
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

THE PERSIAN RUG: SOLVING TOY MODELS OF SUPER-
POSITION USING LARGE-SCALE SYMMETRIES

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a complete mechanistic description of the algorithm learned by a min-
imal non-linear sparse data autoencoder in the limit of large input dimension. The
model, originally presented in Elhage et al. (2022), compresses sparse data vectors
through a linear layer and decompresses using another linear layer followed by a
ReLU activation. We notice that when the data is permutation symmetric (no input
feature is privileged) large models reliably learn an algorithm that is sensitive to
individual weights only through their large-scale statistics. For these models, the
loss function becomes analytically tractable. Using this understanding, we give
the explicit scalings of the loss at high sparsity, and show that the model is near-
optimal among recently proposed architectures. In particular, changing or adding
to the activation function any elementwise or filtering operation can at best im-
prove the model’s performance by a constant factor. Finally, we forward-engineer
a model with the requisite symmetries and show that its loss precisely matches
that of the trained models. Unlike the trained model weights, the low random-
ness in the artificial weights results in miraculous fractal structures resembling a
Persian rug, to which the algorithm is oblivious. Our work contributes to neural
network interpretability by introducing techniques for understanding the structure
of autoencoders.

Figure 1: The Persian Rug, an artificial set of weights matching trained model performance.

1 INTRODUCTION

Large language model capabilities and applications have recently proliferated. As these systems
advance and are given more control over basic societal functions, it becomes imperative to ensure
their reliability with absolute certainty. Mechanistic interpretability aims to achieve this by obtaining
a concrete weight-level understanding of the algorithms learned and employed by these models. A
major impediment to this program has been the difficulty of interpreting intermediate activations.
This is due to the phenomena of superposition, in which a model takes advantage of sparsity in the
input data to reuse the same neurons for multiple distinct features, obscuring their function. Finding

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

a systematic method to undo superposition and extract the fundamental features encoded by the
network is a large and ongoing area of research Bricken et al. (2023); Cunningham et al. (2023);
Gao et al. (2024); Engels et al. (2024).

Currently, the most popular method of dealing with superposition is dictionary learning with sparse
autoencoders. In this method, the smaller space of neuron activations at a layer of interest is mapped
to a larger feature space. The map is trained to encourage sparsity and often consists of an affine +
ReLU network. This method has been applied to large language models revealing many strikingly
interpretable features (e.g. corresponding to specific bugs in code, the golden gate bridge, and
sycophancy), even allowing for a causal understanding of the model’s reasoning in certain scenarios
Marks et al. (2024).

The sparse decoding ability of the affine + ReLU map was recently studied in the foundational
work Elhage et al. (2022), which introduced and studied a toy model of superposition. The model
consisted of a compressing linear layer modeling the superposition1 followed by a decompressing
affine + ReLU layer, trained together to auto-encode sparse data. They showed that the network
performs superposition by encoding individual feature vectors into nearly orthogonal vectors in the
smaller space. The affine layer alone is unable to decode sparse input vectors sufficiently well to
make use of superposition, but the addition of the ReLU makes it possible by screening out negative
interference.

While Elhage et al. (2022) provides valuable empirical and theoretical insights into superposition, it
does not obtain a strong enough description of the model algorithm to quantitatively characterize the
algorithm’s performance. Given the extensive use of the affine + ReLU map for decoding sparse data
in practice, it is important to obtain a complete analytic understanding of the model behavior over
a large parameter regime. As we will see, this will inform the design of better sparse autoencoder
architectures.

In this work we obtain such an understanding by considering a particularly tractable regime of the
Elhage et al. (2022) model: permutation symmetric data (no input feature is privileged in any way),
and the thermodynamic limit (a large number of input features), while maintaining the full range
of sparsity and compression ratio values. In this regime, the learned model weights are permuta-
tion symmetric on large scales, which sufficiently simplifies the form of the loss function to the
point where it is analytically tractable, leaving only a small number of free parameters. We then
forwards-engineer an artificial set of weights satisfying these symmetries and optimizing the re-
maining parameters, which achieves the same loss as a corresponding trained model, implying that
trained models also implement the optimal permutation symmetric algorithm. The artificial set of
weights resembles a Persian rug fig. 1, whose structure is a relic of the minimal randomness used in
the construction, illustrating that the algorithm relies entirely on large-scale statistics that are insen-
sitive to this structure. Finally, we derive the exact power-law scaling of the loss in the high-sparsity
regime.

We expect our work to impact the field of neural network interpretability in multiple ways. First,
our work provides a basic theoretical framework that we believe can be extended to other regimes
of interest, such as structured correlations in input features, which may help predict scaling laws in
the loss based on the data’s correlations. Second, our work rules out a large class of performance
improvement proposals for sparse autoencoders. Finally, our work provides an explicit example of
a learned algorithm that is insensitive to microscopic structure in weights, which may be useful for
knowing when not to analyze individual weights.

The paper is structured as follows. In section 2 we review the model and explain our training
procedure. In section 3 we show empirically that large models display a “statistical permutation
symmetry”. In section 4 we extract the algorithm by plugging the symmetry back into the loss,
introduce the Persian Rug model which optimizes the remaining parameters, show that large trained
models achieve the same loss, and derive the loss behavior in the high sparsity limit. In section 5 we
conclude and discuss related works.

1This is because, if good enough recovery is possible for most features, the pigeonhole principle tells us
that at least some of the smaller space activations must encode information about multiple input features.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

2 THE MODEL

We study the following non-linear autoencoder with parameters Win ∈ Rnd×ns ,Wout ∈
Rns×nd ,b ∈ Rns with nd ≤ ns,

fnonlinear(x) = ReLU(WoutWinx+ b). (1)

Here, Win is an encoding matrix which converts a sparse activation vector x to a dense vector, while
Wout perform the linear step of decoding. We also consider a simple model for the sparse data on
which this autoencoder operates. We work with data that is permutation symmetric in the sense
that (x1, ..., xn) is equal in distribution to (xπ(1), xπ(2), ..., xπ(n)) for any permutation π. Each
vector x is drawn i.i.d. during training, and each component is drawn i.i.d. with xi = ciui, where
ci ∼ Bernoulli(p) and ui ∼ Uniform[0, 1] are independent variables. This ensures that x is sparse
with typically only pns features turned on.

We train our toy models to minimize the expected L2 reconstruction loss,

L(x;Wout,Win,b) = n−1
s E||x− fnonlinear(x)||22. (2)

It is known that for the linear model (eq. (1) without the ReLU), the optimal solution is closely
related to principle component analysis (see, for example, Plaut (2018) and p. 563 or Bishop &
Nasrabadi (2006)). In particular, the reconstruction loss decreases linearly in the hidden dimension
nd when all features are i.i.d. On the other hand, the model eq. (1) will have a much quicker
reduction in loss, as will be described in section 3.1.

We train all models with a batch size of 1024 and the Adam optimizer to completion. That is training
continues as long as the average loss over the past 200 batches is lower than the average loss over
the 200 batches prior to that one. Our goal with training is to ensure that we have found an optimal
model in the large-data limit to analyze the structure of the model itself. See also appendix G for
more training details.

3 EMPIRICAL OBSERVATIONS

In this section, we present empirical observations of the trained models. We start by presenting a
remarkable phenomenon this model exhibits in the high-sparsity regime: a dramatic decrease in loss
as a function of the compression ratio. We then turn to a mechanistic interpretation of the weights
which gives empirical evidence for the phenomena needed to understand the algorithm the model
learns. These are manifestations of a partially preserved permutation symmetry of the sparse degrees
of freedom.

