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Abstract

Color plays an important role in human perception and usually provides critical
clues in visual reasoning. However, it is unclear whether and how vision-language
models (VLMs) can perceive, understand, and leverage color as humans. This
paper introduces “COLORBENCH”, an innovative benchmark meticulously crafted
to assess the capabilities of VLMs in color understanding, including color per-
ception, reasoning, and robustness. By curating a suite of diverse test scenarios,
with grounding in real applications, COLORBENCH evaluates how these models
perceive colors, infer meanings from color-based cues, and maintain consistent
performance under varying color transformations. Through an extensive evaluation
of 32 VLMs with varying language models and vision encoders, our paper reveals
some undiscovered findings: (i) The scaling law (larger models are better) still holds
on COLORBENCH, while the language model plays a more important role than the
vision encoder. (ii) However, the performance gaps across models are relatively
small, indicating that color understanding has been largely neglected by existing
VLMs. (iii) CoT reasoning improves color understanding accuracies and robust-
ness, though they are vision-centric tasks. (iv) Color clues are indeed leveraged by
VLMs on COLORBENCH but they can also mislead models in some tasks. These
findings highlight the critical limitations of current VLMs and underscore the need
to enhance color comprehension. Our COLORBENCH can serve as a foundational
tool for advancing the study of human-level color understanding of multimodal AI.

1 Introduction

Color is widely recognized as a fundamental component of human visual perception [11, 34],
playing a critical role and providing critical clues in object detection, scene interpretation, contextual
understanding, planning, etc., across critical application scenarios such as scientific discovery, medical
care, remote sensing, shopping, visualization, artwork interpretation, etc. For instance, [19] leverages
spectral color signatures to distinguish vegetation, health, and water bodies in satellite imagery, and
[1] utilizes sediment color patterns to detect marine ecosystems. These applications underscore how
color-driven features play an important role in real-world scenarios. Moreover, colors can convey
affective or semantic information beyond simply recognizing and naming colors since colors are
highly correlated to other attributes or concepts and thus can provide key information to various
downstream tasks that do not even directly ask about colors [18, 37, 45]. As modern vision-language
models (VLMs) [12, 41, 48] continue to be deployed to increasingly diverse scenarios, color—an
essential visual feature—plays a growing role in the processes of understanding and reasoning. It is
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Color Recognition

What color is not present in this image?

A. Orange   B. Green 
C. Red        D. Cyan Ans: C

E.g. Paintings

Object Recognition

Which state has a red stripe color in this 
image?
A. WI           B. MN 
C. NV          D. NY Ans: A

E.g. Election Map

Color Extraction

What is the hsv value of the given color 
in the image?
A. [187, 71, 50]  B. [127, 49, 83]
C. [187, 73, 50]  D. [189, 73, 50] Ans: C

E.g. Color Palette

Perception Reasoning

Color ProportionObject Counting

How many cows in this image have white faces?

A. 1                    B. 2 
C. 3                    D. 4 Ans: B

E.g. Wild Image

Color Comparison

Which is the closest read of 
Ammonia in the image?
A. 0 ppm       B. 0.25 ppm
C. 0.5 ppm    D. 1 ppm Ans: B

E.g. Test Kit

Color Illusion

Do tiles A and B have the same color?

A. Yes                  B. No, B is darker
C. Hard to tell      D. No, A is darker Ans: A

E.g. Visual Illusion

Color Mimicry

How many red stones in this images?

A. 0                    B. 1
C. 2                    D. 3 Ans: A

E.g. Marine Detection

Color Blindness

What is the number in the center 
of this image?
A. 20         B. 21
C. 22        D. 23

E.g. Blindness Test

Ans: C

Color Counting

How many distinct colors of 
pants in this image?
A. 4           B. 5 
C. 6           D. 7

E.g. Shopping

Ans: C

What is closest to the proportion of the color green 
in the image?
A. 9%                   B. 13% 
C. 17%                 D. 21%

E.g. Satellite Image

Ans: B

Ans: B

How many pillows are in the image?

A. 0           B. 3
C. 1           D. 4

Color Robustness

Seed Image

Target Segment Recolor

Robustness

Entire Image Recolor

Largest Segment Recolor

Figure 1: Test samples from COLORBENCH. COLORBENCH evaluates VLMs across three core capabilities:
Perception, Reasoning and Robustness. The benchmark comprises 11 tasks designed to assess fine-grained color
understanding abilities and the effect of color on other reasoning skills, including counting, proportion calculation,
and robustness estimation. With over 1,400 instance, COLORBENCH covers a wide range of real-world appli-
cation scenarios, including painting analysis, test kit readings, shopping, satellite/wildlife image analysis, etc.

essential to examine whether and how these models can understand and leverage color information
as in human perception and reasoning, how color influences their overall perceptual and reasoning
capabilities, and whether they can interpret visual illusions, resolve ambiguous cues, and maintain
reliable performance under color variations.

However, existing benchmarks for VLMs mainly focus on tasks that may not heavily depend on
color understanding or require color-centric reasoning, thereby overlooking nuanced color-related
factors [25, 29]. Hence, there is a lack of benchmarks that systematically assess how well VLMs
understand color when it serves as the main or distinguishing feature of a scene and key information
to a task. Moreover, robustness to variations in color, such as recoloring and shifting hues, has also
been largely neglected in the LLM era [6, 8, 20]. Consequently, it remains unclear whether VLMs
can perceive and reason about color with human-like proficiency and to what extent their
performance deteriorates under significant color perturbations. This shortfall underscores the
need for a dedicated benchmark that comprehensively probes various facets of color comprehension
in VLMs. A detailed discussion of related works is provided in Appendix A.

To bridge this gap, we propose a novel benchmark, COLORBENCH, that aims at comprehensively
evaluating VLMs on three core capabilities of color understanding: Color Perception, Color
Reasoning, and Color Robustness. Color Perception examines VLMs’ fundamental capability to
correctly detect and interpret colors from inputs. Color Reasoning refers to the reasoning skills to
draw further conclusions based on the understanding of colors from input and prior knowledge, in
which colors act as a crucial clue to formulate accurate judgments. Color Robustness assesses how
consistently VLMs perform when an image’s colors are altered, ensuring they maintain accurate
predictions across different color variants of an image. Under these three core dimensions, 11
fine-grained tasks assessing different aspects of color understanding capabilities are formulated as
shown in Figure 1, which not only shows test examples in COLORBENCH but also presents potential
real-world applications.

By focusing on these facets, COLORBENCH offers a granular view of VLMs’ capabilities in color
understanding, aiming to illuminate both their strengths and shortcomings. We evaluate 32 widely
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used VLMs in our benchmark, ranging from open-source to proprietary models, from relatively small
models (0.5B) to larger models (78B), and obtain some unrevealed observations.

Main Contribution. We introduce “COLORBENCH”, the first dedicated benchmark for assessing
the color perception, reasoning, and robustness of VLMs. We develop an evaluation suite for 11
color-centric tasks, covering diverse application scenarios and practical challenges. Moreover, we
report a fine-grained empirical evaluation of 32 state-of-the-art VLMs, which exposes their limitations
in color understanding and offers novel insights for future research. Our key findings are highlighted
in the following:

1. The scaling law still holds for color understanding but is much weaker and mainly depends
on the language model parts. The correlation between the performance and the vision
encoder’s size is not significant due to the limited choices in current VLMs.

2. The absolute performances of different VLMs are relatively low, and the gaps between
different models (open-source vs. proprietary, small vs. large) are not large, indicating the
challenges of COLORBENCH and the negligence of color understanding in existing VLMs.

3. Despite the weaknesses of VLMs on color understanding, adding reasoning steps can still
improve their performance on COLORBENCH tasks, even for color robustness, which has
not been investigated by the community.

4. Color clues are indeed leveraged more or less by VLMs in most of the tasks in COLOR-
BENCH. However, in color illusion and mimicry tasks, colors might mislead VLMs to give
wrong answers, and converting colorful images into grayscale can improve the accuracy.

2 COLORBENCH Construction

Perception
249

Robustness
493

Reasoning
706

C'Recognition
76

C'Extraction
96

O'Recognition
77

C'Robustness
493

C'Proportion
80

C'Comparison
101 C'Counting

102

O'Counting
103

C'Illusion
93

C'Mimicry
70

C'Blindness
157

Figure 2: Statistics of 3 categories and 11 tasks
in COLORBENCH.

We present COLORBENCH, the first benchmark
explicitly designed to comprehensively evaluate
the color understanding capabilities of VLMs
across three key dimensions: Color Perception,
Color Reasoning, and Color Robustness. This
benchmark consists of 1, 448 instances and 5, 814
image-text questions spanning 11 diverse tasks.
For the Color Perception and Color Reasoning
categories, each instance contains an image, a
question, and multiple-choice (3 to 6) options,
with only one correct answer. For Color Robust-
ness, each instance consists of 10 multiple-choice
image-text questions, including a seed image and 9
edited images with color changes. Given that color
is a fundamental visual feature influencing most
vision-related tasks, disentangling color under-
standing from other general capabilities (e.g., object recognition, counting) is challenging. To address
this, we design questions with explicit color constraints for Color Perception and Reasoning dimen-
sions, enabling a focused evaluation of VLMs’ perception and reasoning abilities in relation to color.

2.1 Taxonomy

Motivated by the existing evaluation criteria from prior benchmarks and real-world application sce-
narios, we categorize the color understanding capability into 3 core dimensions and 11 detailed axes,
as shown in Figure 1. The detailed question templates and sample cases are shown in Appendix D.

2.1.1 Color Perception

This core dimension refers to the fundamental capability to correctly detect and interpret colors from
inputs. We assess this capability through 3 key aspects: i) Color Recognition, ii) Color Extraction,
and iii) Object Recognition.

Color Recognition includes questions that either ask for the color of a given object or determine
whether a specific color is present in the image. Color Extraction requires the model to extract the
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value of color code (e.g., RGB, HSV, or HEX) for a given single color image. This task measures
the ability to perform fine-grained color retrieval from visual input. Object Recognition evaluates the
model’s capability to identify objects that match a specified color described in the text input. These
two tasks require VLMs to be able to detect and interpret the color in either the image or text input.

2.1.2 Color Reasoning

This dimension refers to the reasoning skills to draw further conclusions based on the understanding
of colors from input and prior knowledge, in which colors act as a crucial clue to formulate accurate
judgments. This category encapsulates 7 key aspects: i) Color Proportion, ii) Color Comparison, iii)
Color Counting, iv) Object Counting, v) Color Illusion, vi) Color Mimicry and vii) Color Blindness.

Color Proportion tests the model’s capability to estimate the relative area occupied by a specific
color. Questions in this task require both color perception and proportion calculation capabilities.
Color Comparison requires the model to be able to distinguish among multiple colors in the image,
assessing its sensitivity to hue, saturation, and brightness differences in visual input. Color Counting
focuses on identifying the number of unique colors in the image, evaluating the model’s perception
and differentiation of distinct color variations, and counting ability. Object Counting extends this
challenge by requiring the model to count objects that match a specific color pattern. This task
requires an integration of object recognition and color perception. Color Illusion questions query
VLMs to compare colors in potential illusionary environments. This task evaluates the model’s ability
to account for color-induced optical illusions. Color Mimicry challenges the model to detect objects
camouflaged within their surroundings, where color serves as a misleading factor, requiring advanced
pattern recognition and contextual reasoning. These two tasks both assess the model’s ability to make
correct predictions under the misleading of color-related information in visual input. Color Blindness,
inspired by Ishihara tests, assesses the model’s ability to recognize numbers or text embedded in
color patterns, testing its understanding of shape-color relationships. These 7 tasks comprehensively
assess the model’s capacity for logical reasoning, spatial awareness, and adaptive interpretation of
color-based visual cues.

