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A deep learning framework identifies dimensional
representations of Alzheimer’s Disease from
brain structure
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Heterogeneity of brain diseases is a challenge for precision diagnosis/prognosis. We describe

and validate Smile-GAN (SeMI-supervised cLustEring-Generative Adversarial Network), a

semi-supervised deep-clustering method, which examines neuroanatomical heterogeneity

contrasted against normal brain structure, to identify disease subtypes through neuroimaging

signatures. When applied to regional volumes derived from T1-weighted MRI (two studies;

2,832 participants; 8,146 scans) including cognitively normal individuals and those with

cognitive impairment and dementia, Smile-GAN identified four patterns or axes of neuro-

degeneration. Applying this framework to longitudinal data revealed two distinct progression

pathways. Measures of expression of these patterns predicted the pathway and rate of future

neurodegeneration. Pattern expression offered complementary performance to amyloid/tau

in predicting clinical progression. These deep-learning derived biomarkers offer potential for

precision diagnostics and targeted clinical trial recruitment.
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Neurologic and neuropsychiatric diseases and disorders are
often very heterogeneous in their neuroimaging and
clinical phenotypes. Artificial intelligence methods, espe-

cially deep-learning approaches, have made a notable leap in
medical imaging applications1 and have shown great promise in
deriving individualized neuroimaging signatures of anatomy,
function and pathology that offer diagnostic and prognostic
value2. However, only recently have deep-learning approaches
been developed that allow investigation of disease heterogeneity
through identification of common but distinct disease subtypes
which might have different prognosis, progression patterns, and
response to treatments. Toward this goal, a semi-supervised deep-
learning paradigm is presented herein (Fig. 1), referred to as
Smile-GAN (SeMI-supervised cLustEring via Generative Adver-
sarial Network). Smile-GAN models disease effects via sparse
transformations of normal measures, leveraging a GAN that is
trained to synthesize transformations producing realistic mea-
sures that are hard to distinguish from those derived from real
patient data. Estimated latent variables capture phenotypical
subtypes, modulating this synthesis in an inverse-consistent for-
mulation which ensures that subtype membership can be reliably
estimated from respective biomarker signatures.

Although Smile-GAN is a general methodology, herein it is
tested on identifying the heterogeneity in cerebral neuroanatomy
—specifically heterogeneity of atrophy as measured by decreases
in volumes of gray matter and white matter regions of interest
and increases in ventricle volumes—found across a spectrum
from early cognitive impairment to dementia among 8146 scans
from 2832 individuals across 2 longitudinal cohorts (ADNI, the
Alzheimer’s Disease Neuroimaging Initiative, and BLSA, the
Baltimore Longitudinal Study of Aging3,4) with previously har-
monized neuroimaging (via the iSTAGING consortium)5. Alz-
heimer’s disease (AD) is the most common neurodegenerative
disease, affecting millions across the globe6, and accounts for the
majority of cognitive decline in our study sample. The hallmark
pathology of AD includes the presence of ß-amyloid neuritic
plaques and tau protein-containing neurofibrillary tangles, which
contribute to the characteristic neurodegeneration measured on
magnetic resonance imaging (MRI). While diagnostic criteria
have traditionally focused on the clinical syndrome, typically a
predominately amnestic phenotype for AD and a pre-dementia
phase called Mild Cognitive Impairment (MCI), recently there
has been increasing effort to define AD biologically based on the
presence of biomarkers for amyloid deposition (A), tau deposi-
tion (T), and neurodegeneration (N), each characterized typically
dichotomously as either absent (−) or present (+) and, thus,
defining the AT(N) framework7. While useful, such binary

characterizations poorly capture biomarker heterogeneity, such as
known variability in AD topography or effects of common
copathologies, including vascular disease and other comorbid
neurodegenerative processes that might affect the ‘N’ dimension
in distinct ways. This variability, along with patient resilience to
neuropathology, plays an important role in the ultimate expres-
sion of cognitive decline in the individual and is therefore critical
to understand when moving beyond group effects of disease to
personalized diagnostics. Further, by more clearly identifying
typical patterns and severity of neurodegeneration, including
patterns more suggestive of underlying AD, such methods may
allow improved selection of participants for clinical trials.

Several MRI biomarkers have been used to quantify neurode-
generation in AD. One of the most common is hippocampal
volume8; hippocampal atrophy is characteristic feature of typical
AD. However, as for other single region-of-interest (ROI) mar-
kers, it is neither specific for AD, nor does it capture a complex
atrophy pattern across the brain that is relevant to the overall
phenotype. Composite measures sensitive to the typical tempor-
oparietal atrophy seen in AD, including various regional volu-
metric signatures9 or machine learning metrics like SPARE-
AD10,11, provide alternative measures of neurodegeneration that
also capture relevant changes across multiple brain regions. These
methods provide monolithic signatures of AD-like neurodegen-
eration with high sensitivity and specificity, but do not elucidate
the heterogeneity of neurodegenerative patterns found in AD and
its preclinical stages, nor do they attempt to relate such hetero-
geneity with comorbid pathologies. Recently, novel data-driven
methods that leverage large neuroimaging datasets and novel
machine learning methodology have emerged to identify patterns
of cerebral atrophy in AD and other neurodegenerative diseases.

Clustering methods have been used to identify cross-sectional
or temporal heterogeneity in patients12–16. Zhang et al.15 used the
Bayesian Latent Dirichlet Allocation (LDA) model to identify
latent atrophy patterns from voxel-wise gray matter (GM) density
maps derived from structural MRI. Young et al.12 proposed to
uncover temporal and phenotypic heterogeneity by inferring both
subtypes and stages. However, these approaches derive clusters
only based on patients and hence may identify clusters or patterns
partially incorporating disease-irrelevant confounding factors that
influence inter-individual brain variations. The semi-supervised
method proposed here aims to overcome this limitation by
effectively clustering differences between cognitively normal (CN)
individuals and patients, thereby focusing on neuroanatomical
heterogeneity of pathologic processes rather than heterogeneity
that might be caused by a variety of confounding factors17,18.
Generative adversarial networks (GAN)19 are well-known for

Fig. 1 Conceptual overview of Smile-GAN. Blue lines represent non-disease-related variations observed In both normal control (CN) and patient groups.
Red regions represent disease effects which only exist among patient groups. Smile-GAN finds neuroanatomical pattern types by means of clustering
transformations from CN data to patient data.
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learning and modeling complex distributions using a competition
between two neural networks. Herein, we used GANs to syn-
thesize exceptionally realistic regional volumes derived from
imaging data to model disease effects and perform semi-
supervised clustering.

