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Abstract

Existing blind face restoration (BFR) methods suffer from drastic performance drop
under severe degradations. A common strategy is to first remove degradations and
then restore the face by fully harnessing generative prior. However, this sequential
pipeline risks discarding subtle but crucial cues from already limited low-quality
(LQ) inputs. To address this, we ingeniously introduce a new learning paradigm:
simultaneous prior injection and degradation removal (SPIDER). Unlike existing
approaches, SPIDER injects semantic prior before degradation removal, thereby
preserving identity-relevant features and mitigating the impact of corrupted LQ
features. SPIDER consists of two key modules: (1) a prior injection module that
distills purified degradation-unaware semantic control tokens from vision-language
models, and (2) a degradation removal module equipped with an image-to-text
degradation mapper and a degradation remover that refines distorted features into
robust representations. Extensive experiments on both synthetic and real-world
datasets, including challenging surveillance scenarios, demonstrate SPIDER’s clear
superiority over state-of-the-art BFR methods.

1 Introduction

Blind Face Restoration (BFR) is a challenging task that aims to recover high-quality (HQ) face
images from low-quality (LQ) ones that suffer from unknown and complex degradations such as low
resolution [3} 6], blur [48]], noise [13} 28], and JPEG compression [5]. This is an inherently ill-posed
problem as the information loss caused by the degradations leads to an overwhelming number of
plausible HQ solutions consistent with the same LQ input. To mitigate the ill-posedness, recent
studies have explored various prior-based methods to produce high-fidelity outputs.

As illustrated in Figure [I] existing prior-based BFR methods fall into three main paradigms: 1)
Continuous generative prior (e.g., GFPGAN [36], which learns accurate latent codes via GAN inver-
sion to reconstruct HQ faces with high fidelity; 2) Discrete generative prior (e.g., Codeformer [52],
DAEFR [30]]), which uses vector quantization to map degraded inputs into semantic tokens and
harness a fixed HQ codebook for high-quality restoration; and 3) Diffusion-based conditional genera-
tion (e.g., DiffBIR [[18]], FaithDiff [2]), which reframes the restoration into conditional generation
employing the powerful expressiveness of diffusion prior to achieve significant improvements in fine
detail, perceptual fidelity, and overall realism. Many SOTA methods [18} 2,37, 41] belong to the
third paradigm and achieve promising results on mild to moderate degradations. However, under
severe or extreme degradation, whether synthetic or real-world, they often introduce artifacts or
even fail catastrophically in the results, as demonstrated in Figure 2] Taking extreme surveillance
degradations in the fourth row as an example, since aliasing and jagged artifacts are not presented in
the synthesized training data, the existing models mistakenly use the corrupted signals as the actual
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Figure 1: Comparison with existing paradigms for blind face restoration.

features, resulting in erroneous details in the results. We argue that the noises induced by the severe
degradations are the primary cause of restoration failure. To address this, many methods [[18l, [37]]
first remove degradations explicitly or implicitly and then restore the face by leveraging powerful
generative priors (Figure(l|(c)). However, this sequential pipeline risks discarding subtle but crucial
cues from already limited LQ inputs, further elevating the ill-posedness of BFR.

To overcome this, we ingeniously propose Simultaneous Prior Injection and Degradation Removal
(SPIDER), a new learning paradigm to enhance face restoration (Figure[I] (d)). Rather than removing
degradation first, SPIDER injects semantic prior (i.e., combined with diffusion prior) before degrada-
tion removal. Intuitively, this design not only enriches the representation of relevant facial content but
also amplifies both signal and noise. This amplification enables the subsequent degradation removal
module (DRM) to more effectively differentiate between informative structures and unwanted noise,
resulting in substantially improved restoration fidelity (Figure [2).

