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ABSTRACT

We present a complete mechanistic description of the algorithm learned by a min-
imal non-linear sparse data autoencoder in the limit of large input dimension. The
model, originally presented in|Elhage et al.|(2022)), compresses sparse data vectors
through a linear layer and decompresses using another linear layer followed by a
ReLU activation. We notice that when the data is permutation symmetric (no input
feature is privileged) large models reliably learn an algorithm that is sensitive to
individual weights only through their large-scale statistics. For these models, the
loss function becomes analytically tractable. Using this understanding, we give
the explicit scalings of the loss at high sparsity, and show that the model is near-
optimal among recently proposed architectures. In particular, changing or adding
to the activation function any elementwise or filtering operation can at best im-
prove the model’s performance by a constant factor. Finally, we forward-engineer
a model with the requisite symmetries and show that its loss precisely matches
that of the trained models. Unlike the trained model weights, the low random-
ness in the artificial weights results in miraculous fractal structures resembling a
Persian rug, to which the algorithm is oblivious. Our work contributes to neural
network interpretability by introducing techniques for understanding the structure
of autoencoders.

Figure 1: The Persian Rug, an artificial set of weights matching trained model performance.

1 INTRODUCTION

Large language model capabilities and applications have recently proliferated. As these systems
advance and are given more control over basic societal functions, it becomes imperative to ensure
their reliability with absolute certainty. Mechanistic interpretability aims to achieve this by obtaining
a concrete weight-level understanding of the algorithms learned and employed by these models. A
major impediment to this program has been the difficulty of interpreting intermediate activations.
This is due to the phenomena of superposition, in which a model takes advantage of sparsity in the
input data to reuse the same neurons for multiple distinct features, obscuring their function. Finding



a systematic method to undo superposition and extract the fundamental features encoded by the
network is a large and ongoing area of research Bricken et al.| (2023)); (Cunningham et al.| (2023));
Gao et al.| (2024)); Engels et al.[(2024).

Currently, the most popular method of dealing with superposition is dictionary learning with sparse
autoencoders. In this method, the smaller space of neuron activations at a layer of interest is mapped
to a larger feature space. The map is trained to encourage sparsity and often consists of an affine +
ReLU network. This method has been applied to large language models revealing many strikingly
interpretable features (e.g. corresponding to specific bugs in code, the golden gate bridge, and
sycophancy), even allowing for a causal understanding of the model’s reasoning in certain scenarios
Marks et al.| (2024).

The sparse decoding ability of the affine + ReLU map was recently studied in the foundational
work [Elhage et al.| (2022)), which introduced and studied a toy model of superposition. The model
consisted of a compressing linear layer modeling the superpositiorﬂ followed by a decompressing
affine + ReL.U layer, trained together to auto-encode sparse data. They showed that the network
performs superposition by encoding individual feature vectors into nearly orthogonal vectors in the
smaller space. The affine layer alone is unable to decode sparse input vectors sufficiently well to
make use of superposition, but the addition of the ReLU makes it possible by screening out negative
interference.

While Elhage et al.| (2022)) provides valuable empirical and theoretical insights into superposition, it
does not obtain a strong enough description of the model algorithm to quantitatively characterize the
algorithm’s performance. Given the extensive use of the affine + ReLU map for decoding sparse data
in practice, it is important to obtain a complete analytic understanding of the model behavior over
a large parameter regime. As we will see, this will inform the design of better sparse autoencoder
architectures.

In this work we obtain such an understanding by considering a particularly tractable regime of the
Elhage et al.|(2022) model: permutation symmetric data (no input feature is privileged in any way),
and the thermodynamic limit (a large number of input features), while maintaining the full range
of sparsity and compression ratio values. In this regime, the learned model weights are permuta-
tion symmetric on large scales, which sufficiently simplifies the form of the loss function to the
point where it is analytically tractable, leaving only a small number of free parameters. We then
forwards-engineer an artificial set of weights satisfying these symmetries and optimizing the re-
maining parameters, which achieves the same loss as a corresponding trained model, implying that
trained models also implement the optimal permutation symmetric algorithm. The artificial set of
weights resembles a Persian rug fig. |1} whose structure is a relic of the minimal randomness used in
the construction, illustrating that the algorithm relies entirely on large-scale statistics that are insen-
sitive to this structure. Finally, we derive the exact power-law scaling of the loss in the high-sparsity
regime.

We expect our work to impact the field of neural network interpretability in multiple ways. First,
our work provides a basic theoretical framework that we believe can be extended to other regimes
of interest, such as structured correlations in input features, which may help predict scaling laws in
the loss based on the data’s correlations. Second, our work rules out a large class of performance
improvement proposals for sparse autoencoders. Finally, our work provides an explicit example of
a learned algorithm that is insensitive to microscopic structure in weights, which may be useful for
knowing when not to analyze individual weights.

The paper is structured as follows. In section [2] we review the model and explain our training
procedure. In section [3] we show empirically that large models display a “statistical permutation
symmetry”. In section 4] we extract the algorithm by plugging the symmetry back into the loss,
introduce the Persian Rug model which optimizes the remaining parameters, show that large trained
models achieve the same loss, and derive the loss behavior in the high sparsity limit. In section[5]we
conclude and discuss related works.

I'This is because, if good enough recovery is possible for most features, the pigeonhole principle tells us
that at least some of the smaller space activations must encode information about multiple input features.



2 THE MODEL

We study the following non-linear autoencoder with parameters Wi, € R" %" W, €
R™=*nd b € R™s with ng < ng,

fnonlinear(x) = ReLU(WoutVVinx + b) (1

Here, Wi, is an encoding matrix which converts a sparse activation vector x to a dense vector, while
Wout perform the linear step of decoding. We also consider a simple model for the sparse data on
which this autoencoder operates. We work with data that is permutation symmetric in the sense
that (1, ...,2,) is equal in distribution to (1), Zx(2), ., Tr(n)) for any permutation 7. Each
vector x is drawn i.i.d. during training, and each component is drawn i.i.d. with z; = c;u;, where
¢; ~ Bernoulli(p) and u; ~ Uniform|0, 1] are independent variables. This ensures that x is sparse
with typically only png features turned on.