Building on GAN-based models20–23, the Smile-GAN method
captures different disease-related neuroanatomical patterns by
generating realistic ROI volume data through transformation of
ROI-based neuroanatomical data of CN individuals. Via inverse-
consistent latent variables, this synthesis is guided by disease-
related neuroanatomical subtypes, which are estimated from the
data. Moreover, we extensively validate this method using
simulated data as well as synthesized patterns of brain atrophy.
Smile-GAN does not directly generate predictions of disease stage
but quantifies the degree of expression of captured patterns.
Mixed pathologies and staging can be captured via post-hoc,
second stage analysis of the expression of derived patterns or
combinations thereof.

We hypothesized that Smile-GAN, when trained on a sample
enriched for AD, would identify common patterns of neurode-
generation seen in patients along the AD pathway. We discovered
4 reproducible neuroanatomical patterns of atrophy across the
spectrum of cognitive decline and developed ways to quantify the
level of expression of each of these patterns in any individual,
thereby arriving at a 4-dimensional system capturing major
patterns of heterogeneity of the ‘N’ dimension in the AT(N)
system. Further, by measuring longitudinal trajectories within this
coordinate system, we identified two distinct progression path-
ways which imply variability in the presence of copathologies
and/or heterogeneity of AD pathological processes. We identify
baseline patterns with predictive abilities for future neurodegen-
erative and clinical trajectories for individual participants.

Results
Validation of Smile-GAN model on synthetic and semi-
synthetic dataset. Experiments on a synthetic dataset (Supple-
mentary Method 1.3.1) verified the ability of the model to capture
heterogeneous disease-related variations while not being con-
founded by non-disease-related variation. Mapping functions
captured all regions with simulated atrophy along each direction
while almost perfectly avoiding all regions with much stronger
simulated non-disease-related variations. (Supplementary
Fig. 1(A)). Experiments on the semi-synthetic dataset, derived
from real MRI ROI data but with artificial brain atrophy in
selected ROIs (Supplementary Method 1.3.2), further validated
the ability of the model to avoid non-disease-related variability
under more realistic scenarios. Moreover, the performance of the
model was shown to be superior to other state-of-the-artsemi-
supervised clustering methods and traditional clustering methods
in detecting simulated pattern types even with very small and
variable atrophy rates. (See Supplementary Table 4)

Four patterns of neurodegeneration. Trained on baseline data of
ADNI2/GO participants and validated through the permutation
test (Supplementary Result 2.4), Smile-GAN identified four sig-
nificantly reproducible and disease-related patterns of brain
atrophy in cognitively impaired participants. The four-pattern
types were found to be reproducible using a holdout cross-
validation experiment. Figure 2b plots estimated probabilities of
each participant belonging to each pattern in a diamond plot,
with each participant colored based on the dominant pattern (a
diamond plot is sufficient for visualization of these 4 patterns,
because the pattern probabilities sum up to 1 and no participant
has both P1 and P4 probabilities >0). Participants with different
patterns show distinct atrophy signatures compared to CN, which

are shown by voxel-based group comparison results between the
CN group and the groups of participants segregated based on the
pattern with highest probability (Fig. 2a). From these results, we
can visually interpret the four imaging patterns as: (i) P1, pre-
served brain volume, exhibits no significant atrophy across the
brain compared to CN; (ii) P2, mild diffuse atrophy, with wide-
spread mild cortical atrophy without pronounced medial tem-
poral lobe atrophy; (iii) P3, focal medial temporal lobe atrophy,
showing localized atrophy in the hippocampus and the anterior-
medial temporal cortex with relative sparing elsewhere; (iv) P4,
advanced atrophy, displaying severe atrophy over the whole brain
including severe temporal lobe atrophy. These four patterns were
highly reproducible when we trained the model on participants
from various, independent AD studies (Supplementary Fig. 2),
providing further evidence that these are conserved patterns
among studies of AD. Moreover, they were reproduced when we
trained the model using only participants with positive ß-amyloid
(Abeta) status (Supplementary Fig. 3), indicating that these four-
pattern probabilities also capture common variation observed
among participants who show evidence of AD-related neuro-
pathological change. The patterns segregate participants that may
demonstrate pathologically identified subtypes of AD24, as
determined by imaging biomarkers25. The P3 pattern includes
those who may have Limbic Predominant neuropathology and P2
includes those who may have Hippocampal Sparing neuro-
pathology, while mixed P2–P3 may be more typical AD (Sup-
plementary Fig. 5).

Two progression pathways. Figure 2c reveals evolution of pat-
tern probabilities over time in the study subsample with long-
itudinal data. Participants with dominant P1 features at baseline
may express increasing probability of P2 or P3 in the short term
followed by later expression of the P4 pattern. Participants with
dominant P2 or P3 expression at baseline show variable minor
expression of the other pattern (other P3/P2 pattern probability
range from 0 to 0.5). Both P2 and P3 participants have increasing
P4 probability at later time points, but do not develop significant
expression of the other P3 or P2 pattern, respectively. Participants
who initially had the highest probability of P4 only show stronger
expression of P4 over time. From these results, we conclude that
P1-2-4 and P1-3-4 are two general MRI progression pathways of
neurodegeneration. Figure 2d displays detailed progression paths
of some representative participants over time in the pattern-
dimension system. These examples demonstrate that despite
following similar progression pathways, participants may have
difference in pattern purity and progression speed. More speci-
fically, though participants denoted in purple color both show
higher P3 probability than P2 during progression process, the
solid line is closer to the P2 triangle, showing that this participant
has a relatively stronger expression of P2. Also, participants
represented by dashed lines progress from P1 to P4 within 5 years
(time not shown in the plot), while participants denoted by solid
lines take more than 10 years to progress from P1 to P4.

Amyloid/tau/pattern/diagnosis. Most of CN participants had
negative Abeta status (A−) and express P1 (Fig. 3a). P1 also
included the largest number of cognitively impaired but non-
demented participants, classified in BLSA/ADNI as MCI, with
disproportionately amyloid negative status compared to the other
three patterns. There were a comparable amount of MCI/
Dementia participants with P2 and P3 (144 and 178) and they
had similar distributions in amyloid status, predominately amy-
loid positive (66.9% and 72.1%). P4 participants were mostly
amyloid positive (84.0%) and were rarely CN (3.3%). Pattern
membership can be used to classify participants based on the
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AT(N) criteria, providing insight into the stage of the disease,
resilience, and presence of copathology. Those placed along the
AD continuum are further subgrouped into early neurodegen-
eration (P3), advanced (P4) neurodegeneration, or a P2 group of
mild diffuse atrophy that may be classified as N− or N+ by other
quantification methods. In Fig. 3b, participants are grouped as
normal, as falling along the typical AD continuum, as AD with
dominant copathology or as suspected non-AD pathology
(SNAP) based on patterns and Abeta/phospho-tau (pTau) status.
A+T+ participants tend to have more severe neurodegeneration
than A+T- participants, as expected. Using pattern membership
as a classification of (N) modestly increases the number of classes
(from 8 to 16) but provides important severity and prognostic
information.

