
SPIDER: Boosting Blind Face Restoration via
Simultaneous Prior Injection and Degradation

Removal

Anonymous Author(s)
Affiliation
Address
email

Abstract

Existing blind face restoration (BFR) methods suffer from drastic performance drop1

under severe degradations. A common strategy is to first remove degradations and2

then restore the face by fully harnessing generative prior. However, this sequential3

pipeline risks discarding subtle but crucial cues from already limited low-quality4

(LQ) inputs. To address this, we ingeniously introduce a new learning paradigm:5

simultaneous prior injection and degradation removal (SPIDER). Unlike existing6

approaches, SPIDER injects semantic prior before degradation removal, thereby7

preserving identity-relevant features and mitigating the impact of corrupted LQ8

features. SPIDER consists of two key modules: (1) a prior injection module that9

distills purified degradation-unaware semantic control tokens from vision-language10

models, and (2) a degradation removal module equipped with an image-to-text11

degradation mapper and a degradation remover that refines distorted features into12

robust representations. Extensive experiments on both synthetic and real-world13

datasets, including challenging surveillance scenarios, demonstrate SPIDER’s clear14

superiority over state-of-the-art BFR methods.15

1 Introduction16

Blind Face Restoration (BFR) is a challenging task that aims to recover high-quality (HQ) face17

images from low-quality (LQ) ones that suffer from unknown and complex degradations such as low18

resolution [3, 6], blur [48], noise [13, 28], and JPEG compression [5]. This is an inherently ill-posed19

problem as the information loss caused by the degradations leads to an overwhelming number of20

plausible HQ solutions consistent with the same LQ input. To mitigate the ill-posedness, recent21

studies have explored various prior-based methods to produce high-fidelity outputs.22

As illustrated in Figure 1, existing prior-based BFR methods fall into three main paradigms: 1)23

Continuous generative prior (e.g., GFPGAN [36], which learns accurate latent codes via GAN inver-24

sion to reconstruct HQ faces with high fidelity; 2) Discrete generative prior (e.g., Codeformer [52],25

DAEFR [30]), which uses vector quantization to map degraded inputs into semantic tokens and26

harness a fixed HQ codebook for high-quality restoration; and 3) Diffusion-based conditional genera-27

tion (e.g., DiffBIR [18], FaithDiff [2]), which reframes the restoration into conditional generation28

employing the powerful expressiveness of diffusion prior to achieve significant improvements in fine29

detail, perceptual fidelity, and overall realism. Many SOTA methods [18, 2, 37, 41] belong to the30

third paradigm and achieve promising results on mild to moderate degradations. However, under31

severe or extreme degradation, whether synthetic or real-world, they often introduce artifacts or32

even fail catastrophically in the results, as demonstrated in Figure 2. Taking extreme surveillance33

degradations in the fourth row as an example, since aliasing and jagged artifacts are not presented in34

the synthesized training data, the existing models mistakenly use the corrupted signals as the actual35
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Figure 1: Comparison with existing paradigms for blind face restoration.

features, resulting in erroneous details in the results. We argue that the noises induced by the severe36

degradations are the primary cause of restoration failure. To address this, many methods [18, 37]37

first remove degradations explicitly or implicitly and then restore the face by leveraging powerful38

generative priors (Figure 1 (c)). However, this sequential pipeline risks discarding subtle but crucial39

cues from already limited LQ inputs, further elevating the ill-posedness of BFR.40

To overcome this, we ingeniously propose Simultaneous Prior Injection and Degradation Removal41

(SPIDER), a new learning paradigm to enhance face restoration (Figure 1 (d)). Rather than removing42

degradation first, SPIDER injects semantic prior (i.e., combined with diffusion prior) before degrada-43

tion removal. Intuitively, this design not only enriches the representation of relevant facial content but44

also amplifies both signal and noise. This amplification enables the subsequent degradation removal45

module (DRM) to more effectively differentiate between informative structures and unwanted noise,46

resulting in substantially improved restoration fidelity (Figure 2).47

Specifically, SPIDER consists of two key components. The Prior Injection Module distills degradation-48

unaware semantic tokens using a vision-language model (VLM), such as LLaVA [19], to generate49

rich textual descriptions from degraded images. These semantic priors are subsequently injected into50

the diffusion generation pipeline at multiple levels, providing robust and context-aware guidance.51

