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Abstract

Large Language Models (LLMs) have shown001
remarkable success on a wide range of math002
and reasoning benchmarks. However, we ob-003
serve that they often struggle when faced with004
unreasonable math problems. Instead of rec-005
ognizing these issues, models frequently pro-006
ceed as if the problem is well-posed, producing007
incorrect answers or falling into overthinking008
and verbose self-correction. To systematically009
investigate this overlooked vulnerability, we010
propose the Unreasonable Math Problems011
(UMP) benchmark, designed to evaluate LLMs’012
ability to detect and respond to unreasonable013
math problem statements. Based on extensive014
experiments covering 19 LLMs, we find that015
even state-of-the-art general models like GPT-016
4o achieve only a score of 0.6 on UMP. While017
reasoning models such as DeepSeek-R1 demon-018
strate a higher sensitivity to unreasonable in-019
puts, this often comes at the cost of generating020
overly long and meaningless responses that fail021
to converge. We further explore prompting and022
fine-tuning methods, which offer partial im-023
provements but also introduce trade-offs, shed-024
ding light on both the potential and limitations025
of LLMs in this challenging setting.026

1 Introduction027

Large language models (LLMs) have recently028

shown impressive performance on advanced math-029

ematical reasoning tasks, especially on bench-030

marks like MATH (Hendrycks et al., 2021) and031

AIME24 (MAA, 2024). However, we find that032

these models often fail to detect logical flaws or033

unreasonable assumptions in math problems, treat-034

ing them as if they were well-posed. Instead of035

flagging such issues, they tend to generate confi-036

dent yet nonsensical answers, or fall into endless037

reasoning loops without reaching a valid conclu-038

sion. This counter-intuitive behavior raises serious039

concerns about their reliability in real-world ap-040

plications such as automated tutoring (Kasneci041
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Non-Reasoning Model Response

Reasoning Model Response

Rent: 2/3×$6000=$4000     
Donation: 1/4×$2000=$500  
For Daughter: $700            
Therefore, Zaid will have $800 left.

Rent: 2/3×$6000=$4000       
Donation: 3/4×$2000=$1500  
For Daughter: $700              
Therefore, Zaid will have $-200 left.

Incorrect 
Assumption

Correct 
Assumption

Correct 
Answer

Unreasonable 
Answer

Overthinking

Original Question 
Zaid's $6000 salary: 2/3 rent, 1/4 of rest donated, $700
to daughter. What's left?

Remain : $2000
Remain : $1500
Remain:  $800

🤔

🤔

😊

😊

🤔

Unreasonable Question 
Zaid's $6000 salary: 2/3 rent, 3/4 of rest donated, $700 
to daughter. What's left?

Remain : $2000
Remain : $500
Remain: $-200

Let's calculate Zaid's remaining ... sorry, i was wrong, 
let’s try ... possibly ... let’s double check ... sorry, i was 
wrong, let’s try ...  (14188 tokens are omitted here.)

Figure 1: An example showing the contrast between
a model’s response to a well-posed question and its
response to an unreasonable variant. While the model
correctly solves the original problem, its response to the
unreasonable version becomes less satisfactory in terms
of clarity, coherence, or logical consistency.

et al., 2023), early education (Zhang et al., 2024b), 042

and open-domain problem solving (Lin and Chen, 043

2023), where misleading answers to unreasonable 044

questions can undermine trust and lead to negative 045

outcomes. 046

To enable a comprehensive analysis of how 047

LLMs behave when confronted with mathemati- 048

cally unreasonable inputs, we introduce the Un- 049

reasonable Math Problems (UMP) benchmark. 050

We construct UMP by minimally editing ques- 051

tions from existing math datasets, including 052

MATH (Hendrycks et al., 2021), AIME24 (MAA, 053

2024), AMC23, and GSM8K (Cobbe et al., 2021a) 054
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to create unreasonable variants that contain log-055

ical inconsistencies, missing assumptions, or ill-056

defined objectives. These edits are guided by rule-057

based transformation templates and executed us-058

ing DeepSeek-R1, while preserving the original059

problem’s structure, topic, and surface form. All060

generated questions are manually verified to ensure061

they are mathematically flawed yet still natural.062

To evaluate model behavior, we present models063

with both the original and its corresponding unrea-064

sonable version. This paired setup enables us to065

directly attribute behavioral differences to the pres-066

ence of unreasonableness, isolating it from other067

factors such as question length or difficulty.068

Based on the UMP benchmark, we conduct ex-069

tensive experiments on various models spanning070

three categories: general-purpose models (e.g.,071

GPT-4o (OpenAI, 2024)), reasoning models (e.g.,072

DeepSeek-R1 (DeepSeek-AI, 2025)), and math-073

specialized models (e.g., Qwen-Math (Yang et al.,074

2024a)). In addition, we analyze LLMs’ failure075

patterns according to tokens repetition, reflection076

frequency, and token entropy. We find: 1) general-077

purpose models often proceed confidently with-078

out recognizing the unreasonableness of the ques-079

tion; 2) reasoning models tend to overthink and fall080

into excessive self-correction; 3) math-specialized081

models may fail to initiate reasoning when con-082

fronted with unreasonable premises. We further083

explore several mitigation strategies but find that084

none could robustly resolve these failure modes085

without introducing trade-offs, such as decreased086

performance on standard inputs, highlighting the087

need for future research into more principled and088

generalizable solutions089

Our main contributions are as follows:090

• We propose the Unreasonable Math Prob-091

lems (UMP) benchmark to more accurately092

and comprehensively evaluate how LLMs re-093

spond to mathematically unreasonable prob-094

lem statements.095

• We find that even high-performing models of-096

ten fail to detect unreasonableness, or produce097

overconfident and overly verbose responses to098

unreasonable questions.099

• We show that simple prompting or fine-tuning100

can partially mitigate these issues, but often in-101

troduce trade-offs such as decreased accuracy102

on well-posed problems, posing new chal-103

lenges for future research.104

2 Unreasonable Math Problems(UMP) 105

Benchmark 106

While large language models have demonstrated 107

strong performance on standard mathematical rea- 108

soning benchmarks, they often produce inaccurate 109

or confusing responses when presented with math- 110

ematically unreasonable problems, questions that 111

contain flawed assumptions, undefined variables, or 112

logical inconsistencies (as shown in Figure 1). To 113

systematically evaluate model behavior under such 114

conditions, we construct the Unreasonable Math 115

Problems (UMP) benchmark, which consists of 116

1000+ unreasonable math problems, each paired 117

with its corresponding original version, focusing 118

on assessing LLMs’ ability to detect and respond 119

to irrational inputs. 120

2.1 Types of Unreasonableness 121

We identify five prevalent types of mathematical 122

unreasonableness commonly found in LLM fail- 123

ure cases: (1) undefined variables, (2) illogical 124

scenarios, (3) incorrect assumptions, (4) misinter- 125

pretation of units, and (5) inconsistent conditions. 126

Each instance in our benchmark is represented as 127

(q, a, q′, t, e), consisting of the original question q 128

and its answer a, the unreasonable variant q′ with 129

its assigned type t, and an explanation e describ- 130

ing why q′ is unreasonable. Detailed definitions 131

and examples for each category are provided in 132

Appendix A. 133

2.2 LLM-Guided Construction of 134

Unreasonable Variants 135

Our data construction process is inspired by Meta- 136

Math (Yu et al., 2023b), which leverages LLMs to 137

produce problem variants under controlled trans- 138

formations. As illustrated in Figure 2, we begin 139

with test set questions drawn from four widely- 140

used math benchmarks: GSM8K (Cobbe et al., 141

2021a), a collection of grade-school level prob- 142

lems; MATH (Hendrycks et al., 2021), which 143

covers formal secondary school mathematics; and 144

AIME24 (MAA, 2024) and AMC23, both of which 145

contain high level competition problems with sym- 146

bolic or abstract formats. We manually construct 147

a set of transformation rules corresponding to five 148

types of mathematical unreasonableness and use 149

them to guide an LLM in generating unreasonable 150

variants for each original question, along with nat- 151

ural language explanations of why the modified 152

version is irrational. To ensure the unreasonable 153
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Undefined Variables 
& Illogical Scenarios

Initial Generation

Math Set Rule Set

GSM8K & AMC
AIME & MATH   

Unreasonable Question and Explaination
...

Original 
Question 

Question 
Variant

Simlarity Check

Cos Similarity > k

Manual Verification

Manual Checking
Manual Refining

Original Problems & Question  
Variants & Explanations

Embedding

Figure 2: Overview of the UMP (Unreasonable Math Problems) generation pipeline. The process consists of three
stages: (1) Initial Generation: original questions from GSM8K, MATH, AMC, and AIME datasets are paired with
a rule set (e.g., Undefined Variables, Illogical Scenarios) to produce unreasonable variants via LLM prompting; (2)
Similarity Check: generated questions are filtered based on cosine similarity to ensure surface closeness to the
original; (3) Manual Verification: human annotators check and refine the generated variants and explanations to
ensure clarity, correctness, and alignment with error categories.

variant remains close in surface form to the orig-154

inal, we compute cosine similarity between the155

sentence embeddings of the original and generated156

questions using SimCSE (Gao et al., 2021), a con-157

trastively trained BERT-based model (Devlin et al.,158

2019). Only variants whose similarity exceeds a159

predefined threshold k are retained for human veri-160

fication.161

2.3 Validation Checking162

We manually verify each example to ensure that163

the unreasonable variant introduces genuine math-164

ematical unreasonableness while maintaining sur-165

face similarity with the original problem. Only166

examples satisfying both criteria are retained. Our167

transformation rules are carefully designed to em-168

bed logical flaws. We discard cases that either lack169

meaningful irrationality or make the flaw overly ex-170

plicit (see the annotation protocol in Appendix H).171

In such cases, we revise the examples by adjusting172

entities, numerical values, or phrasing to ensure173

the unreasonableness remains logically subtle yet174

plausible.175

2.4 Benchmark Composition176

Table 1 summarizes the distribution of unreason-177

ableness types across different source datasets in178

the UMP benchmark. A large proportion of exam-179

ples fall into the categories of Incorrect Assump-180

tions (IA) and Inconsistent Conditions (IC). This181

distribution emerges from the model generation182

and human filtering process. In particular, these183

two types of flaws tend to produce more plausible184

and contextually coherent questions, making them185

more likely to be retained during human recheck.186

Compared to GSM8K and MATH, the AMC23 and187

AIME24 datasets contain far fewer test questions188

(e.g., AIME24 has only 30), which inherently lim-189

its the number of examples we can derive from190

Dataset UV IS IA MU IC Total

GSM8K 14.8% 7.3% 36.8% 16.7% 24.3% 682
MATH 7.2% 4.4% 41.7% 13.1% 33.6% 405
AMC23 0.0% 4.3% 43.5% 4.3% 47.8% 23
AIME24 10.5% 0.0% 31.6% 0.0% 57.9% 19

