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ABSTRACT

We study the optimal batch-regret tradeoff for batch linear contextual bandits. For
this problem, we design batch learning algorithms and prove that they achieve
the optimal regret bounds (up to logarithmic factors) for any batch number M ,
number of actions K, time horizon T , and dimension d. Therefore, we establish
the full-parameter-range almost optimal batch-regret tradeoff for the batch linear
contextual bandit problem.
Along our analysis, we also prove a new matrix concentration inequality with
dependence on their dynamic upper bounds, which, to the best of our knowledge,
is the first of its kind in literature and maybe of independent interest.

1 INTRODUCTION

Online learning and decision-making is an important aspect of machine learning. In contrast to the
traditional batch machine learning where the learner only passively observes the data, an online
learner may interact with the data collection process by deciding on which data point to query about.
On one hand, sequentially making active queries may fully utilize the power of adaptivity based on
the observed data and help to achieve better data efficiency. On the other hand, in many practical
scenarios, it is also desirable to limit these queries to a small number of rounds of interaction, which
helps to increase the parallelism of the learning process, and reduce the management cost and the
total time span. In light of this, the batch online learning model, which is a combination of the two
major aspects of machine learning, has recently attracted much research attention. It has been shown
that for many popular online learning tasks, a very small number of batches may achieve nearly
minimax-optimal learning performance, and therefore it is possible to enjoy the benefits of both
adaptivity and parallelism.

To understand the impact of the batch constraint to online learning and decision-making problems, in
this paper, we study the optimal batch algorithms for the linear contextual bandit problem, where the
latter is a central problem in online learning literature. In a linear contextual problem, the learning
algorithm observes a context (also referred to as a context set as we usually have one context vector for
each candidate action) at the beginning of each time period, and the expected reward of each candidate
action is determined by a hidden linear function of the context. The learning algorithm has to learn the
linear function and maximize its total reward over all time periods. The readers may refer to Section 2
for the detailed problem definition. The linear contextual bandit problem is widely studied due to
its simplicity and abstraction (via the context) for the personalized treatment in decision-making,
enabling plenty of real-world applications such as advertisement selection, recommendation systems,
and clinical trials.

One practical reason that calls for the batch online learning model is due to the expensive policy
deployment and communication cost. Large-scale online advertisement or recommendation systems
(Li et al., 2010) may have to take a long time or pay an expensive overhead cost to update their policies.
In many distributed or offline systems (such as designing and updating the policy for autonomous
vehicles or robotic arms), such an overhead cost becomes even more significant. During the execution
of the policy, we usually may not be able to monitor the process (e.g., the data collected from the
environment) in real time, due to the high communication cost and latency in the distributed (or large-
scale) system. Similar challenges arise in medicine and clinical trials. The price of implementing a
new policy can be costly due to the inherent risks in healthcare, which limits the adaptivity of the
deployment method. In such cases, the learner seeks to minimize the number of policy updates under
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a steady environment, making the batch learning framework with stochastic contexts particularly
well-suited.

In the batch online learning model, we refer to the time of each policy update as the beginning of
a batch. The learning algorithm may decide the policy only based on the data collected from the
previous batches, and the data collected from the current batch may only be available at the end of
the batch. Due to the non-real-time natural, the learning algorithm also has to decide the length of
each batch when the batch begins, without any information from the current batch.

We formalize the above intuition and define the batch complexity of the linear contextual bandit
problem as follows.
Definition 1 (Batch complexity). For a linear contextual bandit problem with time horizon T , we
say that the batch complexity of a learning algorithm is (at most) M in the, if the learner decides a
length T1 and a policy π1 (a policy is a mapping from the context space to the set of distributions
over all candidate actions) before the learning process starts, and executes π1 in the first T1 time
steps (which corresponds the first batch). Based on the data (context sets, played actions and the
rewards) obtained from the first T1 steps, the learner then decides T2 and π2, and executes π2 for T2

time steps (the second batch). The learner repeats the process for M times/batches. In general, at the
beginning of the k-th batch, the learner decides Tk (the size of the batch) and πk based on the data
collected from the first (k − 1) batches. The batch sizes should satisfy that

∑M
k=1 Tk = T .

Naturally, there is a tradeoff between the batch complexity and the regret performance in batch online
learning. There have been quite a few recent works studying such relationship for multi-armed bandits
(Perchet et al., 2016; Gao et al., 2019; Esfandiari et al., 2021). Gao et al. (2019) proved optimal regret
bound for every number of batches and show that M = O(log log T ) batches suffice to achieve the
minimax-optimal regret without the batch constraint. Han et al. (2020); Ruan et al. (2021) studied
the batch algorithms for linear contextual bandits. While Han et al. (2020) studied a special case of
the problem where the contexts follow Gaussian-type distributions, Ruan et al. (2021) provided an
algorithm for all context distributions. In particual, Ruan et al. (2021) showed that M = O(log log T )
batches suffice to achieve the minimax-optimal regret without the batch constraint.1

While the exact batch-regret tradeoff for multi-armed bandits is relatively better understood (and
arguably easier to study), the optimal tradeoff curve for linear contextual bandits is more challenging
and remains open.

In this work, we address this question on the exact batch-regret curve and prove the optimal regret (up
to logarithmic factors) for batch linear contextual bandits for the full range of the problem parameters
Below, we summary our contributions and comparison with the related works.

1.1 OUR CONTRIBUTIONS

We summarize our contributions and technique ingredients as below. For a more detailed overview of
the high-level ideas, we refer the readers to Appendix 3.

Recall that Gao et al. (2019) showed that for multi-armed bandits, the optimal regret using at most
M batches is at the order of T

1

2−2−M+1 (ignoring the polynomial dependence on other problem
parameters and the poly-logarithmic dependence on T ). For batch linear contextual bandits, we
establish a similar (but slightly trickier) tradeoff. More specifically, we design Algorithm 1 (in
Section 4), and prove the following regret upper bound.
Theorem 2. Let d be the dimension of the feature space and K be the number of candidate arms.
For any T ≥ d and M ≥ 1, Algorithm 1 may use at most M batches and its regret RT is bounded by

RT ≤ Õ
(

min
{
T

1

2−2−M+2 d
1−2−M+2

2−2−M+2 , T
1

2−2−M+1 d
1−2−M+1

2−2−M+1 min{K, d}
2−M+1

2−2−M+1
})

.

Note that the regret upper bound in Theorem 2 takes the minimum between two terms. When T is
comparably large (e.g., T ≥ Ω̃(dmin{K, d}2−2−M+2

), the second term in our upper bound is smaller,
1Both the O(log log T ) bound in (Ruan et al., 2021) and our work (as well as (Han et al., 2020)) focus on

the stochastic-context case of linear contextual bandits, which is the most technically interesting and practically
useful setting of batch linear contextual bandits. Please refer to Section 1.2.1 for more discussion.
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and its asymptotic dependence on T matches the optimal bound for batch multi-armed bandits (Gao
et al., 2019).2 On the other hand, when T is relatively small (e.g., T ≤ Õ(dmin{K, d}2−2−M+2

)), a
simpler analysis would kick in to give a better regret bound, which results as the first term. We refer
the readers to Appendix B for full proof.

When there are no constraints on the number of batches, it is well known that the minimax-optimal
regret is

√
dT logK × poly log T (see, e.g., (Dani et al., 2008; Chu et al., 2011; Li et al., 2019)).

Ruan et al. (2021) showed that with only M = dlog log T e + 1 batches (the logarithms are of
base 2), their batch algorithm may match the regret performance (up to logarithmic factors) as the
no-batch-constraint setting. The following simple corollary of our Theorem 2 recovers the main
result of (Ruan et al., 2021). Moreover, the batch algorithm in (Ruan et al., 2021) only works for
T ≥ Ω̃(d32), while in contrast, our Corollary 3 works for every T ≥ d (and note that T < d is the
trivial scenario).

Corollary 3. For T ≥ d and M = dlog log(T )e+ 1, the regret of Algorithm 1 is RT ≤ Õ(
√
Td).

While the two-phase regret curve in Theorem 2 may seem completely due to technicality, it surpris-
ingly turns out to be exactly optimal. In Appendix C, we complement Theorem 2 with the following
lower bound.

Theorem 4. Fix any K ≥ 2, T ≥ d, and any batch number M ≥ 1. For any learning algorithm
with batch complexity M , there exists a linear contextual bandit problem instance with dimension d
and K arms, such that the expected regret RT is at least

RT ≥ Ω̃

(
min

{
T

1

2−2−M+2 d
1−2−M+2

2−2−M+2 , T
1

2−2−M+1 d
1−2−M+1

2−2−M+1 min{K, d}
2−M+1

2−2−M+1
})

.

We note that the above upper and lower bounds match (up to factors logarithmic in T , d, and K) for
all M ≤ dlog log T e and all non-trivial parameter settings for T , d, and K. When M > dlog log T e,
by Corollary 3, our Algorithm 1 already achieves the unconstrained minimax-optimal regret (up to
logarithmic factors). Therefore, we achieve near-optimal regret bounds for batch linear contextual
bandits under all non-trivial parameter settings.

We also note that the Ω(
√
KT

1

2−2−M+1 ) regret lower bound established by Gao et al. (2019) for

K-arm M -batch multi-armed bandits, and the Ω

(
T

1

2−2−(M−1) d
1−2−(M−1)

2−2−(M−1)

)
regret bound by Han

et al. (2020) for d-dimensionalM batch linear bandits with Gaussian contexts. If we treat multi-armed
bandits as a special case of linear contextual bandits with K = d arms with orthogonal features, the
lower bounds in Gao et al. (2019) and Han et al. (2020) are weaker than our Theorem 4, especially in
the case d ≤ T ≤ dmin{K, d}2−2−M+2

. This gap demonstrates that intrinsic additional difficulty of
the batch linear contextual bandit problem with general context distributions.

In the analysis, we require a stronger matrix concentration inequality to address the challenges posed
by a dynamic upper bound. As an independent contribution, we introduce a new matrix concentration
inequality (refer to Lemma 20 in Appendix D) to avoid the dynamic upper bound.

1.2 ADDITIONAL RELATED WORKS

1.2.1 LINEAR CONTEXTUAL BANDITS

The linear contextual bandit problem (Abe & Long, 1999; Auer et al., 2002) studies the bandit
problem where the actions are associated with (known) features and their mean rewards are defined
by an (unknown) linear function of the associated features. Compared with the multi-armed bandit
problem, the linear structure on features could help the learner to infer the mean reward of an action
given the observation on the other actions, and therefore enables the possibility to achieve regret
upper bounds independent from (or weakly dependent on) the number of actions.

There are generally two types of problem settings studied about linear contextual bandits: non-
adaptive contexts and adaptive contexts. In the non-adaptive-context setting, the context sets are

2However, this does not mean that the batch linear contextual bandit problem is easier than batch multi-armed
bandits, as the dependence on d and h is worse.
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independent from all other randomnesses (including the randomnesses in rewards and used by the
algorithm). One can also think of this as that the contexts are fixed (by an adversary) before the
learning process starts. In this setting, the optimal minimax regret bound is Θ(

√
dT min{d, ln(K)})

up to poly ln(T ) factors (Auer et al., 2002; Abe et al., 2003; Dani et al., 2008; Chu et al., 2011;
Abbasi-Yadkori et al., 2011; Li et al., 2019). In the adaptive-context setting, the context sets are
chosen by an adaptive adversarial, where the context sets at any time step may depend on the outcomes
and the learner’s decisions in previous time steps. In this setting, the problem becomes harder for the
learner. To the best of our knowledge, the state-of-the-art regret upper bound for the adaptive-context
setting is O(d

√
T ln(KT )) (Abbasi-Yadkori et al., 2011).

In this work (as well as the most related works (Han et al., 2020; Ruan et al., 2021; Zanette et al.,
2021) on batch linear contextual bandits), we focus on a particularly useful case in the non-adaptive-
context setting, namely the stochastic contexts. In this case, the context sets at each time step are
independently generated from a pre-defined (but unknown) distribution D. In many real-world
applications such as clinical trial and recommendation system, the patients or customers can often be
viewed as independent samples from the population and therefore stochastic contexts are a natural
abstraction of these practical scenarios. On the other hand, Han et al. (2020) has shown that even in
the non-adaptive-context setting, in the worst case, as many as Ω(

√
T ) batches are needed to achieve

any
√
T -type regret, which is less useful in practice.

1.2.2 BANDIT LEARNING WITH LIMITED ADAPTIVITY

Batch learning fits into the broader learning with limited adaptivity framework that recently attracts
much research attention due to its potentially lower computational cost and close relation to distributed
and parallel learning.