Specifically, SPIDER consists of two key components. The Prior Injection Module distills degradation-
unaware semantic tokens using a vision-language model (VLM), such as LLaVA [19], to generate
rich textual descriptions from degraded images. These semantic priors are subsequently injected into
the diffusion generation pipeline at multiple levels, providing robust and context-aware guidance.
The DRM comprises an image-to-text degradation mapper and a degradation remover, which together
project noisy visual representations into a purified textual embedding space aligned with the injected
prior. This design leverages the noise-resilience of the textual modality and performs degradation
filtering through semantic alignment, which is more robust to perturbations than direct visual-space
restoration. By jointly integrating semantic prior injection and degradation removal via our proposed
decoupled cross-attention (DCA) mechanism, SPIDER delivers state-of-the-art restoration results
under severe degradations in both synthetic and real-world scenarios.

SPIDER achieves state-of-the-art results on both existing synthetic and real-world benchmarks and
our newly introduced SCface dataset [8] of extreme surveillance face images. Beyond its superior
BFR performance, SPIDER pioneers a novel learning paradigm injecting prior before degradation
removal that can be extended to a wide range of restoration tasks beyond blind face restoration.

2 Related Work

2.1 Blind Face Restoration

Recent BFR approaches mainly leverage generative prior to reconstruct faces with high realism and
faithful details. Representative latent-prior-based methods such as GFPGAN [36] and GPEN [44]]
encode LQ face images into semantically faithful latent codes, enabling faithful reconstruction of
their HQ counterparts using StyleGAN-based generative prior [L1]. Despite improvements in fidelity,
these methods often introduce artifacts when the input images exhibit complex degradations not
covered by the training data. State-of-the-art methods like Codeformer [52]], RestoreFormer [39],
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Figure 2: Comparisons with representative face restoration approaches on both synthetic (CelebA-
Test [10])) and real-world (WIDER [42], SCface [8]) LQ images under various degradations

and DAEFR [30] utilize discrete HQ codebook to generate high-fidelity face details by exploiting
Vector-Quantized (VQ) dictionary learning [[7, 31]]. However, the fixed-size codebook inherently
limits the expressiveness ability of such discrete prior, which can hinder the faithful reconstruction of
diverse and complex facial structures.

Recent works [43], [34], 18] 2]] reframe face restoration as conditional image generation using
powerful diffusion prior, significantly advancing BFR quality. VSP [22]] introduces prompt-based
inference to further refine restoration results. StableSR and TASR [13]] finetune the temporal
embedding layers to produce time-aware features that adaptively modulate features across the
denoising steps. DiffBIR [18]] and DR2 [37]] perform degradation removal and conditional image
generation sequentially: they first remove degradation using an off-the-shelf model, and then refine
details. PASD [43] and SUPIR [46] enhance LQ feature extraction with stronger encoders. The latest
work FaithDiff [2], employs BSRNet [47] for initial restoration and extracts text embeddings via
LLaVA [19]. It further improves this paradigm by jointly training the encoder and diffusion model
in an end-to-end fashion, enabling their synergistic evolution and enhancing alignment between the
extracted features and the generated content.

Although the above methods have demonstrated strong performance in restoring faces under moderate
degradations, they often struggle in real-world scenarios involving severe and complex degradations.
This results in visual artifacts, structural distortions, and semantic inconsistencies. A key challenge
lies in the model’s difficulty in distinguishing intrinsic, reliable facial features from degradation-
induced noise. Consequently, synthesizing faces from corrupted or noisy representations can lead
to erroneous or unrealistic restoration outcomes. Therefore, effectively removing degradations is a
prerequisite for achieving faithful and high-quality restoration.

2.2 Degradation Removal in Blind Image Restoration

Recent blind image restoration methods increasingly focus on learning degradation processes to
enhance realism and adaptability. Due to the limitations of handcrafted degradation assumptions,
AND [33] introduces an adversarial degradation generator that synthesizes pseudo-degraded images,
thereby bridging the domain gap between synthetic and real-world degradations in supervised
restoration. DiffBIR [[18] and FaithDiff both adopt a two-stage design, where degradation
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is first removed and then image quality is refined. TextualDegRemoval [[17] leverages textural
modality representations to generate clean guidance images under natural degradations such as rain
and snow, using them as reference images to enhance blind image restoration. However, despite
differences in representation and guidance modality, these methods share a structurally decoupled
architecture: degradation removal is treated as a prerequisite, independent of the image generation
process. This decoupling hinders joint optimization and frequently leads to unstable outputs when
handling occlusion, motion blur, or structural corruption—especially in face restoration, where
identity consistency and semantic fidelity are particularly fragile.