Total 8.1% 4.0% 38.4% 8.5% 40.9% 1129

Table 1: Joint distribution of unreasonableness types
and datasets in the UMP benchmark. Abbreviations:
UV = Undefined Variables, IS = Illogical Scenarios, IA
= Incorrect Assumptions, MU = Misinterpreted Units,
IC = Inconsistent Conditions.

them. In addition, these problems are often highly 191

abstract and symbolic, making it difficult to apply 192

natural, controlled perturbations without compro- 193

mising their integrity. As a result, we only include 194

modified examples when the unreasonableness can 195

be introduced in a plausible manner. This selective 196

inclusion ensures that the final benchmark remains 197

both diverse and faithful to the original problem 198

distributions. 199

3 Evaluating LLMs on Unreasonable 200

Math Problems 201

3.1 Evaluation Setup 202

We evaluate a diverse set of LLMs spanning 203

three major categories. General-purpose mod- 204

els are primarily trained for instruction fol- 205

lowing and open-domain tasks; this group in- 206

cludes DeepSeek-V3 (DeepSeek-AI, 2024), GPT- 207

4o (Ope, 2023), Qwen2.5-3B-Instruct, Qwen2.5- 208

7B-Instruct (Qwen Team, 2024), and LLaMA3.1- 209

8B-Instruct (AI, 2024). Math-specialized mod- 210

els are fine-tuned on mathematical corpora and 211

optimized for numerical reasoning; we include 212

Qwen2.5-Math-1.5B-Instruct, Qwen2.5-Math-7B- 213

Instruct (Yang et al., 2024a), and DeepSeek- 214

Math-7B-Instruct (Shao et al., 2024). Reasoning- 215
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enhanced models are designed to support com-216

plex multi-step reasoning and include DeepSeek-217

R1 and its distilled variants (e.g., DeepSeek-R1-218

Distill-Qwen-7B) (DeepSeek-AI, 2025), as well219

as QwQ-32B-Preview (Team, 2025) and Grok-3-220

Reasoning (xAI, 2024). All models are evaluated221

on both the original problems and their unreason-222

able variants.1223

3.2 Evaluation Metrics224

Evaluating model performance on unreasonable225

questions poses a fundamentally different chal-226

lenge compared to standard accuracy-based evalua-227

tion. In conventional settings, the goal is to assess228

whether the model arrives at the correct answer.229

However, for unreasonable questions, the objective230

is to evaluate whether the model can recognize the231

unreasonability embedded in the problem and re-232

spond appropriately by rejecting, questioning, or233

flagging the input as flawed. To address this, we234

introduce two complementary metrics:235

Absolute score measures the proportion of un-236

reasonable questions for which the model explicitly237

identifies the problem as flawed or unanswerable.238

Relative score conditions on the model’s ability239

to correctly solve the original version of a question.240

It is defined as the proportion of corresponding un-241

reasonable variants that are correctly recognized242

as unreasonable, among those for which the model243

answers the original (reasonable) version correctly.244

This design accounts for cases where the flaw only245

becomes apparent during intermediate reasoning246

steps. A model that lacks the necessary mathemati-247

cal competence may never reach the point where248

the unreasonability is revealed. By restricting the249

evaluation to questions the model can already solve250

in their original form, relative score isolates the251

model’s ability to detect unreasonableness from its252

general problem-solving skill.253

3.2.1 Absolute Score254

Following the LLM-as-a-judge framework (Zheng255

et al., 2023), we use DeepSeek-V3 to label each256

answer as A (correctly identifies the main source of257

unreasonableness, explains it coherently, and pro-258

poses a valid fix without new errors), B (partially259

detects or vaguely justifies the flaw, with gaps, cir-260

cular logic, or minor inconsistencies), or C (fails261

to spot the core flaw, misreads the reasoning, or262

introduces new contradictions).263

1Details of model versions and inference configurations
are provided in Appendix D.

Each model response receives a label E(v) ∈ 264

{A,B,C}, and we define a soft scoring function 265

δ(E) to assign partial credit: 266

δ(E) =


1 if E = A
0.5 if E = B
0 if E = C.

(1) 267

The final absolute score is computed as the aver- 268

age soft score across all unreasonable questions: 269

Absolute Score =
1

|V |
∑
v∈V

δ(E(v)). 270

To ensure alignment with our evaluation crite- 271

ria, we design an in-context learning (ICL) prompt 272

that includes annotated examples for each rating 273

level, following best practices for LLM-based eval- 274

uation (Dong et al., 2024). 275

3.2.2 Relative Score 276

If a model lacks the skill to solve the original prob- 277

lem, it may never reach the point where the flaw is 278

revealed. To control this factor, we introduce the 279

relative score, which measures a model’s ability to 280

detect unreasonableness on the subset of questions 281

it has already solved correctly in their original form. 282

Formally, following Yang et al. (2024b), we define 283

the relative score as: 284

P (Detect Unreasonable | Solve Original) (2) 285

Under a multi-sample evaluation setting, we gen- 286

erate k responses for each original question q and 287

compute its average accuracy: 288

M̄(q) =
1

k

k∑
i=1

mq,i. (3) 289

where mq,i ∈ {0, 1} indicates whether the i-th sam- 290

pled response to question q is correct (1 if correct, 291

0 otherwise), and M̄(q) denotes the proportion of 292

correct responses over k samples. 293

We then define a set of confidently solved ques- 294

tions Q+
τ by applying a threshold τ ∈ [0, 1] to the 295

average accuracy: 296

Q+
τ =

{
q ∈ Q | M̄(q) ≥ τ

}
. (4) 297

This ensures that only questions the model has 298

solved reliably in their original (reasonable) form 299

are considered. 300

Let V (q) be the set of unreasonable variants de- 301

rived from question q. Each variant v ∈ V (q) is 302
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Model GSM MATH AMC+AIME AVG

Acc Abs Rel Acc Abs Rel Acc Abs Rel Acc Abs Rel

General Models

Qwen2.5-3B-Instruct 0.893 0.323 0.339 0.707 0.370 0.402 0.333 0.202 0.273 0.795 0.336 0.361
Qwen2.5-7B-Instruct 0.929 0.440 0.440 0.820 0.324 0.362 0.303 0.250 0.111 0.858 0.386 0.403
Llama-3.1-8B-Instruct 0.872 0.227 0.238 0.549 0.205 0.238 0.182 0.190 0.391 0.714 0.217 0.245
DeepSeek-v3 0.965 0.560 0.562 0.933 0.658 0.671 0.576 0.536 0.442 0.935 0.598 0.600
GPT-4o 0.955 0.640 0.657 0.803 0.565 0.564 0.242 0.476 0.417 0.863 0.603 0.610
Claude-3.5-Sonnet 0.936 0.586 0.605 0.793 0.480 0.503 0.455 0.309 0.359 0.858 0.532 0.554

Reasoning Models

R1-Distill-Qwen-1.5B 0.858 0.377 0.397 0.836 0.619 0.634 0.394 0.643 0.818 0.829 0.484 0.510
Marco-o1 0.893 0.539 0.546 0.736 0.554 0.567 0.273 0.428 0.591 0.804 0.540 0.557
R1-Distill-Qwen-7B 0.917 0.570 0.600 0.923 0.732 0.731 0.667 0.738 0.747 0.909 0.642 0.659
R1-Distill-Llama-8B 0.891 0.581 0.593 0.900 0.704 0.706 0.485 0.702 0.698 0.877 0.635 0.642
R1-Distill-Qwen-32B 0.967 0.725 0.734 0.920 0.757 0.768 0.576 0.762 0.796 0.931 0.739 0.750
QwQ-32B-Preview 0.957 0.550 0.560 0.900 0.692 0.697 0.606 0.643 0.679 0.919 0.610 0.620
DeepSeek-R1 0.972 0.830 0.844 0.950 0.806 0.810 0.879 0.667 0.621 0.959 0.813 0.821
Grok3-Reasoning 0.967 0.875 0.884 0.913 0.918 0.927 0.879 0.892 0.918 0.941 0.893 0.903

Math Models

Qwen2.5-Math-1.5B-Instruct 0.844 0.326 0.356 0.783 0.385 0.416 0.394 0.202 0.262 0.800 0.344 0.376
MetaMath-Mistral-7B 0.770 0.125 0.146 0.304 0.089 0.128 0.061 0.036 0.000 0.566 0.109 0.139
DeepSeek-Math-7B-Instruct 0.844 0.141 0.158 0.520 0.200 0.225 0.091 0.107 0.136 0.682 0.163 0.188
NuminaMath-7B-CoT 0.725 0.276 0.320 0.572 0.285 0.366 0.152 0.178 0.136 0.639 0.276 0.337
Qwen2.5-Math-7B-Instruct 0.962 0.222 0.231 0.853 0.348 0.355 0.394 0.214 0.458 0.894 0.271 0.290

Table 2: Model performance metrics across datasets by category. Here, Acc denotes the accuracy of the model on
original (well-posed) problems, while Abs and Rel refer to the Absolute Score and Relative Score on unreasonable
problems, respectively. The definitions and evaluation methodology for these two behavioral metrics are detailed in
Section 3.2. Among them, the bold ones are the models of each category with the highest Rel on different datasets.

scored with a rating E(v) ∈ {A,B,C}, which is303

mapped to a soft score via the function δ(E(v))304

defined earlier.305

The final relative score Srel is computed by aver-306

aging the soft scores over all unreasonable variants307

associated with confidently solved questions:308

Srel =
1

|Q+
τ |

∑
q∈Q+

τ

 1

|V (q)|
∑

v∈V (q)

δ(E(v))

 .