The number of batches is a natural measurement of the adaptivity needed by the learner. Besides
the above mentioned works (Perchet et al., 2016; Gao et al., 2019) (for batch multi-armed bandits)
and Ruan et al. (2021) (for batch linear contextual bandits), Han et al. (2020) studied batch linear
contextual bandits with Gaussian-type features,Esfandiari et al. (2019) studied batch adversarial
multi-armed bandits and Jin et al. (2021a;b; 2023) focused on the asymptotic regret bounds with
batch limits.

Hanna et al. (2023b) designed batch linear bandit algorithms for stochastic contexts via an elegant
reduction to the fixed-action-set setting. Hanna et al. (2023a) further proposed an oracle-efficient
algorithm for the batched context linear bandit problem with infinite arms at the price of suffering
additional poly(d) factors in the worst case regret.

For the non-contextual linear bandit problem, recent work by Ren et al. (2024) introduced the E4

algorithm, which achieves a minimax optimal regret bound with O(log log(T )) batches, and an
asymptotic optimal regret bound using just three batches.

2 PRELIMINARIES

Linear Contextual Bandits with Stochastic Context Sets. We consider the linear contextual
bandit problem with the hidden linear model described by the d-dimensional vector θ : ‖θ‖∞ ≤ 1.
There is also a distribution D over the context sets hidden from the learner. Given the time horizon
T , during each time step t ∈ {1, 2, . . . , T}, a stochastic context set of K feature vectors, Xt =
{xt,1,xt,2, . . . ,xt,K} is drawn from D and revealed to the learner. The feature vectors are in Rd
and D guarantees that ∀i ∈ {1, 2, . . . ,K} : |x>t,iθ| ≤ 1 almost surely.3

The learner has to choose and play an action (defined by its associated feature vector) yt ∈ Xt and
receives the reward rt = y>t θ + εt, where εt is an independent sub-Gaussian noise with zero mean
and variance proxy bounded by 1. The goal of the learner is to minimize the total (expected) regret
RT := E

[∑T
t=1

(
maxi{x>t,iθ} − y>t θ

)]
.

3Note that our formulation is more general than the usual linear contextual bandits setting where ‖θ‖2 ≤ 1
and ‖xt,i‖2 ≤ 1. It also includes K-armed multi-armed bandits as a special case.
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Batch Learning. Given the batch complexity M , a batch learning algorithm aims at minimize the
regret RT defined above, subject to the constraints in Definition 1.

Notations. For any non-negative integer N , we let [N ] denote {1, 2, . . . , N}. We use EP [·] and
PrP [·] to denote the expectation and probability over the distribution P respectively. We use I to
denote the d-dimensional identity matrix. We use log to denote the logarithm base 2, and use ln to
denote the logarithm base e. Throughout the paper, the Õ(·) and Ω̃(·) notations hide the logarithmic
factors of T , d, and K. We also define T0 = T0 = 0 and Tk =

∑k
i=1 Ti for 1 ≤ k ≤M .

3 TECHNICAL OVERVIEW OF OUR ALGORITHMS

In this section, we summarize our techniques contribution and sketch the high-level ideas in the
algorithms and regret analysis.

Our algorithms are elimination-based, following (Ruan et al., 2021). At each time step t, give the set
of context vectors Xt = {xt,1,xt,2, . . . ,xt,K}, we maintain a confidence interval It,i for x>t,iθ for
each i. A candidate action xt,i is eliminated when there exists another candidate action xt,i′ such
that It,i′ entirely lies above It,i, meaning that the action xt,i cannot be the optimal action. Then, the
clever part of the policy is to decide a distribution over the remaining candidate actions and randomly
choose one to commit to according to the distribution.

For the construction of the confidence intervals, we adopt the classical elliptical confidence intervals
based on the regularized ordinary least-square (OLS) estimation (Chu et al., 2011). Given a group
of context vectors that are played in history {yτ}tτ=1 and corresponding observed rewards {rτ}tτ=1
(such that rτ = y>τ θ + ετ where ετ is an 1-subgaussian noise), we construct the confidence interval
for any candidate action with context vector x to be

I(x,Λ) =
[
x>θ̂ − α

√
x>Λ−1x,x>θ̂ + α

√
x>Λ−1x

]⋂
[−1, 1],

with Λ = λI +
∑t
τ=1 yτy

>
τ is the regularized information matrix, θ̂ = Λ−1

∑t
τ=1 rτyτ is the

regularized OLS estimation of the hidden vector θ, and α, λ are hyper-parameters satisfying that
α = Θ(

√
ln(KdT ) + λ

√
d).

Define w(x,Λ) = min
{

(
√

ln(KdT ) + λ
√
d)
√
x>Λ−1x, 1

}
to be the width of the confidence

interval I(x,Λ). To reduce the regret, we would like to design policies to cleverly perform exploration
in order to reduce the width of future estimations. Formally, we introduce the following problem
which is the key to our optimal batch learning algorithm.

The Problem of Single-Phase Learning for Exploration Policy. Fix m,n ≥ 0. Let
{Xi}mi=1, {Yj}nj=1 be two groups of i.i.d. context sets following the same unknown distribution D.
After observing {Xi}mi=1, we are asked to design the parameter λ and an exploration policy π so as
to minimize the following expected maximum width EM-width(D,Λ) := EX∼D[maxx∈X w(x,Λ)],
where Λ = λI +

∑n
j=1 yjy

>
j and yj ∼ π(Yj) for all 1 ≤ j ≤ n.

In our batch learning algorithm, we need to solve the above problem once during each batch. During
the k-th batch, we let D = Dk be the distribution of the set of the remaining context vectors after
the elimination process based on the information learned for the first (k − 1) batches. {Xi}mi=1
is obtained from the (k − 1)-th batch, and we solve the above problem for π which serves as the
exploration policy for the k-th batch. The minimization goal of the above problem helps to reduce
the regret starting from the (k + 1)-th batch.

To facilitate discussion, we useW(m,n) to denote the minimax optimum of expected maximum
width achieved the best learning algorithm G. That is, we let

W(m,n) = inf
G

sup
D

E{Xi,Yj}∼D⊗(m+n)E(π,λ)∼G({Xi}) [EM-width(D,Λ)] ,

where G is the single-phase learning algorithm to decide π and λ based on {Xi}mi=1.

In (Ruan et al., 2021), the authors showed the existence of a good policy π and the choice of λ
so that the bound of the expected maximum width leads to the desired optimal regret for M =

5
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Θ(log log T ) batches. Their constructive proof (given the distribution D) is based on a reward-
free LinUCB algorithm (Algorithm 2 in their paper). However, to learn such a good policy based
on {Xi}mi=1, the authors employed more complicated procedures (such as CORELEARNING and
COREIDENTIFICATION).

Both (Zanette et al., 2021) and our work are inspired by the reward-free LinUCB and find that one
may leverage this algorithmic framework to design learning algorithms as well. The authors of
(Zanette et al., 2021) worked on a similar task as the single-phase learning problem defined above
and their result implies thatW(m,n) ≤ O

(
poly ln(mndT ) ·

√
ln(K) · (

√
d/n+

√
d/m)

)
.4

In comparison, in Section 4.1 we propose Exp-Policy to solve the single-phase learning problem.
In Lemma 5 we analyze our algorithm and show that

W(m,n) ≤ O

(
poly ln(mndT ) ·

√
ln(K) ·

(√
d

n
+
d

m

))
. (1)

Clearly, the performance of our Exp-Policy outperforms that the results in (Zanette et al., 2021) in
terms of the dependence on m. Note that in our batch learning algorithm, m represents the number of
samples in the previous batch, which is much smaller than the size of the current batch (represented
by n). Therefore, the d/m term in our bound usually dominates and it is crucial for us to make this√
m-factor improvement to achieve the optimal regret in the batch learning model. Indeed, without

this improvement, the result of (Zanette et al., 2021) does not even imply the desired optimal regret
for M = Θ(log log T ) batches (the result of (Ruan et al., 2021)).

The proof of Lemma 5 is based on the analyais of reward-free LinUCB, and involves a scaled-and-
clipped update rule and a dynamic concentration inequality for PSD matrices. Below we present the
high-level ideas.

Learning the Exploration Policy via Reward-free LinUCB. In (Ruan et al., 2021), the authors
showed that given {Yj}nj=1 ∼ D⊗n, the reward-free LinUCB algorithm can produce {yj}nj=1 (and
therefore also form a policy) such that

EM-width(D,U) ≤ O(
√
d ln(nd/κ)/n), (2)

where U = κI +
∑n
j=1 yjy

>
j , and κ > 0 is polynomially small (e.g., κ = T−2) to make sure that U

is invertible while we do not lose much in equation 2. In this work, our Exp-Policy algorithm
cannot direct access {Yj}nj=1 but has to learn the distribution D and construct a policy π based on a
much smaller data set {Xi}mi=1. 5

To make learning possible, we first notice that the original reward-free LinUCB in (Ruan et al., 2021)
produces {yj}nj=1 by the so-called argmax policy: yj = πj(Yj) := arg maxy∈Yj{y>Wjy}, where
Wj = κI +

∑j
q=1 yqy

>
q is the regularized information matrix obtained from the samples before j.6

One may combine {πj} via carefully chosen probability weights to form a desired one-shot policy π.

In our algorithm Exp-Policy (Algorithm 2), we observe that we may approximately learn the
policy π from {Xi}mi=1 as long as we are able to approximately construct {Wj} based on the {Xi}
data set. I.e., for any W = Wj , we would like to construct W̌ as long as Ω(1) · W̌ 4W 4 Õ(1) · W̌ ,
and the key here is to lower bound W by Ω(1) · W̌ .

To illustrate the main technical challenge and our solution, let us consider the following task: let
xi ∼ π(Xi) and W̌ = n

m (κI +
∑m
i=1 xix

>
i ), we would like to choose appropriate regularization

parameter λ > 0 so that with high probability (over the randomness of {Xi} and {xi}) it holds that

Ω(1) · W̌ 4 n
(
λI + EX∼D,x∼π(X)xx

>) . (3)

4We state this implication by making the “large |S × A|” assumption in (Zanette et al., 2021).
5Comparing equation 1 and equation 2, we also find that the cost we pay in the expected maximum width for

learning is about Õ(d/m).
6We warn the readers that this is an oversimplification of the algorithm by omitting a few important techniques

such as the volume-based lazy update of the Wj matrices. However, we choose to the current presentation to
better motivate our technical contributions.
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We note that this task may seem a bit different from our goal: 1) π is unknown to the learner, and
cannot be used to construct W̌ ; 2) the upper bound is quite different from W = κI +

∑n
j=1 yjy

>
j .

Indeed, these issues may be (quite non-trivially) resolved by observing that 1) π is a mixed policy
and can be iteratively updated to its final form and 2) relate the Right-Hand-Side of equation 3 to W
by another matrix concentration inequality.

We now focus on the task of equation 3, which is equivalent to

Ω(1) ·

(
κI +

m∑
i=1

xix
>
i

)
4 m

(
λI + EX∼D,x∼π(X)xx

>) . (4)

Note that since xi ∼ π(Xi) are i.i.d. random variables, standard matrix concentration inequalities
would imply equation 4 when mλI upper bounds xix>i (up to logarithmic factors of the inverse of
the failure probability) almost surely, i.e., mλ ≥ Ω̃(1)⇔ λ ≥ Ω̃(1/m). This choice of λ would lead
to a d/

√
m term instead of the d/m term in equation 1.

The Scaled-and-Clipped Update Rule. While it is not possible to establish equation 1 (with high
probability) for a smaller λ (e.g., λ = o(1/m)), we introduce the scaled-and-clipped update rule in
the reward-free LinUCB (Line 2 of Algorithm 2) which eventually leads to the improvement of λ.

More concretely, instead of working with W̌ = n
m (κI +

∑m
i=1 xix

>
i ), we define the scaled-and-

clipped version of xi and the scaled-and-clipped information matrix Ui,7

x̃i := min

{√
1

x>i U
−1
i−1xi

, 1

}
xi, Ui = κI +

i∑
p=1

x̃px̃
>
p .

We will use {Ui} to construct the mixed argmax policy instead of W ’s. The downside of this new
update rule is that we use shorter feature vectors {x̃i} instead of the original ones, which leads to the
slower growth of the information matrix. However, this slowing effect is not too bad – if we repeat
each xi by ln(1/κ) = O(lnT ) times, scaled-and-clipped information matrix Ui would upper bound
the original information matrix. Through a more rigorous analysis, we will see that this effect would
only hurt the regret by a logarithmic factor.

On the other hand, the benefit of our scaled-and-clipped update rule is that instead of establishing
equation 4, we only need to lower bound the Right-Hand-Side of equation 4 by the scaled-and-clipped
information matrix, i.e., to prove that the following inequality holds with high probability.

Ω(1) ·

(
κI +

m∑
i=1

x̃ix̃
>
i

)
4 m

(
λI + EX∼D,x∼π(X)xx

>) , (5)

where x̃i = min

{√
1

x>i U
−1
i−1xi

, 1

}
xi and we assume that xi ∼ π(X) are i.i.d. (as we did in

equation 4).