3.1 FAST LOSS DROP

To gauge the performance of the linear and non-linear models, we plot the loss (eq. (2)) as a function
of the compression ratio nd/ns. In fig. 2, we see that the non-linear model dramatically outperforms
the linear model and that the out-performance begins already for small ratios and continues up until
much larger ratios (they must coincide again in the trivial case nd/ns = 1). In this paper, we will
see that the slope and duration of this initial fall is controlled by p (section 4.3). In particular, in the
high-sparsity regime (p close to zero), the loss drops very quickly near the nd/ns ≈ 0 regime. To
explain this behavior, we analyze the algorithm the model encodes.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 2: Loss curves of trained models, Persian Rug models, and optimal linear models as a func-
tion of the compression ratio.

3.2 STATISTICAL PERMUTATION SYMMETRY

Rather than looking individually at the weights, it is helpful to look at the matrix W = WoutWin,
shown in fig. 3. When we rewrite eq. (1) in terms of W ,

(fnonlinear(x))i = ReLU(Wiixi +

ns∑
j=1,j ̸=i

Wijxj + bi),

we see that the quantity Wij measures how much feature i’s reconstruction “listens” to feature j.
Given the data has a permutation symmetry2, so that there is no reason for the reconstruction of xi

to listen any more to xj than to xk for i ̸= j ̸= k, we might expect a similar symmetry to manifest
in W . For example, we might expect Wij = Wik = Wji and Wii = Wjj for i ̸= j ̸= k. Figure 3
shows this is not the case, but in this section we show empirically that W will satisfy a weaker
“statistical permutation symmetry” when ns gets large. More precisely, in the large ns regime, W
will satisfy the following properties:

a) the diagonal elements become the same (fig. 4),

b) the bias elements become the same and uniformly negative, which can be seen in the uni-
formity and slight blue shade in fig. 3 and is quantified in fig. 5,

c) the off-diagonal terms are sufficiently uniform to motivate a Gaussian approximation to a
reconstruction error term νi := W−1

ii

∑
j ̸=i Wijxj defined for each row (fig. 8), and finally,

d) the corresponding Gaussians are equal in distribution across rows (fig. 6 and fig. 7).

We confirm that each of the properties listed in the definition of statistical permutation symmetry
above hold empirically in figs. 4, 5, 7 and 8. Each of these figures contains three subfigures (corre-
sponding to ns ∈ {128, 1024, 6182}), to show that the relevant property manifests as ns gets large.
For example, in fig. 4, we show that the root mean square variation of the diagonals of W ,

∆diag(W) := n−1
s

ns∑
i=1

(Wii − diag(W))2

(where diag(W) = n−1
s

∑ns

i=1 Wii) tends to zero for various r and p. (We refer to this as the
root mean square deviation instead of the standard deviation to emphasize the fact that W is not
considered to be a random variable in our analysis. Throughout this paper, we reserve terms like
mean and standard deviation for random variables.) Similar quantities and plots for items b) and d)
can be found in appendix A.

2By this we mean (x1, ..., xn) is equal in distribution to (xπ(1), ..., xπ(n)) for any permutation π

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 3: Plot of the first 30 × 30 W elements and the corresponding bias (b) components, at
p = 4.5% and ratio 0.25 (ns = 512). The diagonal components are all at similar values of 1.29± .01
(one standard deviation) while the off-diagonal components are approximately mean-zero, appearing
like noise. The bias elements are all negative around −.18 ± .01. This statistical uniformity is a
permutation symmetry across the sparse features.

Figure 4: Permutation symmetry of diagonal values. We plot the mean-square fluctuation of the
diagonal values corresponding to each model. Models are trained as a function of p and nd/ns.
The emergence of symmetry as ns grows (at all locations in the diagram) is a crucial element of the
algorithm implemented by the autoencoders.

We now discuss the Gaussianity property (item c)) in more detail. For a fixed (deterministic) W
and random x, the quantity νi is a random variable which measures the extent to which the pre-
activation reconstruction of xi erroneously receives signal from other components xj with j ̸= i.
Given that νi is a sum of ns independent random variables, it is natural to ask how well it can be
approximated by a Gaussian in the large ns regime. Clearly some conditions on Wij and xj will
be needed. The Berry-Esseen theorem for independent random variables implies that, if the xj have
finite third moment, the quantity

Λ := max
i

∑
j ̸=i |Wij |3(∑
j ̸=i W

2
ij

)3/2
, (3)

up to a constant factor that depends on the first three moments of x, is a measure of how far νi is
from Gaussianity (see, for example, Petrov (1972)). In fig. 8, we plot Λ and show it tends to 0 as
ns grows larger. We leave as an open theory problem the identification of conditions that would
guarantee a central limit theorem for a sequence ν

(k)
i defined by W (k) that optimize eq. (1) on a

growing sequence of problems (e.g. as ns → ∞ with nd/ns = r).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

3.3 OPTIMIZATION OF RESIDUAL PARAMETERS

The statistical permutation symmetry places constraints on the possible values of W and b. The
constraint on b is straightforward: it is proportional to the all ones vector, i.e. there is a number
b such that bi = b for all i. As will be explained in section 4.1, the relevant degrees of freedom
remaining in W are a number a equal to the diagonals (Wii = a for all i) and another number σ
characterizing the variance of νi (var νi = σ for all i). The precise values of the off diagonals can be
thought of as irrelevant “microscopic information”. Thus there are three relevant degrees of freedom
remaining: b, a, and σ.

In section 4.2.2, we give a specific set of values for Win and Wout via the “Persian Rug” matrix,
which have the statistical permutation symmetry in the ns → ∞ limit while also optimizing σ. The
remaining parameters, a and b can be optimized numerically. In fig. 2 we compare the loss curve of
this artificial model with that of a trained model, and see that they are essentially the same.

4 EXTRACTING THE ALGORITHM

In this section, we give a precise explanation of the algorithm the model performs. We start with
a qualitative description of why the statistical permutation symmetry gives a good auto-encoding
algorithm when the remaining macroscopic degrees of freedom are optimized. We then find an
artificial set of symmetric weights with optimized macroscopic parameters. We show that the trained
models achieve the same performance as the artificial model, thus showing they are optimal even
restricting to statistically symmetric solutions. Finally, we derive an explicit form of the loss scaling
and argue that ReLU performs near optimally among element-wise or “selection” decoders.

4.1 QUALITATIVE DESCRIPTION

A key simplification is to consider strategies as collections of low-rank affine maps rather than as
the collection of weights directly. In other words, consider the tuple (W,b) where W = WoutWin
to define the strategy. We must restrict to W with rank no more than nd because it is the product of
two low-rank matrices. Given any such W we may also find Win and Wout of the appropriate shape
(e.g. by finding the SVD), so the two representations are equivalent.

We now write the output for feature i in terms of W under the statistical permutation symmetry
assumption motivated in section 3. We have

(fnonlinear(x))i = ReLU(Wiixi +

ns∑
j=1,j ̸=i

Wijxj + bi) = ReLU (a(xi + νi) + b) (4)

where we have used our assumptions that Wii = a and bi = b. We also assume that the νi are
Gaussian and are all equal in distribution. From this, we have

(fnonlinear(x))i
D
= ReLU (a(xi + ν) + b) ,

where D
= denotes equality in distribution and ν ∼ N(0, σ2) (we may assume ν is mean zero because

its mean can be absorbed into the bias b).