(5)309

3.3 Experimental Results310

Table 2 reports model performance on UMP bench-311

mark and three evaluation metrics: accuracy on312

original problems (Acc), and absolute and relative313

scores (Abs, Rel) on unreasonable variants. As de-314

fined in Section 3.2, these behavioral scores capture315

a model’s ability to detect and respond appropri-316

ately to flawed problem setups.317

We categorize evaluated models into three318

groups: general-purpose, reasoning-enhanced, and319

math-specialized. General models such as GPT-320

4o, Claude-3.5-Sonnet, and DeepSeek-v3 achieve321

strong accuracy on well-posed problems (e.g., GPT-322

4o: 0.863 Acc) and moderate robustness to un-323

reasonableness (0.603 Abs), while smaller mod-324

els like Qwen2.5-3B and LLaMA-3.1-8B struggle325

across behavioral metrics. Reasoning models (e.g., 326

DeepSeek-R1, grok-3-reasoning) perform best on 327

UMP, reaching 0.813 Abs and 0.903 Rel, benefiting 328

from structured verification steps, but often gener- 329

ating overly verbose responses (see Section 4.1). In 330

contrast, math-specialized models (e.g., Qwen2.5- 331

Math-7B, MetaMath-Mistral-7B) excel in original 332

task accuracy (up to 0.894 Acc) but perform poorly 333

on UMP (mostly below 0.30), indicating a gap 334

between precise reasoning and unreasonability de- 335

tection. 336

These results highlight a trade-off between ac- 337

curacy on well-posed problems and sensitivity to 338

unreasonableness, with reasoning models offering 339

better detection at the cost of increased verbosity. 340

4 Analysis 341

4.1 Reasoning Models Tend to Overthink on 342

Unreasonable Problems 343

A prominent behavioral failure we observe is over- 344

thinking, where the model enters repeated cycles 345

of reflection and revision without making mean- 346

ingful progress (Sui et al., 2025; Cuadron et al., 347

2025). We quantify overthinking by counting oc- 348

currences of reflective phrases such as “rethink” or 349

“I misunderstood,” which indicate mid-generation 350

self-correction (see Appendix F for keyword de- 351
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Figure 3: Average reflection counts for original and un-
reasonable problems. Reflections increase significantly
on unreasonable problems, highlighted by light-colored
segments.

tails). Although we evaluate reflection frequency352

across all model types, only reasoning-enhanced353

models exhibit consistent and substantial increases354

on unreasonable problems.355

As shown in Figure 3, reasoning models show356

an average increase in reflective behavior by a fac-357

tor of three to four when moving from original358

to unreasonable questions. Instead of terminating359

early, these models tend to reevaluate their reason-360

ing repeatedly, leading to longer and less coherent361

responses. This pattern is largely absent in general-362

purpose and math-specialized models, suggesting363

that stronger reasoning capacity also increases sus-364

ceptibility to overthinking when faced with unrea-365

sonable inputs. 2366

4.2 Lexical Collapse and Redundancy in367

Response368

In addition to analyzing reflection frequency, we369

further examine how model outputs deteriorate un-370

der unreasonable conditions by introducing two371

complementary indicators: normalized token en-372

tropy and token-level repetition. These metrics373

are designed to quantify lexical diversity and re-374

dundancy, offering additional perspectives on gen-375

eration instability across model types.376

Normalized Token Entropy. To assess lexical377

diversity, we compute normalized token entropy378

based on the empirical token frequency distribution379

in each response. For an output sequence of length380

T , let fi be the count of token i, and define its381

empirical probability as pi = fi/T . Entropy is382

calculated as:383

H = −
∑
i

pi log2 pi, Hnorm =
H

log2 T
. (6)384

2Due to the limited number of AMC and AIME samples,
we report detailed scores only for GSM and MATH datasets.

The normalization ensures comparability across 385

varying output lengths. A lower Hnorm indicates 386

token concentration, which often signals collapsed 387

or repetitive responses. Conversely, higher entropy 388

suggests fluent and lexically diverse outputs (Yuan 389

et al., 2024). 390

As shown in Figure 4, most models exhibit 391

a decline in entropy on unreasonable questions. 392

This drop is especially pronounced in reasoning- 393

enhanced models such as R1-Distill-Qwen-32B, 394

where entropy decreases by 0.1–0.15 on average. 395

These semantic collapse often stems from repeated, 396

ineffective reasoning loops, which reduce informa- 397

tiveness and mask the model’s failure to recognize 398

flawed assumptions. Examples of such behavior 399

are presented in Appendix L.1. 400

Token-Level Repetition. We further quantify re- 401

dundancy by computing the number of repeated 402

n-grams (with n = 10) within each output. High 403

repetition reflects local generation loops, where the 404

model reiterates similar phrasing instead of pro- 405

gressing logically. 406

Figure 4 shows that almost all models exhibit 407

increased 10-gram repetition under unreasonable 408

inputs, with the most substantial jumps observed 409

in reasoning-enhanced models. In some cases, rep- 410

etition increases by a factor of 5 to 10 compared 411

to original problems, reinforcing the pattern of col- 412

lapsed outputs. Interestingly, Qwen2.5-Math-7B- 413

Instruct, a math-specialized model with strong per- 414

formance on well-posed questions, also shows a 415

marked rise in repetition, suggesting that semantic 416

instability is not limited to reasoning-heavy models. 417

Appendix L.2 provides detailed case studies of this 418

failure pattern. 419

4.3 Summary of Findings 420

Our behavioral analysis uncovers several key pat- 421

terns. First, general-purpose models often proceed 422

with unwarranted confidence, failing to recognize 423

flawed assumptions—a phenomenon we term un- 424

conscious of unreasonableness. Second, reasoning- 425

enhanced models are prone to overthinking, repeat- 426

edly revising their reasoning in response to irra- 427

tional inputs, which leads to verbosity and incoher- 428

ence. Third, both reasoning and math-specialized 429

models exhibit semantic collapse, characterized by 430

increased token repetition and reduced entropy un- 431

der unreasonable conditions. Finally, despite strong 432

accuracy on well-posed tasks, math-specialized 433

models often fail to detect subtle logical flaws, 434

6



Figure 4: Comparison of 10-gram repetition and token entropy on the UMP dataset. The bar chart reflects the
degree of repetition in model outputs (measured using 10-gram repetition), with blue representing original questions
and pink for unreasonable ones. The line plot shows changes in normalized token entropy under original and
unreasonable problems. A decrease in entropy and an increase in repetition under unreasonable inputs suggest
output collapse and reduced lexical diversity.

highlighting a disconnect between mathematical435

proficiency and robustness to flawed inputs.436

Figure 5: Unreasonable Phrase Accuracy (UPA) of dif-
ferent models. Higher scores indicate a stronger abil-
ity to identify unreasonability in isolated expressions.
Model categories are color-coded.

5 Can LLMs Detect unreasonability?437

Through the experiments above, we observe that438

most models perform poorly at recognizing unrea-439

sonableness in mathematical problems. To explore440

possible ways to improve this behavior, we begin441

with a simple probing experiment to test whether442

models possess the basic ability to judge flawed443

inputs. Based on this, we further investigate two444

strategies, prompt-based intervention and super-445

vised fine-tuning to enhance the model’s capacity446

to detect unreasonability. 447

5.1 Probing Study 448

Before exploring how to improve model behav- 449

ior on unreasonable problems, we first ask a fun- 450

damental question: do models even understand 451

what counts as unreasonable? If a model lacks this 452

awareness, it is unlikely to respond appropriately 453

when encountering flawed questions. To test this, 454

we design a simple probing task, where the model 455

is presented with short, isolated expressions that 456

are syntactically valid but semantically unreason- 457

able—for example, “the voting result is -20 votes” 458

or “there are 2.5 people.” We refer to this metric as 459

Unreasonable Phrase Accuracy (UPA). For each 460

expression, the model is asked to judge whether it 461

makes sense. We construct this test set by extract- 462

ing unreasonable phrases from the UMP bench- 463

mark and evaluate a representative subset of mod- 464

els used in our main experiments (Section 3), in- 465

cluding general-purpose, reasoning-enhanced, and 466

math-specialized models. As shown in Figure 5, 467

general-purpose and reasoning-enhanced models 468

typically perform well on this task, suggesting that 469

they retain basic commonsense priors. In contrast, 470

several math-specialized models perform notice- 471

ably worse, indicating that domain-specific fine- 472

tuning may come at the cost of general semantic 473

7



awareness.474

5.2 Prompting LLMs with a Critical Thinking475

Signal476

To explore lightweight methods for improving flaw477

detection, we experiment with inserting a sim-478

ple instruction—such as “Please solve these prob-479

lems with criticism.”—into the prompt. This en-480

courages the model to approach the task with a481

more skeptical and reflective reasoning style. We482

evaluate this strategy on Qwen2.5-7B-Instruct and483

R1-Qwen-7B, and observe a consistent improve-484

ment in identifying unreasonable questions. As485

shown in Figure 6, both models achieve signifi-486

cantly higher Absolute Scores on unreasonable in-487

puts, while their accuracy on original questions re-488

mains largely unaffected. Notably, with the critical-489

thinking prompt, the general-purpose Qwen2.5-7B-490

Instruct nearly matches the performance of the491

much larger DeepSeek-Chat in detecting flawed492

assumptions—highlighting the potential of prompt-493

based interventions to activate latent reasoning abil-494

ity without additional training.495

Figure 6: Performance comparison of models with and
without critical-thinking prompts. Original Accuracy
refers to performance on well-posed questions, and Ab-
solute Score on their unreasonable variants. Prompt-
ing improves flaw detection with minor accuracy loss;
fine-tuning yields larger gains but affects original per-
formance more.

5.3 Fine-Tuning Based Method496

We further investigate whether the model’s ability497

to detect unreasonability can be enhanced through498

supervised fine-tuning. To construct the train-499

ing data, we pair unreasonable questions from500

GSM8K with carefully edited responses based on501

DeepSeek-R1 outputs. These responses explicitly502

identify the flaws through concise, step-by-step rea-503

soning, encouraging appropriate reflection without504

triggering overthinking. We also include original505

questions paired with similarly edited answers to506

maintain general reasoning competence and pre-507

vent the model from overgeneralizing flaw detec- 508

tion to well-posed inputs. This balanced training 509

setup provides the model with positive demonstra- 510

tions of how to respond to both flawed and valid 511

inputs. We fine-tune on a subset of GSM8K and 512

evaluate the resulting model on MATH to assess 513

generalization beyond the training distribution. As 514

shown in Figure 6, the fine-tuned model exhibits 515

clear improvement in detecting unreasonable in- 516

puts. However, this gain comes at a cost: accu- 517

racy on original problems drops noticeably. This 518

suggests a trade-off between flaw sensitivity and 519

general problem-solving ability. Further training 520

details are shown in Appendix I. 521

Discussion. We adopt several commonly used 522

enhancement strategies, including prompting and 523

fine-tuning, both of which yield promising gains in 524

unreasonable problem detection. However, these 525

improvements consistently come at the cost of 526

reduced accuracy on original, well-posed inputs. 527

This trade-off highlights a core challenge: simple 528

prompting or fine-tuning alone is insufficient to 529

robustly address unreasonable inputs without 530

introducing new side effects. The limitations of 531

these methods underscore the inherent difficulty 532

of the UMP benchmark and point to the need for 533

more principled, generalizable flaw detection mech- 534

anisms that can integrate critical reasoning while 535

preserving performance on standard tasks. 536

6 Conclusion 537

In this work, we investigate how LLMs behave 538

when confronted with unreasonable mathematical 539

problems. To facilitate this, we construct a bench- 540

mark comprising over 1,000 questions containing 541

hidden unreasonability. Experimental results reveal 542

that most models struggle to identify such unrea- 543

sonableness. While reasoning-enhanced models 544

are more likely to uncover hidden inconsistencies 545

during multi-step reasoning, they often fall into 546

repetitive reflection and overthinking behavior that 547

ultimately hinders clarity and usefulness. To further 548

explore whether models possess latent capabilities 549

for detecting flaws, we experiment with critical- 550

thinking prompts and supervised fine-tuning. Our 551

findings suggest that many models do have the po- 552

tential to detect unreasonable content, but this abil- 553

ity requires explicit activation. We hope that our 554

benchmark serves as a valuable tool for evaluating 555

both the trustworthiness and behavioral robustness 556

of LLMs in the presence of unreasonable inputs. 557
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Limitations558