Let U = κI +
∑m
i=1 x̃ix̃

>
i . To prove equation 5, we only need to show that there exists constants

c2 > c1 > 0 such that
c2U 4 c1U +mλI +mEX∼D,x∼π(X)x̃x̃

>, (6)
which implies that

(c2 − c1)U 4 mλI + EX∼D,x∼π(X)x̃x̃
> 4 mλI + EX∼D,x∼π(X)xx

>,

where the last inequality is due to the clipping operation in the update rule.

Now let us focus on the task of establishing equation 6. Thanks to the definition of the scaled-and-
clipped version x̃i, we have that x̃ix̃>i 4 U almost surely. Therefore, it is possible to establish
equation 6 as long as we choose mλ ≥ Ω(κ) to cover the κI term in U (which only requires that
λ ≥ Ω(κ/m) = Ω(m−1T−2), leading to the better d/m error term in equation 1). On the other hand,
however, we note that U , while serving as an upper bound of the random matrices x̃ix̃>i , is also a
random variable by itself. We do not find sharp matrix concentration inequalities in literature to fit
our need, and we have to resort to the matrix concentration inequality with dynamic upper bounds
proved in Lemma 20. The formal version of equation 6 is stated and proved in Lemma 14.

7The definition of x̃i here is slightly different from the real algorithm (up to a logarithmic factor L). We
make this simplification only to better explain the main algorithmic ideas.
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3.1 LOWER BOUNDS

To construct the lower bound instances, we first constructM mutually independent sub-problems with
dimension d/M . At each time step, a uniform random sub-problem (i.e., its context set) is selected
and presented to the learner. To analyze the regret performance of any batch learning algorithm, we
divide the time horizon T into M consecutive stages with properly chosen lengths {Tk}Mk=1 for each
stage. We will show that, for each k ∈ [M ], during the k-th stage, if the learner does not start a new
batch and update its policy, then a large regret would incur for the k-th sub-problem in this stage.

Our construction for the sub-problems is as follows. For each k ∈ {1, 3, 4, 5, . . . ,M}, we choose the
sub-problem to be the hard instance for the K-armed linear contextual linear bandit problem with
burn-in time Θ̃(Tk−1). In other words, we construct the k-th sub-problem so that it is hard for the
learner to find a good policy for the k-th problem during the first

∑
i≤k−1 Ti time steps.

The most interesting sub-problem design is for k = 2, where the learner suffer more regret due to
lack of context information. In this sub-problem, we consider a linear contextual bandit problem
d/M arms (assuming that K ≥ d/M ). However, during each time step, only (d/(2M) + 1) arms are
presented to the learner. In particular, we set the first d/(2M) arms to be the frequent arms that always
appear in the context set. For the rest d/(2M) infrequent arms, we choose one of them uniformly
randomly and include the chosen one in the context set at each time step. The best exploration strategy
for the learner is to play the infrequent arm with a higher probability, e.g., 1

2 and play the frequent
arms with probability M

d . However, the learner can not tell whether an arm is frequent or infrequent
with insufficient information, and his best strategy is to play the arms with the same probability. As a
result, the infrequent arms are insufficiently explored, which leads to an extra Θ̃(

√
d) factor in the

regret.

4 BATCH LEARNING ALGORITHM

We now present our batch learning algorithm in Algorithm 1, which corresponds to Theorem 2. Let
the time schedule {Tk}Mk=1 such that

∑M
k=1 Tk ≥ T to be determined later. We can then accordingly

calculate the end of each batch by Tk = min
{∑k

`=1 Tk, T
}
.

In preparation for explaining the algorithm, we first introduce a few variables and notations used in
the algorithm. During the k-th batch, the algorithm learns an estimation, namely θ̂k, of the hidden
vector θ, as well as an information matrix Λk that is used to construct the confidence interval for
the estimated rewards based on θ̂k. More specifically, given the pair (Λk, θ̂k), we set the confidence

interval for the expected reward of any feature vector x to be [x>θ̂k ± α
√
x>Λ−1

k x], where [a± b]
denotes the interval [a− b, a+ b] and we set α :=

√
50 ln(KTd/δ).

Given the pair (Λk, θ̂k), for any context set X ⊆ Rd, we define the following natural elimination
procedure based on the corresponding confidence intervals

E(X; (Λk, θ̂k)) :=

{
x ∈ X : x>θ̂k + α

√
x>Λ−1

k x ≥ max
y∈X

(
y>θ̂k − α

√
y>Λ−1

k y

)}
. (7)

In words, E(X; (Λk, θ̂k)) returns the set of the survived feature vectors, each of which remains
possible to hold the highest expected reward when assuming all confidence intervals based on
(Λk, θ̂k) contains their estimation targets. By the end of the k-th batch, the algorithm would have
learned k pairs {(Λi, θ̂i)}ki=1, and we naturally extend our elimination procedure to {(Λi, θ̂i)}ki=1

as E(X; {(Λi, θ̂i)}ki=1) := ∩ki=1 E(X; (Λi, θ̂i)). When X ∼ D and given {(Λi, θ̂i)}ki=1, we denote
the distribution of E(X; {(Λi, θ̂i)}ki=1) by Dk+1.

We now explain the key steps of the algorithm. For the first batch, we take actions according to the
local optimal design policy πG, which is defined by the famous General Equivalence Theorem in
(Kiefer & Wolfowitz, 1960) (see Lemma 6 in Appendix A).

For k ≥ 2, at any time t during the k-th batch, the algorithm observes the context set Xt ∼ D,
eliminates some of the sub-optimal arms in Line 1, and denote the set of the survived arms by X(k)

t .

8
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Algorithm 1 Batch Learning

1: Initialize: λ← 10/T ; Λ0 ← λI; θ̂0 ← 0;
2: for t = 1, 2, . . . , T1 do
3: Observe Xt;
4: Play the arm with the feature vector yt ∼ πG(Xt) and receive the reward rt;
5: end for
6: Λ1 ← λI +

∑T1/2
t=1 yty

>
t ; θ̂1 ← Λ−1

1

∑T1/2
t=1 rtyt;

7: π2 ← Exp− Policy
(
{E(Xt, {Λ1, θ̂1})}T1

t=T1/2+1

)
;

8: for k = 2, . . . ,M do
9: for t = Tk−1 + 1, Tk−1 + 2, . . . , Tk do

10: Observe Xt;
11: X

(k)
t ← E(Xt, {Λi, θ̂i}k−1

i=1 );
12: Play the arm with the feature vector yt ∼ πk(X

(k)
t ) and receive the reward rt;

13: end for
14: Λk ← λI +

∑Tk−1+Tk/2
t=Tk−1+1 yty

>
t ; θ̂k ← Λ−1

k

∑Tk−1+Tk/2
t=Tk−1+1 rtyt;

15: X
(k+1)
t ← E(Xt, {Λi, θ̂i}ki=1),∀Tk−1 + 1 ≤ t ≤ Tk;

16: πk+1 ← Exp− Policy({X(k+1)
t }Tkt=Tk−1+Tk/2+1);

17: end for

By the definition above, the X(k)
t follows the distribution Dk when conditioned on the first (k − 1)

batches. The algorithm then uses an exploration policy πk−1 to stochastically select and play an arm
yt ∈ X(k)

t .

At the end of the k-th batch, our algorithm divides the Tk data points collected in the batch into
two parts of the equal sizes. In Line 1, our algorithm calculates Λk and θ̂k using the standard ridge
regression and the first part of the data points. In Line 1, the new exploration policy πk is learned by
the Exp− Policy procedure using the context sets from the second part of the data points. Note that
the context sets fed into Exp− Policy go through the elimination procedure based on {Λi, θ̂}ki=1,
which depends on the first part of the data points.

4.1 LEARNING THE EXPLORATION POLICY

We describe the Exp− Policy procedure by Algorithm 2. Given a group of context vectors {Zi}mi=1,
the algorithm simulates the reward-free linear bandit algorithms. In each time step, the algorithm
first clip the context vectors according the current information matrix W , and then chooses the arm
with clipped maximal variance. The information matrix is updated with doubling trick, which helps
reduce both the number of updates and the complexity of the output policy. With Algorithm 2, we
have the results below.
Lemma 5. Let {Zu}mu=1 be m i.i.d. stochastic context sets following a distribution D. Let π be the
output by running Exp− Policy (Algorithm 2) with the input {Zu}mu=1. Let {Z̃u}nu=1 be another
group of i.i.d. stochastic context sets following the distribution D (which is also independent from
{Zu}mu=1). Let yu be independently sampled from π(Z̃u) for each u ∈ {1, 2, . . . , n}, and let
Λ =

∑n
u=1 yuy

>
u . Let L > 0 be a constant. With probability (1− 3δ), we have that

EX∼D
[
min

{√
max
x∈X

x>(Λ +
n

m
κI)−1x,

√
L

}]
≤ O

(√
d

n
ln

(
md

κ

)
+
d
√
L

m
ln

(
md

κ

))
.

(8)
Due to space constraints, we postpone the full proof of Theorem 2 and Lemma 5 to Appendix B.

5 CONCLUSION

In this paper, we study the batch linear contextual linear bandit problem with stochastic context.
When the number of batches is limited by M , for any T and d, we achieve matching upper and lower

9
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Algorithm 2 Exp− Policy

1: Input: {Zi}mi=1, L;
2: Initialization: κ = 1

T 2 U0 ← κI; η ← 1, τη ← ∅,Wη ← U0;
3: for i = 1, 2, . . . ,m do
4: τη ← τη ∪ {i};
5: Choose zi ∈ Zi to maximize z>i W

−1
η zi;

6: z̃i ← min

{√
L/(z>i W

−1
η zi), 1

}
zi; Ui ← Ui−1 + z̃iz̃

>
i ;

7: if det(Ui) > 2 det(Wη) then
8: η ← η + 1, τη ← ∅,Wη ← Ui;
9: end if

10: end for
11: return π such that π(X) = arg maxx∈X x

>W−1
j x with probability |τj |/m for j ∈ [η].

bounds for the regret (up to logarithmic factors) in both context-blind and context-aware settings. In
the algorithm design and analysis, we highlight two key techniques: the scaled-and-clipped update
rule and the matrix concentration inequality with dynamic upper bounds. We believe these techniques
could help design and analyze batch algorithms for other online learning and decision-making
problems with linear reward structures (e.g., the linear Markov Decision Processes).
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A TECHNICAL LEMMAS

Lemma 6 (General Equivalence Theorem in (Kiefer & Wolfowitz, 1960)). For any bounded subset
X ⊂ Rd, there exists a distribution K(X) supported on X , such that for any ε > 0, it holds that

max
x∈X

x>
(
εI + Ey∼K(X)[yy

>]
)−1

x ≤ d. (9)

Furthermore, there exists a mapping πG, which maps a context X to a distribution over X such that

max
x∈X

x>(εI + Ey∼πG(X)[yy
>])−1x ≤ 2d. (10)

In particular, when supp(X) has a finite size, πG(X) could be implemented within poly(|supp(X)|)
time.

Lemma 7. Let DKL(P ||Q) denote the KL-divergence between P and Q. Let D1(P,Q) := |P −Q|1
denote the L1 distance between P and Q. For any two distribution P,Q and a random variable X
bounded by [−N,N ], we have that

|EP [X]− EQ[X]| ≤ N ·D1(P,Q)N ·min{
√

2DKL(P‖Q),
√

2DKL(Q‖P )} (11)

Proof. The second inequality is the famous Pinsker’s inequality. For the first inequality, we have that

|EP [X]− EQ[X]| =
∣∣∣∣∫ x(dP (x)− dQ(x))

∣∣∣∣ ≤ N ∣∣∣∣∫ |dP (x)− dQ(x)|
∣∣∣∣ = ND1(P,Q). (12)

Lemma 8. Let X1, X2, . . . be a sequence of random variables taking value in [0, l]. Define Fk =
σ(X1, X2, . . . , Xk−1) and Yk = E[Xk|Fk] for k ≥ 1. For any δ > 0, we have that

P

[
∃n,

n∑
k=1

Xk ≤ 3

n∑
k=1

Yk + l ln(1/δ)

]
≤ δ

P

[
∃n,

n∑
k=1

Yk ≥ 3

n∑
k=1

Xk + l ln(1/δ)

]
≤ δ.