MRI and clinical characteristics. Statistical comparisons of MRI
and clinical characteristics were conducted among A+ cognitively
impaired participants with different dominant patterns (Supple-
mentary Table 6). Relative to P2/P3, P4 and P1 participants
showed significantly higher and lower WML volume, respectively,
(median (1st–3rd quartile) 50.6 (39.1–66.1) mm3 and 34.1
(25.9–49.6) mm3, p < 0.001), but there was no significant differ-
ence between P2 and P3 (median 46.3 (30.2–59.2) mm3 and 45.1
(33.6–57.2) mm3, p= 0.86). P3 and P4 participants showed sig-
nificantly lower hippocampal volume relative to total brain
volume (median percentage 0.54 (0.51–0.56)% and 0.52
(0.48–0.56)%, respectively, for P3 and P4, versus 0.61
(0.58–0.64)% for P1, both p < 0.001). Certain features were the
highest in P3 participants: ApoE ε4 allele carrier rate (78%), tTau

Fig. 2 Characterization of four atrophy patterns (P1–P4) and two progression pathways of neurodegeneration. (Data from 899 ADNI2/GO participants
in discovery set (a) and all 2832 ADNI/BLSA participants (b–d)). a Voxel-wise statistical comparison (one-sided t-test) between CN and participants
predominantly belonging to each of the four patterns. False discovery rate (FDR) correction for multiple comparisons with p-value threshold of 0.05 was
applied. b Visualization of participants’ expression of four patterns in a diamond plot. Pseudo-probabilities of belonging to each pattern reflect levels of
expression (i.e., presence) of respective patterns and probabilistic subtype memberships. Horizontal axis indicates p1 and p4 probabilities and diagonal
axes reveal p2 (solid lines) and p3 (dashed lines) probabilities. Since participants never have both P1 and P4 > 0, all observed pattern combinations can be
represented in this diamond plot. Dots for individual participants are color coded by the dominant pattern. c Box and whisker plots of expression of the four
patterns over time for each baseline pattern group. (center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points,
outliers). d Progression paths of four representative participants. Dashed lines show participants reaching P4 from P1 within 5 years and solid lines show
those who take more than 10 years to reach P4 from P1. Source data are provided as a Source Data file.
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(341.1 (267.9–446.7)) and pTau (34.9(26.1–46.4)) levels. Partici-
pants with different patterns were significantly different in cog-
nitive test scores, with important differences based on A/T status
(Fig. 3c and Supplementary Table 6). Regardless of A/T status, P1
participants had much better performance across cognitive
domains while P4 participants had the poorest performance. P2
participants showed worse performance in executive function
than P3 participants but had better function in memory. ADNI-
EF and ADNI-MEM were significantly different between P2 and
P3 participants (p= 0.039 for A−T−, p= 0.003 for A−/T+ and
p < 0.001 for A+/T+). Investigation of special subgroups showed
additional features of disease. Within A+P3 participants, CN and
impaired groups had similar tTau (p= 0.33) and pTau (p= 0.48)
levels, suggesting comparable AD pathologic change. However, A
+P3 CN participants had significantly longer education
(p= 0.001), higher hippocampal volumes (p= 0.018), and
somewhat less expression of the P3 pattern probabilities

(p= 0.048) compared to A+P3 impaired participants, suggesting
that higher cognitive reserve and less neurodegeneration may
account for the preservation of cognitive function in this rela-
tively small group (n= 19, Supplementary Table 7). A−T−P1
and A+T−P1 participants with MCI/Dementia were not sig-
nificantly different in cognitive test scores or hippocampal
volume (Supplementary Table 8), but A+T+P1 participants did
show significantly worse cognitive performance (Fig. 2c) along
with greater atrophy in hippocampus (p= 0.011) and sig-
nificantly lower P1-probability (p < 0.001), suggesting early
adverse effects of T likely related to underlying AD pathology
even without much neurodegeneration present.

Longitudinal progression of pattern types. Cumulative inci-
dence curves in Fig. 4a show that P1 participants at baseline are
more likely to progress to P2 than to P3, and that participants
with P3 at baseline have a higher chance to progress to P4 than

Fig. 3 Participants grouping and cognitive performance of subgroups. (Data from 1194 ADNI participants with Abeta/pTau measures) a Number of
participants grouped by diagnosis, amyloid status, and pattern. b AT(N) categorization based on participants’ patterns and CSF Abeta/pTau status. Based
on patterns, N is classified as normal (P1), not typical of AD (P2), or characteristic of AD (P3/P4). c Box and whisker plots of cognitive performance of
MCI/Dementia participants by pattern. (A: Abeta; T: pTau) (center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range;
points, outliers). Source data are provided as a Source Data file.
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those who express P2 at baseline. These relationships hold
regardless of cognitive diagnosis at baseline, although baseline CN
have much slower rate of pattern progression than those with
baseline cognitive impairment. Figure 4b displays differences in
volume changes of selected regions among distinct progression
pathways. First, participants who persist in P1 show much lower
longitudinal atrophy rate in all selected regions. Participants
progressing from P1 to P3 show faster medial temporal lobe
atrophy while those progressing from P1 to P2 show faster frontal
and occipital atrophy. There is an acceleration in medial temporal
lobe atrophy associated with the P2–P4 transition. While classi-
fied together with a P4 pattern, distinct regional atrophy can be
observed between P4 participants who progressed from P2 versus
P3, reminiscent of those earlier patterns (Supplementary Fig. 7)
and suggesting that the P4 pattern is a common end-stage neu-
rodegeneration pattern.

Prediction of MRI progression. Survival curves in Fig. 5a illus-
trate that participants’ baseline pattern expression are associated
with the risk of the conversion to P4. Abeta and pTau status at
baseline further differentiate higher versus lower risk of future
conversion to P4. Moreover, among baseline P1 participants, their
baseline P2 and P3 probabilities predict longitudinal progression
pathways and progression speed. Using Cox-proportional-hazard
models, we found that the baseline probabilities of P2 were able to

discriminate participants with different event time of progressing
from P1 to P2 and achieve an average concordance index (C-
Index) of 0.823 ± 0.022 on the validation set. Similar analyses
using baseline P3 probabilities to predict risk of progressing to P3
achieved an average C-index of 0.844 ± 0.024. Thus, the baseline
P2 and P3 probabilities of P1 participants could imply future risks
of progressing to P2 or P3 from 2- to 5-year horizon (see Sup-
plementary Table 9). Prediction performance worsened beyond
5-year risks and the optimal threshold for predicting progression
along either pathway decreased with time (see Supplementary
Table 9).