This study has several limitations. First, we do559

not include proprietary reasoning models such as560

those from OpenAI in our analysis of reasoning-561

enhanced systems. Since these APIs do not expose562

intermediate reasoning chains, comparing their be-563

havior to open-source models that explicitly gen-564

erate multi-step reasoning would introduce unfair-565

ness in both behavioral and metric-based evalua-566

tions. Second, due to hardware constraints, our567

intervention experiments such as prompt engineer-568

ing and supervised fine-tuning are conducted only569

on 7B-scale models. While these experiments pro-570

vide encouraging insights, scaling these methods571

to larger models and exploring more effective so-572

lutions for mitigating failure behaviors remain im-573

portant directions for future work.574

Ethical Considerations575

Our paper explores how LLMs perform in the face576

of unreasonable mathematical problems. Some-577

times the model may not realize the unreasonability578

in the math problem, which may result in incorrect579

answers that mislead users.580
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A Category of UMP Benchmark764

Below is the description of the five categories. Each765

data point consists of an original question q paired766

with its corresponding answer a, a designated type767

of unreasonableness t, a rephrased unreasonable768

version q′, and an explanation e. Consequently,769

our benchmark comprises quintuples of the form770

(q, a, q′, t, e).771

Unreasonable Problem Categories

1. Undefined Variables
Problems categorized under this heading suffer
from a scarcity of necessary information or
parameters, rendering them unsolvable with
the data provided.

2. Illogical Scenarios
This category encompasses problems that posit
scenarios defying logic or possibility, such as
querying the number of offspring produced by
a species incapable of yielding those offspring
(e.g. asking about the kittens born to a ham-
ster).

3. Incorrect Assumptions
Problems in this group are predicated on math-
ematically flawed assumptions, such as the di-
vision by zero, or the existence of fractional
entities in a set that should logically contain
only whole units, (e.g. envisaging the division
of a cake into negative quantities.)

4. Misinterpretation of Units
These problems are marked by unclear or incor-
rect application of measurement units, leading
to nonsensical combinations, (e.g. assigning
grams as a unit of length).

5. Inconsistent Conditions
The given conditions within these problems are
self-contradictory, creating paradoxical state-
ments that cannot be simultaneously true. (e.g.,
a problem stating a group consists of ten peo-
ple and simultaneously claiming it comprises
twenty people)

772

B Related Work773

B.1 LLMs as Math Problem Solvers774

Large language models have demonstrated im-775

pressive capabilities in solving math word prob-776

lems and symbolic reasoning tasks. The most777

widely used benchmarks in this space include778

GSM8K (Cobbe et al., 2021b), which targets779

elementary school-level problems with step-by- 780

step annotations, and MATH (Hendrycks et al., 781

2021), which evaluates high-school competition- 782

level mathematics. To improve performance on 783

these tasks, various data-centric approaches have 784

been proposed. WizardMath (Luo et al., 2023a) 785

and MetaMath (Yu et al., 2023b) leverage self- 786

instruct and verifier-guided generation to create 787

high-quality training examples. These augmenta- 788

tions expose models to diverse problem formats 789

and encourage generalization. In parallel, a wave 790

of domain-specialized models has emerged—such 791

as Qwen-Math (Yang et al., 2024a), DeepSeek- 792

Math (Shao et al., 2024), and WizardMath-v2 (Luo 793

et al., 2023b), which are fine-tuned on large-scale 794

mathematical corpora and incorporate structured 795

reasoning or reflection mechanisms. These models 796

outperform general-purpose LLMs on math bench- 797

marks. 798

B.2 Improve Models’ Inference Ability 799

Recent efforts have focused on enhancing the 800

reasoning capabilities of large language mod- 801

els by structuring and extending their inference 802

chains. The chain-of-thought (CoT) prompting 803

method (Wei et al., 2022) was among the earliest 804

approaches to guide models toward step-by-step 805

reasoning. Subsequent variants such as Complex 806

CoT (Fu et al., 2023) and Plan-and-Solve (Wang 807

et al., 2023) further emphasized intermediate plan- 808

ning and decompositional reasoning. More re- 809

cently, large-scale models like O1/R1 (DeepSeek- 810

AI, 2025) and QwQ-32B (Team, 2025) have shown 811

that extending the reasoning trajectory through 812

structured plans, iterative self-correction, or re- 813

flective feedback can significantly improve per- 814

formance on complex tasks. These models often 815

adopt long-form generation and multi-phase solv- 816

ing strategies, which mimic human deliberation. In 817

addition, verifier-based strategies such as Outcome- 818

Supervised Learning (Yu et al., 2023a) and post- 819

hoc reflection mechanisms have been introduced 820

to scrutinize intermediate steps and promote ro- 821

bust decision-making, especially when the model’s 822

output chain may contain errors. 823

B.3 Model Refusal Phenomenon 824

The phenomenon where LLMs decline to answer 825

certain prompts is central to ensuring AI safety 826

and reliability. Refusals may stem from safety 827

training, uncertainty, knowledge gaps or defects 828

in the prompt itself. Recent studies have explored 829
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both linear and nonlinear mechanisms behind re-830

fusal behaviors, including "refusal directions" in831

activation space and the use of "refusal tokens"832

to control response behavior at inference. How-833

ever, over-refusal-where benign prompts are incor-834

rectly rejected- remains a key challenge (Pasch,835

2025; Hildebrandt et al., 2025). Approaches like836

RAIT, CRaFT, and Think-Before-Refusal aim to837

reduce false refusals by incorporating reasoning838

and certainty estimation (Zhu et al., 2024; Zhang839

et al., 2024a). Evaluation efforts have led to ded-840

icated benchmarks such as OR-Bench, SORRY-841

Bench, and MM-UPD, which assess refusal qual-842

ity under various conditions, highlighting the need843

for context-aware and nuanced assessment frame-844

works (Cui et al., 2024; Xie et al., 2025; Miyai845

et al., 2025).846

C Probabilistic View from Prior847

Conditioning848

We frame the model’s ability to recognize unreason-849

able problems as a conditional behavior dependent850

on its understanding of the original question. Let851

Yv ∈ {0, 0.5, 1} denote the correctness score for a852

model response to a variant v ∈ V (q), assigned by853

an LLM. To reason about this behavior probabilis-854

tically, we apply the law of total expectation:855

E[Y ] = P (q ∈ Q+
τ ) · E[Y | q ∈ Q+

τ ]

+ P (q ∈ Q−
τ ) · E[Y | q ∈ Q−

τ ]
(7)856

This formulation decomposes the expected qual-857

ity of model behavior into two conditional compo-858

nents:859

• The expectation over questions the model can860

solve (Q+
τ ), and861

• The expectation over questions it fails to solve862

(Q−
τ ).863

Our focus is on the first term, E[Y | q ∈ Q+
τ ],864

which reflects the robustness of the model under the865

prior belief that it understands the base question.866

Since each original question may yield multiple867

unreasonable variants, we define an empirical esti-868

mator for this conditional expectation by averaging869

over the scores of all variants:870

P̂ =
1

|Q+
τ |

∑
q∈Q+

τ

 1

|V (q)|
∑

v∈V (q)

Yv

 (8)871

This is a two-level Monte Carlo approximation 872

of the conditional expectation. It provides a graded 873

measure of how reliably a model detects semantic 874

flaws, assuming sufficient prior understanding of 875

the original problem. 876

D Model Versions and Inference Settings 877

We include both API-access and open-source mod- 878

els in our evaluation. The API versions used are gpt- 879

4o-2024-11-20, grok-3-reasoning and deepseek-r1- 880

2025-01-20, claude-3.5-sonnet-20241022. To max- 881

imize accuracy on original (well-posed) questions, 882

we adopt temperature = 0.0(greedy decoding) for 883

all open-source non-reasoning models. However, 884

for reasoning-enhanced models, we observe that 885

greedy decoding may result in unstable behaviors, 886

such as excessively long outputs, especially in un- 887

reasonable problems. Based on these findings, we 888

set temperature = 0.6 for all reasoning models dur- 889

ing evaluation.(We provide further analysis in Ap- 890

pendix K.) We set τ = 1, which means that the 891

model must get all three responses right. For API- 892

based models, we maintain their default decoding 893

settings. Due to access limitations and cost con- 894

straints, all the responses are generated in a single 895

pass without sampling-based aggregation. 896

E Does Solving the Original Help? 897

We investigate whether a model’s ability to solve 898

the original version of a problem affects its capacity 899

to detect flaws in the corresponding unreasonable 900

variants. Intuitively, some flaws such as contradic- 901

tions in intermediate steps may only be visible af- 902

ter progressing through the correct reasoning path. 903

This motivates a direct comparison: how often does 904

a model correctly identify unreasonableness when 905

it has solved the original question, versus when it 906

has not? To measure this, we revisit the set Q+
τ 907

from Section 3.2, containing original questions that 908

the model solves correctly with high confidence. 909

We define its complement Q−
τ as the set of ques- 910

tions the model fails to solve. For each group, we 911

compute the average score over their unreasonable 912

variants, using the same scoring function δ(·). We 913

then define the robustness gap as: 914

∆τ = P+
τ − P−

τ . (9) 915

where P+
τ and P−

τ denote the average scores over 916

Q+
τ and Q−

τ , respectively. A larger gap indicates 917

that the model’s ability to detect unreasonableness 918
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depends more strongly on its success in solving the919

original problem.920

As shown in Table 3 and Table 4, most models921

exhibit a substantial positive gap. This suggests922

that mathematical competence contributes directly923

to robustness, reinforcing the motivation behind924

our relative score metric.925

F Keywords for Reflection Detection926

To quantify reflective behavior in model responses,927

we apply a keyword-based heuristic to detect928

phrases associated with self-correction, doubt, or929

reevaluation. The following list of keywords is930

used to flag reflection:931

sorry, apologize, actually, wait,932

let me, i made, mistake, error,933

incorrect, again, redo, retry,934

revise, correct, fix, adjust,935

modify, amend, update, let’s936

try, recalculate, recompute,937

reassess, reevaluate, reanalyze,938

re-examine, i was wrong, i erred,939

i miscalculated, i misunderstood,940

i misread, i overlooked, rethink,941

reconsider, reflect, review,942

in fact, on second thought,943

upon reflection, second guess,944

double check, verify, confirm,945

clarify, perhaps, maybe, possibly,946

alternatively, otherwise, instead,947

rather, my bad, my fault, my error,948

my mistake, i stand corrected, i949

take it back950

This keyword set was manually curated to cap-951

ture a wide range of reflective behaviors and was952

applied in our analysis of model overthinking.953

G Similarity between Original Problems954

and Unreasonable Problems955

To ensure that our constructed unreasonable prob-956

lems remain as close as possible to their original957

counterparts, we conducted a similarity analysis958

between each pair of (q, q′), where q is the origi-959

nal question and q′ is its unreasonable variant. We960

use cosine similarity over sentence embeddings961

(computed using a pre-trained BERT encoder) as962

our similarity metric. Figure 7 shows the distribu-963

tion of similarity scores across all problem pairs.964

Most unreasonable problems achieve high similar-965

ity scores with their original versions, with the ma-966

jority falling in the [0.8, 0.95] range, which means967

a threshold k > 0.8. This confirms that the per- 968

turbations introduced are minimal in surface form, 969

allowing us to isolate the effects of semantic differ- 970

ence while keeping the wording largely intact. 971
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Figure 7: Distribution of similarity scores between orig-
inal problems and their unreasonable variants. Cosine
similarity is computed over BERT-based sentence em-
beddings. Most variants remain highly similar to their
original forms.