The DRM comprises an image-to-text degradation mapper and a degradation remover, which together52

project noisy visual representations into a purified textual embedding space aligned with the injected53

prior. This design leverages the noise-resilience of the textual modality and performs degradation54

filtering through semantic alignment, which is more robust to perturbations than direct visual-space55

restoration. By jointly integrating semantic prior injection and degradation removal via our proposed56

decoupled cross-attention (DCA) mechanism, SPIDER delivers state-of-the-art restoration results57

under severe degradations in both synthetic and real-world scenarios.58

SPIDER achieves state-of-the-art results on both existing synthetic and real-world benchmarks and59

our newly introduced SCface dataset [8] of extreme surveillance face images. Beyond its superior60

BFR performance, SPIDER pioneers a novel learning paradigm injecting prior before degradation61

removal that can be extended to a wide range of restoration tasks beyond blind face restoration.62

2 Related Work63

2.1 Blind Face Restoration64

Recent BFR approaches mainly leverage generative prior to reconstruct faces with high realism and65

faithful details. Representative latent-prior-based methods such as GFPGAN [36] and GPEN [44]66

encode LQ face images into semantically faithful latent codes, enabling faithful reconstruction of67

their HQ counterparts using StyleGAN-based generative prior [11]. Despite improvements in fidelity,68

these methods often introduce artifacts when the input images exhibit complex degradations not69

covered by the training data. State-of-the-art methods like Codeformer [52], RestoreFormer [39],70
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Figure 2: Comparisons with representative face restoration approaches on both synthetic (CelebA-
Test [10]) and real-world (WIDER [42], SCface [8]) LQ images under various degradations

.

and DAEFR [30] utilize discrete HQ codebook to generate high-fidelity face details by exploiting71

Vector-Quantized (VQ) dictionary learning [7, 31]. However, the fixed-size codebook inherently72

limits the expressiveness ability of such discrete prior, which can hinder the faithful reconstruction of73

diverse and complex facial structures.74

Recent works [45, 46, 34, 18, 2] reframe face restoration as conditional image generation using75

powerful diffusion prior, significantly advancing BFR quality. VSP [22] introduces prompt-based76

inference to further refine restoration results. StableSR [34] and TASR [15] finetune the temporal77

embedding layers to produce time-aware features that adaptively modulate features across the78

denoising steps. DiffBIR [18] and DR2 [37] perform degradation removal and conditional image79

generation sequentially: they first remove degradation using an off-the-shelf model, and then refine80

details. PASD [45] and SUPIR [46] enhance LQ feature extraction with stronger encoders. The latest81

work FaithDiff [2], employs BSRNet [47] for initial restoration and extracts text embeddings via82

LLaVA [19]. It further improves this paradigm by jointly training the encoder and diffusion model83

in an end-to-end fashion, enabling their synergistic evolution and enhancing alignment between the84

extracted features and the generated content.85

Although the above methods have demonstrated strong performance in restoring faces under moderate86

degradations, they often struggle in real-world scenarios involving severe and complex degradations.87

This results in visual artifacts, structural distortions, and semantic inconsistencies. A key challenge88

lies in the model’s difficulty in distinguishing intrinsic, reliable facial features from degradation-89

induced noise. Consequently, synthesizing faces from corrupted or noisy representations can lead90

to erroneous or unrealistic restoration outcomes. Therefore, effectively removing degradations is a91

prerequisite for achieving faithful and high-quality restoration.92

2.2 Degradation Removal in Blind Image Restoration93

Recent blind image restoration methods increasingly focus on learning degradation processes to94

enhance realism and adaptability. Due to the limitations of handcrafted degradation assumptions,95