Prediction of clinical progression (change in diagnosis). Clin-
ical categorizations of CN, MCI, and Dementia provide useful
information on functional status. Survival curves in Fig. 5b reveal
that, even with similar Abeta or pTau status at baseline, partici-
pants with different pattern types show different progression rates
for clinical categories. The discrepancy is greater in the MCI to
Dementia progression than for the CN to MCI progression,
which occurs less frequently across groups. However, only for
participants with P2 and P3 at baseline, pTau and Abeta status
add significant discrimination power to the risk of converting to
Dementia from MCI. Furthermore, pattern probabilities at
baseline have comparable predictive power with the SPARE-AD
score10, a previously validated predictive biomarker of AD

Fig. 4 Analysis of longitudinal pattern progression. (Data from all 2832 ADNI/BLSA participants) a Cumulative incidence of pattern progression. The line
styles indicate the diagnosis at baseline. 95% confidence intervals are shown with estimated cumulative incidence curves as centres. b Annual atrophy rate
in selected GM regions along different paths. Data within 3 years before pattern change or last follow-up point (for stable P1 participants (P1-P1)) were
utilized and random intercept mixed effect model with time as fixed effect was used to derive annual volume change rate with respect to baseline volume.
Data are presented as estimated coefficient of time variable ±standard error. (PHC Parahippocampal gyrus, ERC Entorhinal cortex) Source data are
provided as a Source Data file.
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neurodegeneration. Both significantly outperformed hippocampal
volume (HV, p < 0.001 for both SPARE-AD vs HV and Pattern vs
HV in CN-MCI and MCI-Dementia prediction, Fig. 5c). Also,
compared with other biomarkers including APOE genotype,
ADAS-cog score, Abeta and pTau measures, pattern probabilities
show either comparable or significantly superior performance in
prediction of both CN to MCI and MCI to Dementia progression
(Fig. 5d, p= 0.15 for pattern vs ADAS-Cog in MCI-Dementia
prediction and p < 0.001 for comparison between pattern and all
other biomarkers).

Composite score for risk of clinical progression. With ADAS-
Cog score, the most easily ascertained measure, as the only fea-
ture, the Cox-proportional-hazard model was able to achieve an
average cross-validated C-Index of 0.654 ± 0.034 for prediction of
CN to MCI progression and 0.728 ± 0.020 for prediction of MCI
to Dementia progression. Further addition of pattern probabilities
derived from T1 MRI significantly boosted average C-Indices for

both tasks to 0.702 ± 0.042 (p < 0.001) and 0.768 ± 0.017
(p < 0.001) respectively. Patterns alone provided equivalent or
better predictive performance compared to ADAS-cog alone.
However, inclusion of Abeta/pTau status, which are derived from
either invasive CSF sampling or relatively expensive PET scans,
did not bring significant additional improvement to prediction
performance (Fig. 6a). With all these biomarkers utilized toge-
ther, we could construct a composite score indicating risk of
clinical progression that was able to predict survival time from
MCI to Dementia with an average C-index of 0.785 ± 0.016, on
randomly split validation sets. Examples of survival curves stra-
tified by the composite score for one randomly split validation set
are shown in Fig. 6b.

Discussion
We have developed a deep-learning approach, Smile-GAN, which
disentangles pathologic neuroanatomical heterogeneity and
defines subtypes of neurodegeneration by learning to generate

Fig. 5 Predictive ability of patterns. (Data from 1194 ADNI participants with Abeta/pTau measures (a, b, d) and 2832 ADNI/BLSA participants (c))
a Survival curves for neurodegeneration progression to P4; b Survival curves for clinical diagnosis progression from CN to MCI and from MCI to Dementia.
For both a and b, survival curves are stratified by both initial dominant pattern and Abeta (A) /pTau (T) status; p-values derived from log-rank tests
indicate statistical significance of difference between positive and negative Abeta or pTau status within each pattern; c, d Box and whisker plots of
concordance Index (C-Index) which measures the performance of Cox-proportional-hazard model in predicting clinical conversion time (from CN to MCI
and MCI to Dementia. Different biomarkers are utilized as features of the model for evaluation of their predictive performance. (Center line, median; box
limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers) Source data are provided as a Source Data file.
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mappings from regional volume data of cognitively normal
individuals to that of patients. Compared with unsupervised
methods12–14, Smile-GAN has an advantage in avoiding non-
disease-related confounding variations, thereby identifying neu-
roanatomical patterns associated with pathology. This stems from
the fundamental property of Smile-GAN to cluster the transfor-
mations from normal to pathologic anatomy, rather that clus-
tering patient data directly. Also, the deep-learning-basedSmile-
GAN can easily handle high dimensional ROI data. Thus, no
preprocessing ROI selection is required, and the model is able to
fully capture variations in all subdivided ROIs and could feasibly
be extended to even smaller/more numerous ROI. Moreover, in
contrast with other semi-supervised methods17,18, Smile-GAN
makes no assumption about data distribution and data trans-
formation linearity, and in validation experiments was found to
be robust to mild, sparse, or overlapping patterns of pathology
(neurodegeneration, herein). Critically, pattern probabilities given
by Smile-GAN are easily interpretable continuous biomarkers
reflecting the neuroanatomical expression of respective patterns.
These advantages of Smile-GAN allow versatile characterization
of pattern types related to both severity and heterogeneity of
pathological effects.

Smile-GAN does not intrinsically model disease stage, nor does
it assume any progression pathway between patterns. Staging can
be inferred at a second-level analysis of the degree of expression
of each of the identified patterns, or a linear or nonlinear com-
bination of them. In ADNI/BLSA, most individuals expressed
multiple patterns at the same time, as reflected by the magnitude
of various pattern probabilities, an observation similar to the
findings of Zhang et al.15. This feature allows investigation of
complex and nonlinear relationships between pattern-based stage
and clinical outcomes of interest, which can vary depending on
the outcome (e.g., from various cognitive or clinical measures to
staging estimates that inform clinical trial recruitment).

Application of Smile-GAN to MRI data from a sample enri-
ched with AD pathology identified 4 patterns of regional brain
atrophy expressed in participants across the AD spectrum, which
were highly reproducible on validation experiments, including a
permutation test. These patterns range from mild to advanced
atrophy and define two progression pathways. One pathway, here

termed the P1-3-4 pathway, shows early atrophy in the medial
temporal lobe that is typical for AD. The second pathway, P1-2-4,
shows early diffuse mild cortical atrophy with MTL sparing that is
a less typical pattern for AD. The end stage for both pathways is
an advanced atrophy pattern, P4. This four-pattern system has
similarities with other neuroimaging-based clustering studies,
including identification of temporal and cortical predominant
patterns12,15,25,26. Smile-GAN patterns tentatively correspond to
pathologically identified subtypes of AD24: Limbic Predominant,
matching P3, Hippocampal Sparing, matching P2, and typical AD
(mixed P2–P3). There is one another possible subtype of sub-
cortical atrophy previously identified by several other MRI-based
unsupervised clustering algorithms using ADNI data12,15 but not
distinctly identified by Smile-GAN. There are a few reasons why
Smile-GAN did not identify a subcortical pattern. First, as
observed in Zhang et al.27, the subcortical pattern may merge
with the temporal pattern based upon harmonization and clus-
tering methodology and specific training sample. Second, a por-
tion of the variability attributed to a subcortical atrophy may not
be disease-related, resulting in insufficient signal to separately
cluster as a distinct pattern, a possibility potentially supported by
the lack of pathological evidence for this subtype and scarce
atrophy in subcortical ROIs among the patient group (Supple-
mentary Fig. 6).