Model P+
τ P−

τ ∆

DS-LLaMA-8B 0.593 0.514 0.079
DS-Math-7B 0.158 0.064 0.094
QwQ-32B 0.560 0.542 0.019
Qwen2.5-7B 0.440 0.433 0.007
Marco-o1 0.546 0.481 0.065
DS-Qwen-7B 0.533 0.437 0.096
DS-Qwen-1.5B 0.397 0.310 0.087
Qwen2.5-3B 0.339 0.230 0.109
DS-Qwen-32B 0.734 0.798 -0.064
DS-Chat 0.562 0.611 -0.049
Numina-7B 0.320 0.204 0.116
DS-Reasoner 0.844 0.806 0.039
MetaMath-7B 0.146 0.086 0.060
Qwen2.5-Math-7B 0.231 0.135 0.096
GPT-4o 0.657 0.610 0.047
LLaMA3.1-8B 0.238 0.210 0.028
Qwen2.5-Math-1.5B 0.356 0.227 0.129
Claude-3.5 0.605 0.531 0.074

Table 3: GSM Dataset Metrics. P+
τ : Probability the

model correctly identifies the unreasonable variant when
it can solve the original problems correctly. P−

τ : Proba-
bility the model identifies the unreasonable variant when
it can’t solve the original problems. ∆ = P+

τ − P−
τ .

H Annotation Protocol and Agreement 972

To ensure the quality of the benchmark, three re- 973

viewers with mathematical training participated in 974

a multi-stage validation process. The following 975

criteria were jointly defined and applied during an- 976

notation: 977
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Model P+
τ P−

τ ∆

DS-LLaMA-8B 0.706 0.722 -0.017
DS-Math-7B 0.225 0.141 0.084
QwQ-32B 0.696 0.547 0.149
Qwen2.5-7B 0.362 0.130 0.232
Marco-o1 0.567 0.412 0.155
DS-Qwen-7B 0.747 0.630 0.117
DS-Qwen-1.5B 0.634 0.485 0.150
Qwen2.5-3B 0.402 0.209 0.193
DS-Qwen-32B 0.768 0.656 0.112
DS-Chat 0.671 0.463 0.208
Numina-7B 0.366 0.180 0.186
DS-Reasoner 0.810 0.750 0.060
MetaMath-7B 0.128 0.066 0.062
Qwen2.5-Math-7B 0.355 0.191 0.164
GPT-4o 0.564 0.497 0.067
LLaMA3.1-8B 0.238 0.125 0.112
Qwen2.5-Math-1.5B 0.416 0.219 0.197
Claude-3.5 0.503 0.305 0.198

Table 4: MATH Dataset Metrics. P+
τ : Probability the

model correctly identifies the unreasonable variant when
it can solve the original problems correctly. P−

τ : Proba-
bility the model identifies the unreasonable variant when
it can’t solve the original problems. ∆ = P+

τ − P−
τ .

1. Remove examples that remain mathematically978

reasonable after rewriting but are mistakenly979

flagged as unreasonable by the model.980

2. Remove examples where the unreasonable el-981

ements are too obvious or violate basic com-982

monsense (e.g., “2.33 people”).983

3. Remove examples where the rewritten version984

differs too much from the original, failing to985

preserve surface similarity.986

4. Revise examples with unclear or poorly ex-987

plained unreasonable elements to make the988

flaw logically coherent and minimally inva-989

sive.990

An example is retained only if at least two out of991

three reviewers judged it as valid under the above992

criteria.993

I Experiment Setup for Supervised994

Fine-Tuning995

For the fine-tuning experiments, we use996

Qwen2.5-7B-Instruct and perform full-997

parameter supervised fine-tuning. All experiments998

are conducted on two NVIDIA A100 GPUs (80GB999

memory). The learning rate is set to 1e-5, and 1000

training is run for 3 epochs. The training dataset 1001

is composed of approximately 100 unreasonable 1002

question–answer pairs and 300 well-posed 1003

question–answer pairs. The unreasonable samples 1004

are constructed from the UMP benchmark, with 1005

responses manually edited to clearly identify and 1006

explain the flaws through concise, structured 1007

reasoning. The well-posed samples are similarly 1008

constructed to ensure balanced learning and 1009

to mitigate overgeneralization of unreasonable 1010

detection behavior. 1011

J Template for Critical Prompting 1012

Here we show our critical template for solving math 1013

problems. 1014

Critical template for solving math problems

Please solve these problems with criticism. If
the problem is reasonable, please think step by
step and put your final answer within boxed. If
the problem are unreasonable, highlight these
issues clearly in your response and provide a
succinct explanation.

1015

K Effect of Temperature on Model 1016

Behavior 1017

We analyze how different decoding temperatures af- 1018

fect model behavior, focusing on two representative 1019

models: Qwen2.5-7B-Instruct (general-purpose) 1020

and Qwen-Distill-7B (reasoning-enhanced). 1021

Specifically, we evaluate model performance under 1022

temperature values of 0.0, 0.2, 0.4, 0.6, 0.8, and 1023

1.0. 1024

As shown in Figure 8, the general-purpose model 1025

exhibits relatively stable behavior across tempera- 1026

ture settings. In contrast, the reasoning-enhanced 1027

model is more sensitive to temperature, particularly 1028

when handling unreasonable problems. Notably, at 1029

very low temperatures, the reasoning model tends 1030

to generate significantly longer outputs, often en- 1031

tering repetitive or overthinking loops. Overall, a 1032

temperature of 0.6 yields the most balanced per- 1033

formance across models, aligning with the default 1034

setting recommended in the DeepSeek official rec- 1035

ommendation. 1036
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Figure 8: Effect of decoding temperature on model behavior for DeepSeek-R1-Distill-Qwen-7B (left) and
Qwen2.5-7B-Instruct (right). Each subplot reports four metrics across temperature values from 0.0 to 1.0:
original accuracy, absolute score on unreasonable problems, and the average number of tokens in responses to
original and unreasonable questions. While the general-purpose model shows stable trends across temperatures,
the reasoning-enhanced model exhibits sharp increases in token count under low-temperature settings, especially
on unreasonable problems. This suggests that lower temperature may exacerbate overthinking and verbosity. A
temperature of 0.6 yields the most balanced performance for both models.

L Case Study1037

L.1 Examples of Overthinking1038

Table 6 and Table 7 presents representative case1039

of DeepSeek-R1’s behaviors when confronted1040

with unreasonable problems. As illustrated, the1041

model redundantly computes the simple expres-1042

sion “15 ÷ 2 = 7.5” multiple times throughout its1043

response. Similarly, in the second problem, the1044

model has already identified the misuse of "feet",1045

but is still trying to explain the rationality of the1046

misuse. Table 5 illustrates an example of overthink-1047

ing behavior in Grok-3-Reasoning. When pre-1048

sented with a simple arithmetic question involving1049

single-digit addition and subtraction, the model en-1050

gages in excessive reflection, repeatedly generating1051

nearly identical reasoning steps. In this case, the1052

response exceeds 5,600 tokens despite the trivial1053

nature of the task. Moreover, during our experi-1054

ments, we observed that certain questions could1055

cause the model to hang indefinitely, with some1056

cases taking over 800 seconds without producing a1057

final answer.1058

For brevity, we omit many highly similar inter-1059

mediate steps, which do not contribute meaning-1060

fully to the final answer. Such repetitive reasoning1061

over a trivial computation is clearly unnecessary1062

and results in substantial computational overhead.1063

L.2 The Unstability of Math-Specified Model1064

Table 8 illustrates the behavior of Qwen2.5-Math-1065

7B-Instruct when confronted with unreasonable1066

math problems. As shown, the model often be- 1067

comes paralyzed in the presence of flawed inputs, 1068

failing to identify the source of unreasonableness 1069

and unable to proceed with a meaningful response. 1070

L.3 Model Unconsciousness of Problem 1071

Errors 1072

Tables 9 and 10, present examples where the model 1073

completely fails to recognize the errors embedded 1074

in the questions. These cases suggest that the model 1075

entirely overlooks the unreasonableness of the in- 1076

put and proceeds as if the problems were well- 1077

posed. 1078

M Example output by different LLM 1079

In this section, we demonstrate how various mod- 1080

els perform on unreasonable problems using the 1081

conventional Chain of Thought approach compared 1082

to adding a critical instruction method. Table 16 1083

displays the outputs from Qwen2.5-7B-Instruct us- 1084

ing two different prompts. It is evident that the 1085

outputs generated by adding critical instruction ex- 1086

hibit marked enhancements. 1087

N Evaluation Prompt Details 1088

We use an LLM-as-a-judge setup to assess whether 1089

a model response reasonably identifies the unrea- 1090

sonableness in the modified question. The full eval- 1091

uation prompt is shown below. For each dataset, 1092

we design corresponding in-context examples to 1093

better assess the model’s performance. 1094
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O Prompt for Unreasonable Problem1095

Generation1096

We present the detailed prompt used for generating1097

unreasonable math problems via LLMs. Note that1098

the actual prompt is written in Chinese, and the1099

English version shown below is a direct translation1100

for presentation purposes.1101
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Unreasonable
Problem

Xiao Ming bought a birthday cake for his birthday. He cut the cake into 4 pieces, Xiao Hong ate 3
pieces and Xiao Li ate 2 pieces. How many pieces of cake are left?

Unreasonable
Part

The total pieces of cake Xiao Ming had initially was 4. If Xiao Hong ate 3 pieces and Xiao Li ate 2
pieces, then they ate 3+2=5 pieces in total. However, since there were only 4 pieces to begin with, it
seems like there might be a mistake in the scenario as they couldn’t have eaten 5 pieces from a cake of
4 pieces. So the question is unreasonable.

