tokens
Transformer (w/o gating) - - 20.98 20.59 29.18 23.58 62.0 30.9 34.8 25.5 38.3
Transformer (w gating) - - 19.82 19.61 27.75 22.39 63.3 32.2 36.8 26.7 39.7
DeltaNet (2024c) - - 22.49 22.36 31.84 25.56 62.6 32.2 35.9 27.0 39.4
GatedDeltaNet (2025) - - 21.25 21.37 30.60 24.40 63.0 31.1 35.2 27.8 39.3
TTT (2024) - 256 24.18 24.31 34.36 27.62 60.6 30.8 34.1 26.9 38.1
Titans (2025d) - 256 23.53 24.13 33.73 27.13 61.3 30.8 35.1 27.8 38.8
Titans - 8 22.25 22.07 30.90 25.07 60.8 32.0 35.5 27.8 39.0

TNT Stage 1: Efficiency-Focused Pre-training
TNT Stage 1 2048 {8} 21.04 21.01 30.24 24.10 61.8 32.8 37.4 30.3 40.6

2048 {8,16} 20.74 20.73 29.94 23.80 63.5 32.4 37.4 30.6 41.0
2048 {4,8,16} 20.47 20.43 29.43 23.44 62.9 32.4 36.4 28.9 40.2
2048 {4,8,16,32} 20.15 20.17 29.08 23.13 63.2 32.0 36.7 30.3 40.6

TNT Stage 2: Performance-Focused Fine-tuning on Stage 1 models

TNT Stage 2 2048 {1} 20.86 20.91 30.21 23.99 63.2 32.8 37.4 30.1 40.9
2048 {2,4} 20.65 20.70 29.97 23.77 63.4 32.5 37.3 30.2 40.9
2048 {2,4,8} 20.32 20.35 29.42 23.36 64.0 32.0 36.9 28.1 40.3
2048 {2,4,8,16} 20.10 20.13 29.05 23.09 63.5 32.3 37.4 30.2 40.9

Table 3: Ablation study on TNT. The results show
the contribution of each proposed change to the
deep memory modules.

TNT N Language Modeling C.S. Reasoning
ppl ↓ acc ↑

Base Model (Titans) - 23.53 38.8

TNT Stage 1 (1 Global Memory)
+1 Local Memory 1 21.04 40.6
+2 Local Memory 2 20.74 41.0
+3 Local Memory 3 20.47 40.2
+4 Local Memory 4 20.15 40.6

TNT Stage 1 1 21.04 40.6
w/o global memory - 25.60 35.5
w/o Q-K projection 1 22.01 36.4
w Stage 2 1 20.86 40.9

We conducted an ablation study to validate
TNT’s key design choices, with results summa-
rized in Table 3.

Hierarchical Memory. The effectiveness of
our hierarchical design is evident. Incremen-
tally adding local memory modules consis-
tently improves performance over the Titans
baseline, reducing perplexity from 23.53 to
20.15 with four local modules. Conversely, re-
moving the global memory is detrimental (PPL
increases to 25.60), confirming its critical role
in capturing long-range dependencies that are
otherwise lost due to the local memories’ reset
mechanism.

Q-K Projection. The query-key projection proves essential for performance. Its removal incurs a
substantial penalty (PPL increases from 21.04 to 22.01), validating our hypothesis that it is necessary
to mitigate the compression-retrieval mismatch (Challenge 2).

Stage 2 Fine-tuning. Applying Stage 2 fine-tuning further enhances model capabilities, improving
both language modeling (20.86 PPL) and common-sense reasoning (40.9%). This demonstrates its
effectiveness in adapting the pre-trained models for high-resolution inference.