The expected reconstruction error is therefore

L = Ex,ν [(x− ReLU (a(x+ ν) + b))2] (5)

where x = cu with c ∼ Bernoulli(p) and u ∼ Uniform[0, 1]. We can further decompose this by
taking the expectation value over whether x is “on” or “off” (c = 1 or c = 0, respectively). That is,

L = (1− p)Loff + pLon,

where

Loff = Eν [(ReLU (aν + b))
2
], and

Lon = Eu,ν [(u− ReLU (a(u+ ν) + b))2].

Let us qualitatively explore the regimes of macroscopic parameters a, b, σ when either or both of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

these loss terms are low.

The impact of all the non-diagonal terms has been summed up in the “noise” ν. Though it is a
deterministic function of x, output i has no way to remove ν from u + ν. The best it can do is
to estimate u from u + ν because it doesn’t have any other information. This exemplifies a key
principle – by restricting the computational capacity of our decoder, deterministic, but complicated
correlations act like noise.

The main advantage of the nonlinear autoencoder is that the dominant contribution to the loss, Loff,
can be immediately screened away by making aν + b either small or negative, allowing the network
to focus on encoding active signals. This immediate screening is always possible either by choosing
b large and negative or a and b small. However, these strategies come at a cost because the output
value is distorted from u to au+ b. It is thus preferable instead for ν and b to be as small as possible,
which occurs when σ is as small as possible. As we will see, σ is the only parameter we are not
free to choose in the large ns limit, and whose value will be bounded as a function of nd/ns and p.
Since Loff is the dominant contribution to the loss, therefore, it will thus be necessary to damp the
signal by setting a small and/or b large and negative in regimes where σ is uncontrollably large.

Given that we see a statistical permutation symmetry in trained models let’s consider symmetric
strategies so that Wii = a and bi = b for all i = 1, . . . , ns. We will show that optimizing the
remaining macroscopic parameters makes fnonlinear act close to the identity on sparse inputs.

4.2 OPTIMIZING THE MACROSCOPIC PARAMETERS

We have seen qualitatively that a statistically symmetric strategy exists in certain regimes of the
macroscopic parameters. Two of these parameters, a and b are unconstrained. Furthermore the loss
should be monotonically increasing with σ because a larger σ implies more noise which hinders
reconstruction. Thus we now prove lower bounds on σ and construct an artificial set of statistically
permutation symmetric weights which achieve this bound. Finally we will compare the reconstruc-
tion loss of this strategy with the learned one to justify that those ignored microscopic degrees of
freedom were indeed irrelevant.

4.2.1 OPTIMAL σ

Assuming the permutation symmetry we discovered earlier in our empirical investigations we will
derive a bound on the variance of the output. Additionally for an optimal choice of b the average
loss is increasing in the variance, because a larger variance corresponds to a smaller signal-to-noise
ratio. Taken together these two facts will give a lower bound on the loss. We will then provide an
explicit construction which achieves this lower bound and illustrates how the algorithm works.

The lower bound on the variance comes from the fact that W is low-rank with constant diagonals.
For now let us ignore the overall scale of W , and just rescale so that the diagonals are exactly 1.
The bound we are about to prove is very similar to the Welch bound (Welch, 1974) who phrased
it instead as a bound on the correlations between sets of vectors. We produce an argument for our
context, which deals with potentially non-symmetric matrices W , the details of which are located in
appendix D.

We show that

σ2 ≥ 4p− 3p2

12

(
ns

nd
− 1

)
(6)

with equality only when W is symmetric, maximum rank, with all non-zero eigenvalues equal. This
naturally leads to a candidate for the optimal choice of W , namely matrices of the form

W ∝ OPOT and Wii = 1 (7)

where O is an orthogonal matrix and P is any rank-nd projection matrix. This kind of matrix
saturates the bound because it is symmetric and has all nonzero eigenvalues equal to 1.

A note on the connections between these matrices and tight frames – if we take the “square root” of
W as a ns × nd matrix

√
W such that

√
W

√
W

†
= W then the nd dimensional rows of

√
W are a

tight-frame. This is because Tr(W)2 = n2
s = nd TrWW † which is the variational characterization

of tight-frames as in Theorem 6.1 from Waldron (2018).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

4.2.2 PERSIAN RUG MODEL

We now give an explicit construction of an optimal choice for W . The construction is based on a
Hadamard matrix of size ns. A square matrix H is a Hadamard matrix if Hij ∈ {−1, 1} and its
rows are orthogonal (see, for example, Horadam (2012)).

We then define a Persian Rug matrix as

Rij = n−1
d

∑
k∈S

HikHjk

where S ⊂ {1, ..., ns} with |S| = nd. In fig. 1 we plot such a matrix for ns = 256, nd = 40, and
S chosen randomly. The matrix R has diagonals equal to 1 because each diagonal is the average
of nd terms of the form (Hik)

2 = (±1)2 = 1. The matrix R is a projector because the rows of H
are orthogonal, and therefore R is the sum of commuting rank-1 projectors. Therefore R saturates
eq. (6). Furthermore, one can readily check that it exactly satisfies the symmetry for off-diagonal
terms as well as shown in appendix F, which we direct readers to for a further discussion of R.
There remain two variables to optimize, a and b (recall E[ν] can be absorbed into b). We do this
numerically and compare to a trained model in fig. 2 (details on the training process can be found in
appendix G).

4.3 LOSS SCALING AT HIGH SPARSITY

Having obtained a simple expression for the loss in terms of constants a, b and two simple random
variables x ∼ Uniform[0, 1] and ν ∼ N (0, σ), as well has having deduced an achievable lower
bound for σ, we are now able to explain why the simple ReLU model performs so well at high
sparsity. For ease of notation let us use r = nd/ns.

4.3.1 INITIAL LOSS (RATIO=0)

Let us first consider the r → 0 limit with all other parameters fixed. Then σ → ∞ because of the
bound in eq. (6) so the fluctuations in ν overwhelms the signal term. This means that the optimal a
is

a = p
Eu,ν [uReLU(ν + b)]

Eν [ReLU(ν + b)2]
+O(σ−1). (8)

The loss then becomes

L = (1− p)a2Eν [ReLU (ν + b)
2
] + pEu,ν [(u− aReLU (ν + b))

2
] +O(σ−1)

= a2Eν [ReLU (ν + b)
2
]− 2apEu,ν [uReLU(ν + b)] + pEu[u

2] +O(σ−1)

plugging in a explicitly gives

L = pEu[u
2]− p2

(Eu [u])
2
(Eν [ReLU(ν + b)])

2

Eν [ReLU(ν + b)2]
+O(σ−1).

Thus we can conclude that

lim
r→0

L = pEu[u
2] +O(p2) =

p

3
+O(p2)

Thus we see that in the p ≪ 1 regime we have L → L0(p) ∼ O(p) independent of the other
parameters. We will now see that increasing r will quickly cause the loss to drop to O(p2).

4.3.2 DERIVING THE LOSS SCALING

In appendix E.1 we derive an upper bound on the loss function by plugging in appropriate ansatze
for a and b. We find that

L < O

(
σ2p log

1

p

)
∼ O

(
p2

r
log

1

p

)
, (9)

when p is small and when r ≫ p.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

On the other hand, in appendix E.2 we also derive a lower bound in the high-sparsity limit L >
O(p2/r) in the high sparsity limit up to logarithmic corrections. We show this in fact holds for a
more general class of activation functions. In particular, any function which acts element-wise or
filters out elements will give an on-loss contribution of the form

Eu,ν [(u− f (u+ ν + b))
2
]

which has a lower bound due to ν destroying information about u. Thus we can conclude that

L ∼ O

(
p2

r

)
up to logarithmic factors whenever p/r ≪ 1. It is sensible that the loss function scales inversely
with compression ratio.