Model Answer So Xiao Ming bought a birthday cake and cut it into 4 pieces. Then, Xiao Hong ate 3 pieces and Xiao
Li ate 2 pieces. I need to find out how many pieces are left.First, I should figure out the total number of
pieces initially. It says he cut the cake into 4 pieces, so there are 4 pieces to start with.Next, Xiao Hong
ate 3 pieces. So, if there were 4 pieces and Xiao Hong ate 3, I would subtract 3 from 4. That would
leave 1 piece.But wait, then Xiao Li ate 2 pieces. If there was only 1 piece left after Xiao Hong ate,
how could Xiao Li eat 2 pieces? That doesn’t make sense.Hmm, maybe I need to consider that they
ate the pieces at the same time or something. Wait, actually, the problem says Xiao Hong ate 3 pieces
and Xiao Li ate 2 pieces, but it doesn’t specify the order or if they ate them simultaneously.Perhaps
I should think about the total pieces eaten by both. So, Xiao Hong ate 3 pieces, and Xiao Li ate 2
pieces, so together they ate 3 + 2 = 5 pieces.But originally, there were only 4 pieces. So, if they ate 5
pieces in total, but there were only 4 pieces, that would mean they ate more than what was available,
which is impossible.Wait, that can’t be right. [......]Alternatively, perhaps Xiao Hong ate 3 pieces and
Xiao Li ate 2 pieces means that together they ate a total of 3 + 2 = 5 pieces, but since there are only
4 pieces, maybe some pieces were eaten by both, but that doesn’t make sense for cake pieces.Wait,
unless the pieces are overlapping or something, but cake pieces are typically distinct.This is puzzling.
Wait, perhaps it’s about the number of pieces they each consumed, but the pieces are not necessarily
whole pieces. For example, maybe they shared some pieces, but the problem says ate 3 pieces, which
suggests whole pieces.This is tricky. Maybe I should think about it differently. Perhaps the question
is to find out how many pieces are left after both have eaten.But as I calculated earlier, if they ate 3
and 2 respectively, that’s 5 pieces, but there were only 4, so it would be negative, which doesn’t make
sense.Alternatively, maybe the problem is that Xiao Ming cut the cake into 4 pieces, but then he had
more cakes or something, but that’s not stated.Wait, let’s check the problem again. Xiao Ming bought
a birthday cake for his birthday. He cut the cake into 4 pieces, Xiao Hong ate 3 pieces and Xiao Li ate
2 pieces. How many pieces of cake are left?Perhaps it’s a trick question, and the answer is that there
are no pieces left, or something like that. But mathematically, if they ate 5 pieces out of 4, it’s impos-
sible.Wait, unless... wait a minute, maybe the pieces that Xiao Li ate include some that Xiao Hong
didn’t eat. But since Xiao Hong ate 3 out of 4, there’s only 1 left, and Xiao Li ate 2, but 2 > 1, so still
impossible.Alternatively, perhaps ate 3 pieces doesn’t mean 3 whole pieces, but parts of pieces, but the
problem says pieces, so likely whole pieces.Wait, here’s another idea: maybe when Xiao Hong ate 3
pieces, those pieces were removed, and then the remaining piece was cut into more pieces, and then
Xiao Li ate 2 of those. But the problem doesn’t say that.In fact, the problem is phrased in a way that
suggests all actions are on the same set of 4 pieces.Wait, let’s consider the possibility that the cake was
cut into 4 pieces, and then Xiao Hong ate 3 pieces, leaving 1 piece, and then that 1 piece was further
divided, but again, the problem doesn’t indicate any further cutting.Moreover, even if that were the
case, the question is how many pieces of cake are left, which would depend on how many pieces the
remaining piece was divided into, but since it’s not specified, that can’t be it.Alternatively, perhaps
there’s a cultural or contextual aspect I’m missing, but I doubt it.Wait, [......]This interpretation contra-
dicts the stated consumption. Overlapping Pieces Could Xiao Hong and Xiao Li have eaten some of
the same pieces? For example, if Xiao Hong ate pieces A, B, and C, and Xiao Li ate pieces C, D, and
one already eaten, the total unique pieces consumed might be less than 5. But with only 4 pieces (say,
A, B, C, D), and Xiao Hong eating 3 (A, B, C), Xiao Li’s 2 pieces (e.g., C, D) overlap on C, suggest-
ing a total of 4 unique pieces eaten. Yet, cake pieces are typically distinct—once eaten, a piece isn’t
available for someone else unless shared fractionally, which isn’t implied here. Misstated Numbers
Maybe there’s a typo. If Xiao Hong ate 1 piece and Xiao Li ate 2 pieces, the total eaten would be 3,
leaving 4 - 3 = 1 piece. [......]If we assume they consumed all 4 pieces between them, the maximum
possible pieces eaten is 4, leaving 0. But Xiao Hong’s 3 plus Xiao Li’s 2 is 5, exceeding 4, suggesting
the problem’s numbers may not align with a simple subtraction model. Step 6: Hypothesize a Logical
OutcomeIn many word problems, especially those involving tangible items like cake, the intent is for
the numbers to work sensibly. The phrase “how many pieces are left” implies some remainder is possi-
ble, but here, eating 5 out of 4 means at least all pieces are gone. Let’s test the boundary:- Maximum
pieces available: 4- Minimum pieces eaten (if constrained): 4 (all pieces consumed)- Pieces left: 4
- 4 = 0 This assumes they somehow ate only 4 pieces despite the stated 5, perhaps implying Xiao Li
ate 1 piece after Xiao Hong’s 3, but the problem insists on 2 pieces for Xiao Li. The most consistent
resolution, given no additional cake, is that all pieces were eaten, and the extra “1 piece” is impossible,
leaving 0. Step 7: Conclusion After exploring sequential eating, overlaps, and errors, the simplest res-
olution is that the cake’s 4 pieces were fully consumed, and the stated 5 pieces eaten exceeds the total,
leaving none. This might indicate a flaw in the problem’s design (e.g., a typo), but working strictly with
the given text—“4 pieces total, 3 eaten by Xiao Hong, 2 by Xiao Li”—the logical endpoint, avoiding
negative pieces, is 0 pieces left. They couldn’t eat more than 4, so all pieces are gone.**Final Answer:
0**

Table 5: Example of Grok3-Reasoning
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Unreasonable Problem Jenna and her mother picked some apples from their apple farm. Jenna picked half as
many apples as her mom. If her mom got 15 apples, how many apples did they both
pick?

Unreasonable Part This question is unreasonable because picking half an apple is not practical in real-life
scenarios (as apples are typically picked whole). In this case, if we adhere strictly to the
question, they picked a total of 15 (mom’s apples) + 7.5 (Jenna’s apples) = 22.5 apples.
The only unreasonable aspect might be the fractional apple, as it suggests that an apple
was divided, which is not typical when picking apples from a tree.

Model Answer Okay, so Jenna and her mother picked apples from their apple farm. The problem
says Jenna picked half as many apples as her mom. And her mom got 15 apples. The
question is, how many apples did they both pick together? Let me try to break this
down step by step. First, I need to figure out how many apples Jenna picked. Since
Jenna picked half as many as her mom, and her mom picked 15 apples, I can represent
Jenna’s apples as half of 15. So, mathematically, that would be 15 divided by 2. Let me
write that out: 15 ÷ 2. Hmm, doing that division, 15 divided by 2 is 7.5. Wait a second,
can you have half an apple? That seems a bit odd because you can’t really pick half
an apple in real life. Maybe the problem expects a whole number? Let me check the
problem again. It says Jenna picked half as many apples as her mom. Her mom got 15
apples. Hmm, maybe the answer is 7.5 apples, but since apples are whole, maybe we
need to round? But the problem might just be using numbers that divide evenly. Wait,
15 divided by 2 is 7.5. But maybe I made a mistake here. Let me verify. If her mom
picked 15 apples, and Jenna picked half as many, then yes, it’s 15 divided by 2. But
15 is an odd number, so dividing by 2 gives a decimal. But apples are countable items;
you can’t have half. So perhaps there’s a mistake in the problem? Or maybe I need to
assume that half can be a fraction here even though it’s not practical. Let me think. The
problem might just be expecting a fractional answer even if it’s not a whole number,
for the sake of the math problem. Maybe in the context of this problem, fractions
are acceptable even if they aren’t in real life. Alternatively, maybe the numbers are
supposed to work out evenly, and I need to check if I misread the problem. Let me
reread it: "Jenna picked half as many apples as her mom. If her mom got 15 apples,
how many apples did they both pick?" So, mom has 15, Jenna has half, which is 7.5.
Together, that would be 15 + 7.5 = 22.5 apples. But again, in reality, you can’t have half
an apple. Maybe the question allows decimal answers, or perhaps there’s an error in
the problem. [...] Jenna picked half as many apples as her mom." So Jenna’s apples =
(1/2) * mom’s apples. Mom’s apples are 15, so Jenna’s apples are (1/2)*15 = 7.5. Then
total apples would be 15 + 7.5 = 22.5. But that’s 22 and a half apples. Since we can’t
have half apples, perhaps the problem is intended to have whole numbers, and there’s
a typo. [...] Alternatively, maybe there’s a mistake in the problem’s numbers. If the
mom had 14 apples, then Jenna would have 7, total 21. If the mom had 16, Jenna 8,
total 24. But with 15, it’s 7.5. So perhaps the problem is testing the understanding of
fractions even in context where it might not make practical sense. So maybe the answer
is 22.5. But since you can’t have half an apple, maybe the answer is 23, rounding up?
But that’s not specified. Alternatively, maybe the answer is 22, rounding down? But
again, the problem doesn’t say to round. Alternatively, maybe the problem is expecting
a mixed number, like 22 1/2. But in terms of the answer, they might want it in a box

as 22.5 or
45

2
. But in most math problems like this, unless specified, they might

expect a fractional answer. [...] The problem says mom has 15. So that interpretation
is not correct. Because if it’s a ratio, then total would be different. But the problem
explicitly states the mom has 15. So that’s different. Alternatively, maybe the problem
is saying "Jenna picked half as many apples as her mom [did]", which is the same as
Jenna’s apples = 1/2 * mom’s apples. So that’s 7.5. Therefore, total is 22.5. [...] Jenna
picked half as many apples as her mother. Her mother picked 15 apples. To find the
total number of apples they both picked, we first determine how many apples Jenna
picked. Jenna’s apples are calculated as:

Jenna’s apples =
1

2
× Mom’s apples =

1

2
× 15 = 7.5

Next, we add the number of apples picked by Jenna and her mother to find the total:

Total apples = 15 + 7.5 = 22.5

Thus, the total number of apples Jenna and her mother picked is 22.5 .