2.3 Vision-Language Models

Vision-language models (VLMs) have advanced rapidly with CLIP [26] providing strong semantic
prior by aligning image and text embeddings. DA-CLIP [23]] models image content and degradations
jointly, enabling multi-task restoration. SSP-IR [S1] enhances geometric consistency by integrating
structural contour information into CLIP-based prior, while FUSION [21]] improves cross-modal
understanding through deep feature fusion. Apart from general VLMs, researchers have also proposed
vision-language architectures specifically designed for face images. FCLIP [4] uses dual-branch
learning on FaceCaption-15M for better attribute alignment. Face-MLLM [29] employs a three-stage
strategy on a large-scale QA dataset to enhance fine-grained attribute reasoning and instruction
following. Facelnsight [[14] integrates keypoint detection and attention mechanisms to ensure
structural and identity consistency. However, these methods remain unpublished or proprietary,
hindering the integration of face-oriented VLMs into BFR task.

3 Proposed Method: SPIDER

3.1 Framework overview

As illustrated in Figure [3] our SPIDER restores HQ face images from their LQ counterparts by
simultaneously injecting cross-modal semantic prior and removing degradations. The training process
of SPIDER is divided into two stages. In Stage I (Figure [3(b)), we train a degradation removal
module (DRM) to remove degradations at the textual level, where the image content and degradation
information are loosely coupled, making it more effective to isolate and remove noise. In Stage
IT (Figure [3[a)), we employ a large vision-language model (i.e., LLaVA) to generate detailed text
descriptions of HQ face images, enabling the extraction of fine-grained semantic prior. Meanwhile,
the pretrained DRM is used to "erase" feature corruption at multiple scales. These two branches (i.e.,
prior injection and degradation removal) interact via a decoupled cross attention (DCA) mechanism
(Figure Ekc)) integrated into each block of both the UNet [27]] and ControlNet [49]. This collaborative
design ensures robust guidance and effective noise suppression, ultimately leading to faithful HQ
face restoration.

a) The proposed SPIDER framework
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3.2 Semantic Prior Injection

Many recent super-resolution models leverage prior knowledge provided by vision-language models,
such as FaithDiff [2], XPSR [25]], and AuthFace [16]. The performance of LLaVA is highly dependent
on well-crafted prompts [20]]. Considering the highly structured nature of human faces, we modify the
prompt design to focus the output on detailed facial component structures. Experiments in XPSR [235]
and SPIRE [24] demonstrate that LLaVA can implicitly infer both the type and severity of noise
artifacts from facial images, maintaining robust performance even under noisy conditions. In our
study, we extract structural descriptions of facial features from LLaVA and encode them using CLIP
text encoder to obtain embeddings and then further integrate these embeddings with DRM outputs
through a DCA module to guide the image restoration process.

3.3 Degradation Removal Module (DRM)

Effective degradation removal is essential for recovering high-fidelity HQ face images from LQ
inputs, as corrupted signals can mislead the blind face restoration (BFR) model. To address this,
we propose a novel cross-modal mapping module, DRM, which directly transforms degraded face
images into noise-suppressed textual representations. This cross-modal strategy is more effective than
conventional image-space denoising, as the textual embedding space exhibits a natural decoupling
between semantic content and degradation-induced noise.

As shown in Figure 3] the proposed DRM comprises two key components: (1) a Degradation Mapper
that projects CLIP image embeddings into implicit textual representations, preserving rich visual
semantics that are often lost in explicit textual descriptions; and (2) a Degradation Remover that
purifies these representations by filtering out degradation-specific artifacts. The resulting clean textual
features maintain high semantic fidelity to the original image content while eliminating noise patterns,
thereby providing reliable guidance for subsequent image generation.