6 CONCLUSION

We introduce TNT, a two-stage training framework that resolves the fundamental conflict between
training efficiency and inference performance in deep memory modules. By leveraging a hierar-
chical memory architecture with periodic state resets, TNT enables massive context parallelism
during pre-training, followed by efficient fine-tuning for high-resolution inference. Our experiments
demonstrate up to a 17× speedup compared to the most accurate RNN baselines while simultane-
ously improving performance. TNT removes a critical scalability bottleneck, significantly improv-
ing the practicality of deep memory modules and facilitating future research to close the performance
gap with Transformers.
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A LLM USAGE

We acknowledge the use of a large language model (LLM) solely for improving the linguistic quality
and clarity of this manuscript. The model was not used for ideation, research methodology, or
generating the scientific content presented in this work.

B ADDITIONAL RELATED WORK

Modern Linear Recurrent Neural Networks Due to the quadratic complexity of transformers,
recently developing alternative architectures have gained attention, which led to the development
of efficient recurrent alternatives (Tiezzi et al., 2024). Initial advancements in this domain, starts
with models such as RetNet (Sun et al., 2023), RWKV (Peng et al., 2023), and S5 (Smith et al.,
2023), which employed data-independent transition matrices coupled with Hebbian-like update
mechanisms. Subsequently, a second generation of models emerged, incorporating input-dependent
parameters within these linear architectures (e.g., linear RNNs (Hasani et al., 2023; Smith et al.,
2023), RWKV6 (Peng et al., 2024)). These models also explored more expressive memory updat-
ing rules, notably those based on the delta rule (Peng et al., 2025; Schlag et al., 2021; Yang et al.,
2024b;a; Liu et al., 2024). Further evolution in this line of research has extended these memory
architectures to deeper models, while concurrently utilizing delta-rule-like update mechanisms (Sun
et al., 2024) or data-dependent momentum-based update rules with forget gating (Behrouz et al.,
2025d). More recently, to augment the performance of delta-rule-based sequential models, Siems
et al. (2025) have proposed the application of multiple gradient descent updates per token, thereby
yielding more expressive sequence models, particularly in state tracking tasks. In addition to the
above fast linear recurrent sequence models, several studies have focused on RNNs with non-linear
recurrence (Behrouz et al., 2025d;b;a; Csordás et al., 2024; Merrill et al., 2024; Lim et al., 2024;
Schöne et al., 2025; Karami & Mirrokni, 2025; Gonzalez et al., 2024), and how their training can be
faster (Gonzalez et al., 2024; Lim et al., 2024; Schöne et al., 2025).

Fast Weight Programs The conceptualization of linear layers as key-value associative memory
systems can be traced back to Hopfield networks (Hopfield, 1982). This concept was subsequently
developed in the context of fast weight programmers, wherein dynamic fast programs are integrated
into recurrent neural networks to serve as writable memory stores (Schlag et al., 2021; Schmidhuber,
1992; 1993). Among the learning paradigms for such systems, Hebbian learning (Hebb, 2005) and
the delta rule (Prados & Kak, 1989) have emerged as the most prominent. Both learning rules
have been the subject of extensive investigation within the existing literature (Munkhdalai & Yu,
2017; Schmidhuber, 1992; Munkhdalai et al., 2019; Schlag et al., 2021; Irie et al., 2021; Yang et al.,
2024b;a).

Hopfield Networks Our formulation is architecturally founded upon the broad concept of associa-
tive memory, wherein the primary objective is to learn an underlying mapping between keys and
values. Seminal work by Hopfield (1982) on Hopfield Networks introduced one of the earliest neu-
ral architectures explicitly based on associative memory, defining it through the minimization of an
energy function for storing key-value pairs. Although traditional Hopfield networks have seen di-
minished applicability in recent years, primarily due to constraints in vector-valued memory capac-
ity and the nature of their energy function, several contemporary studies have focused on enhancing
their capacity through various methodologies. These include efforts by Krotov (2021), Li et al.
(2024), and Krotov & Hopfield (2016). Notably, extensions to the energy function of these models,
often incorporating exponential kernels, have been explored (Krotov & Hopfield, 2016; Lucibello
& Mézard, 2024). Furthermore, the relationship between these modernized Hopfield networks and
Transformer architectures has been a subject of recent investigation (Ramsauer et al., 2021; Hu et al.,
2024).