5 RELATIONSHIP TO OTHER WORKS

5.1 AUTOENCODERS

Our work focuses specifically on sparse autoencoders, and encoding sparse data, which is parallel
to work explaining the dynamics and emergence of feature learning in autoencoders. Refinetti &
Goldt (2023) show that shallow autoencoders learn the principal components of the data sequentially
and Nguyen (2021) shows a similar dynamical result via a mean-field analysis. It’s seen that such
autoencoders function even in a regime where the number of features and the size of the input
are proportional with numerical evidence for Gaussian universality (Shevchenko et al., 2023). This
universality is shown for shallow in auto-encoders following gradient dynamics (Kögler et al., 2024).

5.1.1 MECHANISTIC INTERPRETABILITY AND SPARSE AUTOENCODERS

Mechanistic interpretability is a research agenda which aims to understand learned model algorithms
through studying their weights (see Olah et al. (2020) for an introduction). Recent results relating
to language models include Meng et al. (2023), which finds a correspondence between specific facts
and feature weights, along with Olsson et al. (2022), which shows that transformers learn in context
learning through the mechanism of “induction heads”.

A key issue for the agenda of mechanistic interpretability is that the model stores features in su-
perposition. Elhage et al. (2022) introduced the toy model of superposition we study in this paper.
While that work focused on mapping empirically behaviors of the model in multiple regimes of in-
terest such as correlated inputs, we focused on a regime with enough symmetry to solve the model
analytically given observed symmetries in trained models. Chen et al. (2023) study this model in the
context of singular learning theory. As part of their work, they characterize the loss using a different
high sparsity approximation than the one we present in this paper (they assume exactly one input
feature is on). Then they derive a subset of the critical points and their corresponding local learning
coefficients under the assumption nd = 2. Refinetti & Goldt (2023) study the learning dynamics of
the same model but without the sparsity assumption.

One way to extract interpretable features that are stored in superposition is through dictionary learn-
ing. While the concept of dictionary learning was introduced by (Mallat & Zhang, 1993), the prac-
tical use of sparse autoencoders to understand large language models has accelerated recently due
to mezzo-scale open weight models (Gao et al., 2024; Lieberum et al., 2024) and large-scale open-
output models Bricken et al. (2023). These features are highly interpretable (Cunningham et al.,
2023) and scale predictably. Interestingly, the scaling is quite similar for the various different ar-
chitectures they consider, differing primarily by a constant, which fits with the predictions in this
work.

Our study of Elhage et al. (2022)’s model of superposition lend some insight into the dictionary
learning problem. In particular, we have seen that the dominant source of error is not from deter-
mining which features are present, but rather the actual values of those features. Small modifications
to the activation functions, such as gating Rajamanoharan et al. (2024), k-sparse Makhzani & Frey
(2013), or TRec non-linearity Taggart (2024); Konda et al. (2014), are insufficient to fix this problem

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

as they do not solve the basic issue of noisy outputs. In this context our work implies that innovative
architectures, that are suitable both for gradient-based training and also for decoding sparse features,
must be developed.

While our work focuses on Elhage et al. (2022) toy model of superposition, one can study the
dictionary learning with sparse autoencoders problem directly under various models for the data and
various algorithms (see, for example, Rangamani et al. (2017); Nguyen et al. (2019); Arora et al.
(2015); Agarwal et al. (2016); Spielman et al. (2012)). For these problems, we suppose we are given
data vectors yi generated by yi = A∗xi, where A∗ ∈ Rnd×ns is the “true” dictionary and xi are
parametrically sparse vectors. The goal is then to recover A∗ and the xi. Under various assumptions
on A∗ and the xi, one can prove various desirable results for various algorithms for estimating them.
For example, in Rangamani et al. (2017) and Nguyen et al. (2019) it is assumed that A∗ has unit
columns and is incoherent, meaning that its columns {A∗

i } have inner-products bounded by

maxi̸=j |⟨A∗
i , A

∗
j ⟩| ≤

µ√
n
.

These authors then give convergence results for learning the model

ŷ = V TReLU(V y − ϵ) (10)

with ϵ a learnable bias and V ∈ Rns×nd learnable weights. In particular, Rangamani et al. (2017)
shows that the support of x can be recovered for sufficiently sparsity and incoherence and that A∗

is critical point for V in the loss landscape; Nguyen et al. (2019) shows that eq. (10) trained with
gradient descent recovers the true dictionary in certain parameter regimes.

In contrast, the neural networks in our work search over the space of dictionaries to find ones that
encode sparse information in a way particularly suitable for reconstruction by a single linear +
ReLU layer. As a result, the dictionary our network finds contains additional structure optimized for
a particular recovery process. For this reason, we find that the relevant error parameter is not the
incoherence (in our notation) maxi ̸=j |Wij | but rather the variance of off-diagonal elements in each
row

∑
j W

2
ij , and that it is this parameter that needs to be minimized for a given compression ratio.

5.1.2 COMPRESSED SENSING, STATISTICAL PHYSICS

It is known that compressed sparse data can be exactly reconstructed by solving a convex problem
(Candes & Tao, 2005; Candes et al., 2006; Donoho & Elad, 2003; Donoho, 2006) given knowledge
of the compression matrix. Furthermore, using tools from statistical physics it is possible to show
that this holds for typical compressed sparse data (Ganguli & Sompolinsky, 2010). Learning the
compression matrix is also easy in certain circumstances(Sakata & Kabashima, 2013). For a more
general review on compressed sensing and it’s history consider the introduction by Davenport et al.
(2012). The reconstruction procedure typically used in compressed sensing is optimizing a (convex)
relaxation of finding the sparsest set of features which reproduces your data vector. This is signif-
icantly different to the setting of sparse autoencoders which try to obtain the sparse features using
only one linear + activation layer.

The discrepancy between the ability of convex optimization techniques to achieve zero loss while
a linear + ReLU model necessarily incurs an error suggests that a more complex model architec-
ture is needed for sparse autoencoders when it is desirable to calculate the feature magnitude to
high precision. This may occur, for example, if one wishes to insert a sparse autoencoder into a
model without corrupting its downstream outputs. An important line of work is algorithms based
on message-passing schemes brought to fame by Donoho et al. (2009), and extended to more gen-
eral encoding matrices by Rangan et al. (2019), a more general encoding scheme (Schniter et al.,
2016), for ill conditioned matrices (Ma & Ping, 2017), and proved without statistical physics meth-
ods by Takeuchi (2019). These works may hold the key to improving interpretability, particularly
for downstream tasks such as circuit recovery.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Alekh Agarwal, Animashree Anandkumar, Prateek Jain, and Praneeth Netrapalli. Learning sparsely
used overcomplete dictionaries via alternating minimization. SIAM Journal on Optimization, 26
(4):2775–2799, 2016.

Sanjeev Arora, Rong Ge, Tengyu Ma, and Ankur Moitra. Simple, efficient, and neural algorithms
for sparse coding. In Conference on learning theory, pp. 113–149. PMLR, 2015.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, vol-
ume 4. Springer, 2006.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,
Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

E.J. Candes and T. Tao. Decoding by linear programming. IEEE Transactions on Information
Theory, 51(12):4203–4215, 2005. doi: 10.1109/TIT.2005.858979.