Proof. Let t ∈ [0, 1/l] be fixed. Consider to bound Zk := exp(t
∑k
k′=1(Xk′ −3Yk′)). By definition,

we have that

E[Zk|Fk] = exp(t

k−1∑
k′=1

(Xk′ − 3Yk′))E [t(Xk − 3Yk)]

≤ exp(t

k−1∑
k′=1

(Xk′ − 3Yk′)) exp(−3Yk) · E[1 + tXk + 2t2X2
k ]

≤ exp(t

k−1∑
k′=1

(Xk′ − 3Yk′)) exp(−3Yk) · E[1 + 3tXk]

= exp(t

k−1∑
k′=1

(Xk′ − 3Yk′)) exp(−3Yk) · (1 + 3tYk)

≤ exp(t

k−1∑
k′=1

(Xk′ − 3Yk′))

= Zk−1,

where the second line is by the fact that ex ≤ 1 + x + 2x2 for x ∈ [0, 1]. Define Z0 = 1
Then {Zk}k≥0 is a super-martingale with respect to {Fk}k≥1. Let τ be the smallest n such that

12
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∑n
k=1Xk− 3

∑n
k=1 Yk > l ln(1/δ). It is easy to verify that Zmin{τ,n} ≤ exp(tl ln(1/δ) + tl) <∞.

Choose t = 1/l. By the optimal stopping time theorem, we have that

P

[
∃n ≤ N,

n∑
k=1

Xk ≥ 3

n∑
k=1

Yk + l ln(1/δ)

]
= P [τ ≤ N ]

≤ P
[
Zmin{τ,N} ≥ exp(tl ln(1/δ))

]
≤

E[Zmin{τ,N}]

exp(tl ln(1/δ))

≤ δ.

Letting N →∞, we have that

P

[
∃n,

n∑
k=1

Xk ≤ 3

n∑
k=1

Yk + l ln(1/δ)

]
≤ δ.

Considering Wk = E[exp(t
∑k
k′=1(Yk/3−Xk))], using similar arguments and choosing t = 1/(3l),

we have that

P

[
∃n,

n∑
k=1

Yk ≥ 3

n∑
k=1

Xk + l ln(1/δ)

]
≤ δ.

The proof is completed.

A.1 STATEMENT AND PROOF OF THE ELLIPTICAL POTENTIAL LEMMA (LEMMA 9)

Lemma 9. Let x1,x2, . . . ,xn be a sequence of vectors in Rd such that ‖xi‖2 ≤ 1. Let Λ0 = A be
a positively definite matrix and Λi = Λ0 +

∑i
j=1 xjx

>
j . If x>i Λ−1

i−1xi ≤ 1 for all 1 ≤ i ≤ n, it then
holds that

n∑
i=1

x>i Λ−1
i−1xi ≤ 2 ln

(
det(Λn)

det(Λ0)

)
.

Proof. Note that det(Λi+1) = det(Λi)(1 + x>i+1Λ−1
i xi+1). Since ln(1 + x) ≥ x

2 when 0 ≤ x ≤ 1,
we have that

ln(det(Λi+1))− ln(det(Λi)) ≥
1

2
x>i+1Λ−1

i xi+1,

which implies that
n∑
i=1

x>i Λ−1
i−1xi ≤ 2 ln

(
det(Λn)

det(Λ0)

)
.

B THE REGRET ANALYSIS: PROOF OF THEOREM 2

Given T and d, we define d̃ := d ln(TKd/δ). In the case d ≤ T ≤ d ln(K), the regret bound is
exactly Θ(T ), and in the case d ln(K) < T ≤ d̃, the regret lower bound is Ω(d ln(K)) and the upper
bound is at most O(T ) ≤ O(d ln(KTd/δ)). Therefore, in the case d ≤ T < d̃, the trivial upper
bound O(T ) is optimal up to logarithmic factors in T and d. Below we assume T ≥ d̃.

We first define the following desired event where all the confidence intervals contains their estimation
targets.

Ek :=

{
x>θ ∈ [x>θ̂k ± α

√
x>Λ−1

k−1x],∀x ∈ Xt,∀t ∈ {1, 2, . . . , T}
}
,∀k ∈ {1, 2, . . . ,M}

13
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We then let E = ∩Mk=1Ek be the whole confidence event.

By the analysis of the ridge regression (Lemma 15, stated and proved in Appendix B.5) and the fact
that α ≥

√
ln(KTd/δ) + λ

√
d, via a union bound we have that Pr[E] ≥ 1−MTδ. When E holds,

we know that the optimal arm at any time step will never be eliminated by the elimination procedure
E . Let I[E] be the indicator variable which takes value 1 when E holds and value 0 otherwise. We
have the following upper bound for the expected regret of the algorithm.

RT ≤
M∑
k=1

Tk∑
t=Tk−1+1

E
[
I[E]

(
max
x∈Xt

{x>θ} − y>t θ
)]

+ 2T Pr[E]

≤
M∑
k=1

Tk∑
t=Tk−1+1

E

[
I[E]

(
max
x∈X(k)

t

{x>θ} − min
x∈X(k)

t

{x>θ}

)]
+ 2MT 2δ. (13)

Lemma 10. For any time step t during any batch k (k ≥ 3), define X(k−1)
t := E(Xt, {Λi, θ̂i}k−2

i=1 )
and we have that

E

[
I[E]

(
max
x∈X(k)

t

{x>θ} − min
x∈X(k)

t

{x>θ}

)]
≤ E

[
min

{
4α max

x∈X(k)
t

√
x>Λ−1

k−1x, 2

}]
. (14)

Proof. When E happens, for any u,v ∈ X
(k)
t , u>θ ∈ [u>θ̂k−1 ± α

√
u>Λ−1

k−1u] and v>θ ∈

[v>θ̂k−1 ± α
√
v>Λ−1

k−1v]. We then have that

I[E]
(
u>θ − v>θ

)
≤
(
u>θ̂k−1 + α

√
u>Λ−1

k−1u

)
−
(
v>θ̂k−1 − α

√
v>Λ−1

k−1v

)
=

(
u>θ̂k−1 − α

√
u>Λ−1

k−1u

)
−
(
v>θ̂k−1 + α

√
v>Λ−1

k−1v

)
+ 2α

√
u>Λ−1

k−1u+ 2α
√
v>Λ−1

k−1v

≤ 2α
√
u>Λ−1

k−1u+ 2α
√
v>Λ−1

k−1v (15)

≤ 4α max
x∈X(k)

t

√
x>Λ−1

k−1x ≤ 4α max
x∈X(k−1)

t

√
x>Λ−1

k−1x,

where the equation 15 is because v survived from the elimination based on (Λk−1, θ̂k−1), and the
last inequality is because X(k)

t ⊆ X(k−1)
t .

Letting u = arg max
x∈X(k)

t
{x>θ} and v = arg min

x∈X(k)
t
{x>θ} and noting that u>θ,v>θ ∈

[−1, 1], we have that

I[E]

(
max
x∈X(k)

t

{x>θ} − min
x∈X(k)

t

{x>θ}

)
≤ min

{
4α max

x∈X(k−1)
t

√
x>Λ−1

k−1x, 2

}
. (16)

Taking the expectation over equation 16, we prove the lemma.

B.1 REGRET IN THE FIRST AND SECOND BATCHES

The regret in the first batch is bounded by T1 trivially. For the second batch, we have the lemma
below.

Lemma 11. With probability 1− δ, it holds that

EX∼D

[
max

x∈E(X;(Λ1,θ̂1))

√
min{x>Λ−1

1 x, 2}

]
≤ O

(√
1

T1
·
(
d ln

(
T1

λ

)
+ ln(T1/δ)

))
.
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Proof. Recall the definition of yt and rt in line 1, Algorithm 1. Let Wt denote λI+
∑t
τ=1 yτy

>
τ for

0 ≤ t ≤ T1/2. By the Elliptical Potential Lemma (Lemma 9, stated and proved in Appendix A.1),
we have that

T1/2∑
t=1

min{y>t W−1
t−1yt, 1} ≤ O

(
d ln

(
T1

λ

))
.

By Corollary 22 with ε = 1
2 , we further have that with probability 1− δ, it holds that

T1/2∑
t=1

EX∼DEy∼πG(X) min{y>W−1
t−1y, 1} ≤ 2

T1/2∑
t=1

min{y>t W−1
t−1yt, 1}+ 56 ln(T1/δ)

≤ O
(
d ln

(
T1

λ

)
+ ln(T1/δ)

)
. (17)

Noting that Wt−1 4Wt for 1 ≤ t ≤ T1 and Λ1 = WT1/2, by equation 17 we have that

T1EX∼DEy∼πG(X) min{y>Λ−1
1 y, 1} ≤ O

(
d ln

(
T1

λ

)
+ ln(T1/δ)

)
. (18)

Lemma 12. For any PSD matrix W and context X , we have that

min{max
x∈X
{x>W−1x}, 1} ≤ min{K, d}Ey∼πG(X) min{y>W−1y, 1}. (19)

Proof. By Lemma 6, we have that

max
x∈X
{x>W−1x} ≤ min{K, d}Ey∼πG(X)y

>W−1y. (20)

In the case maxx∈X x
>W−1x ≤ 1, we have that y>W−1y ≤ 1 for any y ∈ X . It then holds that

max
x∈X

min{x>W−1x, 1} ≤ min{K, d}Ey∼πG(X) min{y>W−1y, 1}.

In the case maxx∈X x
>W−1x > 1, we analyze as below. When min{K, d}Pry∼πG(X)[y

>W−1y >
1] ≥ 1, it is trivial that

min{K, d}Ey∼πG(X) min{y>W−1y, 1} ≥ 1.

Otherwise, we have that

min{K, d}Ey∼πG(X) min{y>W−1y, 1}
≥ min{K, d}Ey∼πG(X)y

>W−1y −min{K, d}Pry∼πG(X)[y
>W−1y > 1](max

x∈X
x>W−1x− 1)

≥ max
x∈X

x>W−1x−min{K, d}Pry∼πG(X)[y
>W−1y > 1](max

x∈X
x>W−1x− 1) (21)

= 1 + (1−min{K, d}Pry∼πG(X)[y
>W−1y > 1])(max

x∈X
x>W−1x− 1)

≥ 1.

Here equation 21 holds by Lemma 6. The lemma is proved.

Setting W = Λ1 in Lemma 12, we have that

EX∼D max
x∈X

min{x>Λ−1
1 x, 1} ≤ min{K, d}

T1
·O
(
d ln

(
T1

λ

)
+ ln(T1/δ)

)
. (22)

Therefore,

EX∼D

[
max

x∈E(X;(Λ1,θ̂1))

√
min{x>Λ−1

1 x, 1}

]

≤

√
EX∼D

[
max
x∈X

min{x>Λ−1
1 x, 1}

]
≤ O

(√
min{K, d}
T1

·
(
d ln

(
T1

λ

)
+ ln(T1/δ)

))
.

we finish the proof of Lemma 11.
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By Lemma 10 and 11, the regret in the second batch is bounded by

O

(
T2α ·

√
min{K, d}d

T1
ln

(
T

λδ

))
+ Tδ. (23)

B.2 REGRET IN GENERAL BATCHES

Let

L :=
1

200 ln(Td/δ)
and κ :=

1

T 2
(24)

be the parameters to be used by Exp− Policy.

For the k-th batch (k ≥ 3), we invoke Lemma 5 with m = Tk−2/2, {Zu}mu=1 =

{X(k−1)
t }Tk−2

t=Tk−3+Tk−2/2+1, n = Tk−1/2, {Z̃u}nu=1 = {X(k−1)
t }Tk−2+Tk−1/2

t=Tk−2+1 , and D = Dk−1,
we have that with probability (1− 3δ), it holds that

EX∼Dk−1

min


√√√√√max
x∈X

x>

Tk−2+Tk−1/2∑
t=Tk−2+1

yty>t +
Tk−1

Tk−2
κI

−1

x,
√
L




≤

√
1

Tk−1
·O

(√
d ln

(
Tk−2d

κ

))
+

√
L

Tk−2
·O
(
d ln

(
Tk−2d

κ

))
. (25)

Note that Tk−1

Tk−2
κ ≤ λ and therefore (

∑Tk−2+Tk−1/2
t=Tk−2+1 yty

>
t + Tk−1

Tk−2
κI)−1 < Λ−1

k−1. Therefore equa-
tion 25 implies that with probability (1− 3δ),

EX∼Dk−1

[
min

{√
max
x∈X

x>Λ−1
k−1x,

√
L

}]
≤

√
1

Tk−1
·O
(√

d ln (Td)
)

+

√
L

Tk−2
·O (d ln (Td)) .

(26)

In other words, for each time step t during the k-th batch, we have that

E

[
min

{√
max

x∈X(k−1)
t

x>Λ−1
k−1x,

√
L

}]
≤

√
1

Tk−1
·O
(√

d ln (Td)
)

+

√
L

Tk−2
·O (d ln (Td)) + 3δ.