AND [35] introduces an adversarial degradation generator that synthesizes pseudo-degraded images,96

thereby bridging the domain gap between synthetic and real-world degradations in supervised97

restoration. DiffBIR [18] and FaithDiff [2] both adopt a two-stage design, where degradation98
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is first removed and then image quality is refined. TextualDegRemoval [17] leverages textural99

modality representations to generate clean guidance images under natural degradations such as rain100

and snow, using them as reference images to enhance blind image restoration. However, despite101

differences in representation and guidance modality, these methods share a structurally decoupled102

architecture: degradation removal is treated as a prerequisite, independent of the image generation103

process. This decoupling hinders joint optimization and frequently leads to unstable outputs when104

handling occlusion, motion blur, or structural corruption—especially in face restoration, where105

identity consistency and semantic fidelity are particularly fragile.106

2.3 Vision-Language Models107

Vision-language models (VLMs) have advanced rapidly with CLIP [26] providing strong semantic108

prior by aligning image and text embeddings. DA-CLIP [23] models image content and degradations109

jointly, enabling multi-task restoration. SSP-IR [51] enhances geometric consistency by integrating110

structural contour information into CLIP-based prior, while FUSION [21] improves cross-modal111

understanding through deep feature fusion. Apart from general VLMs, researchers have also proposed112

vision-language architectures specifically designed for face images. FCLIP [4] uses dual-branch113

learning on FaceCaption-15M for better attribute alignment. Face-MLLM [29] employs a three-stage114

strategy on a large-scale QA dataset to enhance fine-grained attribute reasoning and instruction115

following. FaceInsight [14] integrates keypoint detection and attention mechanisms to ensure116

structural and identity consistency. However, these methods remain unpublished or proprietary,117

hindering the integration of face-oriented VLMs into BFR task.118

3 Proposed Method: SPIDER119

3.1 Framework overview120

As illustrated in Figure 3, our SPIDER restores HQ face images from their LQ counterparts by121

simultaneously injecting cross-modal semantic prior and removing degradations. The training process122

of SPIDER is divided into two stages. In Stage I (Figure 3(b)), we train a degradation removal123

module (DRM) to remove degradations at the textual level, where the image content and degradation124

information are loosely coupled, making it more effective to isolate and remove noise. In Stage125

II (Figure 3(a)), we employ a large vision-language model (i.e., LLaVA) to generate detailed text126

descriptions of HQ face images, enabling the extraction of fine-grained semantic prior. Meanwhile,127

the pretrained DRM is used to "erase" feature corruption at multiple scales. These two branches (i.e.,128

prior injection and degradation removal) interact via a decoupled cross attention (DCA) mechanism129

(Figure 3(c)) integrated into each block of both the UNet [27] and ControlNet [49]. This collaborative130

design ensures robust guidance and effective noise suppression, ultimately leading to faithful HQ131

face restoration.132

Figure 3: Framework of our proposed SPIDER model.
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3.2 Semantic Prior Injection133

Many recent super-resolution models leverage prior knowledge provided by vision-language models,134

such as FaithDiff [2], XPSR [25], and AuthFace [16]. The performance of LLaVA is highly dependent135

on well-crafted prompts [20]. Considering the highly structured nature of human faces, we modify the136

prompt design to focus the output on detailed facial component structures. Experiments in XPSR [25]137

and SPIRE [24] demonstrate that LLaVA can implicitly infer both the type and severity of noise138

artifacts from facial images, maintaining robust performance even under noisy conditions. In our139

study, we extract structural descriptions of facial features from LLaVA and encode them using CLIP140

text encoder to obtain embeddings and then further integrate these embeddings with DRM outputs141

through a DCA module to guide the image restoration process.142

3.3 Degradation Removal Module (DRM)143

Effective degradation removal is essential for recovering high-fidelity HQ face images from LQ144

inputs, as corrupted signals can mislead the blind face restoration (BFR) model. To address this,145

we propose a novel cross-modal mapping module, DRM, which directly transforms degraded face146

images into noise-suppressed textual representations. This cross-modal strategy is more effective than147

conventional image-space denoising, as the textual embedding space exhibits a natural decoupling148

between semantic content and degradation-induced noise.149

As shown in Figure 3, the proposed DRM comprises two key components: (1) a Degradation Mapper150

that projects CLIP image embeddings into implicit textual representations, preserving rich visual151

semantics that are often lost in explicit textual descriptions; and (2) a Degradation Remover that152