2.1.3 Color Robustness

Segment Selection:
If Relevant to Question

Grounded
SAM

(b) Target Segment (c) Largest Segment(a) Entire Image

RecolorRecolorRecolor

Figure 3: Generation Pipeline for Color Robust-
ness. For each seed image, we apply 3 recoloring
strategies (Entire Image, Target Segment, Largest
Segment) to generate edited images. For each
strategy, we change the color of the recoloring
region via shifting the Hue values by 90°, 180°,
or 270°in HSV color space.

Color Robustness assesses how consistently
VLMs perform and whether they can consis-
tently deliver accurate predictions under color
variants of a given image. It involves measuring
the stability of a VLM’s responses when con-
fronted with the same text input and a series of
recolored images. To ensure that color does not
influence the predictions, we select questions
and corresponding answers that are independent
of color attributes. Under these conditions, a
robust model should produce unchanged predic-
tions regardless of recoloring manipulation. Any
variation in the model’s responses is then used
to quantify its susceptibility to color changes,
providing a direct measure of robustness.

2.2 Data Curation

For most of the tasks in the category of Color
Perception and Color Reasoning, we rely on
human experts to manually collect images from
multiple online benchmarks and websites. For
the Color Proportion task, to ensure the correct-
ness of the ground truth, an extra color extrac-
tion tool is firstly utilized to obtain the color histogram of the image. Questions and options are
then manually designed based on these color statistics. For tasks including Color Extraction, Color
Blindness, and Color Illusion, testing images are generated by corresponding code programs to ensure
the controllability of the questions and answers. The detailed data sources are shown in Appendix B.
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After the initial data is collected, additional filtering processes are conducted in a human-machine
interactive process. We first conduct inference on a variety of VLMs and discard low-quality samples
based on the GPT-4o prediction result and human evaluation. For synthesized data, similar processes
are conducted, but with additional code (for generation) and image assessment. The above process is
conducted in three rounds before the final benchmark instances are settled. This refinement process en-
sures COLORBENCH a rigorous and informative benchmark for assessing color-related understanding.

For Color Robustness, we create evaluation instances by modifying images or specific regions
through color changes. We define 3 recoloring strategies to determine the recoloring region: i) Entire
Image, where the whole image is recolored; ii) Target Segment, where only the segment relevant to
the question is altered; and iii) Largest Segment, where the largest region unrelated to the question is
modified. Further details can be found in Appendix C. While generating color variants, we derive
seed images from CV-Bench [42], a publicly available benchmark. For each seed image, as shown in
Figure 3, we first employ a Grounded Segmentation Model (GAM) [38] to extract segments and their
corresponding labels. We then apply the predefined recoloring strategies to determine the editing
region and perform recoloring by shifting the Hue value in the HSV color space at three levels to
cover entire color wheel: (90°, 180°, and 270°). This process produces 9 variations per seed image,
covering different strategies and degrees of color change to enable a comprehensive robustness
assessment. To ensure interpretability, human experts filter out unnatural or negligible modifications,
resulting in a final selection of 493 seed images for robustness evaluation.

2.3 Evaluation Metrics

For Perception and Reasoning, we use accuracy as the evaluation metric, as all tasks follow a
multiple-choice format. Accuracy is computed per task and per category, representing the proportion
of correctly answered questions.

For Robustness, we evaluate a model’s ability to maintain consistent accurate predictions under color
variations. As detailed in Section 2.2, each seed image Is is transformed into n recolored variants us-
ing recoloring strategies, while keeping the original question q unchanged. A model M is considered
robust on a seed image Is and corresponding question q if and only if it provides a correct prediction
for Is and maintains correct on all n recolored versions. To quantify robustness, we define the instance-
level robustness metric R(Is, q) ∈ {0, 1} and a model-level robustness metric RobustM ∈ [0, 1].

Instance-level Robustness. Let the recolored images be I1, · · · , In and the generation output
of model for image Ii and question q is M(Ii, q). Define c(M(Ii, q)) as the model correctness:
c(M(Ii, q)) = 1 if model result M(Ii, q) is correct, otherwise 0. The instance-level robustness
metric R(Is, q) for a seed image Is and question q is defined as:

R(Is, q) =

{
1 if c(M(Ii, q)) = c(M(Is, q)) = 1, ∀i ∈ [n]

0 otherwise
(1)

Overall Robustness. Let S be the set of seed images. We define model robustness to be:

RobustM =

∑
Is∈S R(Is)

|S|
, RobustM ∈ [0, 1] (2)

RobustM represents the proportion of seed images on which the model maintains correctness across
all color variations. A model is more robust when RobustM is higher.

3 Experimental Results

3.1 Main Results

Table 1 presents the performances of a wide range of VLMs, along with human evaluation results
on our COLORBENCH. Human participants achieve the highest performance on all evaluated tasks
across all models. Among the models, overall accuracy generally increases with model size, with
larger models tend to outperform smaller models, and the two proprietary models, GPT-4o and
Gemini-2-flash, perform the best2.

2To examine the upper limits of VLM capabilities and benchmark against human-level performance, we also
assess performance GPT-o3 on perception and reasoning tasks. The result is shown in Appendix H.
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Table 1: Performance of 32 VLMs (grouped by size) and human performance on COLORBENCH.
Models are ranked within each group according to their overall performance on Color Perception
and Reasoning (P & R Overall) tasks. For human evaluation, Color Extraction task is excluded, as
humans are not attuned to precise color code differences. The best performance in each VLM group
is highlighted in bold. For human evaluation, any instance surpassing all VLMs is marked in bold.

Color Perception Color Reasoning P & R Robustness
C’Recog C’Extract O’Recog C’Prop C’Comp C’Count O’Count C’Illu C’Mimic C’Blind Overall C’Robust

VLMs: < 7B

LLaVA-OV-0.5B 26.3 44.8 46.8 30.0 23.8 22.6 21.4 38.7 58.6 26.8 32.6 38.7
InternVL2-1B 35.5 34.4 59.7 23.8 41.6 19.6 22.3 34.4 38.6 33.1 33.6 39.4
InternVL2-2B 60.5 36.5 66.2 40.0 38.6 19.6 29.1 26.9 52.9 21.0 36.4 54.2
InternVL2.5-1B 55.3 36.5 61.0 42.5 45.5 22.6 25.2 43.0 41.4 28.0 38.3 52.3
InternVL2.5-2B 69.7 28.1 71.4 33.8 48.5 25.5 30.1 32.3 55.7 19.8 38.5 59.8
Qwen2.5-VL-3B 72.4 38.5 74.0 43.8 48.5 22.6 25.2 43.0 45.7 24.2 41.1 63.7
Cambrian-3B 67.1 31.3 66.2 47.5 50.5 25.5 29.1 44.1 61.4 22.3 41.5 59.0

VLMs: 7B − 8B

LLaVA-Next-v-7B 29.0 38.5 57.1 21.3 34.7 23.5 25.2 38.7 41.4 17.8 31.2 52.1
LLaVA-Next-m-7B 21.1 18.8 63.6 27.5 42.6 16.7 34.0 41.9 47.1 29.9 33.4 55.2
Eagle-X5-7B 52.6 47.9 67.5 41.3 42.6 20.6 35.0 44.1 48.6 22.9 40.0 48.5
Cambrian-8B 72.4 28.1 72.7 48.8 54.5 31.4 33.0 41.9 57.1 17.2 42.3 64.9
InternVL2-8B 72.4 50.0 77.9 42.5 48.5 20.6 35.9 38.7 50.0 23.6 43.1 65.5
Eagle-X4-8B 71.1 47.9 68.8 45.0 50.5 26.5 37.9 40.9 48.6 27.4 44.1 63.7
LLaVA-OV-7B 71.1 53.1 81.8 52.5 53.5 19.6 26.2 48.4 48.6 23.6 44.7 74.0
InternVL2.5-8B 77.6 47.9 83.1 50.0 62.4 25.5 33.0 34.4 52.9 19.8 45.2 69.8
Qwen2.5-VL-7B 76.3 49.0 84.4 47.5 52.5 19.6 34.0 44.1 55.7 28.7 46.2 74.4

VLMs: 10B − 30B

LLaVA-Next-13B 56.6 31.3 71.4 27.5 41.6 27.5 28.2 29.0 45.7 25.5 36.4 53.3
Cambrian-13B 67.1 34.4 74.0 46.3 47.5 32.4 35.0 38.7 55.7 24.8 42.8 64.7
Eagle-X4-13B 73.7 43.8 76.6 43.8 47.5 23.5 38.8 34.4 57.1 26.1 43.7 66.3
InternVL2-26B 72.4 52.1 87.0 52.5 56.4 20.6 35.0 34.4 55.7 27.4 46.3 74.0
InternVL2.5-26B 72.4 45.8 89.6 45.0 63.4 22.6 35.0 32.3 62.9 29.3 46.8 83.0

VLMs: 30B − 70B

Eagle-X5-34B 79.0 27.1 80.5 48.8 48.5 23.5 35.9 37.6 60.0 25.5 43.4 67.1
Cambrian-34b 75.0 57.3 77.9 50.0 46.5 22.6 32.0 37.6 64.3 24.2 45.3 67.7
InternVL2-40B 72.4 52.1 83.1 51.3 61.4 19.6 35.9 34.4 58.6 21.0 45.6 78.7
LLaVA-Next-34b 69.7 46.9 76.6 43.8 56.4 28.4 41.8 36.6 61.4 29.9 46.6 65.9
InternVL2.5-38B 71.1 60.4 89.6 53.8 63.4 29.4 40.8 34.4 61.4 26.8 50.0 84.6

VLMs: > 70B

InternVL2-76B 72.4 42.7 85.7 45.0 62.4 27.5 35.0 31.2 50.0 23.6 44.6 68.6
LLaVA-Next-72B 72.4 54.2 79.2 41.3 49.5 24.5 35.9 33.3 48.6 34.4 45.2 66.5
InternVL2.5-78B 75.0 58.3 81.8 43.8 68.3 27.5 36.9 34.4 61.4 28.7 48.8 86.2
LLaVA-OV-72B 73.7 63.5 83.1 52.5 69.3 27.5 50.5 36.6 55.7 31.9 51.9 80.3

VLMs: Proprietary

GPT-4o 76.3 40.6 80.5 38.3 66.3 30.4 29.1 50.5 70.0 58.6 52.9 46.2
Gemini-2-flash 80.3 52.1 87.0 46.9 70.3 33.3 34.9 44.1 72.9 49.6 55.4 70.7
GPT-4o (CoT) 77.6 55.2 83.1 44.4 71.3 26.5 33.0 44.1 77.1 66.8 57.4 69.9
Gemini-2-flash (CoT) 82.9 56.2 88.3 58.0 68.3 43.1 38.8 40.9 75.7 60.0 59.6 73.6

Human Evaluation

Human Evaluation 92.0 - 90.1 59.6 79.8 62.0 81.3 63.0 83.8 94.0 - -

Color Perception. In Color Recognition (C’Recog), most models perform well (above 60%),
indicating that this task is relatively basic for color perception. Gemini-2 with CoT obtains the
highest performance. In Color Extraction (C’Extra), to our surprise, the two powerful proprietary
models without CoT prompting only reach the middle-tier performances, indicating the potential
limitation on the color perception of their vision encoders. Similar to the Color Existence task,
almost all the models perform well in Object Recognition (O’Recog), and the 2 proprietary models
do not reach the top. This is probably due to the strong alignment between this task and the common
training recipe, which includes abundant general object detection images.