The four Smile-GAN patterns have clinically meaningful
implications. Pattern membership is associated with differences
in cognitive test performance, with P2 having relatively more
executive dysfunction, P3 showing greater memory impairment,
and P4 showing the worst performance across domains. These
patterns also have implications for speed and direction of pro-
gression, with early pattern features predictive of the future pat-
tern of neurodegeneration and pattern features predictive of
clinical progression from CN to MCI and MCI to dementia.
Critically, pattern expression was the most important predictor of
clinical progression, showing comparable or stronger predictive
ability than other N measures and biomarkers (Fig. 5). Syner-
gistically, pattern expression, A, T and ADAS-Cog provided
outstanding cross-validated prediction of clinical progression on
an individual basis (Fig. 6b), underlining the potential sig-
nificance of this combined predictive index for patient

Fig. 6 Prediction of clinical diagnosis progression with composite biomarkers. Data from 1194 ADNI participants with Abeta/pTau measures. a
Biomarkers were added successively into features set based an order of accessibility. Concordance Index (CI) measures the performance of Cox-
proportional-hazard model in predicting clinical conversion time (from CN to MCI and MCI to Dementia) Different sets of biomarkers are utilized as
features of the model for evaluation of their predictive powers. (Center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile
range; points, outliers). b Survival curves stratified by composite scores (A, T, Pattern, ADAS-Cog jointly predicting outcome in cross-validated fashion) for
one randomly split validation set. 95% confidence intervals are shown with estimated survival curves as centres. (A: Abeta; T: pTau, P: Pattern, Cog:
ADAS-Cog score) Source data are provided as a Source Data file.
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management, for clinical trial recruitment, and for evaluation of
treatment response.

While the patterns are relatively distinct in regional specificity
and severity, the underlying pathophysiology is more complex. P1
indicates that no significant neurodegeneration is present. Yet a
significant number of participants (N= 306) with dominant P1
pattern still had objective cognitive impairment with MCI, and
even a few cases of dementia, both with and without evidence of
amyloid and tau deposition. These participants likely have
reduced cognitive reserve and/or non-neurodegenerative con-
tributions to MCI/dementia. The P2 group shows mild diffuse
atrophy and is likely a group inclusive of multiple mild or early
pathologies, inclusive of hippocampal sparing/cortical presenta-
tions of AD and other early neurodegenerative processes or
atrophy related to chronic systemic disease, in part evidenced by
amyloid negative P2 participants. However, P2 is not dis-
proportionately enriched for vascular disease, a common
comorbidity for primary neurodegenerative diseases, at least as
measured by WML volumes which were relatively similar across
P2–P3–P4. Regardless of etiology, expression of a P2 pattern is
akin to concepts of advanced brain aging or decreased brain
reserve5. While P3 is predominately early typical AD within the
enriched ADNI sample, this also likely includes other pathologies
such as limbic-predominant age-related TDP-43 encephalopathy
(LATE)28. P4 appears to be a composite of advanced or ‘end-
stage’ neurodegeneration patterns. While fully typical of advanced
AD, this pattern is also seen in participants with cognitive decline
without amyloid or tau deposition, indicating a late-stage simi-
larity of widespread brain atrophy across multiple pathologies.

With the growing utilization of the AT(N) framework29, these
patterns provide a means to quantify neurodegeneration into a
few informative categories rather than as a binary measure.
Categorization of neurodegeneration as absent (P1), early cortical
(P2), temporal-predominant (P3) or advanced (P4) provides
important phenotypic information while preserving much of the
simplicity of the binary AT(N) framework. Together with A/T
status, the dynamics of pattern expression shows both severity of
disease and identifies reasonably distinct and reasonably sized
subgroups with differing balance of AD and non-AD pathology
(Fig. 7). These groups could be used to enrich for typical AD
pathology for clinical trials, reduce the need for ascertaining
certain biomarkers, and identify interesting subgroups for focused
evaluation, such as for genetic factors of resilience. For example,
to recruit a group with early, typical AD neurodegeneration, one
could initially select those with P3 pattern on MRI (a group that
is 25.3% A+T+ in this study sample) and ascertain A/T bio-
markers only in this group.

The Smile-GAN pattern approach has several advantages. It
captures biologically relevant regional atrophy patterns that are
few in number, providing meaningful, top-level detail on neu-
rodegeneration without requiring significant complexity, while
simultaneously maintaining quantitative pattern probability
information. The Smile-GAN method is a data-driven approach
that can be applied on features extracted from data beyond
neuroimaging, potentially able to cluster patients effectively based
on any selected disease-related feature changes from normal
group to patient group. Therefore, it is generalizable to any dis-
eases and disorders that have reproducible patterns of changes in
imaging or other biomedical data, including but not limited to
other neurodegenerative and neuropsychiatric diseases30. While
there are modest time and computational requirements for
training each model primarily dependent on the number of fea-
tures, the training process is only performed once, and sub-
sequent calculation of individual pattern scores using an existing
model is rapid. There are limitations to the method and our
implementation. First, selection of the control group exerts a

critical influence on resultant patterns, since, by design, any
changes that are common in the control group will not be dis-
tinctly segregated (Supplementary Fig. 1). For example, this may
be a reason that vascular disease was distributed across multiple
patterns. Similarly, rare and/or subtle patterns of atrophy may not
be distinctly learned by the model, as demonstrated in simulation
experiments. It is possible that larger and more diverse training
data may allow identification of more pattern types in the AD
continuum. Thresholds for assigning participants to groups may
benefit from optimizations tailored to specific hypotheses. The
performance of the four-pattern model in this study was derived
and evaluated using data from the ADNI and BLSA studies,
which have high and low prevalence of AD, respectively, and
relatively low prevalence of non-AD neurodegeneration. Direct
application of this model to a memory-center population with
mixed neurodegenerative disease has not been evaluated. Finally,
the Smile-GAN model is currently applied to ROI volume data
derived from MRI images only, and thus may fail to capture more
subtle patterns that do not conform to anatomic ROIs. The Smile-
GAN model architecture is flexible for use with smaller ROI
parcellations or voxel-based analyses as well as non-structural
MRI and non-imaging data. Extension of current framework to
such other types of data is a direction for future development.