Degradation Mapper. Following [40], we use a CLIP-based cross-modal projection that maps
visual features into a text-aligned embedding space. Specifically, given a degraded input image X,
we first extract its visual features using a CLIP image encoder E, and then project them into the
textual embedding space through a learnable Mapper Prapper:

Fmapper = Pmapper(E(X))a Fmapper S RNXDa (1)

where D is the dimensionality of the textual word embeddings, and N is the number of learned
tokens (set to 30) to preserve rich visual details while maintaining computational efficiency.

Degradation Remover. While Fi,,pper €ncodes high-level textual representations, it also carries
noise and degradation-specific artifacts that hinder restoration. To address this, we introduce a
Degradation Remover Premover to purify the token embeddings:

NxD
F remover — remover(F mapper)7 F remover € R ) (2)

where [V is consistent with the Mapper design and the cleaned representation Fiemover SETVES as the
final conditioning input to the DCA module (Figure [3{c)).

3.4 Training and Inference

Training Stage I: Learning Degradation-Unaware Textual Representations. The Degradation
Mapper projects CLIP image features into a text-aligned embedding space, generating a representation
Fhnapper that captures both visual content and degradation patterns in a form compatible with text
embeddings. As a result, images of different qualities are encoded into a unified textual representation
space. During the training of the Degradation Mapper, the condition F'is replaced with Finapper and
the training objective is defined as:

Loager = Exqemnon e [l = oz, FI] 3)

where zy = £(X) is the latent representation of input image X, encoded by a pretrained VAE encoder
E(-), and € ~ N (0, I) represents the added Gaussian noise. At each diffusion timestep ¢, the noisy
latent representation z; is constructed from z, and € via the forward diffusion process. The noise
prediction model €y (-) is trained to predict the added noise by minimizing the mean squared error
between the ground-truth and predicted noise values. The Degradation Remover is trained using the
same diffusion loss Lger, but with the condition F' replaced by Fremover, While keeping the Mapper
module frozen. Additional training details are provided in the appendix.
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Training Stage II: Simultaneous Prior Injection and Degradation Removal for BFR. After
finishing training Degradation Mapper and Degradation Remover, we freeze their weights, and
train the blind face restoration model using simultaneous prior injection and degradation removal
across multiple feature scales. Specifically, two complementary sources of information are utilized:
(1) a high-level semantic prior Fi. obtained from LLaVA, and (2) a degradation-aware, noise-
suppressed embedding Fiemover produced by the previous stage. They are simultaneously injected
into the diffusion model to enable semantically coherent and visually faithful face reconstruction.
The training objective follows the standard noise prediction loss used in latent diffusion models:

ﬁstageH—BFR = Ezo,eNN(O,I)7t ||E — €9 (Zta t, DOA(ESXU Eemover))”§ s 4

where DCA(-) denotes the Decoupled Cross Attention mechanism.

Inference Pipeline. During inference, our framework processes an LQ face image through two
parallel paths: the input is first passed through the frozen Degradation Mapper and Remover to obtain
a degradation-purified embedding Fiemover; Simultaneously, the same LQ input is used to generate a
text embedding Fiex, via LLaVA [[19]]. To ensure high-quality text generation, we preprocess the input
with GFPGAN-v1.4 [36] prior to feeding it into LLaVA-v1.5-13B [19].

4 Experiments

4.1 Experimental Settings

Training Datasets. We train all models on the FFHQ dataset [[11]], which contains 70,000 high-
quality face images resized to 512 x 512. We follow DiffBIR [18]] to generate corresponding low-
quality (LQ) images. To obtain semantic guidance, we use LLaVA [19] to generate face description
prompts for each image.

Testing Datasets. We evaluate our method on one synthetic dataset and three real-world datasets.
The synthetic dataset, CelebA-Test [[10], comprises 3,000 images sampled from CelebA-HQ, with LQ
versions generated using the same degradation pipeline as training. The real-world datasets include
LFW-Test [9] (1,711 images, mild degradation), WIDER-Test [42] (970 images, heavy degradation),
and SCface [8]], which features extreme surveillance degradations such as aliasing, jagged artifacts,
low-light noise, and defocus blur. SCface contains 130 subjects captured by five surveillance cameras;
for evaluation, we use images taken from a distance of 2.6 meters.