(27)
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B.3 PUTTING ALL TOGETHER

Combining equation 13, Lemma 10 and Lemma 11, the total regret is bounded by

RT ≤ 2T1 + 2T2 ·min

α
√

2 min{K, d}d ln
(
T
λδ

)
T1

, 1


+

M∑
k=3

TkE

[
min

{
4α max

x∈X(k−1)
t

√
x>Λ−1

k−1x, 2

}]
+ 2MT 2δ

≤ 2T1 + 2T2 ·min

α
√

2 min{K, d}d ln
(
T
λδ

)
T1

, 1


+

M∑
k=3

4αTkE

[
min

{
max

x∈X(k−1)
t

√
x>Λ−1

k−1x,
√
L

}]
+ 2MT 2δ

(28)

≤ 2T1 + 2T2 ·min

α
√

2 min{K, d}d ln
(
T
λδ

)
T1

, 1


+

M∑
k=3

4αTkE

[
min

{
max

x∈X(k−1)
t

√
x>Λ−1

k−1x,
√
L

}]
+ 2MT 2δ,

(29)

Here equation 28 is because of 2 ≤ 4α
√
L.

Let d̃ := d ln(TdK/δ) · ln
(
T
λδ

)
. Combining equation 29 and equation 27 (for k ≥ 3), we have that

RT ≤ 2T1 + 2T2 ·min

α
√

2 min{K, d}d ln
(
T
λδ

)
T1

, 1


+ 4α

M∑
k=3

(
Tk√
Tk−1

·O
(√

d ln (Td)
)

+
Tk
√
L

Tk−2
·O (d ln (Td))

)
+ 3Tδ + 2MT 2δ

≤ 2T1 + 2T2 ·min

α
√

2 min{K, d}d ln
(
T
λδ

)
T1

, 1

+O(

√
ln2(Td/δ) + ln(K) ln(Td/δ))×

M∑
k=3

Tk
√
d√

Tk−1

+O

(√
ln(K) ln2(Td) + ln3(Td)

)
×

M∑
k=3

Tkd

Tk−2
+O(MT 2δ)

≤ 2T1 + 2T2 ·min


√

2 min{K, d}d̃
T1

, 1

+O(ln(Td)) ·

(
M∑
k=3

Tk
√
d̃√

Tk−1

+

M∑
k=3

Tkd̃

Tk−2

)
+O(MT 2δ).

(30)

When T is small (i.e., d ≤ T < d̃), Theorem 2 trivially holds because the regret is at most O(d̃),
which is further bounded by

O

(
poly ln(Td) min

{
T

1

2−2−M+2 (d ln(K))
1−2−M+2

2−2−M+2 , T
1

2−2−M+1 (d ln(K))
1−2−M+1

2−2−M+1 min{K, d}
2−M+1

2−2−M+1

})
.

Suppose T ≥ d̃. Let h = min{K, d}. We discuss the following two cases to design the batch
schedule.
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Case I: d̃ ≤ T ≤ d̃h2−2−M+2

. In this case , we define γ := T
1

2−2−M+2 d̃
1−2−M+2

2−2−M+2 ≥ d̃.

We let

T1 = γ, T2 = γ, Tk = γ

√
Tk−1√
d̃

,∀3 ≤ k ≤M. (31)

Then for 3 ≤ k ≤ M , by the iteration rule we have that Tk = γ2−2−k+2

d̃−1+2−k+2

. It is easy to
verify that

∑M
k=1 Tk ≥ TM = T .

Now we verify that the regret for each batch is bounded by O(γ). Firstly we have that T1, T2 ≤ γ.
For k = 3, we have that T3

√
d√

T2
= γ and T3d̃

T1
= γ

1
2 d̃

1
2 ≤ γ. For 4 ≤ k ≤ M , noting that d̃ ≤ γ, we

have that

Tk
√
d√

Tk−1

= γ,
Tkd

Tk−2
= γ2−k−2−k+2

d̃1−2−k+2−k+2

≤ γ. (32)

Therefore, the total regret in this case is bounded by

O

(
T

1

2−2−M+2 d̃
1−2−M+2

2−2−M+2 log log(T ) +MT 2δ

)
. (33)

Case II: T > d̃h2−2−M+2

. In this case, we define γ := T
1

2−2−M+1 d̃
1−2−M+1

2−2−M+1 h
2−M+1

2−2−M+1 ≥ d̃. Let

T1 = γ, T2 = γ

√
T1√
d̃h
, Tk = γ

√
Tk−1√
d̃

,∀3 ≤ k ≤M. (34)

By the iteration rule, we have that Tk = γ2−2−k+1

d̃−1+2−k+1

h−2−k+1

. In particular,
∑M
k=1 Tk ≥

TM = γ2−2−M+1

d̃−1+2−M+1

h−2−M+1

= T .

By definition, we have that T1 ≤ γ and T2

√
d̃h√
T1
≤ γ. For k = 3, we have that

T3

√
d̃√

T2

= γ,
T3d̃

T1
= γ

3
4 d̃

1
4h−

1
4 ≤ γ.

For 4 ≤ k ≤M , we have that

Tk
√
d̃√

Tk−1

= γ,
Tkd̃

Tk−2
= γ2−k+3−2−k+1

d̃1+2−k+1−2−k+3

h2−k+3−2−k+1

≤ d̃
(
γh

d̃

) 3
8

. (35)

So it suffices to verify d̃h
3
5 ≤ γ. In fact we have that

γ2−2−M+1

= T d̃1−2−M+1

h2−M+1

≥ d̃2−2−M+1

h2−2−M+2+2−M+1

≥ d̃2−2−M+1

h
3
5 (2−2−M+1),

(36)

which implies that d̃h
3
5 ≤ γ.

Therefore, the total regret in this case is bounded by

O

(
T

1

2−2−M+1 d̃
1−2−M+1

2−2−M+1 h
2−M+1

2−2−M+1 log log(T ) +MT 2δ

)
. (37)

We now finish the discuss about the two cases and combine the two regret upper bounds equation 33
and equation 37. Noting that T > d̃h2−2−M+2

implies that

T
1

2−2−M+2 d̃
1−2−M+2

2−2−M+2 > T
1

2−2−M+1 d̃
1−2−M+1

2−2−M+1 h
2−M+1

2−2−M+1 , (38)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

we have that

RT ≤ O
(

min

{
T

1

2−2−M+2 d̃
1−2−M+2

2−2−M+2 , T
1

2−2−M+1 d̃
1−2−M+1

2−2−M+1 h
2−M+1

2−2−M+1

}
· log log(T ) +MT 2δ

)
.

Setting δ = 1/T 3, we obtain that

RT ≤ O

(
poly ln(Td) min

{
T

1

2−2−M+2 (d ln(K))
1−2−M+2

2−2−M+2 ,

T
1

2−2−M+1 (d ln(K))
1−2−M+1

2−2−M+1 min{K, d}
2−M+1

2−2−M+1

})
.

Theorem 2 is proven.

B.4 ANALYSIS: PROOF OF LEMMA 5

Lemma 5 (restated). Let {Zu}mu=1 be m i.i.d. stochastic context sets following a distribution D. Let
π be the output by running Exp− Policy with the input {Zu}mu=1. Let {Z̃u}nu=1 be another group of
i.i.d. stochastic context sets following the distribution D (which is also independent from {Zu}mu=1).
Let yu be independently sampled from π(Z̃u) for each u ∈ {1, 2, . . . , n}, and let Λ =

∑n
u=1 yuy

>
u .

With probability (1− 3δ), we have that

EX∼D
[
min

{√
max
x∈X

x>(Λ +
n

m
κI)−1x,

√
L

}]
≤
√

1

n
·O

(√
d ln

(
md

κ

))
+

√
L

m
·O
(
d ln

(
md

κ

))
.

(8)

As stated in Section 3, the proof of Lemma 5 utilizes similar ideas in the proof of Theorem 5 in (Ruan
et al., 2021). The major difference is that their information matrix starts with Ω(1) · I when executing
the output policy, while our information matrix could start with κI with κ = 1

T 2 . As a result, it is
harder for us to recover the information matrix Um.

Let D be the distribution defined in the statement of Lemma 5, we first prove the following lemma.

Lemma 13. With probability (1− δ), it holds that

mEX∼D
[
min{max

x∈X
x>U−1

m x, L}
]
≤ O(d ln(md/κ)). (39)

Proof. Let ηi denote the index η such that i ∈ τη. Note that i ∈ τη implies that det(Ui−1) ≤
2 det(Wη), which further implies that det((W

− 1
2

η )>Ui−1(Wη)
1
2 ) ≤ 2. Because Ui−1 < Wη, we

have that (W
− 1

2
η )>Ui−1(Wη)

1
2 < I. Therefore, the maximal eigenvalue of (W

− 1
2

η )>Ui−1(Wη)
1
2 <

I is at most 2, where it follows that Ui−1 ≤ 2Wη .

Since Um <Wη for all η ≥ 1, we have that

mEX∼D
[
min{max

x∈X
x>U−1

m x, L}
]
≤

m∑
i=1

EX∼D
[
min{max

x∈X
x>W−1

ηi x, L}
]
. (40)

Invoking Corollary 22 with ε = 1 and noting that E[min{z̃>i W−1
ηi z̃i, L}] =

EX∼D
[
min{maxx∈X x

>W−1
ηi x, L}

]
when conditioned on the first (i − 1) iterations in

Algorithm 2, we have with probability (1− δ), it holds that
m∑
i=1

EX∼D
[
min{max

x∈X
x>W−1

ηi x, L}
]
≤ 2

m∑
i=1

min{z>i W−1
ηi zi, L}+ 20L ln(1/δ). (41)
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By the definition of z̃i, we further have that
m∑
i=1

min{z>i W−1
ηi zi, L} =

m∑
i=1

z̃>i W
−1
ηi z̃i ≤ 2

m∑
i=1

z̃>i U
−1
i−1z̃i ≤ O(d ln(md/κ)), (42)

where the second last inequality is by the fact that Ui−1 4 2Wηi , and the last inequality is by a direct
application of the Elliptical Potential Lemma (Lemma 9, stated and proved in Appendix A.1) and the
fact that 0 < L < 1. Combining equation 40, equation 41, equation 42 and the definition of L, we
prove the lemma.

To proceed, we have the lemma below.

Lemma 14. Define V := EX∼D,i∼π(X)

[
min

{
L

x>i U
−1
m xi

, 1
}
xix

>
i

]
. With probability 1− δ,

V <
1

6m
Um −

1

3m
κI. (43)

Proof. Recall that Fm′ = σ(X1, X2, . . . , Xm′−1). By the definition of π, and noting that Um ≥
Wηu implies that L

x>i U
−1
m xi

≥ L
x>i W

−1
ηu xi

for 1 ≤ u ≤ m, we have that

mV <
m∑
u=1

E
[
zu,iuz

>
u,iu |Fu

]
.

Noting that z>u,iuW
−1
ηu zu,iu ≤ L implies zu,iuz

>
u,iu
≤ LWηu ≤ LUm, by Lemma 20 with Zm =

LUm and ε = 2, with probability (1− δ), we have that

mV < E
[
zu,iuz

>
u,iu |Fu

]
<

1

3

m∑
u=1

zu,iuz
>
u,iu −

100L ln(Td/δ)

3
Um

=
1

3

m∑
u=1

zu,iuz
>
u,iu −

1

6
Um =

1

6
Um −

1

3
κI,

and the conclusion follows by dividing m on both sides of the inequality.

Recall that Λ =
∑n
u=1 yuy

>
u . Let

Λ̃ :=

n∑
u=1

min

{
L

y>u U
−1
m yu

, 1

}
yuy

>
u .

By definition we have that Λ < Λ̃.

Noting that for any 1 ≤ u ≤ n,

E
[
min

{
L

y>u U
−1
m yu

, 1

}
yuy

>
u

]
= EX∼D,i∼π(X)

[
min

{
L

x>i U
−1
m xi

, 1

}
xix

>
i

]
= V

and min
{

L
y>u U

−1
m yu

, 1
}
yuy

>
u 4 LUm, by Corollary 22 withW = LUm and ε = 2

3 , with probability
1− δ,

Λ̃ <
n

3
V − 68L

3
Um.

By Lemma 14, we further have that

Λ < Λ̃ <
n

3
V − 68L

3
Um <

n

3
V − 1

6
Um <

n

3m

(
1

6
Um −

1

3
κI

)
− 1

6
Um =

n

36m
Um −

n

9m
κI.

Therefore, Λ + n
mκI ≥

n
36mUm.
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In the case n ≥ m, we have that

EX∼D

[
min

{√
max
i
x>i

(
Λ +

n

m
κI
)−1

xi,
√
L

}]

≤
√

36m

n
EX∼D

[
min

{√
max
i
x>i U

−1
m xi,

√
Ln/m

}]
≤
√

36m

n
EX∼D

[
min

{√
max
i
x>i U

−1
m xi,

√
L
}]

+

√
36m

n
·
√
Ln

m
· PrX∼D

[
max
i
x>i U

−1
m xi ≥ L

]
≤
√

36m

n

√
EX∼D

[
min

{
max
i
x>i U

−1
m xi, L

}]
+

√
L

m
·O
(
d ln

(
md

κ

))
≤
√

1

n
·O

(√
d ln

(
md

κ

))
+

√
L

m
·O
(
d ln

(
md

κ

))
.