Color Reasoning. In Color Proportion (C’Prop), even the best model, Gemini-2 with CoT, can only
reach 58.0% of the accuracy, which is almost only slightly better than random guessing, showcasing
the supreme difficulty of this task. In Color Comparison (C’Comp), larger models perform better in
this task, and the proprietary models with CoT reach the top performance unsurprisingly. Surpris-
ingly, in Color Counting (C’Count), all models show extremely poor performances. The highest
performance comes from Gemini-2 with CoT, exceeding the second place by 10 percent, although its
performance is also unsatisfactory at only 43.1%. In Object Counting (O’Count), surpassing the 2
proprietary models, LLaVA-OV-72B reaches the top and becomes the only model that exceeds 50%
of the accuracy. Similar to the findings from the Object Recognition task, this might be caused by
the extremely adequate object detection tasks in open-sourced training recipes. In Color Illusion
(C’Illu), the accuracies of most models lie in the range of 30% to 50%, and GPT-4o without CoT
is the only one that exceeds 50% of the accuracy. In Color Mimicry (C’Mimic), the 2 proprietary
models reach the top, while more reasoning steps do not benefit a lot. In Color Blindness (C’Blind),
most of the open-sourced models present accuracies under 30%. Considering the extremely practical
usage of this scenario, we think the current community should pay more attention to this. Moreover,
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Table 2: Spearman’s rank correlation between VLM performance and different model parts’ sizes on
each task. L denotes the language model part’s size and V represents the vision encoder part’s size.
We use “(*)” to mark correlations with p-values ≤ 0.05. It shows that the scaling law still holds for
color understanding but it is much weaker.

Color Perception Color Reasoning P & R Color Robustness
C’Recog C’Extract O’Recog C’Prop C’Comp C’Count O’Count C’Illu C’Mimic C’Blind Overall C’Robust

L+V 0.5657 (*) 0.5255 (*) 0.7107 (*) 0.5125 (*) 0.6358 (*) 0.4316 (*) 0.7566 (*) -0.3460 0.4832 (*) 0.2460 0.7619 (*) 0.7386 (*)

L 0.5724 (*) 0.4937 (*) 0.6769 (*) 0.4696 (*) 0.6118 (*) 0.4408 (*) 0.7611 (*) -0.3697 (*) 0.4559 (*) 0.2824 0.7436 (*) 0.7123 (*)
V 0.3955 (*) 0.2856 0.5465 (*) 0.6242 (*) 0.5295 (*) 0.2089 0.3608 -0.0127 0.6024 (*) -0.0679 0.5271 (*) 0.5623 (*)

we also observe that, surprisingly, more reasoning steps benefit VLMs in the color blindness test,
although it seems like a pure color perception task.

Color Robustness. In Color Robustness (C’Robust), a higher value represents better robustness
towards color alteration. The only 4 models that exceed 80% are LLaVA-OV-72B, InternVL2.5-26B,
InternVL2.5-38B, and InternVL2.5-78B, which utilize relatively larger vision encoders, InternViT-6B,
compared with others (mostly only 300-400M). In the meantime, GPT-4o has a really low robustness
(46.2%) to colors, indicating its vulnerable sensitivity to color changes, while Gemini-2 shows
promising robustness (70.7%) towards colors. Moreover, another surprising observation is that even
though only the colors are changed and all the original queries are kept, utilizing more reasoning
steps can consistently improve robustness for GPT-4o (+23.7%) and Gemini-2 (+2.9%).

3.2 Further Findings

Finding 1. The scaling law still holds for color understanding, but is much weaker and mainly
depends on the language model parts. The correlation between the performance and the vision
encoder’s size is not significant due to the limited choices in current VLMs.

Qwen2.5-VL 3B 7B
P&R Overall Accuracy

3B 7B
Robustness

Eagle-X4 8B 13B 8B 13B

Eagle-X5 7B 34B 7B 34B

Cambrian 3B 8B 13B 34B 3B 8B 13B 34B

LLaVA-Next 7B 13B 34B 72B 7B 13B 34B 72B

LLaVA-OV 0.5B 7B 72B 0.5B 7B 72B

InternVL2 1B 2B 8B 26B 40B 76B 1B 2B 8B 26B 40B 76B

InternVL2.5 1B 2B 8B 26B 38B 78B 1B 2B 8B 26B 38B 78B Low

High

Perform
ance

Figure 4: The heatmaps related to performances
and VLM sizes. Deeper color represents higher
performance of P&R Overall Accuracy or Robust-
ness. Each line represents a model family with
the sizes growing from small to large. This vi-
sualization clearly shows the correlation between
performances and model sizes, larger model leads
to higher performance.

Since color-related tasks often involve abstract
reasoning, language comprehension, and con-
textual interpretation, it is essential to assess not
just the vision encoder but also part of the lan-
guage model, which plays a critical role in pro-
cessing and understanding such tasks. To quan-
titatively analyze the correlation between VLM
performances on color understanding tasks and
their sizes, Spearman’s rank correlation is calcu-
lated between VLM performances and (i) overall
model sizes (L + V), (ii) language model sizes
(L), and (iii) vision encoder sizes (V). The corre-
lation values and p-signs are presented in Table
2; a star is notated when the p-value of the cor-
relation is lower than 0.05. It is observed that
between the performances and language model
sizes, most of the tasks have a correlation greater than 0.5 and a p-value smaller than 0.05, except for
Color Illusion and Color Blindness due to their special characteristics. Since the correlation between
overall model sizes (L + V) and P&R Overall (0.7619), and Robustness (0.7390), we conclude that
the color understanding, including Color Perception, Color Reasoning, and Color Robustness, still
follows the scaling law of model sizes. Figure 4 presents the correlations between performances
and model sizes in each model family. This visualization clearly shows the correlation between
performances and model sizes; a larger model leads to higher performance within each model family.

However, between the performances and vision encoder sizes, most of the tasks either have a
correlation lower than 0.5 or a p-value greater than 0.05, which is not sufficient to conclude with the
evident positive correlation. Despite these findings, we try to avoid conveying the message that there
is no positive correlation between performances and vision encoder sizes. We think it is because
of the negligence of the current community to focus on the scaling laws of vision encoders. The
vision encoders used in the current mainstream VLMs are constrained in a very small set: (i) most
of the VLMs only use one type of vision encoders for the whole family, except for the InternVL2
and InternVL2.5 series; (ii) most of the VLMs use the vision encoder with the size of 300 - 400M.
These challenges make it hard to evaluate the scaling laws of vision encoders. Further visualizations
are presented in Appendix L.2.
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Table 4: Adding reasoning steps can improve VLMs’ performance on COLORBENCH. The
change of accuracy brought by Chain of Thought (CoT) prompting on all tasks for GPT-4o and
Gemini-2-flash. The last row presents the average improvement across both models.

Color Perception Color Reasoning P & R Color Robustness
C’Recog C’Extract O’Recog C’Prop C’Comp C’Count O’Count C’Illu C’Mimic C’Blind Overall C’Robust

GPT-4o ∆ +1.3 +14.6 +2.6 +6.1 +5.0 –3.9 +3.9 –6.4 +7.1 +8.2 +4.5 +23.7
Gemini-2 ∆ +2.6 +4.1 +1.3 +11.1 –2.0 +9.8 +3.9 –3.2 +2.8 +10.4 +4.2 +2.9

Average ∆ +1.95 +9.35 +1.95 +8.60 +1.50 +2.95 +3.9 –4.80 +4.95 +9.30 +4.35 +13.30

Finding 2. The absolute performances of different VLMs are relatively low and lag behind those
of humans. Moreover, the gaps between different models (open-source vs. proprietary, small
vs. large) are not large, indicating the challenges of COLORBENCH and the negligence of color
understanding in existing VLMs.

Table 3: The best model within each group and its
performances (on P&R accuracy and Robustness).
The absolute performances of different VLMs
on COLORBENCH are relatively low, and the
performance gaps between models are not large.

Color P & R Overall Color Robustness
Model Size Model Best Model Best
<7B Cambrian-3B 41.5 Qwen2.5-VL-3B 63.7
7B–8B Qwen2.5-VL-7B 46.2 Qwen2.5-VL-7B 74.4
10B–30B InternVL2.5-26B 46.8 InternVL2.5-26B 83.0
30B–50B InternVL2.5-38B 50.0 InternVL2.5-38B 84.6
>70B LLava-OV-72B 51.9 InternVL2.5-78B 86.2

Proprietary Gemini-2 55.4 Gemini-2 70.7
Proprietary Gemini-2 (CoT) 59.6 Gemini-2 (CoT) 73.6

As shown in Table 3, we separate all the VLMs
into several groups based on their sizes and
present the best accuracy and the model name
within each group. We can see that even the
powerful proprietary models, GPT-4o and
Gemini-2, can only reach an overall color per-
ception and reasoning (P & R Overall) accuracy
of 53.9%, only +2.0% better than the best open-
sourced model. Task-level results in Table 1
further reveal that these advanced proprietary
models still exhibit substantial performance
gaps compared to humans across most tasks.
Moreover, the best model from group 1 has the
accuracy of 41.5% (Cambrian-3B), which is
only 10.4% lower than the best open-sourced
model. As for the robustness, the powerful proprietary models even show weaker robustness than
the 7B model. Considering the lack of existing benchmarks specifically evaluating VLMs’ color
understanding capabilities, we conclude that this area is long-neglected by the community, and the
open-sourced community is still on the same page with the proprietary model providers.

Finding 3. Despite the weaknesses of VLMs on color understanding, adding reasoning steps
can still improve their performance on COLORBENCH tasks, even for color robustness, which has
not been investigated by the community.

The impact of using CoT prompting is shown in Table 4, in which we can see CoT improves the
average P&R Overall accuracy across both models by +4.35%, indicating that reasoning benefits
these color-related tasks. Within the category of Color Perception, the improvements from CoT
on Color Recognition and Object Recognition are quite limited as these tasks heavily rely on the
vision encoder. Figure 59 and 60 in Appendix M illustrate that adding reasoning steps does not take
effect since the initial visual perception and color identification are incorrect in the slow thinking
process. However, to our surprise, we find that the Color Extraction task benefits extremely from more
reasoning steps, although it seems only related to the vision encoder. After a thorough investigation,
we observe that most of the current VLMs are not capable of directly extracting color values, so they
need to use more reasoning steps to reach reasonable answers.

Within the category of Color Reasoning, CoT benefits most of the tasks. However, in the Color
Illusion task, CoT harms the model performance. After a manual investigation, we observe that
more reasoning steps might cause VLMs to focus more on the misleading environments rather than
directly compare the assigned colors, as shown in Figure 61. Another observation occurs in the
Color Blindness task. Unlike other reasoning-related tasks, humans can read a color blindness test
image with a simple glimpse without any slow thinking. This fascinating misalignment between
humans and VLMs intrigues us to further investigation. We find that VLMs recognize these digits
in a button-up pattern: they need to first infer that the dots in the image can form a digit before they
really recognize these dots as digits.

In addition, the consistent improvement of CoT on Color Robustness is also an unrevealed phe-
nomenon. In our setting, only the colors of the image are altered, and the questions are strictly the
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same as the original. Thus, under this circumstance, color is the only variant, which is supposed to
be more related to the capability of the vision encoder. However, counterintuitively, as shown in
our experiments, more reasoning steps make the VLMs more robust to the color changes, which is
probably caused by the higher confidence of correct answers after reasoning.

Finding 4. Color clues are indeed leveraged more or less by VLMs in most of the tasks in
COLORBENCH. However, in color illusion and mimicry tasks, colors might mislead VLMs to
wrong answers, and converting colorful images to grayscale can improve the accuracy.
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Figure 5: The percentage of change in accuracy
(y-axis) by converting colorful images to grayscale
in each COLORBENCH task (x-axis). Each vio-
lin plot visualizes the distribution over all VLMs.
Higher (lower) percentage indicates that VLMs
rely more (less) on color clues for the task. Pos-
itive (negative) percentage indicates degradation
(improvement) on grayscale images. Color clues
are indeed more or less leveraged by VLMs in
most tasks but they might mislead VLMs (illu-
sion & mimicry).