Compared Methods. We compare our proposed SPIDER with seven state-of-the-art BFR methods
across three categories: (1) StyleGAN-prior methods: GFPGAN [36]; (2) Codebook-prior meth-
ods: CodeFormer [52]] and DAEFR [30]; (3) Diffusion-based methods: DR2 [37], PGDiff [41],
DiffBIR [[18]] and FaithDiff [2]]. All experiments are conducted using official code.

Evaluation Metrics. We adopt both reference-based and no-reference image quality metrics for
comprehensive evaluation. For synthesized datasets with ground truth, we use PSNR [38]], SSIM [3§]],
LPIPS [50], FID [1]], as well as no-reference perceptual metrics MANIQA [43]] and CLIPIQA [33]
to better capture perceptual quality. For real-world datasets without ground truth, we evaluate
performance using MANIQA, CLIPIQA, and FID.

Implementation Details Both the Degradation Mapper and Remover are trained for one epoch on
the FFHQ dataset during Stage I, with a batch size of 4, using the Adam optimizer and a learning
rate of 1 x 107 on a single NVIDIA V100 GPU. Our SPIDER model is built upon the pretrained
stable-diffusion-2.1 and trained for 15 epochs on two NVIDIA RTX 4090 GPUs, with a batch size of
192, using the Adam optimizer [12] and a learning rate of 5 x 1075,

4.2 Comparisons with State-of-the-Art Methods

Table 1: Quantitative comparison on synthetic dataset of CelebA-Test [10]. The best results are
marked in red, and the second best in blue.

Metrics Tnput  GFPGAN [36] CodeFormer [52] DAEFR [30] DR2 [37] PGDIff [41] DifiBIR [I8] FaithDilf [2] SPIDER(Ours)
FID | 152.64 2133 2258 1555 2775 19.82 2348 20.92 2257
MANIQA 1 | 0.1683 0.4289 0.5062 0.5426 0.5160 0.4658 0.6534 0.5184 0.5834
CLIPIQA 1 | 0.2403 0.5391 0.6828 0.6769 0.5972 0.5583 0.7648 0.6570 0.7013
LPIPS | 0.7292 0.4554 0.3312 0.4153 0.3354 0.3286 0.3882 0.3145 0.3177
PSNR 1 22.56 17.86 22.67 21.89 22.26 21.52 22.90 2276 22.94
SSIM 1 0.5006 0.5407 0.5540 0.5966 0.5854 0.5678 0.5410 0.5782 0.6111
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Evaluation on Synthetic Dataset. As shown in Table[I] our method achieves state-of-the-art or
near-state-of-the-art performance across multiple evaluation metrics on CelebA-Test, ranking first in
PSNR and SSIM, and second in LPIPS, MANIQA, and CLIPIQA. Figure@further demonstrates
that our approach generates perceptually realistic and semantically consistent face restorations, with
well-preserved identity features and effective suppression of visual artifacts. In the first-row example,
clearer eye contours and finer skin details are recovered, while in the second-row case, the original
gaze direction and eye semantics are faithfully maintained—corroborating the superior quantitative
performance.
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Figure 5: Qualitative comparisons on real-world datasets. Our method is able to restore high quality
faces, showing robustness to the heavy degradation.

Evaluation on Real-World Dataset. As shown in Table[2] our method achieved the best FID scores
on the LFW and the WIDER dataset. It also ranked second on both the MANIQA and CLIPIQA
benchmarks. For the SCface dataset, which involves extreme surveillance degradations, our approach
attained the highest MANIQA and CLIPIQA scores. Although the FID score was slightly inferior
to that of PGDiff, our method outperformed it in all other evaluation metrics. Figure [5] presents
qualitative results on real-world datasets. On LFW, our model effectively restores side faces with