Here the second last inequality and last inequality are by Lemma 13 and the fact that

PrX∼D

[
max
i
x>i U

−1
m xi ≥ L

]
≤ EX∼D

[
min{max

i
x>U−1

m x, L}
]
≤ 1

m
·O
(
d ln

(
md

κ

))
.

In the case n < m, with similar arguments we have that

EX∼D

[
min

{√
max
i
x>i

(
Λ +

n

m
κI
)−1

xi,
√
L

}]

≤
√

36m

n
EX∼D

[
min

{√
max
i
x>i U

−1
m xi,

√
Ln/m

}]
≤
√

36m

n
EX∼D

[
min

{√
max
i
x>i U

−1
m xi,

√
L
}]

≤
√

36m

n

√
EX∼D

[
min

{
max
i
x>i U

−1
m xi, L

}]
≤
√

1

n
·O

(√
d ln

(
md

κ

))

≤
√

1

n
·O

(√
d ln

(
md

κ

))
+

√
L

m
·O
(
d ln

(
md

κ

))
.

The proof is completed.

B.5 STATEMENT AND PROOF OF LEMMA 15

The following lemma is a similar version of Lemma 31 in (Ruan et al., 2021) that analyzes the size of
the confidence interval by the ridge regression. Note that since we only assume ‖θ‖∞ ≤ 1 instead of
the upper bound on the Euclidean norm, the calculation is slightly different.

Lemma 15. Given θ,x1,x2, . . . ,xn ∈ Rd such that ‖θ‖∞ ≤ 1 for all i ∈ [n], let ri = x>i θ + εi
where {εi}ni=1 are independent sub-Gaussian random variable with variance proxy 1. Let Λ =

λI +
∑n
i=1 xix

>
i and θ̂ = Λ−1

∑n
i=1 rixi. For any x ∈ Rd and any γ > 0, we have that

Pr
[
|x>(θ − θ̂)| > (γ +

√
dλ)
√
xΛ−1x

]
≤ 2e−

γ2

2 .
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Proof. Direct computation gives that

|x>(θ − θ̂)| =

∣∣∣∣∣x>
(

Λ−1
n∑
i=1

xi(x
>
i θ + εi)− θ

)∣∣∣∣∣
=

∣∣∣∣∣x>
(

Λ−1
n∑
i=1

xiεi + Λ−1(Λ− λI)θ − θ

)∣∣∣∣∣
=

∣∣∣∣∣x>Λ−1

(
n∑
i=1

xiεi − λθ

)∣∣∣∣∣
≤ λ

∣∣x>Λ−1θ
∣∣+

∣∣∣∣∣
n∑
i=1

x>Λ−1xiεi

∣∣∣∣∣ .
For the first term, by Cauchy-Schwarz and noting that Λ < λI, we have that

λ
∣∣x>Λ−1θ

∣∣ ≤ λ√d · √x>Λ−2x ≤
√
λdx>Λ−1x. (44)

For the second term, by sub-Gaussian concentration inequalities, we have that

Pr

[∣∣∣∣∣
n∑
i=1

x>Λ−1xiεi

∣∣∣∣∣ > γ
√
x>Λ−1x

]
≤ 2e

−γ2

2 . (45)

The conclusion follows by combining equation 44 and equation 45.

C REGRET LOWER BOUND FOR CONTEXT-BLIND BATCH LEARNING

In this section, we prove Lemma 16, which implies the regret lower bound theorem (Theorem 4). We
first sketch the high-level idea below.

High-level idea. To construct the lower bound instances, we first constructM mutually independent
sub-problems with dimension d/M . At each time step, a uniform random sub-problem (i.e., its
context set) is selected and presented to the learner. To analyze the regret performance of any batch
learning algorithm, we divide the time horizon T into M consecutive stages with properly chosen
lengths {Tk}Mk=1 for each stage. We will show that, for each k ∈ {1, 2, . . . ,M}, during the k-th
stage, if the learner does not start a new batch and update its policy, then a large regret would incur
for the k-th sub-problem in this stage.

Our construction for the sub-problems is as follows. For each k ∈ {1, 3, 4, 5, . . . ,M}, we choose the
sub-problem to be the hard instance for the K-armed linear contextual linear bandit problem with
burn-in time Θ̃(Tk−1). In other words, we construct the k-th sub-problem so that it is hard for the
learner to find a good policy for the k-th problem during the first

∑
i≤k−1 Ti time steps.

The most interesting sub-problem design is for k = 2, which takes the advantage of the context-blind
setting to force the learner incur more regret. In this sub-problem, we consider a linear contextual
bandit problem d/M arms (assuming that K ≥ d/M ). However, during each time step, only
(d/(2M) + 1) arms are presented to the learner. In particular, we set the first d/(2M) arms to be the
frequent arms that always appear in the context set. For the rest d/(2M) infrequent arms, we choose
one of them uniformly randomly and include the chosen one in the context set at each time step.
The best exploration strategy for the learner is to play the infrequent arm with a higher probability,
e.g., 1

2 and play the frequent arms with probability M
d . However, due to the context-blind setting,

the learner can not tell whether an arm is frequent or infrequent with insufficient information, and
his best strategy is to play the arms with the same probability. As a result, the infrequent arms are
insufficiently explored, which leads to an extra Θ̃(

√
d) factor in the regret.

Lemma 16. For any algorithm G with batch complexity M , assuming T ≥ d log2(K), the minimax
regret is at least

Ω

 1

poly ln(Td)
min


T

1

2−2−M+1 (d log2(K))
1−2−M+1

2−2−M+1

(
min{K, d}
log2(K)

) 2−M+1

2−2−M+1

T
1

2−2−M+2 (d log2(K))
1−2−M+2

2−2−M+2


 .
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Proof. Define d̄ = d/M and h̃ = 1
2 min{K, d̄}. Define ď = d̄ log2(K)

M ln(dM) ≤ d log2(K) ≤ d and

ȟ = h̃
log2(K) . When ď ≤ T ≤ ďȟ2−2−M+2

, define γ := T
1

2−2−M+2 ď
1−2−M+2

d2−2−M+2 . When T >

ȟ2−2−M+2

, define γ := T
1

2−2−M+1 ď
1−2−M+1

2−2−M+1 ȟ
2−M+1

2−2−M+1 ≥ ď. Given γ, we further define T1 = γ,

T2 = max{γ, γ ·
√

T1 ln(dM)

d̄h
} and Tk = γ ·

√
MTk−1 ln(dM)

d̄ log2(K)
for any 3 ≤ k ≤ M . Let ε1 = 1

100 ,

ε2 = min
{

1
100

√
d̄2

T1 ln(dM) , 1
}

and εk = 1
100

√
d̄ log2(K)

MTk−1 ln(dM) for k = 3, 4, . . . ,M .

Fix the algorithm G. Below we assume the randomness of G is considered in the expectation operator
E[·] and probability operator Pr[·]. Let Regretθ,D(T ) be the expected regret under G with hidden
parameter as θ and context distribution as D. We aim to design D and θ such that Regretθ,D(T ) is
large enough.

Without loss of generality, we assume d/M is an integer. In the construction below, we divide Rd
into M subspaces, where for each subspace we construct a hard case. We let Rd = ⊗Mi=1U i, where
U i is the subspace spanned by {e(i−1)d/M+j}

d/M
j=1 . In each round the noise is set to be Gaussian

with variance 1. The hidden parameter θ = {θi}Mi=1 is chosen from the space Y = ⊗Mi=1Yi. The
context distribution D is given by the average of {Di}Mi=1. That is, in the t-th round, the environment
first sample ut ∼ Uniform({1, 2, . . . ,M}), and then sample X according to Dut . In words, we
divide the original problem into M independent sub-problems. For the k-th sub-problem is d/M , the
dimension is d/M , the parameter space is Yk and the context distribution is Dk.

We now define Yk and Dk. Let d̄ = d/M . We have two cases: Case I: k = 2; and Case II: k = 1 or
3 ≤ k ≤M . Below we respectively define the parameter space Yk for θk and the context distribution
Dk.

Case I: k = 2. Define Y2 = {−ε2, 0, ε2}d̄. Recall that h̃ = 1
2 min{K, d̄}. For V ⊂ [2h̃] with

|V| = h̃, we define the context distribution D2(V) by letting PrX∼D2(V)[X = {ej}j∈V ∪ {ei}] =
1

d̄−h̃ for any i ∈ [d̄]/V . In words, the sub-problem for the second batch is a contextual bandit problem

with h̃+ 1 arms. Among the h+ 1 arms, there are h̃ arms which appear in each round, and the left
arms appears with equal probability as 1

d̄−h̃ .

In the case K � h̃ + 1, we simply repeat the first arm for K − (h̃ + 1) times to construct the
K-armed linear bandit problem. Without loss of generality, we still use D2(V) to denote this context.
For fixed V and ξ ∈ {−1, 1}d̄, we further define θ2(V, ξ) by setting θ2

i (V, ξ) = 0 for i ∈ V and
θ2
i (V, ξ) = ξiε2 for i ∈ [d̄]/V .

Since the sub-problem is a contextual bandit problem, we could view the context X as a subset of [d̄].
Given a permutation σ ∈ Sd̄ and a context X ⊂ [d̄], we define the context vector σ(X) = {σ(i)}i∈X .
With a slight abuse of notations, we use D2(σ) as the shorthand for D2(σ([1, 2, . . . , h̃])).

Let the policy π1 be the policy for the first batch. Clearly, π1 is independent of the context distribution.
Let the distribution of π1 be Π1. We then claim the following lemma.

Lemma 17.

min
σ∈Sd̄

Eπ1∼Π1
EX∼D(σ)

[
I
[
π1(X) /∈ {σ(1), σ(2), . . . , σ(h̃)}

]]
≤ 1

h̃+ 1
.

Proof. Let A be the set of subsets of [d̄] with size h̃ + 1. Let Zi = {1, 2, . . . , h̃, h̃ + i} for
1 ≤ i ≤ d̄ − h̃. Note that for any 1 ≤ i ≤ d̄ − h̃ and σ ∈ Sd̄, π(σ(Zi)) /∈ {σ(1), σ(2), . . . , σ(h̃)}
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implies that π(X) = σ(h̃+ i). Then we have that∑
σ∈Sd̄

1

d̄!
Eπ1∼Π1

EX∼D2(σ)

[
I
[
π1(X) /∈ {σ(1), σ(2), . . . , σ(h̃)}

]]

=
1

d̄!(d̄− h̃)

∑
X∈A

∑
σ∈Sd̄

d1∑
i=1

I[σ−1(X) = Zi]Eπ1∼Π1

[
I
[
π1(X) = σ(h̃+ i)

]]

=
1

d̄!(d̄− h̃)

∑
X∈A

Eπ1∼Π1

d̄−h̃∑
i=1

∑
σ∈Sd̄

I[σ−1(X) = Zi, π1(X) = σ(h+ i)]


=

1

d̄!(d̄− h̃)

∑
X∈A

Eπ1∼Π1

 d1∑
i=1

∑
σ∈Sd̄,x∈X

I[σ−1(X) = Zi, π1(X) = x, x = σ(h̃+ i)]


=

1

d̄!(d̄− h̃)

∑
X∈A,x∈X

Prπ1∼Π1 [π1(X) = x] ·
∑
σ∈Sd̄

d̄−h̃∑
i=1

I[σ−1(X) = Zi, x = σ(h̃+ i)]

=
h̃!(d̄− h̃− 1)!

d̄!

∑
X∈A,x∈X

Prπ1∼Π1
[π1(X) = x]

=
h̃!(d̄− h̃− 1)!

d̄!

∑
X∈A

1

=
h̃!(d̄− h̃− 1)!

d̄!
|A|

=
1

h̃+ 1
. (46)

Then the conclusion follows easily.

Without loss of generality, we suppose that the identical permutation satisfies the condition in
Lemma 17, i.e.,

Eπ1∼Π1
EX∼D2([h̃])I

[
π1(X) /∈ {1, 2, . . . , h̃}

]
≤ 1

h̃+ 1
. (47)

Define J = {i ≥ h̃ + 1|Eπ1∼Π1
EX∼DI[π(X) = i] ≤ 2

(h̃+1)(d̄−h̃)
}, then by equation 47 we have

that |J | ≥ d̄−h̃
2 . Without loss of generality, we assume J = {h̃+1, h̃+2, . . . , h̃+ `} where ` ≥ d̄−h̃

2

is the size of J . Then the context distribution is fixed as D2 = D2([h̃]).