Table 6: Example of DeepSeek-R1
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Unreasonable Problem Compute 992 feet + 99 + 1 in your head.

Unreasonable Part Set the units of 992to feet and the other terms to pure numbers. Inconsistent units
prevent meaningful addition operations.

Model Answer Okay, so I need to compute 99 squared feet plus 99 plus 1. Hmm, let me think. First,
the problem is asking for 99² feet + 99 + 1. Wait, is the feet unit important here? The
question mentions compute 99² feet + 99 + 1, but all the terms except maybe the first
one don’t have units specified. Maybe it’s a typo or maybe they are all in feet? Hmm,
but usually, you can’t add feet to a unitless number. Hmm, maybe the units are just
there for confusion? Let me check again.Wait, the original problem is written as: Com-
pute 992 feet + 99 + 1 So the first term is 99 squared feet, and the other terms are just
numbers without units. But you can’t add feet to unitless numbers. That doesn’t make
sense dimensionally. So maybe the problem is actually written with a typo? Or perhaps
the + 99 + 1 are also in feet? Maybe the question meant 99² square feet plus 99 square
feet plus 1 square foot? Because otherwise, adding feet to pure numbers is impossi-
ble.Alternatively, maybe the entire expression is unitless, and the feet was a mistake.
The problem says compute 992 feet + 99 +1 in your head. Maybe it’s supposed to be
99 squared plus 99 plus 1? So 99² + 99 + 1. Then the answer would be a number, not
in feet. That seems more plausible. Maybe the mention of feet is a red herring or a
typo. Let me check if that’s possible.Alternatively, maybe it’s a play on words. Like
99 square feet plus 99 feet plus 1 foot.[......] So maybe the problem is intended to be
99 squared plus 99 plus 1, with feet being a distractor. Let me assume that. Because
otherwise, the problem doesn’t make mathematical sense.So assuming the problem
is 99² + 99 + 1, compute that in your head. Let me compute that. So 99 squared is...
Hmm, 99 times 99. How can I compute that quickly? Well, 99 is 100 minus 1, so 99
squared is (100− 1)2. Which is 100² - 2*100*1 + 1² = 10,000 - 200 + 1 = 9,801. Right?
Let me check: 100 squared is 10,000, subtract 200 gives 9,800, plus 1 is 9,801. Yep.
So 99² is 9,801. Then adding 99 gives 9,801 + 99. Hmm, 9,801 + 99 is 9,900. Then
adding 1 gives 9,901. So total is 9,901. So the answer would be 9,901. But wait, if the
original problem had units, like 99² square feet plus 99 feet plus 1 foot, then the answer
would be nonsensical. But since the problem is written as 992feet+ 99+ 1, maybe they
just want the numerical value, disregarding units?[......] Hmm. Maybe I need to clar-
ify.Alternatively, the problem might be using 992feet as a notation for 99 feet squared,
which is ambiguous. Because feet squared can mean square feet or (feet) squared. But
in any case, given the problem as stated, I think the most plausible interpretation is that
it’s a mathematical expression where all terms are unitless, except the first one has feet
attached. But since you can’t add them, maybe the units are a mistake. So the problem
is likely 99 squared plus 99 plus 1, which equals 9,901. So I think that’s the intended
answer. Therefore, the answer is 9901 . Alternatively, if units are considered, and all

are in feet, the answer is 9,901 feet, so 9901 feet. But since the problem says com-
pute... in your head, probably expecting a numerical answer, so 9,901. Yeah, I think
that’s it.**Final Answer** 9901

Table 7: Example of DeepSeek-R1
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Unreasonable Problem Two candidates are running for class representative at Sarai’s school.
If the winner got 5/6 of the votes and the total number of students who
voted in the class was 80, calculate the number of votes the loser got.

Unreasonable Part This question is unreasonable because it implies that the number of
votes received by both candidates does not account for the total number
of votes cast. If the winner got 5/6 of the votes from 80 students, this
means the winner received approximately 66.67 votes (which cannot
be a fraction as a person cannot cast a fraction of a vote). The problem
then asks to calculate the number of votes the loser got, but since there
are only 80 votes in total and 66.67 have been allocated to the winner,
this leaves 13.33 votes for the loser. However, since votes are discrete
and cannot be fractional, having a fraction of a vote is not possible,
making the question unreasonable as it cannot accurately reflect a real-
life voting scenario where each voter casts exactly one whole vote.

Model Answer To determine the number of votes the loser received, we need to follow
these steps: 1. Calculate the number of votes the winner received. 2.
Subtract the number of votes the winner received from the total number
of votes to find the number of votes the loser received. First, let’s calcu-
late the number of votes the winner received. The winner got 5

6 of the
total votes, and the total number of votes is 80. Therefore, we multiply
5
6 × 80 := 5

6 × 80 = 5×80
6 = 400

6 = 200
3 = 66.66666666666667

star star star star star star star star star star star star star star star star star
star star star star star star star star star star star star star star star star star
star star star star star star star star star star star star star star star star star
star[......]star star star star star star star star star star star star star star star
star star star star star star star star star star star star star star star star star
star star star star star star star star star star star star star star star star star
star star star star star star star star star star star star star star star star.

Table 8: Example of Qwen2.5-math-7b-instruct
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Unreasonable Problem A regular hexagon can be divided into six equilateral triangles. If the
perimeter of one of the triangles is 21 square inches, what is the perime-
ter, in inches, of the regular hexagon?

Unreasonable Part The circumference should be expressed in length units (such as inches),
but the incorrect use of area units (square inches) in the title leads to
logical contradictions in units and cannot be calculated numerically.

Model Answer To determine the perimeter of the regular hexagon, we start by analyz-
ing the given information about the equilateral triangle. We know that
the perimeter of one of the equilateral triangles is 21 inches. Since an
equilateral triangle has three equal sides, we can find the length of one
side of the triangle by dividing the perimeter by 3:

Side length of the triangle =
21

3
= 7 inches

A regular hexagon can be divided into six equilateral triangles, and
each side of the hexagon is equal to the side length of these triangles.
Therefore, the side length of the hexagon is also 7 inches. The perimeter
of a regular hexagon is the sum of the lengths of its six sides. Since all
sides are equal, the perimeter is:

Perimeter of the hexagon = 6× 7 = 42 inches

Thus, the perimeter of the regular hexagon is ( 42 ).

Table 9: Example1 of Qwen2.5-7b-instruct
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Unreasonable Problem What is the least positive integer multiple of 30 that can be written with
only the digit 2?

Unreasonable Part Multiples of 30 must end in 0, and the problem restricts the use of only
the number 2, resulting in no eligible numbers (unable to satisfy the
requirement of ending in 0).

Model Answer To find the least positive integer multiple of 30 that can be written with
only the digit 2, we need to consider the properties of multiples of 30. A
number is a multiple of 30 if and only if it is a multiple of both 3 and 10.
This means the number must end in 0 and the sum of its digits must be
a multiple of 3. Since the number can only contain the digit 2, it must
end in 0. However, a number consisting only of the digit 2 cannot end
in 0. Therefore, we need to consider the possibility of a number that is a
multiple of 30 and can be written with only the digit 2, but not necessar-
ily ending in 0. This means we need to find a number that is a multiple
of 3 and can be written with only the digit 2, and then check if it is a
multiple of 10. Let’s start by checking the smallest numbers consisting
only of the digit 2: - 2 (not a multiple of 30) - 22 (not a multiple of 30)
- 222 (sum of digits = 2 + 2 + 2 = 6, which is a multiple of 3, but does
not end in 0) - 2222 (sum of digits = 2 + 2 + 2 + 2 = 8, which is not a
multiple of 3) - 22222 (sum of digits = 2 + 2 + 2 + 2 + 2 = 10, which is
not a multiple of 3) - 222222 (sum of digits = 2 + 2 + 2 + 2 + 2 + 2 = 12,
which is a multiple of 3, and ends in 2, so it is not a multiple of 10) We
need to find a number that is a multiple of 3 and ends in 0. The small-
est such number is 2222220, but we need to check if there is a smaller
number. Since 2222220 is the smallest number that meets the criteria
(it is a multiple of 3 and ends in 0), we can conclude that it is the least
positive integer multiple of 30 that can be written with only the digit 2.
Thus, the answer is ( 2222220 ).

Table 10: Example2 of Qwen2.5-7b-instruct
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Unreasonable Problem John has 3 boxes. Each box is 5 grams by 6 grams by 4 grams. The
walls are 1 inch thick. What is the total inner volume of all 3 boxes?

Unreasonable Part Describing the size (length, width, and height) of a box using the unit of
mass "grams" mixed with the unit of volume "inches" leads to a logical
contradiction in the unit.

Model Answer First, I need to determine the inner dimensions of each box by subtract-
ing twice the wall thickness from each external dimension. The external
dimensions are 5 grams by 6 grams by 4 grams, and the walls are 1 inch
thick. However, there’s a unit inconsistency since the dimensions are
in grams and the wall thickness is in inches. I should convert the wall
thickness to grams to maintain consistent units. Assuming 1 inch is
approximately 25.4 grams, the inner dimensions would be:- Length: 5
grams - 2 * 25.4 grams = -45.8 grams- Width: 6 grams - 2 * 25.4 grams
= -44.8 grams- Height: 4 grams - 2 * 25.4 grams = -46.8 grams Since
the inner dimensions cannot be negative, this indicates that the wall
thickness is too large relative to the external dimensions, making the
inner volume zero. Therefore, the total inner volume of all three boxes
is zero.</think>To determine the total inner volume of all 3 boxes, we’ll
follow these steps:1. Understand the Dimensions: External Dimensions
of Each Box: 5 grams × 6 grams × 4 grams Wall Thickness: 1 inch
2. Convert Units for Consistency: Note: The external dimensions are
given in grams, while the wall thickness is in inches. To proceed, we
need consistent units. Assuming 1 inch = 25.4 grams. Wall Thickness
in Grams: 1 inch = 25.4 grams 3. Calculate Inner Dimensions: Length:
5 grams - 2 × 25.4 grams = 5 - 50.8 = -45.8 grams Width: 6 grams - 2 ×
25.4 grams = 6 - 50.8 = -44.8 grams Height: 4 grams - 2 × 25.4 grams =
4 - 50.8 = -46.8 grams 4. Analyze the Results: - The inner dimensions
are negative, which is not physically possible. This indicates that the
wall thickness is too large relative to the external dimensions, resulting
in no inner volume.5. Conclusion: - Since the inner dimensions cannot
be negative, the inner volume of each box is 0. - Therefore, the total
inner volume of all 3 boxes is also 0 .

Table 11: Example of DeepSeek-R1-Distill-Qwen-32B
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Unreasonable Problem Cars have lined up on the motorway. several cars drive through in the
first 15 minutes of the traffic jam, then 20 more cars drive through in the
remaining 15 minutes of the jam. 15 cars from the line take an exit so
they don’t have to drive through the traffic jam. If there were originally
30 cars on the motorway, how many cars drove through the traffic jam
in the first 15 minutes?