237
238
239
240
241
242
243

244

245
246
247
248
249
250
251
252

254
255
256
257

258
259
260
261
262
263
264
265
266
267

269
270
271
272
273
274
275
276
277
278
279
280

clear facial features and minimal background-induced artifacts. Benefiting from the multi-step noise
suppression of the DRM module, SPIDER also preserves both primary and background subjects
with high fidelity. On WIDER, it maintains key facial features (eyes, nose, mouth) and overall
visual consistency, whereas other models suffer from artifacts around facial regions. On SCface,
the complex noise patterns inherent in surveillance imagery pose significant challenges for existing
models, leading to suboptimal reconstructions. In contrast, our model delivers more faithful and
coherent results, demonstrating stronger generalization to real-world degradations.

Table 2: Quantitative comparisons on real-world datasets of LFW [9], WIDER [42], SCface [8]. The
best results are marked in red, and the second best in blue.

Datasets LFW WIDER SCface

Degradation Mild real-world degradations Heavy real-world degradations Extreme surveillance degradations
Methods FID| MANIQA1T CLIPIQAT | FID| MANIQA1 CLIPIQAT | FID] MANIQA1 CLIPIQA 1
GFPGAN [36] 53.87 0.4558 0.6324 50.36 0.4352 0.5756 106.97 0.4358 0.6461
CodeFormer [52] | 52.84 0.5266 0.6889 39.22 0.4959 0.6984 99.07 0.4327 0.6852
DAEFR [30] 47.69 0.5420 0.6965 36.72 0.5205 0.6975 103.64 0.4600 0.7217
DR2 [37] 50.42 0.5248 0.6532 52.78 0.4746 0.5948 96.49 0.4438 0.5823
PGDiff [41] 41.86 0.4763 0.6070 38.06 0.4391 0.5880 85.48 0.3610 0.5127
DiffBIR [18] 40.91 0.6735 0.7948 35.82 0.6624 0.8083 149.98 0.3965 0.4648
FaithDiff [2] 41.34 0.4949 0.6787 36.07 0.5106 0.7092 88.48 0.5127 0.6880
SPIDER(Ours) | 39.74 0.5784 0.7320 34.58 0.5630 0.7342 87.57 0.5514 0.7446

4.3 Ablation studies

Effectiveness of the Degradation Removal Mod-
ule. As shown in Table[3] integrating DRM re-
sults in a clear performance improvement across
all metrics. A visual comparison on WIDER-Test

Table 3: Ablation results showing the effective-
ness of the DRM on the CelebA-Test.

is presented in Figure[] (a). In the first and third II:’IS?IIET‘ Wiﬂ‘;(;’;gRM Wigizng
columns, without DRM, the BFR model misinter- SSIMT 05671 06111
prets noise as authentic detail, leading to severe LPIPS| 03910 0.3177
distortions in the hair, facial region, clothing and FIDJ 24.94 22.57

background. In the second and fourth columns,

unclear contours and artifacts are generated because the BFR model struggles to effectively dis-
tinguish between noise and informative content. These results suggest that the module effectively
suppresses noise while preserving fine-grained structural and textural details, thereby enhancing

overall image fidelity.

Insights into SPIDER Design. Table |4]{shows
that the order of the semantic prior injection and
the DRM is critical. We adopt a design where the
semantic prior is injected before DRM, allowing

Table 4: Ablation results comparing different
module orders on the CelebA-Test.

the diffusion model to amphfy both signal and Metrics DRM— Semantic prior | Semantic prior—DRM
. . fcati . PSNRT 21.50 22.94
noise. Thls ampl} cation helps DRM better .dlS- SSIMF 0.5988 06111
tinguish informative structures from degradation,  LPIPS| 0.3550 03177
leading to improved restoration quality. As shown _ FID! 27.54 2257

in Figure[6b), applying DRM first may suppress

useful details, resulting in a generated image that lacks detail and exhibits unnatural textures.