C CONNECTION OF QK-PROJECTION WITH MEMORY BOUNDED
TRANSFORMERS

Revisiting our QK-Projection retrieval process, we first project the query vector into the space of
stored keys and then retrieve its corresponding value by a forward pass on the memory module. In
particular, given query qt and stored keys of {ki}ti=1, the output corresponds to query qt can be
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calcualted as:

ot = f

(
Wt,

t∑
τ=1

kτk
⊤
τ

∥kτ∥2
qt

)
. (8)

Given a normalization of keys, i.e., ∥kτ∥2 = 1, this formulation, can be re-written as:

ot = f

(
Wt,

t∑
τ=1

kτk
⊤
τ qt

)
, (9)

in which the second element,
∑t

τ=1 kτk
⊤
τ qt, is equivalent to a simple forward pass for query qt over

a linear memory module ofM′
t =

∑t
τ=1 kτk

⊤
τ with recurrence of:

M′
t =M′

t−1 + ktk
⊤
t . (10)

Such formulation of QK-Projection can remind us the two-pass process of memory bounded Trans-
formers (Peng et al., 2022; Zhang et al., 2024; Karami et al., 2025), where in the simple linear
attention form (Peng et al., 2022), the retrieval process can be written as:

Wt = Wt−1 + φtv
⊤
t , (11)

ot = Wt softmax

((
t∑

τ=1

kφφ
⊤
τ

)
qt

)
. (12)

Comparing with above two-pass process of ABC (Peng et al., 2022), our QK-projection method is
applicable to both deep and linear memory. Furthermore, parameters of φt as well as kt are tied and
so the learning process is considerably easier, making the model more adaptable to new data/tasks.
Moreover, when employ this projection in the local memory, we only do the summations starting
from the “reset” state of the memory rather than starting from τ = 1.

D EFFICIENT IMPLEMENTATION OF QK-PROJECTION

This section details the efficient, parallelizable implementation of the QK-Projection mechanism.
We demonstrate that this projection can be integrated into the chunkwise training paradigm without
introducing sequential bottlenecks, thereby preserving the training efficiency of the TNT architec-
ture.

The QK-Projection relies on a projection matrix,Mt, which accumulates the outer products of keys
within the current local memory shard (length SL). Assuming normalized keys (∥kτ∥ = 1), this
matrix is defined by the following recurrence:

Mt =

{
ktk

⊤
t if t ≡ 1 (mod SL)

Mt−1 + ktk
⊤
t otherwise

This rule ensures that the projection stateMt is reset at the beginning of each shard, mirroring the
reset of the local memory state Wt. The local memory retrieval is then computed as f(Wt,Mtqt).

Chunkwise Parallel Computation. To maintain training efficiency,Mt is computed in a chunk-
parallel manner. For any time step t within a chunk of size CL, the projection matrix can be decom-
posed into two components:

Mt =Mξ(t,CL)−1︸ ︷︷ ︸
Carry-over State

+

t∑
τ=ξ(t,CL)

kτk
⊤
τ︸ ︷︷ ︸

Intra-chunk Sum

The first term is the final state from the previous chunk, which is carried over. The second term, the
intra-chunk sum, is computed efficiently for all steps in the chunk simultaneously using a parallel
prefix sum (scan) operation over the sequence of outer products {kτk⊤τ }.
This implementation preserves end-to-end parallelism. The state passed between chunks is a sin-
gle, constant-size matrix (d × d), incurring minimal overhead. The periodic reset is handled by
re-initializing this carry-over state at shard boundaries. Thus, QK-Projection enhances the model’s
retrieval mechanism without compromising the training efficiency fundamental to the TNT archi-
tecture.