Patterns identified using semi-supervised clustering with gen-
eralized adversarial networks provide useful information about
the severity and distribution of neurodegeneration across the AD
spectrum. Baseline patterns are predictive of the future pattern of
neurodegeneration as well as clinical progression to MCI and
dementia. These patterns could augment research and clinical
assessments of participants and patients with cognitive decline
and contribute to a dimensional characterization of brain diseases
and disorders.

Methods
Smile-GAN model. Smile-GAN is a Generative Adversarial Network (GAN)
architecture for clustering a group (in our case patients) based on their multi-
variate differences (in our case regional volumes derived from MRI) to a reference
group (in our case healthy controls). The general structure of Smile-GAN is shown

Fig. 7 Hypothetical flow diagram of implications of pattern pathways on
the ATN framework. Cascade of biomarkers can follow a canonical AD
pathway, which is the most represented in the ADNI sample (red). The
relationships of patterns with amyloid/tau status identifies another large
group with the presence of AD pathology and significant or even dominant
copathology (orange) as well as groups with suspected non-AD pathology
(yellow). These pathways also indicate that certain typical AD
neurodegenerative phenotypes may in some cases be driven by
copathology. For example, A+T+ nodes are typical for AD; however, there
are several potential paths (orange) whereby copathology may be the
dominant cause of the neurodegenerative pattern. Path thickness estimates
approximate flux through nodes in ADNI. This model is based on
distribution of cross-sectional data in A/T/P categories and the assumption
that events happen in certain order (A-→A+; T-→T+; P1→P2→P4 and
P1→P3→P4).
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in Fig. 8. To sum up, the primary concept of the model is to learn one-to-many
mappings from the CN group X (alternatively called domain X: set of CN data) to
the patient (PT) group Y (alternatively called domain Y: set of PT data). The idea is
equivalent to learning one mapping function, f : X ´Z ! Y , which generates
synthesized PT data y0 ¼ f ðx; zÞ from the real CN data and sampled subtype
variable z, while enforcing the indistinguishability between PT data and synthesized
PT data. Put simply, given one same value for subtype variable,z, the mapping f ð�Þ
generates image data that match data of patients of similar subtype mix. Here,
Z ¼ fα : ∑M

i¼1αi ¼ 1g, referred as the subtype (SUB) group (alternatively called
SUB domain), is a class of vectors with dimension M (M = 4 was found to be
optimal in our experiments). We denote the distribution of the aforementioned
variables as x � pCN , y � pPT , y

0 � pf , z � pSub , respectively. The variable z,
independent from x, takes values from a subclass of group Z and can be encoded as
a one-hot vector with value 1 being placed at any position with equal probability
(i.e., 1/M). In addition to the mapping function, an adversarial discriminator D is
introduced to distinguish between real PT data y and synthesized PT data y0 ,
thereby ensuring that the mappings f generate image data that are indistinguishable
from real patient data.

The fact that a number of functions can potentially achieve equality in
distributions makes it hard to guarantee that the mappings learned by the model
are closely related to the underlying pathology progression. Moreover, during the
training procedure, the mapping function backboned by the neural network tends
to trivially ignore the Sub variable z. Therefore, with the assumption that there is
one true underlying function for real PT variable y ¼ hðx; zÞ, Smile-GAN aims to
boost the mapping function f to be approximate to the true underlying function h,
by constraining the function class via three types of regularization: (1) we
encourage sparse transformations, (2) enforce Lipschitz continuity of functions, (3)
introduce another function g : Y ! Z to the model structure. The latter is a critical
part of the algorithm’s ability to cluster the data, as it requires that the mapping
functions identify sufficiently distinct imaging patterns in the Y group, which
would allow the inverse mapping gð�Þ to estimate the correct subtype in the PT
group. More details about regularization terms and clustering inference of function
g are stated in Supplementary Method 1.

The objective of Smile-GAN is a combination of adversarial loss19 and
regularization terms. First, the adversarial loss19 aims at matching the distribution
synthesized PT data, pf , to the distribution of real PT data, pPT , which can be
denoted as:

LGAN ðD; f Þ ¼ Ey�pPT
½logðDðyÞÞ� þ Ez�pSub ;x�pCN

½1� logðDðf ðx; zÞÞÞ� ð1Þ

¼ Ey�pPT
½logðDðyÞÞ� þ Ey0�pf

½1� logðDðy0ÞÞ� ð2Þ
where the mapping f attempts to transform CN to synthetically generated PT data
so that they follow similar distributions as real PT data. The discriminator D,
providing a probability that y comes from the real data rather than the generator, is
trying to identify the synthesized PT data and distinguish it from the real PT data.
Therefore, the discriminator attempts to maximize the adversarial loss function
while the mapping f attempts to minimize against it. The corresponding training

process can be denoted as:

min
f

max
D

LGAN ðD; f Þ ¼ Ey�pPT
½logðDðyÞÞ� þ Ey0�pf

½1� logðDðy0ÞÞ� ð3Þ
Second, the regularization terms include the change loss and cluster loss, both

serving to constrain the function space where f is learned from. The change loss is
defined as:

Lchangeðf Þ ¼ Ex�pCN ;z�pSub
½kf ðx; zÞ � x1k� ð4Þ

By denoting lc to be the cross-entropy loss with lcða; bÞ ¼ �∑k
i¼1a

i log bi , we
define the cluster loss as:

Lclusterðf ; gÞ ¼ Ex�pCN ;z�pSub
½lcðz; gðf ðx; zÞÞÞ� ð5Þ

With the aforementioned losses, we can write the full objective as:

LðD; f ; gÞ ¼ LGAN ðD; f Þ þ μLchangeðf Þ þ λLclusterðf ; gÞ ð6Þ
where μ and λ are two hyperparameters that control the relative importance of each
loss function during the training process. Through this objective, we aim to find the
mapping function f and clustering function g such that:

f ; g ¼ argmin
f ;g

max
D

LðD; f ; gÞ ð7Þ
More implementation details of the model, including network architecture,

training details, algorithm, and training stopping criteria are presented in
Supplementary Method 2.

Study and participants. The Alzheimer’s Disease Neuroimaging Initiative (ADNI,
http://www.adni-info.org/) study is a public-private collaborative longitudinal
cohort study which has recruited participants categorized as cognitively normal,
MCI, and AD participants through 4 phases (ADNI1, ADNIGO, ADNI2)31. ADNI
has acquired longitudinal MRI, cerebrospinal fluid (CSF) biomarkers, and cognitive
testing. The Baltimore Longitudinal Study of Aging, neuroimaging substudy, has
been following participants who are cognitively normal at enrollment with imaging
and cognitive exams since 1993. A total number of 1718 ADNI participants (819
ADNI1 and 899 ADNIGO/ADNI2) and 1114 BLSA participants were included in
the study. Detailed information of enrollment criteria can be found in Peterson
et al.32 for ADNI and Resnick et al.4 for BLSA. Details of both studies including
number classified as CN/MCI/Dementia at baseline, number of participants with
CSF Abeta/Tau biomarkers, length of follow-up, age, gender, APOE genotype are
included in Table 1. Participants provided written informed consent to the ADNI
and BLSA studies. The protocol of this study was approved by the University of
Pennsylvania institutional review board.