purifies these representations by filtering out degradation-specific artifacts. The resulting clean textual153

features maintain high semantic fidelity to the original image content while eliminating noise patterns,154

thereby providing reliable guidance for subsequent image generation.155

Degradation Mapper. Following [40], we use a CLIP-based cross-modal projection that maps156

visual features into a text-aligned embedding space. Specifically, given a degraded input image X ,157

we first extract its visual features using a CLIP image encoder E, and then project them into the158

textual embedding space through a learnable Mapper Pmapper:159

Fmapper = Pmapper(E(X)), Fmapper ∈ RN×D, (1)

where D is the dimensionality of the textual word embeddings, and N is the number of learned160

tokens (set to 30) to preserve rich visual details while maintaining computational efficiency.161

Degradation Remover. While Fmapper encodes high-level textual representations, it also carries162

noise and degradation-specific artifacts that hinder restoration. To address this, we introduce a163

Degradation Remover Premover to purify the token embeddings:164

Fremover = Premover(Fmapper), Fremover ∈ RN×D, (2)

where N is consistent with the Mapper design and the cleaned representation Fremover serves as the165

final conditioning input to the DCA module (Figure 3(c)).166

3.4 Training and Inference167

Training Stage I: Learning Degradation-Unaware Textual Representations. The Degradation168

Mapper projects CLIP image features into a text-aligned embedding space, generating a representation169

Fmapper that captures both visual content and degradation patterns in a form compatible with text170

embeddings. As a result, images of different qualities are encoded into a unified textual representation171

space. During the training of the Degradation Mapper, the condition F is replaced with Fmapper and172

the training objective is defined as:173

LstageI = Ez0,ϵ∼N (0,I),t

[
∥ϵ− ϵθ(zt, t, F )∥22

]
, (3)

where z0 = E(X) is the latent representation of input image X , encoded by a pretrained VAE encoder174

E(·), and ϵ ∼ N (0, I) represents the added Gaussian noise. At each diffusion timestep t, the noisy175

latent representation zt is constructed from z0 and ϵ via the forward diffusion process. The noise176

prediction model ϵθ(·) is trained to predict the added noise by minimizing the mean squared error177

between the ground-truth and predicted noise values. The Degradation Remover is trained using the178

same diffusion loss LstageI, but with the condition F replaced by Fremover, while keeping the Mapper179

module frozen. Additional training details are provided in the appendix.180
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Training Stage II: Simultaneous Prior Injection and Degradation Removal for BFR. After181

finishing training Degradation Mapper and Degradation Remover, we freeze their weights, and182

train the blind face restoration model using simultaneous prior injection and degradation removal183

across multiple feature scales. Specifically, two complementary sources of information are utilized:184

(1) a high-level semantic prior Ftext obtained from LLaVA, and (2) a degradation-aware, noise-185

suppressed embedding Fremover produced by the previous stage. They are simultaneously injected186

into the diffusion model to enable semantically coherent and visually faithful face reconstruction.187

The training objective follows the standard noise prediction loss used in latent diffusion models:188

LstageII-BFR = Ez0,ϵ∼N (0,I),t

[
∥ϵ− ϵθ(zt, t,DCA(Ftext, Fremover))∥22

]
, (4)

where DCA(·) denotes the Decoupled Cross Attention mechanism.189

Inference Pipeline. During inference, our framework processes an LQ face image through two190

parallel paths: the input is first passed through the frozen Degradation Mapper and Remover to obtain191

a degradation-purified embedding Fremover; simultaneously, the same LQ input is used to generate a192

text embedding Ftext via LLaVA [19]. To ensure high-quality text generation, we preprocess the input193

with GFPGAN-v1.4 [36] prior to feeding it into LLaVA-v1.5-13B [19].194

4 Experiments195

4.1 Experimental Settings196

Training Datasets. We train all models on the FFHQ dataset [11], which contains 70,000 high-197

quality face images resized to 512× 512. We follow DiffBIR [18] to generate corresponding low-198

quality (LQ) images. To obtain semantic guidance, we use LLaVA [19] to generate face description199

prompts for each image.200

Testing Datasets. We evaluate our method on one synthetic dataset and three real-world datasets.201