15
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E TNT APPLICABILITY

In this paper, we have focused on showing the effectiveness and efficiency of TNT and so for the
sake of clarity, we use a simple memory module that optimizes its inner-loop with gradient descent.
However, TNT recipes are applicable to different deep memory and non-linear architectures. For
example, one can adapt the gating formulation in Titans (Behrouz et al., 2025d) or Mamba2 (Dao
& Gu, 2024) for each of the local memories as well as the global memory. Another potential ex-
ploration is to incorporate closed feedback loop in the objective of the inner-loop as it has done in
Hu et al. (2025). Similarly, one can employ more expressive optimizers as the inner-loop optimizers
such as gradient descent with momentum, AdamW (Kingma & Ba, 2014), or muon (Jordan et al.,
2024) as it has been done by Behrouz et al. (2025a); Zhang et al. (2025). While exploring all these
combinations with TNT is a promising direction, for the sake of clarity and space constraint, we
leave them for future studies.

F TNT GENERALIZATION FORMULATION

The TNT architecture can be generalized to a hierarchical system comprising one global memory
and N parallel local memories. This allows the model to capture information at multiple timescales
and resolutions simultaneously. Each local memory, denoted by W (i) for i ∈ {1, . . . , N}, operates
with its own distinct chunk size CLi , shard length SLi , and learnable initial state W

(i)
init .

F.1 GENERALIZED MEMORY UPDATE

The update rules are extended as follows: the single global memory evolves sequentially, while the
N local memories are updated in parallel, each with its independent schedule.

Global Memory Update. The global memory state V is updated sequentially with a large chunk
size CG, identical to the base case.

V(k+1)CG
← VkCG

−
(k+1)CG∑
t=kCG

ηt∇V L (f(VkCG
, kt), vt) (13)

N-Local Memories Update. Each of the N local memories W (i) operates in parallel. The state
of each memory is reset periodically according to its specific shard length SLi

, enabling multi-
resolution context parallelism.

W
(i)
t ←

{
W

(i)
init if 0 ≡ t (mod SLi)

W
(i)
t−1 −

∑t
τ=ξ(t,CLi

) ητ∇W (i)L
(
f(W

(i)
ξ(t,CLi

), kτ ), vτ

)
Otherwise

(14)
where i = 1, . . . , N .

F.2 GENERALIZED MEMORY RETRIEVAL

During retrieval, the final output is a composition of the outputs from the global memory and all N
local memories. The global memory uses the raw query qt, while each local memory uses a Q-K
projection tailored to its specific context window, determined by its chunk size CLi

.

TNT Generalized Retrieval Rule. The hierarchical memory is retrieved by summing the contri-
butions from each memory module.

ot = f(Vξ(t,CG), qt) +

N∑
i=1

f

W
(i)
t ,

t∑
τ=ξ(t,CLi

)

kτk
⊤
τ

∥kτ∥2
qt

 (15)

This formulation allows the network to integrate long-range dependencies from the global mem-
ory with fine-grained, parallel-processed information from a diverse set of local memories, each
specializing in different temporal patterns.
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Figure 5: Runtime comparison of different models and implementations across varying sequence
lengths, with the number of tokens per batch fixed at 0.5M.

Table 4: Training time for 150M parameter models trained on 10B tokens. For TNT models, the
global chunksize is fixed at CG = 2048, and CL denotes the set of chunksizes for the local memory
modules.

Model C or CL Training Time (hrs)

150M params / 10B tokens
Transformer (w/o gating) - 0.80
Transformer (w gating) - 0.82
TTT (2024) 256 1.69
Titans (2025d) 256 1.99
Titans 8 8.44

TNT Stage 1
TNT Stage 1 {8} 3.06

{8,16} 4.24
{4,8,16} 5.00
{4,8,16,32} 5.55

TNT Stage 2
TNT Stage 2 {1} 0.15

{2,4} 0.23
{2,4,8} 0.26
{2,4,8,16} 0.46
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G SUMMARY OF REVISIONS AND ADDITIONAL EXPERIMENTS

We thank the reviewers for their insightful feedback. In response to their comments, we have con-
ducted several additional experiments and made revisions, which we summarize below.

1. Scaling of Local Memory Depth (N ). In response to Reviewer g52o’s query about the
benefit of N > 4 local modules, we experimented with increasing the local memory depth
from N = 1 to N = 9. As shown in Table 5, performance steadily improves with depth:
average perplexity decreases from 24.10 to 22.97, and downstream accuracy increases from
40.6 to 41.6. This demonstrates that deeper local memory continuously improves perfor-
mance, highlighting the potential of the TNT framework.