MRI data acquisition and processing. 1.5 T and 3T MRI data were acquired from
both ADNI and BLSA study introduced above. A fully automated pipeline was
applied for processing T1 structural MRIs. T1-weighted scan of each participant is
first corrected for intensity inhomogeneities33. A multi-atlas skull stripping algo-
rithm was applied for the removal of extra-cranial material34. For the ADNI study,
145 anatomical regions of interest (ROIs) were identified in gray matter (GM, 119

Fig. 8 Schematic diagram and network architectures. a General idea behind Smile-GAN. The model aims to learn several mappings from the CN group to
the PT group b Schematic diagram of Smile-GAN. The idea of the model is realized by learning one mapping from joint of two groups X × Z to Y, while
learning another function g : Y ! Z. CN cognitive normal control, PT patient, Sub pattern subtype. c Network architecture of three functions: blue arrow
represents one linear transformation followed by one leaky rectified linear unit function, green arrow represents one linear transformation followed by one
softmax function, red arrow represents only one linear transformation.
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ROIs), white matter (WM, 20 ROIs) and ventricles (6 ROIs) using a multi‐atlas
label fusion method35. For the BLSA study, this method was combined with har-
monized acquisition-specific atlases36 to derive the same 145 ROIs. Phase-level
cross-sectional harmonization was applied on regional volumes of the 145 ROIs to
remove site effects37. For visualization of disease patterns, tissue density maps,
referred as RAVENS (regional analysis of volumes examined in normalized
space38) were computed as follows. Individual images were first registered to a
single subject brain template and segmented into GM and WM tissues. RAVENS
maps encode, locally and separately for each tissue type, the volumetric changes
observed during the registration.

Data separation and preparation. After preprocessing, baseline ROI data of 297
CN and 602 cognitively impaired participants from ADNI2/GO participants were
selected as the discovery set for training and validation of the model. longitudinal
ROI data from follow-up visits of all participants from ADNI and BLSA were used
for further clinical analysis, including both participants whose baseline data were
used for model training and those who were completely independent of the dis-
covery set. For analysis requiring measures of CSF Abeta/pTau, only ADNI par-
ticipants with these two biomarkers were included. Otherwise, all participants from
ADNI and BLSA study were incorporated for analysis.

Before being used as features for the Smile-GAN model, ROI volumes were
residualized and variance-normalized. To correct age and sex effects while keeping
disease-associated neuroanatomical variations, we estimated ROIs-specific age and
sex associations among 297 CN participants using a linear regression model. All
cross-sectional and longitudinal data were then residualized by age and sex effects.
Then, all ROI volumes were further normalized with respect to 297 CN
participants in the discovery set to ensure a mean of 1 and standard deviation of 0.1
among CN participants for each ROI.

Cognitive, clinical, CSF biomarker, and genetic data. We used additional clin-
ical, biofluid, and genetic variables, including CSF biomarkers of amyloid and tau,
APOE genotype, and cognitive test scores, provided by ADNI. These measures
were downloaded from the LONI website. A total of 1194 participants from ADNI
have CSF measurements of ß-amyloid, total tau, and phospho-tau, including 383
CN, 578 MCI and 233 Dementia at baseline; BLSA participants do not have A/T
biomarkers and are therefore excluded from analyses based upon those measures.
Detailed methods for CSF quantification are described in Hansson et al.39. Cutoffs
for amyloid status based on ß-amyloid measures and for tau status based upon
phospho-tau measures were previously defined39 and used to categorize partici-
pants as positive or negative for cerebral amyloid and tau deposition. Tau measures
are also presented as continuous variables. Composite cognitive scores across
several domains have been previously validated in the ADNI cohort. The memory
composite (ADNI-MEM) models based on components from the Rey Auditory
Verbal Learning Test, Alzheimer’s Disease Assessment Scale–Cognitive Subscale
(ADAS-Cog), and mini-mental status exam (MMSE)40. The executive function
composite (ADNI-EF) models based on animal and vegetable category fluency,
trail-making A and B, digit span backwards, digit symbol substitution from the
revised Wechsler Adult Intelligence Scale, and circle, symbol, numbers, hands, and
time items from a clock drawing task41. The language composite (ADNI-LAN)
models using animal and vegetable category fluency, the Boston naming total,
MMSE language elements, following commands/object naming/ideational practice
from ADAS-Cog, and Montreal Cognitive Assessment (MoCA) language elements,
including letter fluency, naming, and repeating tasks)42. Further detail on these
composite measures can be obtained on the ADNI website (https://adni.bitbucket.
io/reference/docs/UWNPSYCHSUM/adni_uwnpsychsum_doc_20200326.pdf).

White matter lesion (WML) volumes were calculated from both ADNI and BLSA
using inhomogeneity-corrected and co-registered FLAIR and T1-weighted images and
a deep-learning-based segmentation method43 built upon the U-Net architecture44,
with the convolutional layers in the network replaced by an Inception ResNet
architecture45. The model was trained using a separate training set with human-
validated segmentation of WML. WML volumes were first cubic rooted. Then phase-
level cross-sectional harmonization was applied on them to reduce site effects.

Pattern memberships and probabilities assignments. Smile-GAN model assigns
M probability values to each participant, with each probability corresponding to
one pattern type and the sum of M probabilities being 1. Based on the M

probability values, we can further assign each participant to the dominant pattern
type, determined by the maximum probability. The optimalM was chosen during a
cross-validation (CV) procedure based on the clustering reproducibility or stability.
Specifically, we ran 10 folds of repeated holdout CV for M= 3 to 5. For each fold,
we randomly left out 20% of the discovery set to add variability. Of note, M= 2
generally stratified the data into mild and severe atrophy patterns, which is not
clinically interesting. We used the Adjusted Rand Index (ARI)46 to quantify the
clustering stability of the 10 folds/models. ARI is a corrected for chance version of
the random index which equals 0 for two random partitions and is, thus, con-
sidered a good choice for measuring overlap of clustering results in our case. The
highest mean pair-wise ARI, 0.48 ± 0.08, was reached at M= 4, with ARI= 0.30
± 0.12 for M= 3 and ARI= 0.33 ± 0.07 for M= 5. A permutation experiment
demonstrated significant reproducibility of the Smile-GAN patterns for M= 3–5,
as measured by ARI. Together, these data suggested that M= 4 yields the optimal
number of clusters (Supplementary Section 1.4/2.4).