The synthetic dataset, CelebA-Test [10], comprises 3,000 images sampled from CelebA-HQ, with LQ202

versions generated using the same degradation pipeline as training. The real-world datasets include203

LFW-Test [9] (1,711 images, mild degradation), WIDER-Test [42] (970 images, heavy degradation),204

and SCface [8], which features extreme surveillance degradations such as aliasing, jagged artifacts,205

low-light noise, and defocus blur. SCface contains 130 subjects captured by five surveillance cameras;206

for evaluation, we use images taken from a distance of 2.6 meters.207

Compared Methods. We compare our proposed SPIDER with seven state-of-the-art BFR methods208

across three categories: (1) StyleGAN-prior methods: GFPGAN [36]; (2) Codebook-prior meth-209

ods: CodeFormer [52] and DAEFR [30]; (3) Diffusion-based methods: DR2 [37], PGDiff [41],210

DiffBIR [18] and FaithDiff [2]. All experiments are conducted using official code.211

Evaluation Metrics. We adopt both reference-based and no-reference image quality metrics for212

comprehensive evaluation. For synthesized datasets with ground truth, we use PSNR [38], SSIM [38],213

LPIPS [50], FID [1], as well as no-reference perceptual metrics MANIQA [43] and CLIPIQA [33]214

to better capture perceptual quality. For real-world datasets without ground truth, we evaluate215

performance using MANIQA, CLIPIQA, and FID.216

Implementation Details Both the Degradation Mapper and Remover are trained for one epoch on217

the FFHQ dataset during Stage I, with a batch size of 4, using the Adam optimizer and a learning218

rate of 1× 10−6 on a single NVIDIA V100 GPU. Our SPIDER model is built upon the pretrained219

stable-diffusion-2.1 and trained for 15 epochs on two NVIDIA RTX 4090 GPUs, with a batch size of220

192, using the Adam optimizer [12] and a learning rate of 5× 10−5.221

4.2 Comparisons with State-of-the-Art Methods222

Table 1: Quantitative comparison on synthetic dataset of CelebA-Test [10]. The best results are
marked in red, and the second best in blue.

Metrics Input GFPGAN [36] CodeFormer [52] DAEFR [30] DR2 [37] PGDiff [41] DiffBIR [18] FaithDiff [2] SPIDER(Ours)
FID ↓ 152.64 21.33 22.58 15.55 27.75 19.82 28.48 20.92 22.57
MANIQA ↑ 0.1683 0.4289 0.5062 0.5426 0.5160 0.4658 0.6534 0.5184 0.5834
CLIPIQA ↑ 0.2403 0.5391 0.6828 0.6769 0.5972 0.5583 0.7648 0.6570 0.7013
LPIPS ↓ 0.7292 0.4554 0.3312 0.4153 0.3354 0.3286 0.3882 0.3145 0.3177
PSNR ↑ 22.56 17.86 22.67 21.89 22.26 21.52 22.90 22.76 22.94
SSIM ↑ 0.5006 0.5407 0.5540 0.5966 0.5854 0.5678 0.5410 0.5782 0.6111
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LQ GFPGAN CodeFormer DAFER DR2 PGDiff DiffBIR FaithDiff SPIDER(Ours) GT

Figure 4: Qualitative comparison on synthetic dataset of CelebA-Test.

Evaluation on Synthetic Dataset. As shown in Table 1, our method achieves state-of-the-art or223

near-state-of-the-art performance across multiple evaluation metrics on CelebA-Test, ranking first in224

PSNR and SSIM, and second in LPIPS, MANIQA, and CLIPIQA. Figure 4 further demonstrates225

that our approach generates perceptually realistic and semantically consistent face restorations, with226

well-preserved identity features and effective suppression of visual artifacts. In the first-row example,227

clearer eye contours and finer skin details are recovered, while in the second-row case, the original228

gaze direction and eye semantics are faithfully maintained—corroborating the superior quantitative229

performance.230

LQ GFPGAN CodeFormer DAEFR DR2 PGDiff DiffBIR FaithDiff SPIDER(Ours)
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Figure 5: Qualitative comparisons on real-world datasets. Our method is able to restore high quality
faces, showing robustness to the heavy degradation.