We train our toy models to minimize the expected Lo reconstruction loss,
- 2
L(X; WOUD I/Vim b) =Ny 1E| ‘X - fnonlinear(x)”Q' (2)

It is known that for the linear model (eq. (I) without the ReLU), the optimal solution is closely
related to principle component analysis (see, for example, |Plaut| (2018) and p. 563 or Bishop &
Nasrabadi| (2006)). In particular, the reconstruction loss decreases linearly in the hidden dimension
nq when all features are i.i.d. On the other hand, the model eq. (I) will have a much quicker
reduction in loss, as will be described in section|3.1

We train all models with a batch size of 1024 and the Adam optimizer to completion. That is training
continues as long as the average loss over the past 200 batches is lower than the average loss over
the 200 batches prior to that one. Our goal with training is to ensure that we have found an optimal
model in the large-data limit to analyze the structure of the model itself. See also appendix |G| for
more training details.

3 EMPIRICAL OBSERVATIONS

In this section, we present empirical observations of the trained models. We start by presenting a
remarkable phenomenon this model exhibits in the high-sparsity regime: a dramatic decrease in loss
as a function of the compression ratio. We then turn to a mechanistic interpretation of the weights
which gives empirical evidence for the phenomena needed to understand the algorithm the model
learns. These are manifestations of a partially preserved permutation symmetry of the sparse degrees
of freedom.

3.1 FAST LOSS DROP

To gauge the performance of the linear and non-linear models, we plot the loss (eq. (2)) as a function
of the compression ratio n4/n. In fig. [2l we see that the non-linear model dramatically outperforms
the linear model and that the out-performance begins already for small ratios and continues up until
much larger ratios (they must coincide again in the trivial case ng/ns; = 1). In this paper, we will
see that the slope and duration of this initial fall is controlled by p (section[d.3). In particular, in the
high-sparsity regime (p close to zero), the loss drops very quickly near the ngy/ns = 0 regime. To
explain this behavior, we analyze the algorithm the model encodes.



Loss at p = 0.04

0.014 Model
Py x  Persian Rug (n, = 8192)
0.0121 Trained Model (n, = 8192)
% —— Optimal Linear Model

0.0104

2 0.0081

Q
—
0.006
0.0041

0.0021 x
Xy ,
X X x ‘
0.0001

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Mg/ Ms

Figure 2: Loss curves of trained models, Persian Rug models, and optimal linear models as a func-
tion of the compression ratio.

3.2 STATISTICAL PERMUTATION SYMMETRY

Rather than looking individually at the weights, it is helpful to look at the matrix W = Wy, Wiy,
shown in fig.[3} When we rewrite eq. (I) in terms of W,

(foontinear (x) )i = ReLU(Wiz; + Z Wijz; + b;),

j=1,j#i

we see that the quantity WW;; measures how much feature 7’s reconstruction “listens” to feature j.
Given the data has a permutation symmetryﬂ so that there is no reason for the reconstruction of z;
to listen any more to x; than to x;, for ¢ # j # k, we might expect a similar symmetry to manifest
in W. For example, we might expect W;; = Wy, = W; and Wy = Wy, fori # j # k. Figure
shows this is not the case, but in this section we show empirically that W will satisfy a weaker
“statistical permutation symmetry” when ng gets large. More precisely, in the large n, regime, W
will satisfy the following properties:

a) the diagonal elements become the same (fig. ),

b) the bias elements become the same and uniformly negative, which can be seen in the uni-
formity and slight blue shade in fig. [3|and is quantified in fig.[5]

c) the off-diagonal terms are sufficiently uniform to motivate a Gaussian approximation to a
reconstruction error term v; := Wi;-l > i Wi;;x; defined for each row (fig. , and finally,

d) the corresponding Gaussians are equal in distribution across rows (fig. [6|and fig. 7).

We confirm that each of the properties listed in the definition of statistical permutation symmetry
above hold empirically in figs.[4] 5] [7]and [8] Each of these figures contains three subfigures (corre-
sponding to ns € {128,1024,6182}), to show that the relevant property manifests as n; gets large.
For example, in fig. 4] we show that the root mean square variation of the diagonals of W,

Adiag(W) :=n' Y " (W;; — diag(W))?
i=1
(where diag(W) = n;' 3" W) tends to zero for various r and p. (We refer to this as the
root mean square deviation instead of the standard deviation to emphasize the fact that W is not
considered to be a random variable in our analysis. Throughout this paper, we reserve terms like
mean and standard deviation for random variables.) Similar quantities and plots for items [b)] and [d)]
can be found in appendix

*By this we mean (21, ..., ) is equal in distribution to (2 (1), ..., Tx(n)) for any permutation 7
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Figure 3: Plot of the first 30 x 30 W elements and the corresponding bias (b) components, at
p = 4.5% and ratio 0.25 (ns = 512). The diagonal components are all at similar values of 1.29+.01
(one standard deviation) while the off-diagonal components are approximately mean-zero, appearing
like noise. The bias elements are all negative around —.18 &+ .01. This statistical uniformity is a
permutation symmetry across the sparse features.
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Figure 4: Permutation symmetry of diagonal values. We plot the mean-square fluctuation of the
diagonal values corresponding to each model. Models are trained as a function of p and ng/ns.
The emergence of symmetry as n, grows (at all locations in the diagram) is a crucial element of the
algorithm implemented by the autoencoders.