E.J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruction
from highly incomplete frequency information. IEEE Transactions on Information Theory, 52
(2):489–509, 2006. doi: 10.1109/TIT.2005.862083.

Zhongtian Chen, Edmund Lau, Jake Mendel, Susan Wei, and Daniel Murfet. Dynamical versus
bayesian phase transitions in a toy model of superposition, 2023. URL https://arxiv.
org/abs/2310.06301.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,
2023.

Mark A Davenport, Marco F Duarte, Yonina C Eldar, and Gitta Kutyniok. Introduction to com-
pressed sensing., 2012.

David L Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):1289–1306,
2006.

David L. Donoho and Michael Elad. Optimally sparse representation in general (nonorthogonal)
dictionaries via ℓ¡sup¿1¡/sup¿ minimization. Proceedings of the National Academy of
Sciences, 100(5):2197–2202, 2003. doi: 10.1073/pnas.0437847100. URL https://www.
pnas.org/doi/abs/10.1073/pnas.0437847100.

David L Donoho, Arian Maleki, and Andrea Montanari. Message-passing algorithms for com-
pressed sensing. Proceedings of the National Academy of Sciences, 106(45):18914–18919, 2009.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of super-
position. Transformer Circuits Thread, 2022. URL https://transformer-circuits.
pub/2022/toy_model/index.html.

Joshua Engels, Isaac Liao, Eric J. Michaud, Wes Gurnee, and Max Tegmark. Not all language model
features are linear, 2024. URL https://arxiv.org/abs/2405.14860.

Surya Ganguli and Haim Sompolinsky. Statistical mechanics of compressed sensing. Physical
review letters, 104(18):188701, 2010.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv preprint
arXiv:2406.04093, 2024.

11

https://arxiv.org/abs/2310.06301
https://arxiv.org/abs/2310.06301
https://www.pnas.org/doi/abs/10.1073/pnas.0437847100
https://www.pnas.org/doi/abs/10.1073/pnas.0437847100
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://arxiv.org/abs/2405.14860

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Kathy J Horadam. Hadamard matrices and their applications. Princeton university press, 2012.

Kevin Kögler, Alexander Shevchenko, Hamed Hassani, and Marco Mondelli. Compression of
structured data with autoencoders: Provable benefit of nonlinearities and depth. arXiv preprint
arXiv:2402.05013, 2024.

Kishore Konda, Roland Memisevic, and David Krueger. Zero-bias autoencoders and the benefits of
co-adapting features. arXiv preprint arXiv:1402.3337, 2014.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2, 2024. URL https://arxiv.org/abs/
2408.05147.

Junjie Ma and Li Ping. Orthogonal amp. IEEE Access, 5:2020–2033, 2017.

Alireza Makhzani and Brendan Frey. K-sparse autoencoders. arXiv preprint arXiv:1312.5663, 2013.

Stéphane G Mallat and Zhifeng Zhang. Matching pursuits with time-frequency dictionaries. IEEE
Transactions on signal processing, 41(12):3397–3415, 1993.

Samuel Marks, Can Rager, Eric J. Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse feature circuits: Discovering and editing interpretable causal graphs in language models,
2024. URL https://arxiv.org/abs/2403.19647.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt, 2023. URL https://arxiv.org/abs/2202.05262.

Phan-Minh Nguyen. Analysis of feature learning in weight-tied autoencoders via the mean field
lens. arXiv preprint arXiv:2102.08373, 2021.

Thanh V. Nguyen, Raymond K. W. Wong, and Chinmay Hegde. On the dynamics of gradient
descent for autoencoders. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), Proceedings of
the Twenty-Second International Conference on Artificial Intelligence and Statistics, volume 89
of Proceedings of Machine Learning Research, pp. 2858–2867. PMLR, 16–18 Apr 2019. URL
https://proceedings.mlr.press/v89/nguyen19a.html.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads, 2022. URL https://arxiv.org/
abs/2209.11895.

VV Petrov. of independent random variables. Yu. V. Prokhorov. V. StatuleviCius (Eds.), 1972.

Elad Plaut. From principal subspaces to principal components with linear autoencoders, 2018. URL
https://arxiv.org/abs/1804.10253.

Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János
Kramár, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoen-
coders. arXiv preprint arXiv:2404.16014, 2024.

Akshay Rangamani, Anirbit Mukherjee, Amitabh Basu, Tejaswini Ganapathy, Ashish Arora, Sang
Chin, and Trac D. Tran. Sparse coding and autoencoders, 2017. URL https://arxiv.org/
abs/1708.03735.

Sundeep Rangan, Philip Schniter, and Alyson K Fletcher. Vector approximate message passing.
IEEE Transactions on Information Theory, 65(10):6664–6684, 2019.

12

https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2202.05262
https://proceedings.mlr.press/v89/nguyen19a.html
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/1804.10253
https://arxiv.org/abs/1708.03735
https://arxiv.org/abs/1708.03735

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Maria Refinetti and Sebastian Goldt. The dynamics of representation learning in shallow, non-linear
autoencoders. Journal of Statistical Mechanics: Theory and Experiment, 2023(11):114010, 2023.

Ayaka Sakata and Yoshiyuki Kabashima. Statistical mechanics of dictionary learning. Europhysics
Letters, 103(2):28008, 2013.

Philip Schniter, Sundeep Rangan, and Alyson K Fletcher. Vector approximate message passing
for the generalized linear model. In 2016 50th Asilomar conference on signals, systems and
computers, pp. 1525–1529. IEEE, 2016.

Aleksandr Shevchenko, Kevin Kögler, Hamed Hassani, and Marco Mondelli. Fundamental limits of
two-layer autoencoders, and achieving them with gradient methods. In International Conference
on Machine Learning, pp. 31151–31209. PMLR, 2023.

Daniel A Spielman, Huan Wang, and John Wright. Exact recovery of sparsely-used dictionaries. In
Conference on Learning Theory, pp. 37–1. JMLR Workshop and Conference Proceedings, 2012.

Glen M. Taggart. Prolu: A nonlinearity for sparse autoencoders.
https://www.alignmentforum.org/posts/HEpufTdakGTTKgoYF/
prolu-a-nonlinearity-for-sparse-autoencoders, 2024.

Keigo Takeuchi. Rigorous dynamics of expectation-propagation-based signal recovery from unitar-
ily invariant measurements. IEEE Transactions on Information Theory, 66(1):368–386, 2019.

Shayne FD Waldron. An introduction to finite tight frames. Springer, 2018.

Lloyd Welch. Lower bounds on the maximum cross correlation of signals (corresp.). IEEE
Transactions on Information theory, 20(3):397–399, 1974.

13

https://www.alignmentforum.org/posts/HEpufTdakGTTKgoYF/prolu-a-nonlinearity-for-sparse-autoencoders
https://www.alignmentforum.org/posts/HEpufTdakGTTKgoYF/prolu-a-nonlinearity-for-sparse-autoencoders

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A CONVERGENCE FIGURES OF SECTION 3.2

Generalizing from Section 3.2, let ∆ : Rns → R+ be the root mean square operator

∆v := n−1
s

ns∑
i=1

(vi − v)2,

where v = n−1
s

∑ns

i=1 vi. With this definition, let ν be the vector with νi = νi.