Case II: k = 1 or 3 ≤ k ≤ M . We consider to construct the hard case for K-armed linear
contextual bandit problem. We assume a = min{log2(K), d̄} and b = d̄/a are both integers.
Define Yk = εk · {−1, 1}d̄. The context distribution Dk is defined as the uniform distribution over
Xk,i = 1

a · {x : xi = 0,∀i /∈ [(i−1)a+ 1, ia],xi ∈ {−1, 1},∀i ∈ [(i−1)a+ 1, ia]} for 1 ≤ i ≤ b.
Now we start to analyze the minimax lower bound over all θ ∈ Y and the context distribution
D described above. Let {ti}Mi=1 be the time schedule by running the algorithm G. Then there
exists 1 ≤ i ≤ M such that

∑
j≤i−1 tj ≤

∑
j≤i−1 Tj <

∑
j≤i Tj ≤

∑
j≤i tj , where we define

T0 = t0 = 0. Denote Ei be the event where i is the smallest number such that
∑
j≤i ti ≤

∑
j≤i Ti <∑

j≤i+1 Ti+1 ≤
∑
j≤i+1 ti+1. Then it holds that

∑M
i=1 I[Ei] = 1.

To proceed, we have the lemma as below.
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Lemma 18. Let πk be the policy for the k-th batch and π(t) be the policy for the t-th step. Fix
j ∈ [h̃+ 1, h̃+ `]. For θ ∈ Y , we define

Rkj (θ) =

{{
1

d̄−h̃

∑T1+T2

t=T1+1 Eθ,x∼π(t)([h̃]∩{h̃+j})
[
I[x = j, θ2

j < 0] + I[x 6= j, θ2
j > 0]

]
· ε2, k = 2;

1
d̄

∑Tk
t=Tk−1+1 Eθ,x∼π(t)(Xk,dj/ae)

[
I[xjθkj < 0]

]
εk, k = 1 or 3 ≤ k ≤M.

(48)

and Rj(θ) =
∑M
k=1R

k
j (θ). Then for any h̃+ 1 ≤ j ≤ h̃+ `, we have that

1

|Y|
∑
θ∈Y

Rj(θ) ≥
1

8(M + 1)
min

{
min

k∈[M ],k 6=2

Tkεk
d̄

,
T2ε2
8d̄

}
.

With Lemma 18 in hand, noting that ` ≥ d̄−h̃
4 ≥ d̄

8 , we obtain that

1

|Y|

h+∑̀
j=h+1

∑
θ∈Y

Rj(θ) ≥
1

32(M + 1)
min

{
min

k∈[M ],k 6=2
Tkεk,

T2ε2
8

}
.

Noting that the expected regret under parameter θ is at least Regretθ,D(T ) ≥
∑h̃+l

j=h̃+1
Rj(θ), we

learn that

1

|Y|
∑
θ∈Y

Regretθ,D(T ) ≥ 1

|Y|

h̃+∑̀
j=h̃+1

∑
θ∈Y

Rj(θ) ≥ Ω (γ/M) (49)

Then there exists some θ∗ ∈ Y such that Regretθ∗,D(T ) ≥ Ω(γ/M). The proof is completed by
definition of γ.

It remains to prove Lemma 18.

Proof of Lemma 18. Recall the definition of Ek for 1 ≤ k ≤M . We further defineHk as below.

• H1 = Ω̄, where Ω̄ is the entire probability space;

• H2 = {nj ≤ max{ 6T1

(h+1)(d̄−h)M
, 6 ln(dM)},∀h+ 1 ≤ j ≤ h+ l}, where nj denotes the

number of times the j-th arm is taken in the first batch;

• Hk = {nki ≤ max{ 6MTk−1

b , 6 ln(dM)},∀1 ≤ i ≤ b} for 3 ≤ k ≤ M , where nki =∑Tk−1

t=1 I[Xt = Xk,i], i.e., the number of times when the context is Xk,i.

Since the π1 is independent of θ, then {Hk}Mk=1 is also independent of θ. Using Lemma 8, it is easy
to show that Prθ[Hk] ≥ 1− 1

10M for any 1 ≤ k ≤M and any θ ∈ Y .

Let pkj (θ) = Eθ,x∼πk(Xk,dj/ae)

[
I[xjθkj < 0]|Ek ∩Hk

]
for k = 1 or 3 ≤ k ≤ M . For k = 2, we

define pkj (θ) = Eθ,x∼π2([h̃]∩{h̃+j})
[
I[x = j, θ2

j < 0] + I[x 6= j, θ2
j > 0]|E2 ∩H2

]
.

Recall that Ft denotes the event field over the first t steps. For fixed θ ∈ Y , we denote θkj be the
vector in Y by reflecting the j-th dimension of θk. Using Pinsker’s inequality (Lemma 7), and noting
that Ek ∩Hk are measurable with respect to FTk−1

.

pkj (θ) + pkj (θkj ) ≥ 1−
√

1

2
DKL

(
Pr
Tk−1

θ [·|Ek ∩Hk],Pr
Tk−1

θkj
[Ek ∩Hk]

)
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for k = 1 or 3 ≤ k ≤ M , where Prt[·] denotes probability distribution over the first t steps. By
definition of Ek andHk, we have that

DKL

(
Pr
Tk−1

θ [·|Ek ∩Hk],Pr
Tk−1

θkj
[Ek ∩Hk]

)
≤ max

{
6MTk−1

b
, 6 ln(dM)

}
4ε2k
a2
≤ 1

8
.

As a result, we have that

pkj (θ) + pkj (θkj ) ≥ 3

4
. (50)

Using similar arguments, and noting that nj ≤ max{ 6T1

(h̃+1)(d̄−h̃)M
, 6 ln(dM)} conditioned onH2,

we have that

p2
j (θ) + p2

j (θ
k
j ) ≥ 1−

√
1

2
DKL(PrT1

D2,θ)
[·|H2 ∩ E2],PrT1

D2,θ2
j
[·|H2 ∩ E2]) ≥ 3

4
. (51)

Let ζk = 1
d̄
Tkεk for k = 1 or 3 ≤ k ≤M and ζ2 = 1

8b̄
T2ε2. By the definition of Rj(θ), and noting

that ` ≥ d̄
8 , we have that

Rj(θ) ≥
M∑
k=1

Prθ[Ek ∩Hk]pkj (θ)ζk

Rj(θ
k
j ) =

M∑
k=1

Prθkj [Ek ∩Hk]pkj (θkj )ζk.

using Pinsker’s inequality (Lemma 7), for any 1 ≤ k ≤M , it holds that∣∣∣Prθ[Ek ∩Hk]− Prθjk
[Ek ∩Hk]

∣∣∣ ≤√1

2
DKL

(
Pr
Tk−1

θ [·|Ek ∩Hk],Pr
Tk−1

θkj
[Ek ∩Hk]

)
≤ 1

2M
.

Therefore, we have that

Rj(θ) +

M∑
k=1

Rj(θ
k
j ) ≥

M∑
k=1

max

{
3

4
Prθ[Ek ∩Hk]− 1

2M
, 0

}
ζk ≥

1

8
min
k
ζk. (52)

Taking sum over Y , we have that

1

|Y|
∑
θ∈Y

M∑
k=1

Prθ[Ek ∩Hk]pkj (θ)Tkεk ≥
1

8(M + 1)
min
k
ζk.

The proof is completed.

D A NEW MATRIX CONCENTRATION INEQUALITY WITH DYNAMIC UPPER
BOUNDS

Existing matrix concentration inequalities (see, e.g., (Tropp, 2012)) play an important role in recent
works on batch linear contextual bandits (Ruan et al., 2021; Zanette et al., 2021). For example, the
proof techniques of Theorem 5.1 in (Tropp, 2012) may yield the following concentration bound
in Proposition 19 (and the upper bound on

∑
kXk may be similarly derived). Special cases of

Proposition 19 (taking W = I and ε = const.) includes Lemma 21 in (Ruan et al., 2021) and
Lemmas 11 & 12 in (Zanette et al., 2021).
Proposition 19. Consider a sequence of independent PSD (positive semi-definite) matrices
X1, X2, . . . , Xn ∈ Rd×d such that Xk 4 W for a fixed PSD matrix W and all 1 ≤ k ≤ n.
There exists a universal constant c > 0 such that for every δ > 0 and ε ∈ (0, 1), it holds that

Pr

[
n∑
k=1

Xk 4 (1 + ε)

n∑
k=1

E[Xk] +
c ln(d/δ)

ε
W

]
≥ 1− δ; (53)

Pr

[
n∑
k=1

Xk < (1− ε)
n∑
k=1

E[Xk]− c ln(d/δ)

ε
W

]
≥ 1− δ. (54)
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However, to achieve the optimal batch-regret tradeoff in the context-blind setting, we need a stronger
version of Proposition 19 where the uniform upper bound matrix W may be stochastic. In particular,
we prove the following lemma as a crucial technical tool in our algorithm analysis (especially for the
Exp-Policy procedure).
Lemma 20. Consider a sequence of stochastic PSD matrices W1, X1,W2, X2, . . . ,Wn, Xn ∈
Rd×d. Let Fk = σ(W1, X1,W2, X2, . . . ,Wk−1, Xk−1) and F+

k =

σ(W1, X1,W2, X2, . . . ,Wk−1, Xk−1,Wk) be the natural filtration and Yk = E[Xk|F+
k ]

for each k ∈ {1, 2, . . . , n}. Suppose Wk is PSD and increasing in k (with respect to the
semidefinite order) and Xk 4 Wk for each k. For every δ > 0 and ε ∈ (0, 1), letting

Z(δ, ε) = 4(ε2+2ε+2)
ε ln

(
(n+1)d

δ

)
Wn, we have that

Pr

[
n∑
k=1

Xk 4 (1 + ε)

n∑
k=1

Yk + Z(δ, ε)

]
≥ 1− δ; (55)

Pr

[
n∑
k=1

Xk < (1− ε)
n∑
k=1

Yk − Z(δ, ε)

]
≥ 1− δ. (56)

In Lemma 20, the stochastic matrix Wn upper bounds all matrices in {X1, X2, . . . , Xn}. When it is
fixed, the lemma reduces to Proposition 19.8 There are also a few Freedman’s inequalities for matrix
martingales (see, e.g., (Tropp, 2011)). However, in these inequalities, while the quadratic variation
E[X2

i |F
+
i ] becomes dynamic, the uniform upper bound Wk is still fixed.

We note that if an extra poly(d) factor were allowed in the ± 4(ε2+2ε+2)
ε ln((n+ 1)d/δ)Wn terms,

the lemma would easily follow from Proposition 19 and an ε-net argument. However, reducing these
poly(d) factors is crucial to the full parameter range optimality analysis of our batch algorithm.

High-level intuition. One simple approach to prove Lemma 20 is to assume the upper bound matrix
Wn (correspondingly U in equation 6) were fixed, apply the ordinary matrix concentration inequality
and finally take a union bound over an ε-net ofWn. However, such an approach would introduce extra
poly(d) factors in the bound and lead to sub-optimal regret bound for our batch learning algorithm.
Our proof of Lemma 20 follows the classical exponential moment method. However, we analyze the
exponential moment of a specially chosen matrix, namelyW−1/2

n (
∑n
i=1(Xi−(1+ε)Yi))W

−1/2
n . To

bound the trace of this exponential moment, we resort to some deep analysis about Lieb’s theorem on
convex trace functions (Theorem 24 and Lemma 23). Besides, we also make the critical observation
that the function Tr

(
exp

(
U>AU

))
is bounded by Tr(exp(A)) with an additive error at most d for

any U such that U>U 4 I and any symmetric A (Lemma 28).

Before we start the proof, we introduce some basic properties of PSD matrices as below, whose proof
is deferred to Appendix D.4.
Fact 21. For any two PD matricesA andB,A 4 B is equivalent to each of the following inequalities,

B−1 4 A−1, (57)

A1/2B−1A1/2 4 I, (58)

B−1/2AB−1/2 4 I. (59)

We now start to prove Lemma 20, while the two helpful technical lemmas (Lemma 23 and Lemma 26),
are deferred to Section D.1 and Section D.2.

Proof of Lemma 20. We first prove Equation equation 55. For each k ∈ {0, 1, 2, . . . , n}, let Zk =
4(ε2+2ε+2)

ε Wk and

Ek := Tr

(
exp

(
Z
−1/2
k

(
k∑
i=1

(Xi − (1 + ε)Yi)

)
Z
−1/2
k

))
.

8Indeed, we lose an additional ln(n+ 1) term in the ln(d/δ) terms in Proposition 19, and we do not know if
this compromise is necessary.
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By Lemma 23, we have that E[En] ≤ (n+ 1)d. Therefore, by Markov inequality,

Pr

[
λmax

(
Z−1/2
n

(
n∑
i=1

(Xi − (1 + ε)Yi)

)
Z−1/2
n

)
≥ C

]

≤ Pr

[
Tr

(
exp

(
Z−1/2
n

(
n∑
i=1

(Xi − (1 + ε)Yi)

)
Z−1/2
n

))
≥ eC

]
≤ E[En]

eC
≤ (n+ 1)de−C ,

which (by Fact 21) means that

Pr

[
n∑
i=1

(Xi − (1 + ε)Yi) 4 CZn

]
≥ 1− (n+ 1)de−C .