We now discuss the Gaussianity property (item |E_5|) in more detail. For a fixed (deterministic) W
and random z, the quantity »; is a random variable which measures the extent to which the pre-
activation reconstruction of x; erroneously receives signal from other components x; with j # 7.
Given that v; is a sum of n, independent random variables, it is natural to ask how well it can be
approximated by a Gaussian in the large n, regime. Clearly some conditions on W;; and x; will
be needed. The Berry-Esseen theorem for independent random variables implies that, if the x; have

finite third moment, the quantity
W13
A := max L”L/?’ (3)
' (Z L W,Z)
J#L g
up to a constant factor that depends on the first three moments of x, is a measure of how far v; is

from Gaussianity (see, for example, (1972)). In fig.[8] we plot A and show it tends to O as
ns grows larger. We leave as an open theory problem the identification of conditions that would

guarantee a central limit theorem for a sequence I/i(k) defined by W) that optimize eq. on a

growing sequence of problems (e.g. as ns — oo with ng/ns = ).



3.3 OPTIMIZATION OF RESIDUAL PARAMETERS

The statistical permutation symmetry places constraints on the possible values of W and b. The
constraint on b is straightforward: it is proportional to the all ones vector, i.e. there is a number
b such that b, = b for all 7. As will be explained in section the relevant degrees of freedom
remaining in W are a number a equal to the diagonals (W;; = a for all ¢) and another number o
characterizing the variance of v; (var v; = o for all 7). The precise values of the off diagonals can be
thought of as irrelevant “microscopic information”. Thus there are three relevant degrees of freedom
remaining: b, a, and .

In section @, we give a specific set of values for Wi, and Wy, via the “Persian Rug” matrix,
which have the statistical permutation symmetry in the ns — oo limit while also optimizing ¢. The
remaining parameters, a and b can be optimized numerically. In fig. 2] we compare the loss curve of
this artificial model with that of a trained model, and see that they are essentially the same.

4 EXTRACTING THE ALGORITHM

In this section, we give a precise explanation of the algorithm the model performs. We start with
a qualitative description of why the statistical permutation symmetry gives a good auto-encoding
algorithm when the remaining macroscopic degrees of freedom are optimized. We then find an
artificial set of symmetric weights with optimized macroscopic parameters. We show that the trained
models achieve the same performance as the artificial model, thus showing they are optimal even
restricting to statistically symmetric solutions. Finally, we derive an explicit form of the loss scaling
and argue that ReLU performs near optimally among element-wise or “selection” decoders.

4.1 QUALITATIVE DESCRIPTION

A key simplification is to consider strategies as collections of low-rank affine maps rather than as
the collection of weights directly. In other words, consider the tuple (W, b) where W = W, (Wi,
to define the strategy. We must restrict to W with rank no more than n, because it is the product of
two low-rank matrices. Given any such W we may also find W, and W, of the appropriate shape
(e.g. by finding the SVD), so the two representations are equivalent.

We now write the output for feature ¢ in terms of W under the statistical permutation symmetry
assumption motivated in section[3] We have

(fontinear(%))i = ReLU(Wyia; + Y Wijaj +b;) = ReLU (a(; + i) +b)  (4)
j=1,5i

where we have used our assumptions that W;; = a and b; = b. We also assume that the v; are
Gaussian and are all equal in distribution. From this, we have

(fnonlinear(x))i 2 ReLU (a(xz + V) + b) )
where 2 denotes equality in distribution and v ~ N (0, 0?) (we may assume v is mean zero because
its mean can be absorbed into the bias b).
The expected reconstruction error is therefore

L=E,,[(x — ReLU (a(z + v) + b))?] (5)

where © = cu with ¢ ~ Bernoulli(p) and u ~ Uniform[0, 1]. We can further decompose this by
taking the expectation value over whether z is “on” or “off” (¢ = 1 or ¢ = 0, respectively). That is,

L = (1 —p)Lotr + pLon,
where
Loit = E,[(ReLU (av 4 b))?], and
Lon = By, [(u — ReLU (a(u + v) + b))?].

Let us qualitatively explore the regimes of macroscopic parameters a, b, o when either or both of



these loss terms are low.

The impact of all the non-diagonal terms has been summed up in the “noise” v. Though it is a
deterministic function of x, output ¢ has no way to remove v from u + v. The best it can do is
to estimate u from u + v because it doesn’t have any other information. This exemplifies a key
principle — by restricting the computational capacity of our decoder, deterministic, but complicated
correlations act like noise.

The main advantage of the nonlinear autoencoder is that the dominant contribution to the loss, Log,
can be immediately screened away by making av + b either small or negative, allowing the network
to focus on encoding active signals. This immediate screening is always possible either by choosing
b large and negative or a and b small. However, these strategies come at a cost because the output
value is distorted from w to au+ b. It is thus preferable instead for v and b to be as small as possible,
which occurs when ¢ is as small as possible. As we will see, o is the only parameter we are not
free to choose in the large n, limit, and whose value will be bounded as a function of n4/ns and p.
Since Lo is the dominant contribution to the loss, therefore, it will thus be necessary to damp the
signal by setting a small and/or b large and negative in regimes where o is uncontrollably large.

Given that we see a statistical permutation symmetry in trained models let’s consider symmetric
strategies so that W;; = a and b; = bforallt = 1,...,n,. We will show that optimizing the
remaining macroscopic parameters makes fyonlinear aCt close to the identity on sparse inputs.

4.2 OPTIMIZING THE MACROSCOPIC PARAMETERS

We have seen qualitatively that a statistically symmetric strategy exists in certain regimes of the
macroscopic parameters. Two of these parameters, a and b are unconstrained. Furthermore the loss
should be monotonically increasing with o because a larger o implies more noise which hinders
reconstruction. Thus we now prove lower bounds on ¢ and construct an artificial set of statistically
permutation symmetric weights which achieve this bound. Finally we will compare the reconstruc-
tion loss of this strategy with the learned one to justify that those ignored microscopic degrees of
freedom were indeed irrelevant.

4.2.1 OPTIMAL o

Assuming the permutation symmetry we discovered earlier in our empirical investigations we will
derive a bound on the variance of the output. Additionally for an optimal choice of b the average
loss is increasing in the variance, because a larger variance corresponds to a smaller signal-to-noise
ratio. Taken together these two facts will give a lower bound on the loss. We will then provide an
explicit construction which achieves this lower bound and illustrates how the algorithm works.