In order to examine whether VLMs really
leverage color clues to handle tasks in COL-
ORBENCH, experiments are conducted by
converting all the original colorful images in the
Color Perception and Reasoning categories into
gray-scale ones, without changing the questions.
Under this circumstance, the accuracies are
expected to decrease dramatically as all our
questions are related to colors. For quantitative
analysis, we calculate the accuracy changing
ratio as (Accori − Accgray)/Accori for each
VLM on each task. This value directly repre-
sents how the original accuracy changes with
a gray-scale transformation. The positive value
represents that the VLM has a higher accuracy
on the original colored images, indicating that
it needs color clues to solve the task. Higher
positive values represent higher significance
of the color clues. On the contrary, if the
value is negative, it means that the VLM can
reach a better accuracy after the gray-scale
transformation, indicating that it does not need
color clues for the task, and colors might even mislead VLM’s judgment. Lower negative values
represent the severe harm the color can have on the task.

The accuracy changing ratio distributions across all VLMs and tasks are presented in Figure 5 as the
violin plot. As shown in the figure, for most of the tasks, the ratios of VLMs are above 0, indicating
that VLMs indeed leverage color clues to correctly solve the tasks; removing the color directly harms
the original accuracies dramatically. However, when it comes to Color Illusion and Color Mimicry,
the majority of the changing ratios are below 0, which means that VLMs can get better accuracies
when all the color information is removed. This phenomenon is reasonable as the colors on both of
these two tasks are more likely serving as the misleading factors. In the meantime, for the Color
Counting and Color Blindness tasks, almost half the accuracies increase and half decrease, indicating
that the color clues might not be so significant in this task, thus, some of the models can find other
ways to get the answer. We also investigate the correlation between accuracy changing ratios and
model sizes, while no significant correlation can be concluded.

4 Conclusion, Limitation, and Future Works

In this paper, we introduce COLORBENCH, the first benchmark designed to comprehensively evaluate
the color understanding capabilities of VLMs, including Perception, Reasoning, and Robustness.
After evaluating 32 widely used VLMs on our benchmark, several undiscovered observations are re-
vealed by us. These observations emphasize the need for more sophisticated model architectures that
integrate deeper color reasoning capabilities. To ensure high-quality and reliable annotations, COLOR-
BENCH relies on manual data collection, annotation, and assessment across most domains. While this
guarantees consistency, it inevitably limits dataset scale, style diversity, and category coverage. As
future work, we aim to develop a trustworthy automated data collection pipeline and expand COLOR-
BENCH to larger-scale, more diverse tasks involving complex interplays of color with texture, shape,
and spatial relationships. Furthermore, investigating the impact of different visual encoders and lan-
guage models could further elucidate the pathways through which VLMs process color information.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This paper introduces a new Benchmark, COLORBENCH, for VLM color
understanding capability evaluation and a comprehensive analysis over 33 VLMs. The
new benchmark and findings from VLMs’ performance are highlighted in abstraction and
introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitation and potential future works of this benchmark is discussed in
Section 4.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The related implementation details and used prompts are included in Ap-
pendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The necessary code and data are included in anonymous github repo.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The related implementation details and prompts for evaluation on COLOR-
BENCH are included in Appendix E and Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The experiments are run with a fixed seed, and the performance is calculated
based on each VLM generated text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The used compute resources are included in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Regarding data-related concerns, we construct COLORBENCH with images
from publicly available sources and do not include any personally identifiable information.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper introduces a benchmark for evaluating the capabilities of vision-
language models (VLMs) and does not pose any foreseeable societal impact on specific
groups.

Guidelines:

16

https://neurips.cc/public/EthicsGuidelines


• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: This paper does not release model. As described in Section 2.2, data collected
from website is manually selected and filtered by human annotators.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide a detailed list of data sources we used in Appendix B.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

17



• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We publish COLORBENCH on HuggingFace dataset platform and include
documentations in both github and HuggingFace platform.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We use VLMs to investigate current models’ color understanding capability on
COLORBENCH. The usage of VLMs is described in Appendix E.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM


Table of Contents for Appendix

A Related Works 21

A.1 VLM Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A.2 Color Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

B Data Sources 21

C Detailed Generation Process for Robustness 22

D COLORBENCH Categories and Questions 22

E Implementation Details 26

F Evaluation Prompts 26

G Human Evaluation 26

H Reasoning Models with Thinking Process 26

I Qualitative Analysis of Failure Cases 27

J Effect of Different Modalities 31

K Fine-tuning Experiments on ColorBench 31

L More Visualizations 32

L.1 VLM Size & Model Performance for Each Task . . . . . . . . . . . . . . . . . . . 32

L.2 Vision Size & Model Performance for Each Task . . . . . . . . . . . . . . . . . . 34

L.3 Performance for Each Model Family on Each Task . . . . . . . . . . . . . . . . . 35

M Samples Cases 37

M.1 Effect of CoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

M.2 Effect of Grayscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

M.3 Failure with LLM and Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

M.4 Easy Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

M.5 Difficult Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

20



A Related Works

A.1 VLM Benchmarks

With the rapid advancements in Vision-Language Models (VLMs) [9], numerous benchmarks have
emerged to systematically evaluate VLM capabilities across diverse dimensions [29]. These bench-
marks generally fall into two categories: text-centric and vision-centric evaluations, each designed
to assess distinct multimodal competencies. Text-centric benchmarks primarily measure common-
sense knowledge, reasoning, and complex problem-solving capabilities, exemplified by tasks in
MMMU [47] and NaturalBench [23]. Conversely, vision-centric benchmarks focus on visual per-
ception and reasoning (MMBench [32] and MME [10]), and robustness to visual perturbations
(Grit [14] and Visual Robustness [17]). Furthermore, several benchmarks have extended their scope
to evaluate specialized visual tasks, such as spatial relationship comprehension (SEED-Bench [22]
and MM-Vet [46]), chart and map understanding (MMSTAR [4] and MuirBench [43]), visual ground-
ing (Flickr30k [36] and TRIG [27]) and the detection and understanding of visual hallucinations
(POPE [28] and HallusionBench [13]). However, despite the extensive scope covered by existing
VLM benchmarks, none currently provide an integrated evaluation that simultaneously assesses
visual perception, reasoning, and robustness within a unified framework. Moreover, although cer-
tain benchmarks [32, 10] have incorporated color-related questions, these have typically addressed
basic color perception and recognition, neglecting deeper assessments of reasoning and robustness
associated with color understanding.

A.2 Color Evaluation

Color understanding is increasingly recognized as a crucial aspect of Vision-Language Models’
ability to perceive and interpret visual content. Limited studies have explored how color information
influences model performance on specific tasks. Some studies [51, 50] explore the understanding
of color by replacing color-related words in textual inputs to evaluate the models’ ability to handle
color-specific information. More recent research [16, 21] focuses on assessing fine-grained color
discrimination by asking models to distinguish subtle color differences in visual inputs. Samin et al.
[39] introduced color-related foils to test VLMs’ capacity to cognize basic colors like red, white, and
green, particularly in contexts requiring attention to subtle cues. Additionally, Burapacheep et al. [3]
developed a benchmark dataset to evaluate and enhance compositional color comprehension in VLMs,
emphasizing tasks where understanding minimal color relationships is essential. IllusionVQA [40]
evaluates model perception of color illusions in photorealistic scenes. While these works have
addressed isolated aspects of color understanding, none have provided a holistic assessment
framework. In contrast to these previous works, our study establishes the first comprehensive and
specialized benchmark for evaluating the color-related abilities of VLMs, offering a quantitative,
automated approach to further this area of research.

B Data Sources

We conduct COLORBENCH from multiple sources, including website sources, publicly available
benchmarks, and generated images. The detailed sources are included in Table 5.

Table 5: Data sources for each task.
Category Data Source
C’Recognition Website, ICAA17K [15]
C’Recognition Website, ICAA17K [15]
C’Extraction Synthetic Data
C’Proportion Website, Synthetic Data
C’Comparison Website
C’Counting Website, Synthetic Data
C’Ounting Website, ADA20K [52, 53], COCO2017 [30]
C’Mimicry Website, IllusionVQA[40], RCID[33]
C’Blindness Synthetic Data
C’Robust CV-Bench[42]
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Table 6: Recoloring strategies.
Strategy Editing Region Purpose
Entire Image Whole image Assesses the model’s robustness to global color

shifts

Target Segment Segment containing the object ref-
erenced in the question

Evaluates the model’s sensitivity to task-relevant
color changes

Largest Segment The largest segment that is irrele-
vant to the question

Tests whether changes in dominant but unrelated
regions affect model predictions

C Detailed Generation Process for Robustness

For the Color Robustness, we evaluate the consistency of VLMs when faced with instances that
differ only in the color of the visual input. To systematically assess this effect, we define 3 recoloring
strategies that determine which part of the image is altered: i) Target Segment, ii) Largest Segment,
and iii) Entire Image. As mentioned in Table 6, Target Segment strategy recolors only the segment
containing the object referenced in the question. This strategy ensures that the modification directly
affects the model’s perception of task-relevant content. Largest Segment strategy alters the color
of the largest segment that is irrelevant to the question, testing whether models are distracted by
dominant but unrelated visual changes. In contrast, Entire Image strategy applies a global color
shift to evaluate the model’s sensitivity to overall color variations. As summarized in Table 6, the
first two strategies introduce localized modifications, while the third assesses robustness to broader
image-wide color changes. Importantly, only color attributes are altered without modifying object
shapes or contextual elements, which preserves the overall realism of the image. By incorporating
both task-relevant and irrelevant edits, our benchmark provides a comprehensive evaluation of VLMs’
ability to handle color perturbations across different contexts.

While generating color variations, we derive seed images from CV-Bench [42], a publicly available
benchmark. For each seed image, as shown in Figure 3, we first employ a Grounded Segmentation
Model (GAM) [38] to extract segments and their corresponding labels. We then apply the predefined
recoloring strategies to determine the editing region. Once the editing region is determined, we
modify the color of the corresponding region. In HSV color space, since Saturation and Value control
the purity or brightness of the color, and only Hue controls the color of the part, we only adjust the
Hue value in the HSV color space. Specifically, we shift the Hue by 90°, 180°, and 270°. These three
values ensure that the color manipulations cover significant perceptual differences across the color
spectrum. This process produces nine variations per seed image, covering different strategies and
degrees of color change to enable a comprehensive robustness assessment. To ensure interpretability,
human experts filter out unnatural or negligible modifications, resulting in a final selection of 493 seed
images for robustness evaluation. Additionally, we select questions that are color-invariant, which
means answers remain valid regardless of whether the recoloring appears fully natural. This design
choice isolates color variation as the sole variable of interest and prevents confounding effects from
semantic or contextual changes. Through these steps, we evaluate whether VLMs rely excessively on
color information and whether they maintain consistency in their predictions despite substantial color
shifts.

D COLORBENCH Categories and Questions

Table 7 provides a detailed description of each task, alongside representative figures and sample
questions that effectively demonstrate the specific capabilities being tested. Cases are provided for
each task in Figure 6 to 16.
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Table 7: Task and question definition in COLORBENCH.

Task # Sample
Case

Description Sample Questions

Pe
rc

ep
tio

n
Color Recognition 76 Figure 6 Ask for the color of a specific

object or determine if a par-
ticular color is present in the
image.

What is the color of object in this image?
What color does not exist in this image?

Color Extraction 96 Figure 7 Extract the color code value
(e.g., RGB, HSV, or HEX)
from a single color in the im-
age.

What is the HSV value of the given color
in the image?
What is the RGB value of the given color
in the image?

Object Recognition 77 Figure 8 Identify objects in the image
that match a specified color
noted in the text input.

What object has a color of pink in this
image?