Figure 5: Permutation symmetry of bias values. We plot the mean-square fluctuation of values in
the bias vectors corresponding to each model, which are trained as a function of p and nd/ns. As
ns increases the fluctuation over bias elements generally decreases in all trained models.

Figure 6: Permutation symmetry of Eν. In this case, Eν is given by the off-diagonal row-sums,
scaled by p.

Figure 7: Permutation symmetry of var(ν). The symmetry breaking parameter ∆var(ν) is given
by the variance across all rows of the squared sum of the off diagonal elements in each row, up to a
constant. Once ns reaches 8192 all noise variables have nearly identical variances.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Figure 8: Interference Gaussianity in the large ns limit. Models are trained at different p and nd/ns

values. We see that for small ns only models trained at large p have nearly-uniform off-diagonal
entries whereas all models approach uniformity at large ns.

We also plot the maximum absolute difference of the parameters we claim become constant,

∆2v := max
i

v(i)−min
i

v(i).

Figure 9: Figure 4 but with ∆2 instead of ∆1.

Figure 10: Figure 5 but with ∆2 instead of ∆1.

Figure 11: Figure 6 but with ∆2 instead of ∆1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure 12: Figure 7 but with ∆2 instead of ∆1.

B OPTIMIZING OVER a

We may optimize over a analytically because it appears almost quadratically in the loss. Consider
the expression for the average loss from eq. (5) with b replaced with a · b. As long as a ̸= 0 this
redefinition doesn’t change the set of accessible models.

Furthermore let us restrict to positive a which allows us to rewrite the loss as

L = Ex,ν [
(
x− ReLU (a(x+ ν + b)))2] = Ex,ν [(x− aReLU (x+ ν + b)

)2
]. (11)

The restriction to positive a is acceptable because we never see negative off-diagonal elements in
our trained models. Now, optimizing over a is exactly linear regression; we can obtain the optimal
value of a with the standard method

0 =
d

da
L = −2E [(x− aReLU(x+ ν + b))ReLU(x+ ν + b)] (12)

which implies that

aopt =
Ex,ν [xReLU(x+ ν + b)]

Ex,ν [ReLU(x+ ν + b)2]
. (13)

Notice that the optimal a is always positive, which is consistent with the assumption we made earlier.

C BOUNDING THE RECONSTRUCTION ERROR

On term:

We can start to write the on term similarly as

⟨(u− ReLU (u+ ν))
2⟩ =

〈
σ2

∫ ∞

−∞
dν

e−
(ν+

|b|
σ

)2

2

√
2π

(u− ReLU(u+ σν))2

〉
u

.

Now we write the integral in two parts to get rid of the ReLU: one when u+ σν < 0 and one when
u+ σν > 0. This gives〈∫ −u

σ

−∞
dν

e−
(ν+

|b|
σ

)2

2

√
2π

u2

〉
u︸ ︷︷ ︸

Er

+

〈
σ2

∫ ∞

−u
σ

dν
e−

(ν+
|b|
σ

)2

2

√
2π

ν2

〉
u︸ ︷︷ ︸

Eν

.

Where the first term Er represents error coming from the ReLU and the second term Eν represents
error coming from the noise. The scaling of Eν can be easily bounded:

Eν < σ2

∫ ∞

−∞
dν

e−
(ν+

|b|
σ

)2

2

√
2π

ν2 ∼ O(σ2 + σb+ b2)

And thus we see, unsurprisingly, that we need to set b ≪ 1 to get a good bound.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

To upper bound Er write the u integral in two intervals: [0, 2|b|] and [2|b|, 1], corresponding to
regions in which the interval of the ν integral does and ”decisively” does not include the the mean
respectively. In particular, we have

Er <

∫ 2|b|

0

u2du

∫ −u
σ

−∞
dν

e−
(ν+

|b|
σ

)2

2

√
2π︸ ︷︷ ︸

Emean
r

+

∫ 1

2|b|
u2du

∫ −u
σ

−∞
dν

e−
(ν+

|b|
σ

)2

2

√
2π︸ ︷︷ ︸

Etail
r

.

Since in Emean
r the ν integrals’ interval includes the mean we may as well extend the interval to the

full real line to get the bound, giving

Emean
r <

∫ 2|b|

0

u2du = O(b3).

Etail
r can be upper bounded by setting the ν range to the maximum value of 2|b|, so we have

Etail
r < (1− 2|b|)

∫ − 2|b|
σ

−∞
dν

e−
(ν+

|b|
σ

)2

2

√
2π

= (1− 2|b|)
∫ 0

−∞
dν

e−
(ν− |b|

σ
)2

2

√
2π

< O(1)(1− 2|b|)e−
|b|2

2σ2 .

Putting it all together gives

L < (1− p)O(σ2e−
b2

2σ2) + pO(b3 + e−
|b|2

2σ2 + be−
|b|2

2σ2 + σ2 + σb+ b2).

Plugging in the b scaling from eq. (23) and keeping only the lowest order terms gives

L < O(σ2p log
1

p
) ∼ O(

p2

r
log

1

p
). (14)

D MINIMAL VARIANCE BOUND

We will show a minimum variance bound for matrices W which have all diagonals equal to 1 and
also have maximum rank nd. In this case we know that TrW = ns. On the other hand we also
know that the trace is the sum of the eigenvalues, and because W has rank at most nd that

ns =

nd∑
i=1

λi (15)

for the eigenvalues λi of W . Now we solve for the mean of the variance across rows,

1

ns

ns∑
i=1

Var(νi) =
4p− 3p2

12ns

ns∑
i=1

ns∑
j=1,j ̸=i

W 2
ij =

4p− 3p2

12ns

(
Tr(WW †)− ns

)
. (16)

Here the first equality arises from the definition of νi (remembering that we have set the diagonals to
1 exactly) and substituting the variance of xj , while the second equality follows because Tr(WW †)
is the sum of the square of all entries of W , and we subtract off the diagonal entries.

Because we want a bound on this quantity related to the eigenvalues of W , it is convenient to use
the Schur decomposition of W = QUQ†. Here Q is a unitary matrix and U is upper-triangular with
the eigenvalues of W on the diagonal. This allows us to lower bound the trace

Tr(WW †) = Tr(QUQ†QU†Q†) = Tr(UU†) =

ns∑
i,j=1

|Uij |2 ≥
nd∑
i=1

|λi|2 ≥ n2
s

nd
(17)

where the last inequality follows from Cauchy-Schwarz and eq. (15). With this we find a bound on
the variance

1

ns

ns∑
i=1

Var(νi) ≥
4p− 3p2

12

(
ns

nd
− 1

)
, (18)

with equality if W is symmetric with all non-zero eigenvalues equal. These two conditions follow
because the two inequalities in the proof become equalities when these conditions are met. This
naturally leads to a candidate for the optimal choice of W , namely matrices of the form

W ∝ OPOT and Wii = 1 (19)
where O is an orthogonal matrix and P is any rank-nd projection matrix. This kind of matrix
saturates both bounds because it is symmetric and has all nonzero eigenvalues equal to 1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

E BOUNDS ON THE LOSS

E.1 UPPER BOUND ON LOSS SCALING

We now show that the loss drops off quickly in the sense that for r
p ≫ 1 we get that L(p)/p → 0,

i.e. L(p) scales super-linearly with p. We will consider the regime where r ≪ 1 holds3 so that we
may take σ2 ∼ p

r ≪ 1.