Evaluation on Real-World Dataset. As shown in Table 2, our method achieved the best FID scores231

on the LFW and the WIDER dataset. It also ranked second on both the MANIQA and CLIPIQA232

benchmarks. For the SCface dataset, which involves extreme surveillance degradations, our approach233

attained the highest MANIQA and CLIPIQA scores. Although the FID score was slightly inferior234

to that of PGDiff, our method outperformed it in all other evaluation metrics. Figure 5 presents235

qualitative results on real-world datasets. On LFW, our model effectively restores side faces with236
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clear facial features and minimal background-induced artifacts. Benefiting from the multi-step noise237

suppression of the DRM module, SPIDER also preserves both primary and background subjects238

with high fidelity. On WIDER, it maintains key facial features (eyes, nose, mouth) and overall239

visual consistency, whereas other models suffer from artifacts around facial regions. On SCface,240

the complex noise patterns inherent in surveillance imagery pose significant challenges for existing241

models, leading to suboptimal reconstructions. In contrast, our model delivers more faithful and242

coherent results, demonstrating stronger generalization to real-world degradations.243

Table 2: Quantitative comparisons on real-world datasets of LFW [9], WIDER [42], SCface [8]. The
best results are marked in red, and the second best in blue.

Datasets LFW WIDER SCface
Degradation Mild real-world degradations Heavy real-world degradations Extreme surveillance degradations
Methods FID ↓ MANIQA ↑ CLIPIQA ↑ FID ↓ MANIQA ↑ CLIPIQA ↑ FID ↓ MANIQA ↑ CLIPIQA ↑
GFPGAN [36] 53.87 0.4558 0.6324 50.36 0.4352 0.5756 106.97 0.4358 0.6461
CodeFormer [52] 52.84 0.5266 0.6889 39.22 0.4959 0.6984 99.07 0.4327 0.6852
DAEFR [30] 47.69 0.5420 0.6965 36.72 0.5205 0.6975 103.64 0.4600 0.7217
DR2 [37] 50.42 0.5248 0.6532 52.78 0.4746 0.5948 96.49 0.4438 0.5823
PGDiff [41] 41.86 0.4763 0.6070 38.06 0.4391 0.5880 85.48 0.3610 0.5127
DiffBIR [18] 40.91 0.6735 0.7948 35.82 0.6624 0.8083 149.98 0.3965 0.4648
FaithDiff [2] 41.34 0.4949 0.6787 36.07 0.5106 0.7092 88.48 0.5127 0.6880
SPIDER(Ours) 39.74 0.5784 0.7320 34.58 0.5630 0.7342 87.57 0.5514 0.7446

4.3 Ablation studies244

Table 3: Ablation results showing the effective-
ness of the DRM on the CelebA-Test.

Metrics Without DRM With DRM
PSNR↑ 20.76 22.94
SSIM↑ 0.5671 0.6111
LPIPS↓ 0.3910 0.3177

FID↓ 24.94 22.57

Effectiveness of the Degradation Removal Mod-245

ule. As shown in Table 3, integrating DRM re-246

sults in a clear performance improvement across247

all metrics. A visual comparison on WIDER-Test248

is presented in Figure 6 (a). In the first and third249

columns, without DRM, the BFR model misinter-250

prets noise as authentic detail, leading to severe251

distortions in the hair, facial region, clothing and252

background. In the second and fourth columns,253

unclear contours and artifacts are generated because the BFR model struggles to effectively dis-254

tinguish between noise and informative content. These results suggest that the module effectively255

suppresses noise while preserving fine-grained structural and textural details, thereby enhancing256

overall image fidelity.257

Table 4: Ablation results comparing different
module orders on the CelebA-Test.

Metrics DRM→Semantic prior Semantic prior→DRM
PSNR↑ 21.50 22.94
SSIM↑ 0.5988 0.6111
LPIPS↓ 0.3550 0.3177

FID↓ 27.54 22.57

Insights into SPIDER Design. Table 4 shows258

that the order of the semantic prior injection and259

the DRM is critical. We adopt a design where the260

semantic prior is injected before DRM, allowing261

the diffusion model to amplify both signal and262

noise. This amplification helps DRM better dis-263

tinguish informative structures from degradation,264

leading to improved restoration quality. As shown265

in Figure 6(b), applying DRM first may suppress266

useful details, resulting in a generated image that lacks detail and exhibits unnatural textures.267

Table 5: Ablation results comparing different
prompt styles on the CelebA-Test.