The lower bound on the variance comes from the fact that 1 is low-rank with constant diagonals.
For now let us ignore the overall scale of W, and just rescale so that the diagonals are exactly 1.
The bound we are about to prove is very similar to the Welch bound (Welch, [1974) who phrased
it instead as a bound on the correlations between sets of vectors. We produce an argument for our
context, which deals with potentially non-symmetric matrices W, the details of which are located in
appendix [D}]

We show that )
4p —
o2 > ﬂ Ns 1 (6)
12 ng

with equality only when W is symmetric, maximum rank, with all non-zero eigenvalues equal. This
naturally leads to a candidate for the optimal choice of W, namely matrices of the form

W o OPOT and Wy; = 1 (7)

where O is an orthogonal matrix and P is any rank-ng projection matrix. This kind of matrix
saturates the bound because it is symmetric and has all nonzero eigenvalues equal to 1.

A note on the connections between these matrices and tight frames — if we take the “square root” of

W as ang X ng matrix v W such that v W+/ VVJr = W then the ng dimensional rows of W are a
tight-frame. This is because Tr(W)? = n? = ng Tr WW T which is the variational characterization

of tight-frames as in Theorem 6.1 from |Waldron| (2018]).



4.2.2 PERSIAN RUG MODEL

We now give an explicit construction of an optimal choice for W. The construction is based on a
Hadamard matrix of size ns. A square matrix H is a Hadamard matrix if H;; € {—1,1} and its
rows are orthogonal (see, for example, Horadam|(2012)).

We then define a Persian Rug matrix as

-1
Rij =mny ZHikij
kes

where S C {1,...,n s} with |S| = ng. In fig.[I| we plot such a matrix for ny, = 256, ny = 40, and
S chosen randomly. The matrix R has diagonals equal to 1 because each diagonal is the average
of ng terms of the form (H;;,)? = (£1)? = 1. The matrix R is a projector because the rows of H
are orthogonal, and therefore R is the sum of commuting rank-1 projectors. Therefore R saturates
eq. (6). Furthermore, one can readily check that it exactly satisfies the symmetry for off-diagonal
terms as well as shown in appendix |, which we direct readers to for a further discussion of R.
There remain two variables to optimize, a and b (recall E[v] can be absorbed into b). We do this
numerically and compare to a trained model in fig. [2] (details on the training process can be found in

appendix [G).

4.3 LOSS SCALING AT HIGH SPARSITY

Having obtained a simple expression for the loss in terms of constants a, b and two simple random
variables 2z ~ Uniform[0, 1] and v ~ N(0, o), as well has having deduced an achievable lower
bound for o, we are now able to explain why the simple ReLU model performs so well at high
sparsity. For ease of notation let us use = ng/ns.

4.3.1 INITIAL LOSS (RATIO=0)

Let us first consider the » — 0 limit with all other parameters fixed. Then o — oo because of the
bound in eq. (6) so the fluctuations in v overwhelms the signal term. This means that the optimal a
is

E, . [uReLU(v + b)]

E, [ReLU(v + b)2]

+0(c7h). ®)

a=p
The loss then becomes
L = (1—p)a’E,[ReLU (v + b)*] 4 pEy.[(u — aReLU (v 4 b))?] + O(c™ ")
= a®E,[ReLU (v + b)*] — 2apE, , [u ReLU (v + b)] 4 pE,[u?] + O(c ™)
plugging in a explicitly gives

2 (Ey [u))” (B, [ReLU(v +b)))”

E, [ReLU(v + b)2] +0(c7h).

L= pEu[uz] —p

Thus we can conclude that

lim L = pE.[u’] + O(p°) = £ + O(")

r—0

Thus we see that in the p < 1 regime we have L — Lo(p) ~ O(p) independent of the other
parameters. We will now see that increasing 7 will quickly cause the loss to drop to O(p?).

4.3.2 DERIVING THE LOSS SCALING

In appendix [E.T] we derive an upper bound on the loss function by plugging in appropriate ansatze
for a and b. We find that

1 2 1
L<O <o’2plogp> ~ O (Z; logp> , 9)

when p is small and when r > p.



On the other hand, in appendix [E.2] we also derive a lower bound in the high-sparsity limit L >
O(p?/r) in the high sparsity limit up to logarithmic corrections. We show this in fact holds for a
more general class of activation functions. In particular, any function which acts element-wise or
filters out elements will give an on-loss contribution of the form

Euul(u— f(u+v+b)7]

which has a lower bound due to v destroying information about u. Thus we can conclude that

2
L~0 <p>
r
up to logarithmic factors whenever p/r < 1. It is sensible that the loss function scales inversely
with compression ratio.

5 RELATIONSHIP TO OTHER WORKS

5.1 AUTOENCODERS

Our work focuses specifically on sparse autoencoders, and encoding sparse data, which is parallel
to work explaining the dynamics and emergence of feature learning in autoencoders. [Refinetti &
Goldt|(2023)) show that shallow autoencoders learn the principal components of the data sequentially
and Nguyen| (2021)) shows a similar dynamical result via a mean-field analysis. It’s seen that such
autoencoders function even in a regime where the number of features and the size of the input
are proportional with numerical evidence for Gaussian universality (Shevchenko et al. [2023). This
universality is shown for shallow in auto-encoders following gradient dynamics (Kogler et al.,[2024)).

5.1.1 MECHANISTIC INTERPRETABILITY AND SPARSE AUTOENCODERS

Mechanistic interpretability is a research agenda which aims to understand learned model algorithms
through studying their weights (see |Olah et al.| (2020) for an introduction). Recent results relating
to language models include Meng et al.|(2023)), which finds a correspondence between specific facts
and feature weights, along with [Olsson et al.|(2022), which shows that transformers learn in context
learning through the mechanism of “induction heads”.