To obtain the upper bound we will make educated estimates for values of a and b that are near
optimal. In particular, in appendix B we show that the optimal value of a is (after absorbing the
mean of ν into b):

aopt =
Ex,ν [xReLU(x+ ν)]

Ex,ν [ReLU(x+ ν)2]
. (20)

From the form of the loss, we know that b must decrease as p decreases for the loss to go down
faster than O(p). Thus ν has both a mean and variance approaching 0, and aopt → 1. Thus we plug
in a = 1 before taking these limits in the expectation of getting a good upper bound. The loss then
takes the form

L = (1− p)Loff + pLon

with

Loff = E
[
ReLU (ν)

2
]
, and

Lon = E
[
(u− ReLU (u+ ν))

2
]

Off term: The off term can be upper bounded via

E
[
ReLU(ν)2

]
=

∫ ∞

0

dν
e−

(ν+|b|)2

2σ2

√
2πσ2

ν2 = σ2

∫ ∞

0

dν
e−

(ν+
|b|
σ

)2

2

√
2π

ν2 (21)

≤ σ2

2
e−

b2

2σ2 (22)

and thus we see we need to set b
σ ≫ 1 to get a good bound. In particular, we know empirically that

the loss drop happens at increasingly smaller r. To ensure this we let σ2 ∼ p
r scale at some rate

slower than p. Thus to ensure that the total loss decreases faster than O(p), we need e−
b2

2σ2 ∼ O(p)
or in other words

b ∼ σ

√
log

1

p
. (23)

On term: We perform a similar, but slightly more involved computation in appendix C and com-
bine with the off term to obtain

L < (1− p)O(σ2e−
b2

2σ2) + pO(b3 + e−
|b|2

2σ2 + be−
|b|2

2σ2 + σ2 + σb+ b2).

Plugging in the b scaling from eq. (23) and keeping only the lower order terms gives

L < O

(
σ2p log

1

p

)
∼ O

(
p2

r
log

1

p

)
. (24)

E.2 LOWER BOUND ON LOSS SCALING

We now show a lower bound on the loss in the p → 0 limit. To do this, we will show a more general
lower bound on the on loss for any deterministic function of the pre-activation. Specifically, we
would like to lower bound

3For example r = p1−ϵ for any ϵ ∈ (0, 1).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

L ≤ pLon = E[(u− f (u+ ν))
2
]

for any function f with u ∼ Uniform[0, 1] and ν ∼ N (0, σ). Recall that there is no need to consider
the bias b as it can be absorbed into ν. Recall that the optimal function f is given by

f∗(u+ ν) = E[u|u+ ν].

Let’s make a change of variable from u, ν to y ≡ u+ν, u, and then use the tower property to rewrite
Lon as

Lon = Ey∼Pu+ν

[
Eu|y

[
(u− f∗(u+ ν))

2
]]

. (25)

We first draw y from the marginal distribution of u+ ν and then draw u from the conditional distri-
bution given y. Because f∗ is exactly the conditional expectation the interior expectation becomes
the conditional variance

Lon = Ey [Var [u|y]] . (26)

Because we want to lower bound Lon it will be convenient to start with a lower bound for the
conditional variance. We will lower bound the conditional variance for y ∈ [σ, 1 − σ], and then
use that lower bound to find a lower bound for the loss, with a goal of showing that the loss is
lower bounded by a constant multiple of σ2, for σ < 1

4 . This will show that the overall loss of
any strategy, even one which can perfectly estimate which features are on or off, is incapable of
achieving a reconstruction error better than O(p2/r).

The conditional distribution for u is a truncated Gaussian distribution. By Bayes’ theorem

P [u|u+ ν = y] =
P [u+ ν = y]P [u]

P [y]
(27)

=

{
e−(u−y)2/2σ2∫ 1

0
dxe−(x−y)2/2σ2 if u ∈ [0, 1]

0 otherwise,
(28)

with normalizing constant Z(y) =
∫ 1

0
dxe−(x−y)2/2σ2

<
√
2πσ2. This is a truncated Gaussian

distribution. Fix y ∈ [σ, 1 − σ] so that all distributions are implicitly conditioned on y for now.
Sample u via the following procedure. First we decide if |u − y| ≤ σ and then we either sample
from the conditional distribution P [u|y and |u − y| ≤ σ] or P [u|y and |u − y| ≥ σ] with their
corresponding probabilities. Let R be the indicator random variable denoting |u− y| ≤ σ. Then by
the law of total variance

Var [u | y] = P [R = 1]Var [u | R = 1] + P [R = 0]Var [u | R = 0] + VarR [E[u | R]] (29)
≥ P [R = 1]Var [u | R = 1] (30)

where we have dropped the latter two positive terms to derive the lower bound. P [R = 1] ≥
erf(2−1/2) because the chance a truncated Gaussian is within one σ of its mode is larger than
that for an untruncated Gaussian, given that the truncation is more than σ away from the mode.
This condition is satisfied by construction because we have chosen y to be more than σ from the
boundary.

Additionally a trivial scaling argument shows that the variance is proportional to σ2 which means
that there is some constant, C > 0 such that

Var [u | y] ≥ Cσ2 (31)

when y ∈ [σ, 1− σ]. To complete the argument we now return to

Lon = Ey [Var [u|y]] ≥ Ey

[
Var [u|y] 1y∈[σ,1−σ]

]
≥ Cσ2P [y ∈ [σ, 1− σ]]. (32)

For σ = 1/4 this probability is clearly finite and for σ < 1/4 it is increasing as σ decreases so it is
uniformly bounded below by a constant C1. So finally

Lon ≥ C ′σ2 =⇒ L ≥ C ′pσ2 ≈ C ′p2

r
. (33)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

F PERSIAN RUG CONSTRUCTION SATISFIES PERMUTATION SYMMETRY

In this section we provide a short discussion on Hadamard matrices, and more importantly proofs
that our Persian Rug construction satisfies the permutation symmetry conditions.

A n× n matrix H is a Hadamard matrix if every entry of H is either 1 or −1, and if all the rows of
H are orthogonal. This implies that HHT = nI where I is the identity matrix.

As a reminder we construct the rug matrix of rank nd and size ns by first choosing a subset S ⊆
{1, . . . , ns} of size |S| = nd. Then we construct

Rij =
1

nd

∑
k∈S

HikHjk (34)

for any Hadamard matrix H of dimension ns

These properties are sufficient for us to prove the required symmetries, as well as the spectral prop-
erties of R:

• Rii = 1,

• For any i = 1, . . . ns that
∑ns

j=1,j ̸=i R
2
ij =

ns

nd
− 1,

• R is proportional to a projector.

The first property is apparent from the fact that all entries of H are ±1.