Metrics General
Prompt

Facial Attributes
Prompt

Face Description
Prompt

PSNR↑ 21.38 21.42 22.94
SSIM↑ 0.5899 0.5854 0.6111
LPIPS↓ 0.3616 0.3744 0.3177

FID↓ 24.57 30.50 22.57

Importance of Face-oriented Prompt Design.268

Our method customizes the prompts fed into269

LLaVA [19] based on CelebA-Test facial attribute270

definitions [10], enabling richer semantic descrip-271

tions of facial structures. According to Table 5,272

compared to general image descriptions, incor-273

porating detailed facial descriptions can enhance274

the performance of restoration. Thus, guiding275

the vision-language model to attend to facial at-276

tributes is essential for effectively leveraging its277

prior knowledge. However, facial attributes prompts often omit spatial information and frequently278

include redundant features (e.g., "normal nose," "average eyes") that are shared across many images,279

offering limited benefit for recovering fine textures. More prompt examples are in the appendix.280
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(a) Comparisons with and without the DRM module (b) Effects of different module orderings

Figure 6: Ablation studies evaluating (a) the impact of the DRM module and (b) the ordering of
modules within the model architecture.

4.4 Understanding the Degradation Removal Mechanism in SPIDER281

We use t-SNE [32] to visualize feature changes after training the Degradation Mapper and Remover in282

SPIDER. We randomly select 100 CelebA-Test images (seed=42), synthesize their LQ versions at FID283

150 and 250 using the same degradation pipeline as training, and apply the same process to training284

data (FFHQ) for reference. As shown in Figure 7, we observe that (1) features extracted by the Mapper285

are widely dispersed, with HQ and LQ clearly separated, indicating strong degradation sensitivity; (2)286

after applying the Remover, features across all quality levels converge into a degradation-invariant287

space, where even severely degraded images align closely with HQ ones. These consistent patterns288

across both training and testing datasets demonstrate that our DRM effectively suppresses degradation-289

related variations, enabling robust and faithful restoration under extreme degradations.

Remover output Mapper output

Mapper output

Mapper output

Mapper output

Remover output

Figure 7: t-SNE visualization of feature distributions on FFHQ (left) and CelebA-HQ (right).

290

5 Conclusion291

We propose SPIDER, a novel paradigm for blind face restoration that performs simultaneous multi-292

level prior injection and degradation removal. SPIDER adopts an interleaved architecture where prior293

injection precedes degradation removal at each level, ensuring that semantic and diffusion priors294

amplify both signal and noise in a way that helps the DRM better distinguish meaningful facial295

features from heavy degradations. Experiments on synthetic and real-world datasets confirm its296

superiority over state-of-the-art methods. Beyond its strong performance in BFR, SPIDER presents a297

novel learning paradigm with broad applicability to various image restoration tasks.298
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Justification: Codes are included in the supplementary zip file.566
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versions (if applicable).584
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results?590
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material.598

7. Experiment statistical significance599
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information about the statistical significance of the experiments?601
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the experiments?632

Answer: [Yes]633
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mechanisms for monitoring misuse, mechanisms to monitor how a system learns from681

feedback over time, improving the efficiency and accessibility of ML).682

11. Safeguards683

Question: Does the paper describe safeguards that have been put in place for responsible684

release of data or models that have a high risk for misuse (e.g., pretrained language models,685

image generators, or scraped datasets)?686

Answer: [NA]687

Justification: Our paper poses no such risks.688

Guidelines:689

• The answer NA means that the paper poses no such risks.690

• Released models that have a high risk for misuse or dual-use should be released with691

necessary safeguards to allow for controlled use of the model, for example by requiring692

that users adhere to usage guidelines or restrictions to access the model or implementing693

safety filters.694

• Datasets that have been scraped from the Internet could pose safety risks. The authors695