2. Impact of Global Memory Chunk Size (CG). To address questions from Reviewers g52o
and NKDU, we evaluated the effect of varying the global chunk size CG from 32 to 8192.
The results are in Table 6. We observed that while a smaller CG = 128 yields a slightly
better average perplexity (23.21) than our original CG = 2048 (23.23), the improvement
is marginal. We find this minor gain does not justify the additional computational cost,
as smaller chunks reduce opportunities for parallelization. Therefore, our original setup
provides a strong balance between performance and computational efficiency.

3. Impact of Local Memory Chunk Size (CL). Per Reviewer g52o’s request, we fixed the
global memory (CG = 2048) and varied the local memory chunk size CL. As shown in Ta-
ble 7, our results indicate that smaller local memory chunk sizes generally yield improved
performance.

4. Optimal Local Memory Configurations. To address Reviewer g52o’s question about se-
lecting optimal chunk sizes for multi-local setups, we experimented with different memory
hierarchies (Table 8). We found that the optimal configuration utilizes heterogeneous lo-
cal memories with different resolutions. As a practical heuristic, we suggest starting with
an exponential progression (e.g., 21, 22, . . . , 2N or 41, 42, . . . , 4N for N local memories).
Based on our experience, this rule of thumb generally yields strong performance.

5. Additional Baselines and Table Clarity. In response to Reviewer 2mkd’s concern about
the number of baselines and clarity in Table 2, we have revised the table and added two
modern RNN baselines: Deltanet (Yang et al., 2024c) and Gated Deltanet (Yang et al.,
2025). As shown in the updated table, TNT (23.09 PPL) significantly outperforms both
Deltanet (25.56 PPL) and Gated Deltanet (24.40 PPL), further demonstrating the effective-
ness of our framework.

Table 5: The scaling behavior of local memory depth (N) on model performance. The depth is
varied from N = 1 to N = 9. A clear improvement in performance is observed as the depth
increases.

Model CG C or CL C4 FineWeb PG19 Avg. PIQA Hella. ARC-e CSQA Avg.
ppl ↓ ppl ↓ ppl ↓ ppl ↓ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑

150M params / 10B tokens

TNT Stage 1 2048 {8} 21.04 21.01 30.24 24.10 61.8 32.8 37.4 30.3 40.6
2048 {8,16} 20.74 20.73 29.94 23.80 63.5 32.4 37.4 30.6 41.0
2048 {4,8,16} 20.47 20.43 29.43 23.44 62.9 32.4 36.4 28.9 40.2
2048 {4,8,16,32} 20.15 20.17 29.08 23.13 63.2 32.0 36.7 30.3 40.6
2048 {4,8,16,32,64} 20.13 20.25 29.63 23.34 63.0 32.3 36.8 32.3 41.1
2048 {4,8,16,32,64,128} 20.08 20.22 29.66 23.32 64.0 32.6 37.3 32.6 41.6
2048 {4,8,16,32,64,128,256} 19.96 20.10 29.56 23.21 63.2 32.6 37.5 32.6 41.5
2048 {4,8,16,32,64,128,256,512} 19.84 19.98 29.27 23.03 62.7 32.5 36.5 32.5 41.0
2048 {4,8,16,32,64,128,256,512,1024} 19.74 19.92 29.24 22.97 63.7 32.9 37.0 32.9 41.6
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Table 6: Impact of global memory chunk size on the TNT model’s performance. This is evaluated
at four fixed local memory sizes (CL = {4, 8, 16, 32}). No clear correlation was observed between
global chunk size and performance.