A key issue for the agenda of mechanistic interpretability is that the model stores features in su-
perposition. |[Elhage et al.| (2022) introduced the toy model of superposition we study in this paper.
While that work focused on mapping empirically behaviors of the model in multiple regimes of in-
terest such as correlated inputs, we focused on a regime with enough symmetry to solve the model
analytically given observed symmetries in trained models. (Chen et al.| (2023) study this model in the
context of singular learning theory. As part of their work, they characterize the loss using a different
high sparsity approximation than the one we present in this paper (they assume exactly one input
feature is on). Then they derive a subset of the critical points and their corresponding local learning
coefficients under the assumption ng = 2. |Refinetti & Goldt| (2023) study the learning dynamics of
the same model but without the sparsity assumption.

One way to extract interpretable features that are stored in superposition is through dictionary learn-
ing. While the concept of dictionary learning was introduced by (Mallat & Zhang| |1993), the prac-
tical use of sparse autoencoders to understand large language models has accelerated recently due
to mezzo-scale open weight models (Gao et al., 2024; Lieberum et al., [2024) and large-scale open-
output models |Bricken et al.| (2023). These features are highly interpretable (Cunningham et al.,
2023)) and scale predictably. Interestingly, the scaling is quite similar for the various different ar-
chitectures they consider, differing primarily by a constant, which fits with the predictions in this
work.

Our study of [Elhage et al.| (2022)’s model of superposition lend some insight into the dictionary
learning problem. In particular, we have seen that the dominant source of error is not from deter-
mining which features are present, but rather the actual values of those features. Small modifications
to the activation functions, such as gating Rajamanoharan et al.|(2024), k-sparse Makhzani & Frey
(2013)), or TRec non-linearity (Taggart| (2024); Konda et al.|(2014)), are insufficient to fix this problem



as they do not solve the basic issue of noisy outputs. In this context our work implies that innovative
architectures, that are suitable both for gradient-based training and also for decoding sparse features,
must be developed.

While our work focuses on [Elhage et al.| (2022)) toy model of superposition, one can study the
dictionary learning with sparse autoencoders problem directly under various models for the data and
various algorithms (see, for example, [Rangamani et al| (2017); [Nguyen et al.| (2019); |Arora et al.
(2015);|Agarwal et al.|(2016); [Spielman et al.[(2012)). For these problems, we suppose we are given
data vectors y; generated by y; = A*x;, where A* € R™@*"s ig the “true” dictionary and z; are
parametrically sparse vectors. The goal is then to recover A* and the ;. Under various assumptions
on A* and the z;, one can prove various desirable results for various algorithms for estimating them.
For example, in |Rangamani et al.| (2017) and Nguyen et al.| (2019) it is assumed that A* has unit
columns and is incoherent, meaning that its columns { A} have inner-products bounded by

M
N

These authors then give convergence results for learning the model

maxiz; | (A7, A7)l <

§=VTReLU(Vy — ¢) (10)

with € a learnable bias and V' € R™=*"d learnable weights. In particular, Rangamani et al.[ (2017)
shows that the support of = can be recovered for sufficiently sparsity and incoherence and that A*
is critical point for V' in the loss landscape; Nguyen et al.| (2019) shows that eq. trained with
gradient descent recovers the true dictionary in certain parameter regimes.

In contrast, the neural networks in our work search over the space of dictionaries to find ones that
encode sparse information in a way particularly suitable for reconstruction by a single linear +
ReLU layer. As aresult, the dictionary our network finds contains additional structure optimized for
a particular recovery process. For this reason, we find that the relevant error parameter is not the
incoherence (in our notation) max;;|W;;| but rather the variance of off-diagonal elements in each
row y. j ij, and that it is this parameter that needs to be minimized for a given compression ratio.
5.1.2 COMPRESSED SENSING, STATISTICAL PHYSICS

It is known that compressed sparse data can be exactly reconstructed by solving a convex problem
(Candes & Tao, [2005} [Candes et al., 2006; Donoho & Elad\ 2003; [Donohol 2006) given knowledge
of the compression matrix. Furthermore, using tools from statistical physics it is possible to show
that this holds for typical compressed sparse data (Ganguli & Sompolinsky, [2010). Learning the
compression matrix is also easy in certain circumstances(Sakata & Kabashima, 2013). For a more
general review on compressed sensing and it’s history consider the introduction by |Davenport et al.
(2012). The reconstruction procedure typically used in compressed sensing is optimizing a (convex)
relaxation of finding the sparsest set of features which reproduces your data vector. This is signif-
icantly different to the setting of sparse autoencoders which try to obtain the sparse features using
only one linear + activation layer.

The discrepancy between the ability of convex optimization techniques to achieve zero loss while
a linear + ReLU model necessarily incurs an error suggests that a more complex model architec-
ture is needed for sparse autoencoders when it is desirable to calculate the feature magnitude to
high precision. This may occur, for example, if one wishes to insert a sparse autoencoder into a
model without corrupting its downstream outputs. An important line of work is algorithms based
on message-passing schemes brought to fame by |Donoho et al.| (2009), and extended to more gen-
eral encoding matrices by Rangan et al.| (2019), a more general encoding scheme (Schniter et al.,
2016), for ill conditioned matrices (Ma & Ping| 2017)), and proved without statistical physics meth-
ods by [Takeuchi| (2019). These works may hold the key to improving interpretability, particularly
for downstream tasks such as circuit recovery.
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A CONVERGENCE FIGURES OF SECTION [3.2]

Generalizing from Section let A : R™ — R be the root mean square operator

ns
Av:=n ! Z(vl -)?,
i=1

where ¥ = n; Y 7", v;. With this definition, let v be the vector with v; = v;.

ng = 128 ng = 1024 n, = 8192
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Figure 5: Permutation symmetry of bias values. We plot the mean-square fluctuation of values in
the bias vectors corresponding to each model, which are trained as a function of p and ng/ns. As
ns increases the fluctuation over bias elements generally decreases in all trained models.
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Figure 6: Permutation symmetry of Ev. In this case, Ev is given by the off-diagonal row-sums,
scaled by p.
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Figure 7: Permutation symmetry of var(v). The symmetry breaking parameter A var(v) is given
by the variance across all rows of the squared sum of the off diagonal elements in each row, up to a
constant. Once n reaches 8192 all noise variables have nearly identical variances.
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Figure 12: Figurebut with As instead of A;.