R
ea

so
ni

ng

Color Proportion 80 Figure 9 Estimate the relative area oc-
cupied by a specified color in
the image.

What is the dominant color in this im-
age?
What is the closest to the proportion of
the red color in the image?

Color Comparison 101 Figure 10 Distinguish among multiple
colors present in the image
to assess overall tones and
shades.

Which photo is warmer in overall color?
Which object has a darker color in the
image?

Color Counting 102 Figure 11 Identify the number of unique
colors present in the image.

How many different colors are in this
image?

Object Counting 103 Figure 12 Count the number of objects
of a specified color present in
the image.

How many objects with green color are
in this image?

Color Illusion 93 Figure 13 Assess and compare colors in
potential illusionary settings
within the image.

Do two objects have the same color?

Color Mimicry 70 Figure 14 Detect objects that are camou-
flaged within their surround-
ings, where color is a key de-
ceptive element.

How many animals are in this image?

Color Blindness 157 Figure 15 Recognize numbers or text
that are embedded in color pat-
terns, often used in tests for
color vision.

What is the number in the center of the
image?

What is the color of the banana in this 

image? 

A: Red B: Green

C: Yellow D: Black

E: None of the above

Ans: E

What color does not exist in this image?

 

A: Green B: White

C: Red D: Black

Ans: C

Color Recognition

Figure 6: Cases for Color Recognition Task.

What is the HSV value of the given color 
in the image?
A: [100, 51, 81] B: [329, 98, 100]
C: [331, 100, 100] D: [329, 100, 100]
Ans: D

Q: What is the HSV value of the given 
color in the image? 
A: [47, 62, 100] B: [107, 16, 22]
C: [45, 64, 100] D: [45, 62, 100]
Ans: D

Color Extraction

Figure 7: Cases for Color Extraction Task.
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Object Recognition

Which state does not have a color 
of pink in this image? 
A: Montana B: Arizona
C: Michigan D: New York
Ans: D

Which object has a color of black in this 
image?
A: Background B: Banana
C: Apple D: Orange
Ans: C

Figure 8: Cases for Object Recognition Task.

Which is the dominant color in 
this painting? 
A: Blue B: Yellow
C: Green D: Orange
Ans: A

What is closest to the proportion of the 
color red in the image? 
A: 10% B: 20%
C: 30% D: 40%
Ans: C

Color Proportion

Figure 9: Cases for Color Proportion Task.

Color Comparison

Which photo is warmer in overall color? 

A: The left one

B: The right one

Ans: B

Which dog has the darkest color in the 

image? 

A: No.1   B: No.4

C. No.5   D. No.3

Ans: A

Figure 10: Cases for Color Comparison Task.

How many different colors of flowers are 

in this image? 

A: 1                 B: 2

C: 3                 D: 4

Ans: C

How many colors are there in this flag?

A: 3              B: 4

C: 5              D: 6

Ans: D

Color Counting

Figure 11: Cases for Color Counting Task.

Object Counting
How many striped animals can be seen in 

this image? 

A: 12                 B: 11

C: 13                 D: 9

E: 10

Ans: C

How many green bananas can be seen in 

this image? 

A: 6 B: 7

C. 5 D. 4

E. 0

Ans: A

Figure 12: Cases for Object Counting Task.

Do the blocks labeled a and b have the 
same color/shade? 
A: No, a is darker
B: Hard to tell without more context
C: Yes, one appears darker due to how our 
eyes perceive shadows
D: No, b is darker
Ans: D

What colors are the two pills? 
A: Cannot tell from this image, the colors seem to 
be shifting?!
B: Both are the exact same shade of gray
C: The left one is bluish-gray and the right one is 
reddish-grey
D: The left one is reddish-gray and the right one is 
bluish-grey
Ans: B

Color Illusion

Figure 13: Cases for Color Illusion Task.
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Color Mimicry

How many seahorses in this image? 
A: 0 B: 1
C: 3 D: 5
Ans: B

How many leaves in this image?
A: 1 B: 2
C: 3 D: 0
Ans: D

Figure 14: Cases for Color Mimicry Task.

There are two strings in the image. 

What are the strings in the center of 

this image? 

A: kt                  B: la

C: lo                  D: lt

Ans: A

What is the number in the center of 

this image? 

A: 6                  B: 9

C: 17                 D: 18

Ans: D

Color Blindness

Figure 15: Cases for Color Blindness Task.

Original Image
Q: How many cars are in the image?

A: 8    B: 7    C: 6    D: 5    E: 4

GT: E

Entire Image

Recoloring Strategy

Targeted Segment Largest Segment

Original Image
Q: How many curtains are in the image?

A: 3    B: 2    C: 1    D: 4    E: 0

GT: C

Entire Image Targeted Segment Largest Segment
Recoloring Strategy

Figure 16: Cases for Color Robustness Task.
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E Implementation Details

To further advance our understanding of VLMs’ capabilities in color perception, reasoning, and
robustness dimensions, we conduct an extensive evaluation of 32 vision-language models (VLMs)
spanning a range of large language model (LLM) sizes and architectures. Our evaluation includes
state-of-the-art models such as GPT-4o[35], Gemini-2-flash[7], LLaVA-OV[24], LLaVA-NEXT [31],
Cambrian[42], InternVL2[5], InternVL2.5[5], Qwen2.5-VL[2], and Eagle[41]. GPT-4o and Gemini-
2-flash are used with API calls. We further examine reasoning enhancement via chain-of-thought
(CoT) prompting [44], applying it to GPT-4o and Gemini-2-Flash to evaluate how intermediate
reasoning steps influence color understanding. Additionally, we include the most recent GPT-o3
on perception and reasoning tasks, which is the most powerful model with a long internal chain-
of-thought process. This selection covers a diverse set of architectures, including both proprietary
and open-source models, enabling a comprehensive assessment of their reasoning capabilities under
different computational constraints.

To ensure a fair comparison, we standardize our experimental setup across models. Open-source
models with fewer than 70B parameters are evaluated using a single NVIDIA A100 80GB GPU,
while larger models require four NVIDIA A100 80GB GPUs to accommodate their increased memory
and computational demands.

F Evaluation Prompts

Instruction Prompt You’ll be given an image, an instruction and some options. You have to
select the correct one. Do not explain your reasoning. Answer with only the letter that corresponds
to the correct option. Do not repeat the entire answer.

CoT Instruction Prompt You’ll be given an image, an instruction and some options. You have
to select the correct one. Think step by step before answering. Then conclude with the letter that
corresponds to the correct option. Make sure the option letter is in the parentheses like (X). Do
not include ( or ) in the response except for the answer.

G Human Evaluation

To assess the degree of alignment between VLMs and human color understanding, we selected a
representative subset of COLORBENCH, focusing specifically on color perception and reasoning
tasks. The Color Extraction task was excluded from human annotation, as humans are generally
not sensitive to fine-grained differences in color codes. Three human participants were recruited,
each tasked with completing 50 samples per category. All evaluators responded to the full set of
multiple-choice and judgment-oriented questions. We then gathered all responses and conducted
statistical analysis on the collected human evaluations.

H Reasoning Models with Thinking Process

To comprehensively assess the performance of VLMs with the thinking process on COLORBENCH,
except for proprietary models with chain-of-thought(CoT) prompt, we additionally conduct experi-
ments with GPT-o3 on perception and reasoning tasks. GPT-o3 is the most recent powerful proprietary
VLMs that is trained to think before answering with reinforcement learning. We use the API version
of GPT-o3 (2025-04-16) for evaluation. The result is shown in Table 8, together with results of CoT
prompting and human evaluation.

The results presented in Table 8 indicate that human evaluators achieve the highest performance across
the majority of tasks, except for three specific categories: Object Recognition (O’Recog), Color
Proportion (C’Prop), and Color Comparison (C’Comp), where GPT-o3 holds the highest scores. The
performance differences between GPT-o3 and human evaluators on O’Recog and C’Comp tasks are
relatively minor (less than 3%). However, GPT-o3 substantially outperforms both humans and other
VLMs on the C’Prop task, with an advantage exceeding 12%. This significant gap on C’Prop aligns
with expectations, as humans generally exhibit lower sensitivity to precise quantitative measures.
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Meanwhile, GPT-o3 benefits from including the capability to utilize analytical tools for precise image
assessments and continuous exhaustive visual search [26] to obtain better proportion estimations.

On the remaining tasks, GPT-o3 consistently outperforms GPT-4o (CoT) and Gemini-2-flash (CoT),
except for the Color Blindness (C’Blind) task, where GPT-o3 trails GPT-4o (CoT) by 3.7%. The
C’Blind task requires VLMs to accurately identify numbers or strings in an image that is composed
of colored dots. This task demands capabilities of precise color recognition combined with a holistic
spatial perception. One plausible reason for GPT-o3’s inferior performance is its longer and more
complex reasoning path, which may lead to overthinking. This might cause the model to focus too
much on local details or choices of tool, at the expense of the global and intuitive perception needed
for this task.

Overall, these findings highlight the relative strengths and weaknesses of current advanced VLMs
compared to human evaluators. Importantly, there remains substantial room for improvement in
VLM capabilities, as significant performance gaps persist between VLMs and humans, particularly in
reasoning-intensive tasks.

Table 8: Performance of proprietary reasoning models with thinking processes on Color Per-
ception and Reasoning Tasks. Models are ranked based on their overall performance on color
perception and reasoning (P & R Overall) tasks. The best-performing model within the VLM group
is highlighted in bold. For human evaluation, any instance that exceeds the performance of all VLMs
is also highlighted in bold.

Color Perception Color Reasoning P & R
C’Recog C’Extract O’Recog C’Prop C’Comp C’Count O’Count C’Illu C’Mimic C’Blind Overall

VLMs: Proprietary

GPT-4o (CoT) 77.6 55.2 83.1 44.4 71.3 26.5 33.0 44.1 77.1 66.8 57.4
Gemini-2-flash (CoT) 82.9 56.2 88.3 58.0 68.3 43.1 38.8 40.9 75.7 60.0 59.6
GPT-o3 (API) 84.2 57.2 92.2 71.6 82.2 46.1 45.6 58.1 80.0 63.1 66.4

Human Evaluation

Human Evaluation 92.0 - 90.1 59.6 79.8 62.0 81.3 63.0 83.8 94.0 -

I Qualitative Analysis of Failure Cases

To gain deeper insights into VLM failures on color-related tasks, we conduct a detailed case analysis
using Qwen2.5-VL-3B and 7B models on different tasks. Following the attention visualization
methodology of Zhang et al. [49], we focus on instances where the 3B model fails but the 7B model
succeeds, allowing a clearer examination of the underlying capability differences. The visualizations
of attention maps are shown in Figure 17 to 25.

For Color Perception tasks, we analyze the Color Recognition and Object Recognition tasks (exclud-
ing Color Extraction, which contains single-color color images). Our preliminary findings show that
only a small number of failures arise from incorrect object localization. In most cases, both models
correctly attend to the relevant regions but still produce incorrect predictions. This indicates that
VLMs cannot accurately interpret color information, rather than deficiencies in visual grounding for
these basic perception tasks.

For Color Reasoning tasks, tasks such as Color Proportion, Color Comparison, Color Counting, and
Color Illusion require integrating visual information across the entire image without a clear focus
point. Attention maps show that both 3B and 7B models exhibit similar focus patterns but generate
different answers, implying that the divergence mainly originates from the language reasoning
component rather than the visual encoder. For tasks with explicit perception targets, including Object
Counting, Color Mimicry, and Color Blindness, both models attend to the correct regions, yet the
3B model often fails to produce accurate predictions. These results reveal that current VLMs remain
weak in color interpretability even when their attention is properly aligned.
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What is the color of the banana in this 

image? 

A: Red B: Green

C: Yellow D: Black

E: None of the above

Ans: E

Qwen2.5-VL-3B

Qwen2.5-VL-7B

Figure 17: Visualized Attention Maps for Color Recognition Tasks.