Model CG C or CL C4 FineWeb PG19 Avg. PIQA Hella. ARC-e CSQA Avg.
ppl ↓ ppl ↓ ppl ↓ ppl ↓ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑

150M params / 10B tokens

TNT Stage 1 32 {4,8,16,32} 20.28 20.31 29.26 23.28 63.1 32.8 37.6 29.6 40.8
128 {4,8,16,32} 20.27 20.29 29.16 23.24 63.4 33.2 37.3 30.3 41.1
256 {4,8,16,32} 20.22 20.25 29.17 23.21 62.9 32.9 38.4 30.0 41.0
512 {4,8,16,32} 20.26 20.28 29.26 23.27 64.1 32.8 36.8 29.6 40.8
1024 {4,8,16,32} 20.25 20.31 29.34 23.30 64.0 32.4 36.8 29.6 40.7
2048 {4,8,16,32} 20.20 20.23 29.26 23.23 63.4 32.7 37.0 29.6 40.7
4096 {4,8,16,32} 20.26 20.30 29.25 23.27 63.2 32.4 37.9 29.9 40.8
8192 {4,8,16,32} 20.29 20.30 29.24 23.28 63.1 32.1 37.3 28.7 40.3

Table 7: Impact of local memory chunk size on the TNT model’s performance. We use a fixed
global memory (CG = 2048) and vary the chunksize size CL of a single local memory. Smaller
local memory sizes are shown to yield improved performance.

Model CG C or CL C4 FineWeb PG19 Avg. PIQA Hella. ARC-e CSQA Avg.
ppl ↓ ppl ↓ ppl ↓ ppl ↓ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑

150M params / 10B tokens

TNT Stage 1 2048 {2} 20.86 20.90 30.16 23.97 63.3 32.4 36.2 28.3 40.1
2048 {4} 21.02 21.04 30.39 24.15 63.9 32.5 37.5 29.9 41.0
2048 {8} 21.04 21.01 30.24 24.10 61.8 32.8 37.4 30.3 40.6
2048 {16} 21.08 21.03 30.28 24.13 63.3 31.5 36.4 30.3 40.4
2048 {32} 21.06 21.04 30.24 24.11 62.8 32.0 36.4 27.6 39.7
2048 {64} 21.17 21.15 30.48 24.26 62.8 32.8 36.5 29.3 40.4
2048 {128} 21.39 21.39 30.80 24.53 63.5 31.8 35.6 28.7 39.9
2048 {256} 21.53 21.57 31.12 24.74 62.6 31.9 38.0 30.1 40.6
2048 {512} 21.74 21.81 31.45 25.00 62.3 31.4 36.1 28.0 39.4
2048 {1024} 22.18 22.24 32.21 25.54 61.9 30.9 36.6 28.9 39.6
2048 {2048} 22.79 22.83 33.06 26.23 62.2 31.5 35.8 26.7 39.1

Table 8: This analysis investigates different local memory configurations. We observe that the
best performance is achieved with an optimal configuration of heterogeneous local memories (i.e.,
having different resolutions), which aligns with the core hypothesis of TNT.

Model CG C or CL C4 FineWeb PG19 Avg. PIQA Hella. ARC-e CSQA Avg.
ppl ↓ ppl ↓ ppl ↓ ppl ↓ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑

150M params / 10B tokens

TNT Stage 1 2048 {4,8,16} 20.47 20.43 29.43 23.44 62.9 32.4 36.4 28.9 40.2
2048 {4,8,32} 20.36 20.33 29.37 23.35 62.6 32.6 36.9 28.2 40.1
2048 {4,8,64} 20.38 20.39 29.45 23.40 63.1 32.2 36.8 29.4 40.4
2048 {4,8,128} 20.46 20.50 29.51 23.49 62.7 31.7 35.5 27.4 39.3
2048 {4,16,64} 20.37 20.36 29.35 23.36 62.7 32.9 37.3 29.5 40.6
2048 {4,16,128} 20.43 20.44 29.44 23.44 63.5 32.5 38.1 29.7 41.0
2048 {4,16,256} 20.54 20.56 29.67 23.59 63.2 32.5 36.2 28.1 40.0
2048 {4,16,512} 20.60 20.62 29.79 23.67 62.7 32.0 35.8 27.3 39.5
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