Choosing C = ln((n + 1)d/δ) and recalling that Zn = 4(ε2+2ε+2)
ε Wn, we prove Equation equa-

tion 55.

We then prove Equation equation 56. First we define

E′k := Tr

(
exp

(
Z
−1/2
k

(
k∑
i=1

((1− ε)Yi −Xi)

)
Z
−1/2
k

))
.

Similarly, by Lemma 26, we have that E[E′n] ≤ (n+ 1)d and

Pr

[
λmax

(
Z−1/2
n

(
n∑
i=1

((1− ε)Yi −Xi)

)
Z−1/2
n

)
≥ C

]
(60)

≤ Pr

[
Tr

(
exp

(
Z−1/2
n

(
n∑
i=1

((1− ε)Yi −Xi)

)
Z−1/2
n

))
≥ eC

]
≤ E[E′n]

eC
≤ (n+ 1)de−C ,

which means that

Pr

[
n∑
i=1

((1− ε)Yi −Xi) 4 CZn

]
≥ 1− (n+ 1)de−C .

Choosing C = ln((n+ 1)d/δ) we finish the proof.

Corollary 22. Given a sequence of stochastic random variablesX1, X2, . . . , Xn such that 0 ≤ Xi ≤
W for any 1 ≤ i ≤ n with probability 1. Let Fk = σ(X1, X2, . . . , Xk−1) and Yk = E[Xk|Fk] For
every δ > 0 and ε > 0, we have that

Pr

[
n∑
k=1

Xk ≤ (1 + ε)

n∑
k=1

Yk +
4(ε2 + 2ε+ 2)

ε
ln((n+ 1)/δ)W

]
≥ 1− δ;

Pr

[
n∑
k=1

Xk ≥ (1− ε)
n∑
k=1

Yk −
4(ε2 + 2ε+ 2)

ε
ln((n+ 1)/δ)W

]
≥ 1− δ.

Proof. Letting d = 1 and Wk = W for 1 ≤ k ≤ n, by Lemma 20 we finish the proof.

D.1 STATEMENT AND PROOF OF LEMMA 23

Lemma 23. For each k ∈ {1, 2, . . . , n}, we have that

E
[
Ek|F+

k

]
≤ E

[
Ek−1|F+

k

]
+ d.

Proof. Firstly, we introduce a deep theorem from Lieb (Theorem 6, (Lieb, 1973)), which provides
theoretical basis for a series of concentration inequalities on self-adjoint matrices.

Theorem 24. Fix a d-dimensional symmetric matrixH . The function f(A) := Tr(exp(log(A)+H))
is concave on the d-dimensional positive definite cone.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Based on Theorem 24, (Tropp, 2012) derived the corollary below.

Corollary 25. Fix a self-adjoint matrix H . Let X be stochastic symmetric matrix

E [Tr (exp(X +H))] ≤ Tr
(
exp

(
logE[eX ] +H

))
. (61)

Given Corollary 25 we continue the analysis as below. Note that E
[
Ek−1|F+

k

]
is a deterministic

value. Throughout this proof, we will condition on F+
k . We calculate that

E [Ek]

= E

[
Tr

(
exp

(
Z
−1/2
k

(
k∑
i=1

(Xi − (1 + ε)Yi)

)
Z
−1/2
k

))]

= E

[
Tr

(
exp

(
Z
−1/2
k

(
k−1∑
i=1

(Xi − (1 + ε)Yi)

)
Z
−1/2
k + Z

−1/2
k (Xk − (1 + ε)Yk)Z

−1/2
k

))]

≤ Tr

(
exp

(
Z
−1/2
k

(
k−1∑
i=1

(Xi − (1 + ε)Yi)

)
Z
−1/2
k + ln

(
E
[
exp

(
Z
−1/2
k (Xk − (1 + ε)Yk)Z

−1/2
k

)])))
(62)

≤ Tr

(
exp

(
Z
−1/2
k

(
k−1∑
i=1

(Xi − (1 + ε)Yi)

)
Z
−1/2
k

))
(63)

= Tr

(
exp

(
Z
−1/2
k Z

1/2
k−1Z

−1/2
k−1

(
k−1∑
i=1

(Xi − (1 + ε)Yi)

)
Z

1/2
k−1Z

−1/2
k−1 Z

−1/2
k

))

≤ Tr

(
exp

(
Z
−1/2
k−1

(
k∑
i=1

(Xi − (1 + ε)Yi)

)
Z
−1/2
k−1

))
+ d (64)

= Ek−1 + d.

Here equation 62 is by Corollary 25, equation 63 is by Lemma 27 (stated and proved in Section D.2)
and the monotonicity of trace exponential with respect to the semidefinite order (see (Petz, 1994),
§2.2), and equation 64 is by Lemma 28 (stated and proved in Section D.3, lettingU = Z

1/2
k−1Z

−1/2
k and

A = Z
−1/2
k−1

(∑k
i=1(Xi − (1 + ε)Yi)

)
Z
−1/2
k−1 , and one can verify that U>U = Z

1/2
k−1Z

−1
k Z

1/2
k−1 4 I

by Fact 21).

Similarly, we may establish the following lemma, whose proof is deferred to Appendix D.5.

Lemma 26. For each k ∈ {1, 2, . . . , n}, we have that

E
[
E′k|F+

k

]
≤ E

[
E′k−1|F+

k

]
+ d.

D.2 STATEMENT AND PROOF OF LEMMA 27

Lemma 27. For each k ∈ {1, 2, . . . , n}, we have that

E
[
exp

(
Z
−1/2
k (Xk − (1 + ε)Yk)Z

−1/2
k

) ∣∣∣F+
k

]
4 I.

Proof. Throughout this proof, we will condition on F+
k . Let Uk := Z

−1/2
k XkZ

−1/2
k and Vk :=

Z
−1/2
k YkZ

−1/2
k . By the assumption in Lemma 20 and our definition for Zk, we have that 0 4 Uk 4
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ε
4(ε2+2ε+2)I and E[Uk] = Vk. Therefore, 0 4 Vk 4 ε

4(ε2+2ε+2)I. We now compute that

E
[
exp

(
Z
−1/2
k (Xk − (1 + ε)Yk)Z

−1/2
k

)]
= E [exp (Uk − (1 + ε)Vk)]

= E

I + (Uk − (1 + ε)Vk) +
1

2
(Uk − (1 + ε)Vk)2 +

∑
i≥3

1

i!
(Uk − (1 + ε)Vk)i

 (65)

≤ E

I + (Uk − (1 + ε)Vk) +
1

2
(Uk − (1 + ε)Vk)2 +

∑
i≥3

1

i!
(Uk − (1 + ε)Vk)2

 (66)

4 E
[
I + (Uk − (1 + ε)Vk) + 2(Uk − (1 + ε)Vk)2

]
4 E

[
I + (Uk − (1 + ε)Vk) + 4U2

k + 4(1 + ε)2V 2
k

]
(67)

4 E
[
I + (Uk − (1 + ε)Vk) +

4ε

4(ε2 + 2ε+ 2)
Uk +

4(1 + ε)2ε

4(ε2 + 2ε+ 2)
Vk

]
(68)

= I.

Here, equation 65 is by Taylor series expansion, equation 66 is by the fact that −I 4 (Uk − (1 +
ε)Vk) 4 I and Xk − X2 = X(Xk−2 − I)X 4 0 for k ≥ 2 and −I 4 X 4 I. equation 67 is
because 4U2

k + 4(1 + ε)2V 2
k −2(Uk− (1 + ε)Vk)2 = 2(Uk + (1 + ε)Vk)2 < 0, and equation 68 is by

the fact that 4(ε2+2ε+2)
ε U2

k − Uk = U
1/2
k

(
4(ε2+2ε+2)

ε Uk − I
)
U

1/2
k 4 0 and 4(ε2+2ε+2)

ε V 2
k − Vk =

V
1/2
k

(
4(ε2+2ε+2)

ε Vk − I
)
V

1/2
k 4 0.

D.3 STATEMENT AND PROOF OF LEMMA 28

Lemma 28. Let A be a real symmetric matrix. For any U such that U>U 4 I, it holds that
Tr(exp(U>AU)) ≤ Tr(exp(A)) + d. (69)

Proof. We can assume without loss of generality that A = diag(λ1, λ2, . . . , λd) and λd ≤ λd−1 ≤
· · · ≤ λ`−1 < 0 ≤ λ` ≤ · · · ≤ λ1.

Let us write U> = Q>L> to be its QR decomposition where Q> is orthogonal and L> is an upper
triangular matrix (and therefore L is a lower triangular matrix). We claim that

U>IjU 4 Q>IjQ, (70)
where we define Ij := diag(0, . . . , 0, 1, . . . 1) to be a rank j matrix. Note that U>IjU =
Q>L>IjLQ. Therefore, to prove the claim, it suffices to show thatL>IjL 4 Ij . SinceU>U 4 I, we
also have that L>L = QU>UQ> 4 I. Note that for any vector x, it holds that x>(LIj)

>(LIj)x =
(Ijx)>L>L(Ijx) ≤ x>Ijx. Therefore we conclude that L>IjL = (LIj)

>(LIj) 4 Ij , where the
first equality holds because L is a lower triangular matrix.

Let λ̃i := λi − λi−1 ≥ 0 for each i ∈ {1, 2, . . . , ` − 1}, λ̃` := λ` ≥ 0, and λ̃j := 0 for each
j ∈ {`+ 1, `+ 2, . . . , d}. By equation 70, we then have that

U>AU 4
d∑
j=1

λ̃jU
>IjU 4

d∑
j=1

λ̃jQ
>IjQ.

By the monotonicity of trace exponential with respect to the semidefinite order (see, e.g. (Petz, 1994)
§2.2), we have that

Tr(exp(U>AU)) ≤ Tr

exp

 d∑
j=1

λ̃jQ
>IjQ


=

d∑
j=1

exp

 d∑
i=j

λ̃i

 ≤ d∑
j=1

exp(λi) + d = Tr(exp(A)) + d.
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D.4 PROOF OF FACT 21

Proof. We first show thatA 4 B implies equation 58. ByA 4 B, we have thatB−A < 0. Therefore,
A−1/2BA−1/2− I = A−1/2(B−A)A−1/2 is PSD, which means that A−1/2BA−1/2 < I. We then
have A1/2B−1A1/2 4 I. This is because if we let M = A−1/2BA−1/2 < I for convenience, for
every vector x, it holds that

x>A1/2B−1A1/2x = x>M−1x = (M−1/2x)>(M−1/2x) ≤ (M−1/2x)>M(M−1/2x) = x>x.

This proves equation 58, assuming A < B.

We then show that equation 58 implies equation 57. Note that A1/2B−1A1/2 − I 4 0 implies that
B−1 −A−1 = A−1/2(A1/2B−1A1/2 − I)A−1/2 4 0, which leads to B−1 4 A−1.

By symmetry, we can also prove that equation 57 implies A 4 B, and therefore establishing the
equivalence condition for both equation 57 and equation 58.

Finally, A−B 4 0 is equivalent to that I−B−1/2AB−1/2 = B−1/2(B −A)B−1/2 is PSD, which
is also equivalent to that B−1/2AB−1/2 4 I, proving the equivalence for equation 59.

D.5 PROOF OF LEMMA 26

Proof. Following the arguments in the proof of Lemma 23, it suffices to prove that

E
[
exp

(
Z
−1/2
k ((1− ε)Yk −XK)Z

−1/2
k

) ∣∣∣F+
k

]
4 I

holds for each 1 ≤ k ≤ n. Recall the definition of Uk and Vk in Lemma 27. In the analysis below,
we will conditioned on F+

k . By the same arguments in the proof of Lemma 27, and noting that
−I 4 (1− ε)Vk − Uk 4 I, we have that

E
[
exp

(
Z
−1/2
k ((1− ε)Yk −Xk)Z

−1/2
k

)]
= E [exp ((1− ε)Vk − Uk)]

= E

I + ((1− ε)Vk − Uk) +
1

2
((1− ε)Vk − Uk)2 +

∑
i≥3

1

i!
((1− ε)Vk − Uk)i


≤ E

I + ((1− ε)Vk − Uk) +
1

2
((1− ε)Vk − Uk)2 +

∑
i≥3

1

i!
((1− ε)Vk − Uk)2


4 E

[
I + ((1− ε)Vk − Uk) + 2((1− ε)Vk − Uk)2

]
4 E

[
I + ((1− ε)Vk − Uk) + 4U2

k + 4(1− ε)2V 2
k

]
4 E

[
I + ((1− ε)Vk − Uk) +

4ε

4(ε2 + 2ε+ 2)
Uk +

4(1− ε)2ε

4(ε2 + 2ε+ 2)
Vk

]
4 I.

The proof is completed.
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