Importance of Face-oriented Prompt Design.
Our method customizes the prompts fed into
LLaVA [19] based on CelebA-Test facial attribute
definitions [[10], enabling richer semantic descrip-

Table 5: Ablation results comparing different
prompt styles on the CelebA-Test.

tions of facial structures. According to Table[5]  Metrics gene‘all F "‘Ci‘g Ami:’“‘es F acel?escrilp‘ion
. .. . Tomp romp! romp
compared to general image descriptions, incor-  —psRF [ 2138 Iy 2504
porating detailed facial descriptions can enhance SSIMT | 0.5899 0.5854 0.6111
: i LPIPS, | 0.3616 0.3744 03177
the performance of restoration. Thus, guiding FID, e 30.50 57

the vision-language model to attend to facial at-
tributes is essential for effectively leveraging its

prior knowledge. However, facial attributes prompts often omit spatial information and frequently

"non

include redundant features (e.g., "normal nose,

average eyes") that are shared across many images,

offering limited benefit for recovering fine textures. More prompt examples are in the appendix.
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4.4 Understanding the Degradation Removal Mechanism in SPIDER

We use t-SNE to visualize feature changes after training the Degradation Mapper and Remover in
SPIDER. We randomly select 100 CelebA-Test images (seed=42), synthesize their LQ versions at FID
150 and 250 using the same degradation pipeline as training, and apply the same process to training
data (FFHQ) for reference. As shown in Figurem we observe that (1) features extracted by the Mapper
are widely dispersed, with HQ and LQ clearly separated, indicating strong degradation sensitivity; (2)
after applying the Remover, features across all quality levels converge into a degradation-invariant
space, where even severely degraded images align closely with HQ ones. These consistent patterns
across both training and testing datasets demonstrate that our DRM effectively suppresses degradation-
related variations, enabling robust and faithful restoration under extreme degradations.
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Figure 7: t-SNE visualization of feature distributions on FFHQ (left) and CelebA-HQ (right).

5 Conclusion

We propose SPIDER, a novel paradigm for blind face restoration that performs simultaneous multi-
level prior injection and degradation removal. SPIDER adopts an interleaved architecture where prior
injection precedes degradation removal at each level, ensuring that semantic and diffusion priors
amplify both signal and noise in a way that helps the DRM better distinguish meaningful facial
features from heavy degradations. Experiments on synthetic and real-world datasets confirm its
superiority over state-of-the-art methods. Beyond its strong performance in BFR, SPIDER presents a
novel learning paradigm with broad applicability to various image restoration tasks.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction(Section [I)) accurately reflect the paper’s contri-
butions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of our method in the appendix.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We introduce the method clearly in Section [3] and present the detailed experi-
mental settings and implementation details in Section

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Codes are included in the supplementary zip file.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Detailed experimental settings can be found in Section 4.1}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our model is trained on a large-scale dataset, and the inference process of
diffusion-based super-resolution models is computationally intensive. Due to limited com-
putational resources, we were not able to perform repeated trials or statistical significance
tests. However, we ensured fair comparisons by using fixed seeds and consistent evaluation
settings.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We report the computational resources in Section
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: All the authors have reviewed the code of ethics and obey the code.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited related original papers and models in our paper. We ensure that
all licenses and terms of use are respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release newly trained models and inference/training code, with documenta-
tion and usage instructions provided in the supplementary material.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper

include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve human subjects or crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research does not involve human subjects and therefore does not require
IRB or equivalent review.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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773 16. Declaration of LLLM usage

774 Question: Does the paper describe the usage of LLMs if it is an important, original, or
775 non-standard component of the core methods in this research? Note that if the LLM is used
776 only for writing, editing, or formatting purposes and does not impact the core methodology,
777 scientific rigorousness, or originality of the research, declaration is not required.

778 Answer: [Yes]

779 Justification: Our method incorporates LLaVA, a vision-language large model (VLM) built
780 upon LLMs, to extract semantic prior from degraded images. These prior are crucial for
781 guiding both degradation removal and restoration, making LL.M usage an integral part of
782 our approach.

783 Guidelines:

784 * The answer NA means that the core method development in this research does not
785 involve LLMs as any important, original, or non-standard components.

786 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
787 for what should or should not be described.
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