B OPTIMIZING OVER a

We may optimize over a analytically because it appears almost quadratically in the loss. Consider
the expression for the average loss from eq. (3) with b replaced with @ - b. As long as a # 0 this
redefinition doesn’t change the set of accessible models.

Furthermore let us restrict to positive a which allows us to rewrite the loss as

L=FE,,[(z - ReLU (a(z + v+ b))% = E,,[(z — aReLU (z + v +1))°]. (1)

The restriction to positive a is acceptable because we never see negative off-diagonal elements in
our trained models. Now, optimizing over a is exactly linear regression; we can obtain the optimal

value of a with the standard method
d
0= %L: —2E [(z — aReLU(z 4+ v + b)) ReLU(z 4+ v + b)] (12)

which implies that
E, . [t ReLU(z 4+ v + b)]

Qopt = .
® T E,, [ReLU(z + v + )?]
Notice that the optimal a is always positive, which is consistent with the assumption we made earlier.

(13)

C BOUNDING THE RECONSTRUCTION ERROR

On term:

We can start to write the on term similarly as

~ (e lbly2
((u — ReLU (u + 1))?) = <a2 /_ dyeﬁ(u —ReLU(u + au))2>

Now we write the integral in two parts to get rid of the ReLU: one when u + ov < 0 and one when
u + ov > 0. This gives

v M 2 v M 2
/_gd 6_<+2(,> , , Ood €_<+2c,> ,
V——U +( 0 V——V
oo V2T _u V2T
u a u

_
E,. E,

Where the first term E),. represents error coming from the ReLU and the second term E, represents
error coming from the noise. The scaling of £, can be easily bounded:

_ e lih?

[e%S) e .
E, < 02/ dv————12 ~ O(c? 4 ob + b?)
oo V2T

And thus we see, unsurprisingly, that we need to set b < 1 to get a good bound.
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To upper bound E, write the u integral in two intervals: [0,2|b|] and [2|b], 1], corresponding to
regions in which the interval of the v integral does and “decisively” does not include the the mean
respectively. In particular, we have

LIRS vt 1bly2
2‘b| _% e_(1+20) 1 _% e_(JrU)
E,. </ u2du/ dy————+ u2du/ dv
0 —00 V2T 2|b| —o0
Ewcan E‘;‘"]

Since in E"*" the v integrals’ interval includes the mean we may as well extend the interval to the
full real line to get the bound, giving

2(b]
Eren < / uw?du = O(b®).
0

Eail , so we have
2| (V+\b\)2 w |b\)2
. o b2
EEl < (1-2b / s —2[b)) / s <O(1)(1 —2[b|])e” 202
A< (1—2[b]) N Wer 10]) (1)(1 —2Jbl)
Putting it all together gives
2
L < (1-p)O(c2e 2%) + pO(b® + ¢~ 307 + b5z + 0?2 + ob+ b?).
Plugging in the b scaling from eq. and keeping only the lowest order terms gives
1 2 1
L < O(%plog =) ~ O(Z log -). (14)
p r p

D MINIMAL VARIANCE BOUND

We will show a minimum variance bound for matrices W which have all diagonals equal to 1 and
also have maximum rank n4. In this case we know that Tr W = n,. On the other hand we also

know that the trace is the sum of the eigenvalues, and because W has rank at most n 4 that
ng

~ S (15)
=1

for the eigenvalues A; of W. Now we solve for the mean of the variance across rows,

L -3t A
s ;Var 12n, ;j ;ﬂ - - (Tr(WW ) ns). (16)

Here the first equality arises from the definition of v; (remembering that we have set the diagonals to
1 exactly) and substituting the variance of x;, while the second equality follows because Tr(WWT)
is the sum of the square of all entries of W, and we subtract off the diagonal entries.

Because we want a bound on this quantity related to the eigenvalues of W, it is convenient to use
the Schur decomposition of W = QUQT. Here Q is a unitary matrix and U is upper-triangular with
the eigenvalues of W on the diagonal. This allows us to lower bound the trace

Tr(Wwh) = Tr(QUQRTQUTQ!) = Tr(UUT) = Z U;|? > Z |2 > i (17)

4,J=1
where the last inequality follows from Cauchy-Schwarz and eq. (I5). Wlth thls we find a bound on
the variance "
1 & 4p — 3p® [n,
— Var(v;) > ———— | — -1, 18
y 2 V) = = (0 as)

with equality if W is symmetric with all non-zero eigenvalues equal. These two conditions follow
because the two inequalities in the proof become equalities when these conditions are met. This
naturally leads to a candidate for the optimal choice of W, namely matrices of the form

W o« OPOT and Wy; = 1 (19)
where O is an orthogonal matrix and P is any rank-ng projection matrix. This kind of matrix
saturates both bounds because it is symmetric and has all nonzero eigenvalues equal to 1.
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E BOUNDS ON THE LOSS

E.1 UPPER BOUND ON LOSS SCALING

We now show that the loss drops off quickly in the sense that for £ > 1 we get that L(p)/p — 0,

i.e. L(p) scales super-linearly with p. We will consider the regime where r < 1 holdsﬂ so that we
may take 0 ~ 2 < 1.