What object has green color in this 

image? 

A: Grass  B: Flower

C: Leaf  D: Fruit

Ans: C

Qwen2.5-VL-3B

Qwen2.5-VL-7B

Figure 18: Visualized Attention Maps for Object Recognition Tasks.

What color in the pie chart has the 

proportion closest to 25%?

A: Light blue B: Green

C: Purple D: Cyan

Ans: A

Qwen2.5-VL-3B

Qwen2.5-VL-7B

Figure 19: Visualized Attention Maps for Color Proportion Tasks.
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Which lipstick in this image is the darkest 

color?

A: ACAI B: SANGRIA

C: PASSION RED D: PINK CLAY

Ans: A

Qwen2.5-VL-3B

Qwen2.5-VL-7B

Figure 20: Visualized Attention Maps for Color Comparison Tasks.

How many colors are used for arrows in 

this image?

A: 6 B: 7

C: 8 D: 9

Ans: A

Qwen2.5-VL-3B

Qwen2.5-VL-7B

Figure 21: Visualized Attention Maps for Color Counting Tasks.

How many gray animals are in this 

image?

A: 5 B: 6

C: 4 D: 3 E: 7

Ans: C

Qwen2.5-VL-3B

Qwen2.5-VL-7B

Figure 22: Visualized Attention Maps for Object Counting Tasks.
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Which circles has the darkest color? The 

circles are numbered left to right starting 

from 1.

A: All the same B: 1

C: 2 D: 3

Ans: A

Qwen2.5-VL-3B

Qwen2.5-VL-7B

Figure 23: Visualized Attention Maps for Color Illusion Tasks.

How many black sea snakes in this 

images?

A: 0 B: 1

C: 2 D: 3

Ans: A

Qwen2.5-VL-3B

Qwen2.5-VL-7B

Figure 24: Visualized Attention Maps for Color Mimicry Tasks.

What is the number in the center of this 

image?

A: 4 B: 7

C: 18 D: 22

Ans: C

Qwen2.5-VL-3B

Qwen2.5-VL-7B

Figure 25: Visualized Attention Maps for Color Blindness Tasks.
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J Effect of Different Modalities

To investigate the impact of color information, we compare model performance on RGB versus
grayscale images, thereby isolating the role of color within the image modality. To further explore the
contribution of the image modality, we also conduct experiments using textual input only (questions
and answer choices), where the original input images are substituted with pure black images of
identical dimensions.

Table 9: Average Accuracy (%) across three input settings (Text-only, Grayscale+Text, RGB+Text)
on Color Perception and Reasoning tasks.

Color Perception Color Reasoning P & R
C’Recog C’Extract O’Recog C’Prop C’Comp C’Count O’Count C’Illu C’Mimic C’Blind Overall

VLMs: < 7B

Text-only 29.2 30.6 31.6 29.6 35.3 24.5 20.6 35.5 41.7 23.4 29.3
Gray+Text 25.9 33.5 42.7 29.1 37.1 23.2 23.3 42.4 53.7 23.0 32.1
RGB+Text 55.3 35.7 63.6 37.3 42.4 22.5 26.1 37.5 50.6 25.0 37.4

VLMs: 7B − 8B

Text-only 23.7 35.4 32.3 20.6 29.7 18.4 19.3 36.7 36.9 21.1 26.7
Gray+Text 25.2 35.7 46.0 27.8 41.3 22.2 27.5 48.2 58.7 23.6 34.2
RGB+Text 60.4 42.4 73.0 41.8 49.1 22.7 32.7 41.5 50.0 23.4 41.1

VLMs: 10B − 30B

Text-only 26.9 33.6 32.8 25.0 34.7 26.5 22.3 38.2 40.0 18.9 28.9
Gray+Text 26.8 37.9 46.8 22.5 46.5 22.4 30.1 43.0 60.3 26.0 35.0
RGB+Text 68.4 41.5 79.7 43.0 51.3 25.3 34.4 33.8 55.4 26.6 43.2

VLMs: 30B − 70B

Text-only 28.9 36.5 31.8 16.3 29.0 15.4 16.3 42.7 33.6 15.9 25.6
Gray+Text 28.7 42.1 51.2 26.3 49.9 24.3 25.6 48.8 65.1 22.7 36.7
RGB+Text 73.4 48.8 81.6 49.5 55.2 24.7 37.3 36.1 61.1 25.5 46.2

VLMs: > 70B

Text-only 26.0 47.4 35.7 20.9 36.9 21.6 24.0 35.8 33.9 21.8 29.8
Gray+Text 25.3 40.9 54.6 25.3 51.0 21.8 28.6 44.6 54.3 26.1 36.1
RGB+Text 73.4 54.7 82.5 45.6 62.4 26.7 39.6 33.9 53.9 29.6 47.6

Table 9 presents the average accuracy across models grouped by LLM size. The result demonstrates
that removing the visual modality (text-only setting) leads to the lowest performance across the
majority of tasks. The performance differences among the three input settings allow us to disentangle
the impact of textual input, image context (excluding color), and color information itself.

Notably, in tasks such as Color Recognition and Object Recognition, the performance gap between
text-only and grayscale experiments is relatively small, whereas both are significantly outperformed
by the RGB input setting. This suggests that color cues play a substantially more important role
than either contextual visual or textual information in these tasks.

K Fine-tuning Experiments on ColorBench

We conduct a series of fine-tuning experiments to investigate model adaptation on specialized color-
centric tasks. These experiments leverage three synthetic datasets designed for Color Extraction,
Color Illusion, and Color Blindness. Using our synthetic data generation pipeline, we curate
dedicated training sets for this purpose, with sample counts summarized in Table 10.

Table 10: Number of synthetic samples generated for fine-tuning experiments.

Task Number of Samples
Color Extraction 2400
Color Illusion 2400
Color Blindness 2280

To systematically assess the influence of different model components, we perform a comprehensive
ablation study on Qwen2.5-VL-3B and Qwen2.5-VL-7B with the following settings:

• MLP only
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• Vision encoder only

• MLP + Vision encoder (jointly)

• LLM (LoRA) only

• LLM (LoRA) + MLP

• LLM (LoRA) + Vision encoder

• LLM (LoRA) + MLP + Vision encoder (jointly)

For configurations involving the LLM, we adopt the LoRA approach to update a subset of its
parameters, while the remaining modules are fully fine-tuned.

Table 11: Accuracy (%) of Qwen2.5-VL (3B and 7B) under different training strategies across
ColorBench tasks. Bold numbers indicate the best results within each model group.

Trainable Modules Color Perception Color Reasoning P&R
Model LLM (LoRA) MLP Vision C’Recog C’Extract O’Recog C’Prop C’Comp C’Count O’Count C’Illu C’Mimic C’Blind Overall

Qwen2.5-3B

72.4 38.5 74.0 43.8 48.5 22.6 25.2 43.0 45.7 24.2 41.1
✓ 71.1 53.1 75.3 50.0 49.5 22.5 26.2 45.2 44.3 25.5 43.6

✓ 73.7 53.1 79.2 46.3 45.5 29.4 27.2 48.4 47.1 25.5 44.4
✓ ✓ 75.0 56.3 75.3 47.5 49.5 28.4 25.2 46.2 47.1 28.0 45.2

✓ 71.1 75.0 70.1 45.0 51.5 26.5 27.2 45.2 47.1 27.4 46.2
✓ ✓ 69.7 77.1 74.0 40.0 53.5 23.5 32.0 51.6 45.7 37.6 48.8
✓ ✓ 71.1 75.0 71.4 46.3 49.5 25.5 27.2 49.4 48.6 31.4 46.7
✓ ✓ ✓ 72.4 75.0 71.4 45.0 51.5 24.3 32.0 46.2 50.0 28.0 47.1

Qwen2.5-7B

76.3 49.0 84.4 47.5 52.5 19.6 34.0 44.1 55.7 28.7 46.2
✓ 72.4 42.7 84.4 42.5 59.4 20.6 29.1 45.2 47.1 28.7 45.2

✓ 77.6 59.4 81.8 47.5 56.4 25.5 29.1 51.6 50.0 35.6 51.2
✓ ✓ 78.9 61.5 80.5 41.3 55.4 20.6 29.1 47.3 48.6 30.1 47.7

✓ 75.0 78.1 83.1 51.3 60.4 21.6 35.0 52.7 54.3 35.6 52.4
✓ ✓ 72.4 82.3 83.1 51.3 57.4 19.6 30.1 51.6 52.9 33.1 51.2
✓ ✓ 75.0 83.3 83.1 45.0 56.4 15.7 30.1 53.8 54.3 33.1 51.5
✓ ✓ ✓ 77.6 82.3 83.1 50.0 55.5 23.3 31.1 52.7 55.7 33.1 51.7

The evaluation results with finetuned VLMs are shown in Table 11. Overall, models that include
LoRA fine-tuning on the LLM component consistently outperform those without it, exhibiting a
substantial improvement in overall accuracy. Importantly, the improvements are not confined to the
directly targeted tasks (Color Extraction, Color Illusion, Color Blindness). These experiments show
that fine-tuning the model on part of tasks also produces notable gains on some ancillary reasoning
tasks, including Color Proportion, and Color Comparison.

However, the transfer of knowledge is not universally positive. Certain tasks demonstrated limited
or even negative performance transfer, indicating that fine-tuning exclusively on specialized color
objectives does not guarantee generalization across the full spectrum of color perception and reasoning.
This finding underscores that while targeted training enhances specialized abilities, a balanced and
robust performance profile necessitates the inclusion of more diverse data and training objectives.

L More Visualizations

L.1 VLM Size & Model Performance for Each Task

Figure 26 to 35 present detailed correlations between the log-scaled sizes of VLM parameters
and the performance metrics for each task of Perception and Reasoning Categories. Deeper color
represents higher accuracy. Each line represents a model family with the sizes growing from small to
large. This visualization clearly shows the correlation between performances and model sizes, larger
model leads to higher performance.
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Figure 26: Heatmap for Color Recognition.
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Figure 27: Heatmap for Color Extraction.
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Figure 28: Heatmap for Object Recognition.
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Figure 29: Heatmap for Color Proportion.
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Figure 30: Heatmap for Color Comparison.
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Figure 31: Heatmap for Color Counting.
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Figure 32: Heatmap for Object Counting.
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Figure 33: Heatmap for Color Illusion.
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Figure 34: Heatmap for Color Mimicry.
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Figure 35: Heatmap for Color Blindness.

L.2 Vision Size & Model Performance for Each Task

Figure 36 to 40 show detailed correlations between the log-scaled sizes of vision encoders and
the performance metrics for each task of Perception and Reasoning Categories. Colors represent
different model families. Models that have the same vision encoder sizes but with different LLM
sizes are plotted as different points. Given that the majority of Vision-Language Models (VLMs)
utilize a singular type of vision encoder, and that the sizes of these encoders generally range between
300-400M, it becomes challenging to assess the scaling effects within vision encoders.
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Figure 36: The scatter plot for Color Recogni-
tion and Color Extraction.
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Figure 37: The scatter plot for Object Recog-
nition and Color Proportion.
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Figure 38: The scatter plot for Color Compar-
ison and Color Counting.
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Figure 39: The scatter plot for Object Count-
ing and Color Illusion.
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Figure 40: The scatter plot for Color Mimicry
and Color Blindness.

L.3 Performance for Each Model Family on Each Task

Figures 41 to 47 illustrate task performance across different models within the same model families.
In general, models with more parameters tend to perform better on the majority of tasks.
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Figure 41: Performance of LLaVA-OV
models.
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Figure 42: Performance of LLaVA-
NEXT models.
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Figure 43: Performance of Cambrian
models.
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Figure 44: Performance of Eagle mod-
els.
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Figure 45: Performance of InternVL2
models.