With M= 4, we reran Smile-GAN 30 times with all available data in the
discovery set and the trained models will be used for external validation and
analysis. In order to find the best correspondence among cluster assignments
across the 30 experiments, we calculated the mean pair-wise ARI values for each
resultant model. The one with the highest ARI was chosen as the template and the
pattern types learned by all other models were reordered so that their clustering
results achieved the highest overlap with that of the template. After reordering, the
average probability of each pattern across all 30 models was taken as the probability
of the corresponding pattern for each participant. We then applied these learned
models to longitudinal data of all CN/MCI/Dementia participants and obtained
probabilities of four patterns for all visits of each participant.

Statistical analysis. To visualize the brain signatures of four patterns, we utilized all
cross-sectional data of MCI/Dementia participants in the discovery set and performed
voxel-wise group comparisons (i.e., CN vs each pattern) via AFNI 3dttest47 using
voxel-wise tissue density (RAVENs) maps38. To access longitudinal progression tra-
jectories of pattern assignment, we grouped for each of the four patterns those par-
ticipants with probability larger than 0.5. We then compared how the pattern
probabilities change over time for each of the four groups by calculating pattern
probability for P1–P4 of all within group who have data available in a given time
interval (i.e., X year–X+ 1 year). Those who had more than one data point in the
selected time interval only contributed once through mean probabilities of all those
visits. The demographic variables, APOE genotype, CSF biomarker levels, cognitive
test scores, WML volumes and pattern probabilities were compared both across
pattern types and within pattern types. Only participants from the ADNI study whose
Abeta/pTau status was available at baseline were included for comparison. For
categorical variables, the Chi-squared test was used to identify differences between
subgroups. For other quantitative variables, a one-way ANOVA analysis was per-
formed for group comparison. Statistical analyses were conducted via online python
packages, statsmodels 0.8.0, SciPy 1.6.3, NumPy 1.16.6 and pandas 0.21.0.

To assess the risk of converting from P1 into P2 or P3, we conducted time-to-
event survival analysis to evaluate the risk pattern conversions. In particular, we
treated P2 and P3 as competing events and used Aalen-Johansen estimator to
generate cumulative incidence curves for P1 to P2/P3 progression. For all other
cumulative incidence curves and survival curves corresponding to pattern
progression and diagnosis transformation, we applied a nonparametric
Kaplan–Meier estimator and used the log-rank test to compare difference in
survival distributions between groups.

For all survival analysis, participants were assigned into one pattern at baseline
or labeled as progressing to one pattern only if the corresponding pattern
probability is greater than 0.5. A few participants not reaching this threshold in any
pattern at baseline were discarded to avoid noise in the analysis. All survival
analyses were conducted via online python package lifelines 0.25.7.

Evaluation of patterns’ predictive ability. We further conducted analyses to
evaluate the predictive ability of baseline pattern probabilities in the prediction of
future pattern changes. Also, we compared them with other measures of neuro-
degeneration (N measures) and clinical biomarkers in prediction of diagnosis
transitions.

For pattern progression prediction, we selected all 940 participants who had
longitudinal follow-ups and P1 > 0.7 at baseline to avoid trivial prediction tasks.
First, the Cox-proportional-hazard model with baseline P2 or P3 probability as the

Table 1 Details of ADNI and BLSA studies.

Study CN MCI Dementia Median follow-up
(years)

Gender (%
of male)

Age APOE E4
carriers

CSF Abeta/Tau
available

ADNI1 229 397 193 2.2 (1.7–3.1) 58.2% 75 (71–80) 48.8% 415
ADNI2/ GO 297 452 150 2.1 (1.1–4.0) 53.3% 74 (68–79) 43.6% 779
BLSA 1094 11 9 4.0 (0.0–6.0) 47% 67 (58–76) 25% 0

For age and length of follow-ups, median value with first and third quartile are reported. APOE E4 carriers include heterozygotes and homozygotes.
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only feature was utilized to predict survival curves from P1 to P2 or P1 to P3,
respectively. We ran the two-fold cross validation 100 times and derived the
concordance index on validation sets. Second, to predict risk of pattern progression
and progression pathways of P1 participants at specific time points X, we directly
used P2 probability and P3 probability at baseline as an indication of risk without
further fitting any additional models. For each time X from 2 years to 8 years, we
generated a binary indicator with 0 representing not progressing to P2 till T and 1
representing who have already progressed to P2 before T and directly used baseline
P2 probabilities to discriminate these two groups. The exact same process was also
done for P3. Area under the receiver operator characteristic curve (AUC) values
were calculated for both P2 and P3 at different time X. Optimal discrimination
thresholds, at which true positive rate (TP) plus false positive rate (FP)= 1, were
reported for two different progression pathways.

To predict clinical diagnosis changes, we selected out 1178 CN participants and
921 participants categorized as MCI at baseline who had longitudinal follow-ups.
First, to compare Patterns with other N measures, we again utilized the Cox-
proportional-hazard model with different N measures as features to predict CN-
MCI and MCI-Dementia survival curves. Two-fold cross validation was run 100
times to derive the concordance index on validation sets. Then, to compare the
prognostic powers of Pattern, Abeta, pTau, APOE genotype and ADAS-Cog, we
reduced samples to 380 CN and 568 MCI participants who had these biomarkers.
Each biomarker was used independently as the only feature for training the model.

For all prediction tasks in this section, baseline pattern assignments and
progression labelling followed the same rule introduced in the ‘Statistical Analysis’
section if not specifically annotated.

Biomarker selection and composite score construction. Finally, we evaluated
predictive powers of different combinations of biomarkers mentioned above.
Following the order of accessibility, ADAS-Cog, pattern probabilities derived from
T1 MRI, Abeta/pTau derived from PET scan were added successively to the feature
set for training the Cox-proportional-hazard model and the same experimental
procedure were implemented as introduced in the previous section. A composite
score indicating the risk of clinical progression can be derived with all biomarkers
introduced above. Using Pattern-probabilities/Abeta/pTau/ADAS scores at base-
line as features, the trained Cox-proportional-hazard model was applied to the
validation set to derive the partial hazard as the composite score.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data used for this study were provided from ADNI and BLSA studies via data sharing
agreements that did not include permission to further share the data. Data from ADNI
are available from the ADNI database (adni.loni.usc.edu) upon registration and
compliance with the data usage agreement. Data from the BLSA are available upon
request from the BLSA website (blsa.nih.gov). All requests are reviewed by the BLSA
Data Sharing Proposal Review Committee and may also be subject to approval from the
NIH Institutional Review Board. Those interested in accessing study data or derived
imaging variables used in this study may seek approval from studies. If granted, we would
be able to provide participant-level derived imaging variables used in this study within
1 month of approval. Source data are provided with this paper.

Code availability
The software Smile-GAN is available as a published PyPI package. Detailed information
about software installation, usage, and license can be found at: https://pypi.org/project/
SmileGAN/. Custom code can be found at: https://github.com/zhijian-yang/SmileGAN.
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