To obtain the upper bound we will make educated estimates for values of a and b that are near
optimal. In particular, in appendix [B| we show that the optimal value of a is (after absorbing the
mean of v into b):

E, . [t ReLU(z + v)]

E, . [ReLU(z + v)?]
From the form of the loss, we know that b must decrease as p decreases for the loss to go down
faster than O(p). Thus » has both a mean and variance approaching 0, and aq, — 1. Thus we plug

in a = 1 before taking these limits in the expectation of getting a good upper bound. The loss then
takes the form

(20)

Qopt =

L= (1 - p)Loff + pLon
with
Lo =E [ReLU (u)ﬂ , and

Lon = E |(u— ReLU (u+v))*]

Off term: The off term can be upper bounded via

o _lbD? o rlh?
20 e 2
E [ReLU(v)?] = dy——1? = 02/ dy———non—1? (21)
[ ) ] 0 V2mo? 0 V2
O’2 b2
< 75? 22)

and thus we see we need to set 3 > 1 to get a good bound. In particular, we know empirically that
the loss drop happens at increasingly smaller r. To ensure this we let 02 ~ P scale at some rate

2
slower than p. Thus to ensure that the total loss decreases faster than O(p), we need e 207 ~ O(p)

or in other words
1
b~ oy/log—. (23)
p

On term: We perform a similar, but slightly more involved computation in appendix [C]and com-
bine with the off term to obtain

[b]2

2 2
L< (1-p)O(02e 27 ) +pO(b® + ¢ 207 + be™ 35 + 02 + ob + b2).
Plugging in the b scaling from eq. and keeping only the lower order terms gives

1 2
L<O <02p10gp> ~0 (Z; 10gp> . (24)

E.2 LOWER BOUND ON LOSS SCALING

We now show a lower bound on the loss in the p — 0 limit. To do this, we will show a more general
lower bound on the on loss for any deterministic function of the pre-activation. Specifically, we
would like to lower bound

3For example = p* ~¢ for any € € (0, 1).
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L < pLen = E[(u — f (u+ 1))

for any function f with u ~ Uniform|[0, 1] and v ~ N(0, o). Recall that there is no need to consider
the bias b as it can be absorbed into v. Recall that the optimal function f is given by

fflu+v)=Eluu+v].

Let’s make a change of variable from u, v to y = u+ v, u, and then use the tower property to rewrite
Lo, as

Lon = Byr,., [Bupy [(w = f*(w+0))°]]. (25)

We first draw y from the marginal distribution of v + v and then draw « from the conditional distri-
bution given y. Because f* is exactly the conditional expectation the interior expectation becomes
the conditional variance

Lo = Ey [Var [uly]] . (26)

Because we want to lower bound L, it will be convenient to start with a lower bound for the
conditional variance. We will lower bound the conditional variance for y € [0,1 — o], and then
use that lower bound to find a lower bound for the loss, with a goal of showing that the loss is
lower bounded by a constant multiple of o2, for o < i. This will show that the overall loss of
any strategy, even one which can perfectly estimate which features are on or off, is incapable of

achieving a reconstruction error better than O (p?/r).
The conditional distribution for u is a truncated Gaussian distribution. By Bayes’ theorem
Plu+v = y|P[u]
Plulu+v=y] = (27
| | Ply

_u_y2:0_2 .
{e()/z ifue[0,1)

JT dze—@—0)%/207

0 otherwise,

(28)

with normalizing constant Z(y) = fol dze=(@=v)*/20" < \/2752. This is a truncated Gaussian
distribution. Fix y € [0,1 — o] so that all distributions are implicitly conditioned on y for now.
Sample u via the following procedure. First we decide if |u — y| < o and then we either sample
from the conditional distribution Plu|y and |u — y| < o] or Plu|y and |u — y| > o] with their
corresponding probabilities. Let R be the indicator random variable denoting |u — y| < o. Then by
the law of total variance

Varfu|y]=P[R=1]Var[u| R=1]+ P[R=0]Var[u | R=0]+ Varg [E[u | R]] (29)
> P[R=1]Var[u| R =1] (30)

where we have dropped the latter two positive terms to derive the lower bound. P[R = 1] >

erf(271/2) because the chance a truncated Gaussian is within one o of its mode is larger than
that for an untruncated Gaussian, given that the truncation is more than o away from the mode.
This condition is satisfied by construction because we have chosen y to be more than ¢ from the
boundary.

Additionally a trivial scaling argument shows that the variance is proportional to o> which means
that there is some constant, C' > 0 such that

Var [u | y] > Co? @31)
when y € [0,1 — o]. To complete the argument we now return to

Loy = Ey [Var [uly]] > E, [Var [u]y] 1y€[a71_g]] > CJ2P[y € [o,1—0]]. (32)

For o = 1/4 this probability is clearly finite and for o < 1/4 it is increasing as o decreases so it is

uniformly bounded below by a constant C. So finally

C/p2
o

Loy > C'0? = L>C'po® ~

(33)
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F PERSIAN RUG CONSTRUCTION SATISFIES PERMUTATION SYMMETRY

In this section we provide a short discussion on Hadamard matrices, and more importantly proofs
that our Persian Rug construction satisfies the permutation symmetry conditions.

A n x n matrix H is a Hadamard matrix if every entry of H is either 1 or —1, and if all the rows of
H are orthogonal. This implies that H H” = nI where I is the identity matrix.

As a reminder we construct the rug matrix of rank n,4 and size n, by first choosing a subset S C
{1,...,ns} of size |S| = n4. Then we construct

Z HiyHjj, (34)
k:eS

for any Hadamard matrix H of dimension 7,

These properties are sufficient for us to prove the required symmetries, as well as the spectral prop-
erties of R:

* Ry =1,
* Foranyi=1,...n that 37 IJ#Rfj:ﬁ— ,

nd

* R is proportional to a projector.

The first property is apparent from the fact that all entries of H are +1.