C'Recognition

C'Extraction

O'Recognition

C'Proportion

C'Comparison

C'CountingO'Counting

C'Illusion

C'Mimicry

C'Blindness

C'Robust

20
40

60
80

100

InternVL2.5-1B
InternVL2.5-2B

InternVL2.5-8B
InternVL2.5-26B

InternVL2.5-38B
InternVL2.5-78B

Figure 46: Performance of In-
ternVL2.5 models.
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M Samples Cases

M.1 Effect of CoT

In this section, we present cases that the answers are influenced by adding reasoning steps for each
task. For most of the tasks in COLORBENCH, adding reasoning steps can significantly improve
the model performances. The samples cases of Perception and Reasoning categories are shown in
Figure 48 to Figure 57. Case for Robustness category is shown in Figure 58.

Color Recognition

What color does not exist in this image? 

A: White  B: Purple  C: Yellow  

D: Red    E: No answer

Ans: E

Answer After CoT: 

GPT4o:
Let's analyze the image step by step to determine which color does not 
exist:
1. White - The background of the image is white.
2. Purple - The first figure on the left is purple.
3. Yellow - The figure near the front is yellow.
4. Red - The figure in the front right position is red.
All the colors listed appear in the image. Therefore, the answer is: (E) No 
answer

Answer Before CoT:

GPT-4o: A

Figure 48: Case with CoT for Color Recogni-
tion task.

Color Extraction

What is the HEX value of the given color 

in the image? 

A: #AD2B86  B: #AD3087

C: #AD2D8B D: #050405                 Ans: A

Answer After CoT: 

GPT4o:
To determine the HEX value of the given color, I’ll analyze the image and 
compare it to the provided options:
1. The color appears to be a shade of magenta or purple.
2. I will now compare it with the options:
- (A) #AD2B86
- (B) #AD3087
- (C) #AD2D8B
- (D) #050405
The color matches option (A) #AD2B86.
Therefore, the correct answer is (A).

Answer Before CoT:

GPT-4o: B

Figure 49: Case with CoT for Color Extraction
task. Option backgrounds correspond to their
color codes.

Object Recognition

Which object has a color of yellow in 

this image? 

A: Apple          B: Snowman

C: Cucumber   D: Umbrella              Ans: A

Answer After CoT: 

Gemini:
Let's analyze the image.
(A) The apple has multiple colors like red, green, and yellow.
(B) The snowman is white.
(C) The cucumber is green.
(D) The umbrella has multiple colors.
Therefore, the correct option is apple, since it can have yellow color.
(A)

Answer Before CoT:

Gemini: D

Figure 50: Case with CoT for Object Recogni-
tion task.

Color Proportion

What is closest to the proportion of the 

color white in the flag? 

A: 5%          B: 10%

C: 15%        D: 20%                          Ans: D

Answer After CoT: 

GPT4o:
To find the proportion of the color white in the flag:
1. Analyze the Flag's Design: The flag has a white Scandinavian cross. 
This cross consists of a vertical and horizontal bar.
2. Estimate the Total Area of the Flag: Assume the flag is divided into a 
grid of even squares, which makes it easier to estimate
the area proportions visually.
3. Estimate the Area of the White Cross: The white cross occupies 
approximately one-fifth in width and one-third in height of the
flag when considering both the horizontal and vertical bars. Since both 
bars overlap in the middle, the white area is slightly less than
a simple addition.
4. Calculate Approximate Proportion:
- The horizontal and vertical bars together approximately cover the central 
columns and rows. Since they overlap, a simple
estimation shows the white area as less than a third of the flag’s total 
area.
- A reasonable estimation of the white area compared to the red areas 
suggests a proportion closer to 20%.
5. Conclusion: Based on the above estimations, a plausible estimation for 
the proportion of white in the flag is closest to 20%.
Therefore, the answer is (D) 20%.

Answer Before CoT:

GPT4o: C

Figure 51: Case with CoT for Color Propor-
tion task.

37



Color Comparison

From left to right, which strip has the third reddest color? 

A: The first one.       B: The second one.    

C: The third one.      D: The fourth  one                                          Ans: C

Answer After CoT: 

GPT4o:
To determine which strip has the third reddest color, let's analyze each 
strip:
1. First strip: An orange color, which has some red.
2. Second strip: A cream color, which has little to no red.
3. Third strip: A light beige color, with a hint of red.
4. Fourth strip: A deep red color, with the most red.
Based on these observations, the order of redness from most to least is:
1. Fourth strip
2. First strip
3. Third strip
4. Second strip
Therefore, the strip with the third reddest color is the third strip. The 
correct option is (C)

Answer Before CoT:

GPT4o: A

Figure 52: Case with CoT for Color Compari-
son task.

Color Counting

How many colors are there in this 

image? 

A: 5          B: 6

C: 7         D: 8                          Ans: B

Answer After CoT: 

GPT4o:
To determine the number of colors in the image, let's analyze the different 
areas:
1. Red - used for "Homo sapiens" areas.
2. Yellow - used for "Homo neanderthalensis" areas.
3. Blue - used for the oceans and seas.
4. White - used for land areas not highlighted by other colors.
5. Black - used for text and numbers.
6. Brown - used for arrows indicating migration paths.
Thus, there are six colors in the image.
Therefore, the correct option is (B) 6.

Answer Before CoT:

GPT4o: C

Figure 53: Case with CoT for Color Counting
task.

Object Counting

How many green strawberries are on the 

tree in this image? 

A: 11          B: 13        C: 18     

D: 12          E: 17                               Ans: D

Answer After CoT: 

GPT4o:
To determine how many green strawberries are on the tree, let’s count 
each visible green one.
1. Start from the left side of the tree and move toward the right, looking 
from top to bottom.
2. Carefully look for strawberries that are a solid green color.
By doing this, I can count the green strawberries on the tree.
After counting:
There are 12 green strawberries.
The correct choice is (D) 12.

Answer Before CoT:

GPT4o: B

Figure 54: Case with CoT for Object Counting
task.

Color Illusion

Does the horizontal bar have a uniform color? 

A: Hard to tell       B: Yes        C: No                                           Ans: B

Answer After CoT: 

GPT4o:
First, observe the horizontal bar and its surroundings. Notice that the 
background is a gradient transitioning from dark
brown on the left to light beige on the right.
Now focus on the bar itself. To determine if it has a uniform color, look for 
any signs of gradient or color changes within the bar.
Despite the gradient background, the bar remains a consistent color 
throughout its length because there are no visible changes or
gradients within it.
Therefore, the horizontal bar has a uniform color.
Thus, the correct choice is (B) Yes.

Answer Before CoT:

GPT4o: C

Figure 55: Case with CoT for Color Illusion
task.
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Color Mimicry

How many leaves in this images? 

A: 1          B: 2 

C: 3          D: 0                               Ans: D

Answer After CoT: 

GPT4o:
To determine the number of leaves in the image:
1. Examine the main elements visible, including the branches and objects 
attached.
2. Identify any elements resembling leaves in shape, texture, or 
placement.
3. Consider any object that might mimic the appearance of a leaf, such as 
a leaf-tailed gecko.
Upon close analysis, the object resembling a leaf is actually a 
camouflaged animal.
Therefore, no actual leaves are present in the image.
The correct option is (D) 0.

Answer Before CoT:

GPT4o: B

Figure 56: Case with CoT for Color Mimicry
task.

Color Blindness

What is the number in the center of this 

image? 

A: 7            B: 13    

C: 21          D: 57                              Ans: D

Answer After CoT: 

GPT4o:
To determine the number in the center of the image, follow these steps:
1. Focus on contrasting colors: The image contains a pattern of numbers 
made up of dots in different colors. Identify the colors
forming the number.
2. Recognize patterns: Pay attention to the shape formed by these colors.
3. Identify the number: Once the shape is recognized, compare it with the 
given options.
The number in the center of the image is 57. Thus, the correct choice is:
(D) 57

Answer Before CoT:

GPT4o: C

Figure 57: Case with CoT for Color Blindness
task.
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Color Robustness

How many buses are in the image?

A: 2        B: 1        C: 3        D: 0                                                                                                     Ans: B

Answer After CoT: 

To determine the number of buses in the image:

1. Look carefully at all vehicles present.
2. Identify the type of each vehicle, discerning buses from cars, vans, or carts.
3. In the image, there is a single large, purple vehicle resembling a bus.

Thus, there is 1 bus in the image. The correct option is (B) 1.

Answer Before CoT:

A

Answer Before CoT:

B

Answer After CoT: 

To determine the number of buses in the image:

1. Identify vehicles: Look for characteristics typical of buses, such as size, shape, and features like multiple windows for passengers.
2. Assess all visible vehicles.

In the image, there is one vehicle that appears to be a bus, based on its size and windows. Therefore, the answer is (B) 1.

Answer After CoT: 

Let's analyze the image step by step:

1. Identify any vehicles that resemble buses: Look for larger vehicles typically identified by their size and passenger windows.
2. In the image, there is one green vehicle that appears to be a bus.

Based on the analysis, there is only one bus visible in the image. The correct answer is (B) 1.
Answer Before CoT:

A

Answer After CoT: 

To identify the number of buses in the image, let's analyze it step by step:

1. Look for large vehicles designed to carry many passengers. These are typically larger than cars and may have distinct elements such as multiple windows along the side.
2. In the image, there is one visible vehicle that fits the description of a bus, which is the larger vehicle with multiple windows parked on the left side of the image.
3. Other vehicles, like vans and cars, do not fit the description of a bus.

Thus, there is 1 bus in the image. Therefore, the correct option is (B) 1.
Answer Before CoT:

B

Answer After CoT: 

To determine the number of buses in the image, let's break down what we see:

1. Identify vehicles: Look for any large vehicles that resemble a bus.
2. In this image, there appears to be one small bus or minibus on the left side.

After analyzing the image, we conclude that there is only one bus visible. The correct answer is (B) 1.
Answer Before CoT:

B

Answer After CoT: 

To solve this problem, I will carefully examine the image to identify any buses.

1. Observe the image: Look at all vehicles present. A bus is typically larger than regular vehicles and has a recognizable elongated shape and windows.
2. Identify potential buses: There is a small blue-and-white vehicle on the left which appears to be a minibus.
3. Count the buses: The identified vehicle fits the description of a bus.

Given this step-by-step reasoning, there is 1 bus in the image. Thus, the correct option is (B) 1.

Answer Before CoT:

B

Answer After CoT: 

To determine the number of buses in the image:

1. Look carefully at all vehicles present.
2. Identify the type of each vehicle, discerning buses from cars, vans, or carts.
3. In the image, there is a single large, purple vehicle resembling a bus.

Thus, there is 1 bus in the image. The correct option is (B) 1.

Answer Before CoT:

A

Answer After CoT: 

To determine the number of buses in the image:

1. Identify vehicles: Look for characteristics typical of buses, such as size, shape, and features like multiple windows for passengers.
2. Assess all visible vehicles.

In the image, there is one vehicle that appears to be a bus, based on its size and windows. Therefore, the answer is (B) 1.
Answer Before CoT:

B

Answer After CoT: 

Let's analyze the image step by step:

1. Identify any vehicles that resemble buses: Look for larger vehicles typically identified by their size and passenger windows.
2. In the image, there is one green vehicle that appears to be a bus.

Based on the analysis, there is only one bus visible in the image. The correct answer is (B) 1.
Answer Before CoT:
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Figure 58: Case with CoT for Color Robustness task.
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However, for Color Recognition and Object Recognition tasks, the improvement of involving slow
thinking is limited, as these two tasks heavily rely on the accurate cognition of the vision encoder.
The sample cases are shown in Figure 59 and 60. For Color Illusion task, adding reasoning steps
causes the model to focus more on the misleading environment and the relationship between the
environment and the foreground objects. This thinking negatively influences the model performance.
A sample case is shown by Figure 61.