Rii =
1

nd

∑
k∈S

(Hik)
2 =

1

nd

∑
k∈S

(±1)2 = 1. (35)

The second property follows similarly, but with some more algebra. Without loss of generality let
i = 1 so that we consider the first row’s off-diagonal terms and let δij denote the Kronecker delta
symbol. Then their sum is

ns∑
j=2

R2
1j =

1

n2
d

ns∑
j=2

∑
k1,k2∈S

H1k1H1k2Hjk1Hjk2 (36)

=
1

n2
d

∑
k1,k2∈S

H1k1H1k2

ns∑
j=2

Hjk1Hjk2 (37)

=
1

n2
d

∑
k1,k2∈S

H1k1
H1k2

(H·k1
·H·k2

−H1k1
H1k2

) (38)

where we use the notation H·k for the kth row of the matrix H viewed as a vector. We know these
rows are orthogonal and have norm ns because all their entries are ±1 so

ns∑
j=2

R2
1j =

1

n2
d

∑
k1,k2∈S

H1k1H1k2(nsδk1k2 −H1k1H1k2) (39)

=
ns

n2
d

∑
k1,k2∈S

H1k1
H1k2

δk1k2
− 1

n2
d

∑
k1,k2∈S

H1k1
H1k2

H1k1
H1k2

(40)

=
ns

n2
d

∑
k∈S

H2
1k − 1

n2
d

∑
k1,k2∈S

H2
1k1

H2
1k2

=
ns

nd
− 1, (41)

where we used the fact |S| = nd and the unit norm of the entries to simplify. This shows that the
noise νi has the same variance over all rows.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Finally we show that R is proportional to a projector. Looking at

(R2)ij =
1

n2
d

ns∑
l=1

RilRlj (42)

=
1

n2
d

∑
k1,k2∈S

ns∑
l=1

Hik1Hlk1Hlk2Hjk2 (43)

=
1

nd

∑
k1,k2∈S

Hik1
δk1k2

Hjk2
(44)

=
1

nd

∑
k∈S

HikHjk = Rij (45)

The fact R2 = R means that R is a projector, and hence it is proportional to a projector.

G TRAINING DETAILS

For all of the toy models (eq. (1) with ns ∈ {128, 1024, 8192}) and use a learning rate of 3 ×
10−3/

√
ns. For the Hadamard model (ns = 8192), we use the same stopping strategy described for

the toy models. We use a batch size of 512, maximum number of epochs of 100, a learning rate of
3× 10−1/

√
ns, and also train 5 models and keep the model with the lowest loss.

H PARTIALLY BREAKING PERMUTATION SYMMETRY

A natural question following our analysis; To what extent do the qualitative features of the results
we derive depend on the permutation symmetry of the input vectors x? To move away from this
assumption a little, we perform numerical experiments on the following loss

L = (x;Wout,Win,b) = n−1
s

ns∑
i=1

Mi(xi − fnonlinear(x))i)
2 (46)

where Mi are weights which control the importance of each feature. We choose

Mi =

{
1 if i ≤ ns

2

α if i > ns

2

(47)

for some parameter α ∈ [0, 1]. This breaks the symmetry because some features are now more
important than other features. As before we train until the loss function ceases to decrease, with a
batch size of 4096 and a learning rate of .0003. We train a model with ns = 4096 sparse features
which have the same p = .04 of activating. The compressed dimension nd = 1024.

First let us check that despite the symmetry breaking all features are still represented. Looking at
the model with α = 1

2 we can consider the diagonal and off-diagonal terms. The diagonal terms
can be broken up into two groups: Wii for i ≤ ns/2 which have high importance, and Wii for
i > ns/2 which have lower importance. We plot a histogram of these terms in the first panel of
fig. 13. The terms within each group are close to uniform whereas the two groups have somewhat
different means with the important features having slightly larger diagonal entries.

The off-diagonal terms can be summarized by the standard deviations of νi as before, again split into
more and less important groups. We see that the variance of νi is almost uniform inside each group,
and smaller for the more important features. This shows that permutation symmetry is maintained
within each group, all features may still be represented, and hints that the model gracefully deviates
from our permutation-symmetric solution by shifting it’s budget for the noise and signal.

To see that this shift behaves nicely as α varies away from 1 (which recovers full permutation
symmetry), we look at the mean diagonal value in each group (left panel of fig. 14), and the mean
standard deviation of the noise νi (right panel of fig. 14) in each group. As we can see for α near

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1.24 1.26 1.28 1.30 1.32 1.34 1.36

Wii

0

20

40

60

80

100

D
en

si
ty

Signal Size Distribution

Large Importance

Small Importance

0.24 0.25 0.26 0.27 0.28 0.29

std(νi)

0

100

200

300

400

500

D
en

si
ty

Noise Strength Distribution

Large Importance

Small Importance

Figure 13: Distributions of diagonal terms (of W) in a single trained model with ns = 4096 sparse
features, nd = 1024 dense dimensions, and relative importance weight α = 1/2 for the less im-
portant features. The first subfigure shows that the distribution of diagonal components with small
importance (red) and large importance (blue) are separated, but similar in magnitude. On the other
hand The distribution of the noises is different, with more noise allocated to the less important fea-
tures.

0.0 0.2 0.4 0.6 0.8 1.0

Importance Parameter (α)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

S
ig

n
al

S
tr

en
gt

h

Importance and Signal Sharing

diag(W)large

diag(W)small

0.0 0.2 0.4 0.6 0.8 1.0

Importance Parameter (α)

0.10

0.15

0.20

0.25

0.30

N
oi

se
S

tr
en

gt
h

Importance and Noise Strength

std(νlarge)

std(νsmall)

Figure 14: This figure shows how the signal strength (left) and noise level (right) are shared between
the more and less important features as the importance parameter α goes from 0 to 1. The signal
strength is given by the mean diagonal value of W , while the noise is given by the mean over rows
of the standard deviation of νi. When α is small all the capacity of the model is directed towards
the more important features. As α increases the model begins to dedicate some capacity towards the
less important features. At this point the model pushes more of the noise towards the less important
features. The model breaks symmetry smoothly near α = 1.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1 the behavior shown in the histograms is maintained. As α becomes smaller the model initially
decreases the signal strength, and increases the noise associated with the less important group of
sparse features.

Around α ≈ .25 (for this set of parameters) the model begins to give up entirely on encoding the
less important features, which allows it to increase the fidelity of the more important group. It does
this primarily by reducing the noise sent to those features.

Here we see that the deviations from permutation symmetry produce slowly varying changes in
the optimal encoding strategy for a wide range of α. This implies that qualitative features of the
permutation symmetric setting may remain, even when this symmetry is broken in a more realistic
setting.

I CONFIRMING THE BOUNDS EMPIRICALLY

In this section, we confirm that the bounds we derive agree empirically with that of the numerically
trained Hadamard models. The details of the parameters are given as follows:

• ns = 32, 768

• r ranges from 0.01 to 0.1 uniformly (10 steps)
• p ranges from 0.0001 to 0.01 (10 steps)
• We keep all triplets of the form (ns, r, p) where pns > 5 and p < 0.1r and ignore the rest.

We then train Persian Rug models with these parameters. We plot the final loss of these models
against p2/r in fig. 15.

Figure 15: Here, we choose parameters to capture the regimes p, r << 1, p << r, pns >> 1
and plotted the loss of the Hadamard model against p2/r. The linear relationship with a slightly
decreasing slope with p suggests the p2 log(1/p)/r bound is correct.

23

	Introduction
	The Model
	Empirical observations
	Fast loss drop
	Statistical permutation symmetry
	Optimization of residual parameters

	Extracting the Algorithm
	Qualitative Description
	Optimizing the macroscopic parameters
	Optimal
	Persian Rug model

	Loss scaling at high sparsity
	Initial loss (ratio=0)
	Deriving the Loss Scaling

	Relationship to other works
	Autoencoders
	Mechanistic Interpretability and Sparse Autoencoders
	Compressed Sensing, Statistical Physics

	Convergence Figures of sec:statpermsymmetry
	Optimizing over a
	Bounding the Reconstruction Error
	Minimal Variance Bound
	Bounds on the Loss
	Upper bound on loss scaling
	Lower bound on loss scaling

	Persian Rug Construction Satisfies Permutation Symmetry
	Training Details
	Partially Breaking Permutation Symmetry
	Confirming the Bounds Empirically