:75 zk =
z n

keS

Z(il) 1. (35)

4 jcs

The second property follows similarly, but with some more algebra. Without loss of generality let
i = 1 so that we consider the first row’s off-diagonal terms and let J;; denote the Kronecker delta
symbol. Then their sum is

> R} = 2 Z > Hig, Hig, Hyg, Hyp, (36)
Jj=2 J =2 k1,k2€S
1
=3 Z Hig Hig, Z Hjy, (37
"d ki,ko€S
1
=— Y HigHip,(Hy, - Hy, — Hip, Hig,) (38)
Y ki,k2€S

where we use the notation H.j, for the k" row of the matrix H viewed as a vector. We know these
rows are orthogonal and have norm ns because all their entries are =1 so

Ns 1
DB =5 Y Hik ik (nedsk, — Hik, Hup,) (39)
j=2 d gy ko€S
Ng 1
=2 Z Hupy HipyOriky — — Z Hpy Hipo Higy Hig, (40)
d ky,ko€S d ky,ko€S
Ng 2 Ng
=;Z — > Hi,Hi, =—-1 (41)
d kes ng k1,ka€S d

where we used the fact |S| = ng and the unit norm of the entries to simplify. This shows that the
noise v; has the same variance over all rows.
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Finally we show that R is proportional to a projector. Looking at

1 &
(R%)ij = — > RuRy; (42)
d =1
1 =
== > > Hi Huy, Hy, Hj, (43)
a ki,ka€S 1=1
1
=— > Hinokn Hy, (44)
d k1,k2€S
1
= — > HixHjr = Ry (45)
4 kes

The fact R? = R means that R is a projector, and hence it is proportional to a projector.

G TRAINING DETAILS

For all of the toy models (eq. with ny € {128,1024,8192}) and use a learning rate of 3 x
1073/ \/ns. For the Hadamard model (ns = 8192), we use the same stopping strategy described for
the toy models. We use a batch size of 512, maximum number of epochs of 100, a learning rate of
3 x 107! /,/n, and also train 5 models and keep the model with the lowest loss.

H PARTIALLY BREAKING PERMUTATION SYMMETRY

A natural question following our analysis; To what extent do the qualitative features of the results
we derive depend on the permutation symmetry of the input vectors x? To move away from this
assumption a little, we perform numerical experiments on the following loss

L= (X§ Wouts Win, b) = ns_l Z Mz<xz - fnonlinear(x))i)2 (46)

i=1

where M; are weights which control the importance of each feature. We choose

1ifi< e
M; = o2 47
' {a ifi> % @7

for some parameter « € [0,1]. This breaks the symmetry because some features are now more
important than other features. As before we train until the loss function ceases to decrease, with a
batch size of 4096 and a learning rate of .0003. We train a model with n, = 4096 sparse features
which have the same p = .04 of activating. The compressed dimension ng = 1024.

First let us check that despite the symmetry breaking all features are still represented. Looking at
the model with o = % we can consider the diagonal and off-diagonal terms. The diagonal terms
can be broken up into two groups: W;; for i < ng/2 which have high importance, and W;; for
i > ns/2 which have lower importance. We plot a histogram of these terms in the first panel of
fig. The terms within each group are close to uniform whereas the two groups have somewhat
different means with the important features having slightly larger diagonal entries.

The off-diagonal terms can be summarized by the standard deviations of v; as before, again split into
more and less important groups. We see that the variance of v; is almost uniform inside each group,
and smaller for the more important features. This shows that permutation symmetry is maintained
within each group, all features may still be represented, and hints that the model gracefully deviates
from our permutation-symmetric solution by shifting it’s budget for the noise and signal.

To see that this shift behaves nicely as « varies away from 1 (which recovers full permutation
symmetry), we look at the mean diagonal value in each group (left panel of fig.[T4), and the mean
standard deviation of the noise v; (right panel of fig. in each group. As we can see for a near
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Figure 13: Distributions of diagonal terms (of W) in a single trained model with n; = 4096 sparse
features, ngy = 1024 dense dimensions, and relative importance weight &« = 1/2 for the less im-
portant features. The first subfigure shows that the distribution of diagonal components with small
importance (red) and large importance (blue) are separated, but similar in magnitude. On the other
hand The distribution of the noises is different, with more noise allocated to the less important fea-

tures.
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Figure 14: This figure shows how the signal strength (left) and noise level (right) are shared between
the more and less important features as the importance parameter o goes from 0 to 1. The signal
strength is given by the mean diagonal value of IV, while the noise is given by the mean over rows
of the standard deviation of v;. When « is small all the capacity of the model is directed towards
the more important features. As « increases the model begins to dedicate some capacity towards the
less important features. At this point the model pushes more of the noise towards the less important
features. The model breaks symmetry smoothly near a = 1.
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1 the behavior shown in the histograms is maintained. As o becomes smaller the model initially
decreases the signal strength, and increases the noise associated with the less important group of
sparse features.

Around o = .25 (for this set of parameters) the model begins to give up entirely on encoding the
less important features, which allows it to increase the fidelity of the more important group. It does
this primarily by reducing the noise sent to those features.

Here we see that the deviations from permutation symmetry produce slowly varying changes in
the optimal encoding strategy for a wide range of «. This implies that qualitative features of the
permutation symmetric setting may remain, even when this symmetry is broken in a more realistic
setting.

I CONFIRMING THE BOUNDS EMPIRICALLY

In this section, we confirm that the bounds we derive agree empirically with that of the numerically
trained Hadamard models. The details of the parameters are given as follows:

* ng = 32,768

* rranges from 0.01 to 0.1 uniformly (10 steps)

* pranges from 0.0001 to 0.01 (10 steps)

» We keep all triplets of the form (ns, 7, p) where pngs > 5 and p < 0.1r and ignore the rest.

We then train Persian Rug models with these parameters. We plot the final loss of these models
against p? /7 in fig.

[ ]
0.0008 .
[ ]
0.0006 oo
% [ ] . °
=} ¢ *
3 0.0004 .
L L]
(1]
[ ]
0.0002 o
o’
0.0000 "
0.0000 0.0002 0.0004 0.0006 0.0008
2
p/r

Figure 15: Here, we choose parameters to capture the regimes p,r << 1, p << r, png >> 1
and plotted the loss of the Hadamard model against p?/r. The linear relationship with a slightly
decreasing slope with p suggests the p? log(1/p)/r bound is correct.
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