Color Recognition

Which color does not exist on the trunk 

of the tree in this image?

A: Purple      B: Green

C: White       D: Yellow                      Ans: B

Answer After CoT: 

GPT4o:
Let's examine the colors on the tree trunks:
- Purple: Visible on the tree trunks.
- Green: Visible on the tree trunks.
- White: Visible on the tree trunks.
- Yellow: Visible on the tree trunks.
Since all the colors are present, there seems to be an error. Based on 
visible presence, each color mentioned is present. If missing
one is necessary, no color listed fulfills that distinction.
Thus, upon reevaluation, there is no correct answer because all listed 
colors exist on the trunks. However, for choice completion
and oversight check, let's assume possibility and choose (C) White 
incorrectly, for inclusion error.

Answer Before CoT:

GPT-4o: B

Figure 59: Case that CoT results in an incor-
rect answer for Color Recognition task.

Object Recognition

Which country does not have a color of 

yellow in this image? 

A: Russia          B: India

C: Korean         D: Korean                Ans: A

Answer After CoT: 

GPT4o:
To determine which country does not have the color yellow in this image, 
let's go through the options:
- (A) Russia: The color for Russia is blue.
- (B) India: The color for India is yellow.
- (C) Korean: This likely refers to North and South Korea, which are 
shown in orange and red respectively, not yellow.
- (D) Thailand: The color for Thailand is shown as yellow.
From this analysis, the country without yellow is Korea (North and South 
Korea).
The correct option is (C).

Answer Before CoT:

GPT4o: A

Figure 60: Case that CoT results in an incor-
rect answer for Object Recognition task.

Color Illusion

Which circles has the darkest color? 

The circles are numbered left to right starting from 1. 

A: All the same        B: 1        C: 2        D: 3                                    Ans: D

Answer After CoT: 

GPT4o:
To determine which circle has the darkest color, let's examine each one:
1. Circle 1: This circle is on the left side of the gradient and appears 
darker.
2. Circle 2: This circle is in the middle and appears lighter than Circle 1.
3. Circle 3: This circle is on the right side of the gradient and appears 
lighter than Circle 1.
Circle 1 has the darkest color. Therefore, the correct option is (B).

Answer Before CoT:

GPT4o: D

Figure 61: Case that CoT results in an incor-
rect answer for Color Illusion task.
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M.2 Effect of Grayscale

For most of the tasks in COLORBENCH, colors are critical clues for VLMs to generate the answers.
We highlight these cases in Figure 62 to 69.

However, for Color Illusion and Color Mimicry tasks, color clues might mislead VLMs to wrong
answers, as shown in Figure 70 and 71.

Color Recognition

What color does not exist in this image? 

A: Red        B: Pink        C: Green        D: Yellow                            Ans: B

Answer without Color Cue

A / C / D

Answer with Color Cue

B

Figure 62: Color clues play as a critical role
for Color Recognition task.

Color Extraction

What is the HEX value of the given color in the image? 

A: #D0E55D    B: #D0E559    C: #CCE55E    D: #23242D             Ans: A

Answer without Color Cue

B / D

Answer with Color Cue

A

Figure 63: Color clues play as a critical role
for Color Extraction task. Option backgrounds
correspond to their color codes.

Object Recognition

What object has purple color in this image? 

A: Woman's cap    B: Woman's jacket    

C: Child's jacket    D: Child's Cap                                                    Ans: B

Answer without Color Cue

A / C / D

Answer with Color Cue

B

Figure 64: Color clues play as a critical role
for Object Recognition task.

Color Proportion

Which is the dominant color in this map besides background? 

A: Blue        B: Green        C: Red        D: Yellow                            Ans: C

Answer without Color Cue

A / B / D

Answer with Color Cue

C

Figure 65: Color clues play as a critical role
for Color Proportion task.

Color Comparison

Which cup of tea in the image has the greenest color?

A: The left one        B: The right one    

C: The upper one    D: The lower one                                             Ans: D

Answer without Color Cue

A / B / C

Answer with Color Cue

D

Figure 66: Color clues play as a critical role
for Color Comparison task.

Color Counting

How many different colors of flowers are in this image?

A: 1        B: 2        C: 3        D: 4                                                      Ans: D

Answer without Color Cue

A / B

Answer with Color Cue

D

Figure 67: Color clues play as a critical role
for Color Counting task.
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Object Counting

How many pillows with green are in this image?

A: 3        B: 2        C: 5        D: 4        E: 1                                        Ans: B

Answer without Color Cue

A / E

Answer with Color Cue

B

Figure 68: Color clues play as a critical role
for Object Counting task.

Color Blindness

There are two strings in the image. What are the strings in the 

center of this image?

A: mc        B: mx        C: rp        D: rx                                              Ans: B

Answer without Color Cue

A / C / D

Answer with Color Cue

B

Figure 69: Color clues play as a critical role
for Color Blindness task.

Color Illusion

Does the color A and color B have the same color? 

A: Hard to tell       B: Yes        C: No                                           Ans: C

Answer without Color Cue

C

Answer with Color Cue

B

Figure 70: Color clues negatively affect VLMs
prediction for Color Illusion task.

Color Mimicry

How many yellow stones in this images?

A: 0        B: 1        C: 2        D: 3                                                      Ans: A

Answer without Color Cue

A

Answer with Color Cue

B / C

Figure 71: Color clues negatively affect VLMs
prediction for Color Mimicry task.

M.3 Failure with LLM and Vision

We present a representative failure case that highlights limitations in both the vision and language
components of the model. As shown in Figure 72, the model fails to correctly interpret the visual
content—it misidentifies the target colors by focusing on pink and purple flowers instead of red and
yellow ones, indicating a vision encoder error. Furthermore, the language model compounds this
mistake by generating an incorrect chain-of-thought reasoning and arriving at an erroneous answer
based on the wrong color categories. This example underscores the necessity of evaluating both
visual perception and language reasoning when diagnosing failure modes in vision-language models.

Object Counting

How many flowers with red and yellow 

colors are in this image?

A: 6             B: 7

C: 8             D: 9                      Ans: C

GPT-4o CoT Result

To count the flowers with pink and purple colors, I will examine the cluster 
of flowers in the image.
1. The first pair along the left edge contains a purple and a pink flower.
2. Moving right, there is one more pink flower.
3. To the right, there is another purple flower.
4. Continuing further right, there is a pink flower.
5. On the right side, there’s another cluster with both pink and purple 
flowers.
Let's consider:
- Pink Flowers: 3
- Purple Flowers: 3
Total pink and purple flowers: 3 (pink) + 3 (purple) = 6
Thus, the answer is (A) 6.

Figure 72: Case that model fails because of both vision encoder and language model.

43



M.4 Easy Cases

We present samples cases that majority of VLMs reach the correct answers.

Color Recognition

What color does not exist in this 

image? 

A: Green        B: White 

C: Red           D: Black               Ans: C

100% (32/32) Models Correct

Figure 73: Color Recognition case that major-
ity of VLMs provide correct results.

Color Extraction

What is the RGB value of the given color in 

the image? 

A: [255, 0, 123]    B: [255, 5, 134]   

C: [255, 0, 128]    D: [130, 22, 121]        Ans: C

100% (32/32) Models Correct

Figure 74: Color Extraction case that major-
ity of VLMs provide correct results. Option
backgrounds correspond to their color codes.

Object Recognition

Which object has a color of green in 

this image?

A: Flower        B: Sky    

C: Leave         D: River                 Ans: C

93.75% (30/32) Models Correct

Figure 75: Object Recognition case that ma-
jority of VLMs provide correct results.

Color Proportion

Which is the dominant colors in this 

painting?

A: Warm    B: Cool                         Ans: B

84.38% (27/32) Models Correct

Figure 76: Color Proportion case that major-
ity of VLMs provide correct results.

Color Comparison

Which image is cooler in overall color?

A: The left one    

B: The right one                         Ans: B

81.25% (26/32) Models Correct

Figure 77: Color Comparison case that major-
ity of VLMs provide correct results.

Object Counting

How many cows have white faces in 

this image?

A: 3        B: 5    

C: 2        D: 4                                 Ans: C

93.75% (30/32) Models Correct

Figure 78: Object Counting case that majority
of VLMs provide correct results.

Color Mimicry

How many frogs in this images?

A: 1        B: 2 

C: 3        D: 0                                 Ans: A

93.75% (30/32) Models Correct

Figure 79: Color Mimicry case that majority
of VLMs provide correct results.
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Color Robustness

How many surfboards are in the 

image?

A: 0        B: 1    

C: 3        D: 2                                 Ans: B

96.88% (31/32) Model Predictions Unchanged

Figure 80: Color Robustness case that major-
ity of VLMs provide unchanged results over
color variations in images.
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M.5 Difficult Cases

We present samples cases that majority of VLMs reach the incorrect answers.

Color Recognition

What color of balloon is not present 

in this image?

A: Yellow        B: Red    

C: Green        D: Orange            Ans: B

81.25% (26/32) Models Incorrect

Figure 81: Color Recognition case that major-
ity of VLMs provide incorrect results.

Color Extraction

What is the RGB value of the given color in the 

image? 

A: [121, 151, 181]    B: [55, 32, 102]    

C: [123, 150, 181]    D: [119, 150, 181]       Ans: C

84.38% (27/32) Models Incorrect

Figure 82: Color Extraction case that majority
of VLMs provide incorrect results. Option
backgrounds correspond to their color codes.

Object Recognition

Which state is not light pink in this 

image?

A: ID        B: OK    

C: TX        D: MO                         Ans: B

93.75% (30/32) Models Incorrect

Figure 83: Object Recognition case that ma-
jority of VLMs provide incorrect results.

Color Proportion

What color in the pie chart has the 

proportion closest to 20%?

A: dark green    B: purple    

C: orange          D: light pink          Ans: A

87.50% (28/32) Models Incorrect

Figure 84: Color Proportion case that major-
ity of VLMs provide incorrect results.

Color Comparison

Which species of wood has the darkest 

color overall in the image?

A: Mohogany    B: Maple    

C: Cherry          D: Black Walnut       Ans: A

93.75% (30/32) Models Incorrect

Figure 85: Color Comparison case that major-
ity of VLMs provide incorrect results.

Color Counting

How many colors are there in this 

image?

A: 10        B: 11    

C: 12        D: 13                             Ans: A

81.25% (26/32) Models Incorrect

Figure 86: Color Counting case that majority
of VLMs provide incorrect results.

Object Counting

How many people are wearing 

red striped shirts in this image?

A: 10        B: 15        C: 12    

D: 14        E: 13                     Ans: B

84.38% (27/32) Models Incorrect

Figure 87: Object Counting case that majority
of VLMs provide incorrect results.

Color Illusion

Which circles has the darkest color? The circles are numbered left to 

right starting from 1.

A: All the same    B: 1    C: 2    D: 3                                                  Ans: A

84.38% (27/32) Models Incorrect

Figure 88: Color Illusion case that majority of
VLMs provide incorrect results.
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Color Mimicry

How many leaves in this images?

A: 1        B: 2    

C: 3        D: 0                                 Ans: D

93.75% (30/32) Models Incorrect

Figure 89: Color Mimicry case that majority
of VLMs provide incorrect results.

Color Blindness

What is the number in the center of 

this image?

A: 2          B: 7    

C: 22        D: 26                             Ans: C

87.50% (28/32) Models Incorrect

Figure 90: Color Blindness case that majority
of VLMs provide incorrect results.

Color Robustness

How many oranges are in the image?

A: 3        B: 2    

C: 0        D: 1                                Ans: D

87.5% (28/32) Model Predictions Changed

Figure 91: Color Robustness case that major-
ity of VLMs change the answers over color
variations in images.
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