should describe how they avoided releasing unsafe images.696

• We recognize that providing effective safeguards is challenging, and many papers do697

not require this, but we encourage authors to take this into account and make a best698

faith effort.699

12. Licenses for existing assets700

Question: Are the creators or original owners of assets (e.g., code, data, models), used in701

the paper, properly credited and are the license and terms of use explicitly mentioned and702

properly respected?703

Answer: [Yes]704

Justification: We have cited related original papers and models in our paper. We ensure that705

all licenses and terms of use are respected.706

Guidelines:707

• The answer NA means that the paper does not use existing assets.708

• The authors should cite the original paper that produced the code package or dataset.709

• The authors should state which version of the asset is used and, if possible, include a710

URL.711

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.712

• For scraped data from a particular source (e.g., website), the copyright and terms of713

service of that source should be provided.714

• If assets are released, the license, copyright information, and terms of use in the715

package should be provided. For popular datasets, paperswithcode.com/datasets716

has curated licenses for some datasets. Their licensing guide can help determine the717

license of a dataset.718

• For existing datasets that are re-packaged, both the original license and the license of719

the derived asset (if it has changed) should be provided.720
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• If this information is not available online, the authors are encouraged to reach out to721

the asset’s creators.722

13. New assets723

Question: Are new assets introduced in the paper well documented and is the documentation724

provided alongside the assets?725

Answer: [Yes]726

Justification: We release newly trained models and inference/training code, with documenta-727

tion and usage instructions provided in the supplementary material.728

Guidelines:729

• The answer NA means that the paper does not release new assets.730

• Researchers should communicate the details of the dataset/code/model as part of their731

submissions via structured templates. This includes details about training, license,732

limitations, etc.733

• The paper should discuss whether and how consent was obtained from people whose734

asset is used.735

• At submission time, remember to anonymize your assets (if applicable). You can either736

create an anonymized URL or include an anonymized zip file.737

14. Crowdsourcing and research with human subjects738

Question: For crowdsourcing experiments and research with human subjects, does the paper739

include the full text of instructions given to participants and screenshots, if applicable, as740

well as details about compensation (if any)?741

Answer: [NA]742

Justification: Our work does not involve human subjects or crowdsourcing.743

Guidelines:744

• The answer NA means that the paper does not involve crowdsourcing nor research with745

human subjects.746

• Including this information in the supplemental material is fine, but if the main contribu-747

tion of the paper involves human subjects, then as much detail as possible should be748

included in the main paper.749

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,750

or other labor should be paid at least the minimum wage in the country of the data751

collector.752

15. Institutional review board (IRB) approvals or equivalent for research with human753

subjects754

Question: Does the paper describe potential risks incurred by study participants, whether755

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)756

approvals (or an equivalent approval/review based on the requirements of your country or757

institution) were obtained?758

Answer: [NA]759

Justification: Our research does not involve human subjects and therefore does not require760

IRB or equivalent review.761

Guidelines:762

• The answer NA means that the paper does not involve crowdsourcing nor research with763

human subjects.764

• Depending on the country in which research is conducted, IRB approval (or equivalent)765

may be required for any human subjects research. If you obtained IRB approval, you766

should clearly state this in the paper.767

• We recognize that the procedures for this may vary significantly between institutions768

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the769

guidelines for their institution.770

• For initial submissions, do not include any information that would break anonymity (if771

applicable), such as the institution conducting the review.772
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16. Declaration of LLM usage773

Question: Does the paper describe the usage of LLMs if it is an important, original, or774

non-standard component of the core methods in this research? Note that if the LLM is used775

only for writing, editing, or formatting purposes and does not impact the core methodology,776

scientific rigorousness, or originality of the research, declaration is not required.777

Answer: [Yes]778

Justification: Our method incorporates LLaVA, a vision-language large model (VLM) built779

upon LLMs, to extract semantic prior from degraded images. These prior are crucial for780

guiding both degradation removal and restoration, making LLM usage an integral part of781

our approach.782

Guidelines:783

• The answer NA means that the core method development in this research does not784

involve LLMs as any important, original, or non-standard components.785

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)786

for what should or should not be described.787
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