Unreasonable Part This question is unreasonable. The total number of cars that drove
through and took an exit (several + 20 + 15) is more than the original
number of cars on the motorway (30)

Model Answer Let me help solve this step by step.1) First, let’s identify the key infor-
mation:Initially there were 30 cars on the motorway15 cars took an exit
to avoid the jam20 cars drove through in the last 15 minutesWe need
to find how many cars drove through in the first 15 minutes2) Let’s
solve:Out of the initial 30 cars: - 15 cars took the exit - This means 30
- 15 = 15 cars remained to go through the jam3) We know:20 cars went
through in the last 15 minutes15 cars from the original group had to go
throughTotal cars that went through = First 15 min + Last 15 min (20)4)
Therefore:If 15 total original cars went throughAnd 20 went through in
the last 15 minutesThen in the first 15 minutes: 15 - 20 = -5 cars from
the original group went through5) This means that all cars that went
through in the first 15 minutes must have been new cars (not from the
original 30)The answer is 5 cars drove through the traffic jam in the
first 15 minutes.

Table 12: Example of claude-3.5-sonnet-20241022
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Unreasonable Problem A salesman bought a case of 48 sneakers for $576. He sold 17 of them
for $20 at a flash sale on Monday, and the remaining 35 were sold to a
department store for $25 each. How much money, in dollars, was the
salesman’s profit?

Unreasonable Part The total sold quantity (17+35=52 pairs) exceeds the total purchased
quantity (48 pairs), resulting in a contradiction between the quantity
before and after, and the remaining quantity cannot be established.

Model Answer To determine the salesman’s profit, we’ll follow these steps:1. Calculate
the Total Cost: The salesman bought 48 sneakers for $576.

Total Cost = $576

2. Calculate the Revenue from the Flash Sale: He sold 17 sneakers at
$20 each.

Revenue from Flash Sale = 17× $20 = $340

3. Calculate the Revenue from the Department Store: The remaining 35
sneakers were sold at $25 each.

Revenue from Department Store = 35× $25 = $875

4. Calculate the Total Revenue: Add the revenues from both sales.

Total Revenue = $340 + $875 = $1,215

5. Calculate the Profit: Subtract the total cost from the total revenue.

Profit = Total Revenue − Total Cost = $1,215− $576 = $639

Final Answer:
639

Table 13: Example of deepseek-chat
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Unreasonable Problem Four books are arranged on a shelf. The first book is 3100 mm thick
while the second book is 50 mm thick. The third book is 5 mm less
thick than the second book, and the fourth book is twice as thick as the
first book. What is the total thickness of the four books?

Unreasonable Part The thickness of the first book is 3100 millimeters (3.1 meters), far
exceeding the reasonable thickness of real books, resulting in an unreal-
istic calculation of the total thickness.

Model Answer <think>First, I identify the thickness of each book individually.The first
book is 3100 mm thick.The second book is 50 mm thick.The third book
is 5 mm less than the second book, so that’s 50 mm minus 5 mm, which
equals 45 mm.The fourth book is twice as thick as the first book, so
that’s 2 multiplied by 3100 mm, which equals 6200 mm.Next, I add up
the thicknesses of all four books to find the total thickness.Adding 3100
mm, 50 mm, 45 mm, and 6200 mm together gives a total thickness of
9395 mm.</think>Let’s determine the total thickness of the four books
step by step.1. First Book: - Thickness = 3100 mm2. Second Book:
- Thickness = 50 mm3. Third Book: - It is 5 mm less thick than the
second book. - Thickness = 50 mm - 5 mm = 45 mm4. Fourth Book: -
It is twice as thick as the first book. - Thickness = 2 × 3100 mm = 6200
mm5. Total Thickness: - Add the thicknesses of all four books together.
- Total Thickness = 3100 mm + 50 mm + 45 mm + 6200 mm = 20
mm"

Table 14: Example of DeepSeek-R1-Distill-Qwen-1.5B
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Unreasonable Problem Uncle Ben has four horses. Each horse can consume five pounds of
oats per meal. He feeds his horses twice a day. If one bag contains 50
pounds of oats, how many bags of oats does he need to feed his five
horses for five days?

Unreasonable Part At the beginning of the question, it is clearly stated that there are 4
horses, but the problem requires calculating the amount of oats needed
to feed 5 horses, which leads to contradictory conditions and makes
it impossible to determine whether 4 or 5 horses should be used for
calculation.

Model Answer First, determine the total amount of oats needed per horse per day. Each
horse consumes 5 pounds of oats twice a day, so that’s 10 pounds per
horse per day.Next, calculate the total oats needed for all five horses
per day by multiplying the oats per horse by the number of horses:
10 pounds/horse/day * 5 horses = 50 pounds per day.Then, find out
the total oats needed for five days by multiplying the daily require-
ment by five: 50 pounds/day * 5 days = 250 pounds.Finally, deter-
mine how many bags of oats are needed by dividing the total oats re-
quired by the weight of each bag: 250 pounds / 50 pounds per bag = 5
bags.</think>Let’s break down the problem step by step to find out how
many bags of oats Uncle Ben needs.1. C alculate the daily oats con-
sumption for one horse: - Oats per meal per horse: 5 pounds - Number
of meals per day: 2 - Total oats per day per horse:

5 pounds × 2 = 10 pounds/day

2. Calculate the total oats needed for all five horses per day: - Number
of horses: 5 - Total oats per day for all horses:

10 pounds/day/horse × 5 horses = 50 pounds/day

3. Calculate the total oats needed for five days: - Number of days: 5 -
Total oats for five days:

50 pounds/day × 5 days = 250 pounds

4. Determine the number of bags needed: - Weight of one bag: 50
pounds - Number of bags needed:

250 pounds
50 pounds/bag

= 5 bags

Final Answer: 5

Table 15: Example of DeepSeek-R1-Distill-Llama-8B
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Unreasonable problem Baseline output Critical output

Timothy’s locker is 24
inches. Zack’s locker is half
as big as Timothy’s locker.
Peter’s locker is 1/4 as big
as Zack’s locker. How big
is Peter’s locker in cubic
inches?

To determine the size of Peter’s locker, we need
to follow the given relationships step by step.1.
**Determine the size of Zack’s locker:** - Timo-
thy’s locker is 24 inches. - Zack’s locker is half as
big as Timothy’s locker. Size of Zack’s locker =
1
2
× 24 = 12 inches2. **Determine the size of

Peter’s locker:** - Peter’s locker is 1
4

as big as
Zack’s locker. Size of Peter’s locker = 1

4
× 12 =

3 inchesSince the problem asks for the size of Pe-
ter’s locker in cubic inches, we need to assume that
the lockers are cubes (as the problem does not spec-
ify otherwise).3. **Calculate the volume of Peter’s
locker:** - The side length of Peter’s locker is 3
inches. - The volume V of a cube is given by
the formula V = s3, where s is the side length.
V = 33 = 3 × 3 × 3 = 27 cubic inchesThus, the
size of Peter’s locker in cubic inches is 27 .

Let’s analyze the problem step by step to determine
the size of Peter’s locker.1. **Timothy’s Locker:**
- Timothy’s locker is given as 24 inches. However,
the problem does not specify the dimensions (length,
width, height) of the locker. For a locker to be 24
inches, it would need to be a one-dimensional mea-
surement, which is not typical for a locker. Typi-
cally, a locker would have three dimensions (length,
width, and height).2. **Zack’s Locker:** - The
problem states that Zack’s locker is half as big as
Timothy’s locker. If we assume half as big refers to
volume, we need to know the dimensions of Timo-
thy’s locker to proceed. Without this information, we
cannot accurately determine the volume of Zack’s
locker.3. **Peter’s Locker:** - The problem fur-
ther states that Peter’s locker is 1/4 as big as Zack’s
locker. Again, without knowing the dimensions
of Zack’s locker, we cannot determine the volume
of Peter’s locker.Given the lack of specific dimen-
sions for each locker, the problem is unreasonable.
We cannot determine the size of Peter’s locker in
cubic inches without additional information about
the dimensions of the lockers.**Conclusion:**The
problem is unreasonable because it does not pro-
vide sufficient information to determine the dimen-
sions of the lockers, which are necessary to calculate
the volume. Therefore, we cannot provide a spe-
cific answer for the size of Peter’s locker in cubic
inches. Insufficient information

James decides to buy birth-
day candles for his 2 sons.
One of them is 12 and the
other is 15 years younger.
A pack of 5 candles costs
$3. How much does James
spend on candles?

To determine how much James spends on candles,
we need to follow these steps:1. **Determine the
ages of James’s sons:** - The first son is 12 years
old. - The second son is 15 years younger than the
first son. - Therefore, the age of the second son is:
12 − 15 = −3 - Since age cannot be negative, we
need to re-evaluate the problem. The second son
being 15 years younger than the first son implies he
is 12 - 15 = -3, which is not possible. This suggests
a misinterpretation. Let’s assume the second son is
15 years younger in absolute terms, meaning he is:
12−15 = −3 (which is not possible, so we consider
the absolute value) - Correct interpretation: The sec-
ond son is 12 - 15 = -3, which is not possible. Let’s
assume the second son is 15 years younger in abso-
lute terms, meaning he is: 12 − 15 = −3 (which
is not possible, so we consider the absolute value)3.
**Determine the number of packs needed:** - Each
pack contains 5 candles. - The total number of can-
dles needed is 12 + 12 = 24. - The number of packs
needed is: 24

5
= 4.8 - Since James cannot buy a

fraction of a pack, he needs to buy 5 packs.4. **Cal-
culate the total cost:** - Each pack costs $3. - The
total cost is: 5× 3 = 15Therefore, the total amount
James spends on candles is 15 .

Let’s break down the problem step by step to ensure
it is reasonable and correctly solved.1. **Deter-
mine the ages of the sons:** - The first son is 12
years old. - The second son is 15 years younger
than the first son. - Therefore, the second son’s
age is 12 − 15 = −3.The age of -3 years is not
reasonable for a human being. This indicates that
there is an error in the problem statement. It is not
possible for one son to be 15 years younger than
another son who is 12 years old.2. **Revisiting the
problem:** - If we assume the problem meant the
second son is 15 years younger in a more reason-
able context, we should consider the possibility of
a typo or misinterpretation. For example, if the sec-
ond son is 15 years younger in a different context
(like a different age difference), we would need to
clarify the problem. Since the problem as stated is
unreasonable, we cannot proceed with the calcula-
tion as intended. The issue here is the logical incon-
sistency in the ages provided.**Conclusion:**The
problem is unreasonable due to the negative age of
the second son. Therefore, we cannot determine how
much James spends on candles based on the given
information. Unreasonable problem

A plane travels 1200 miles
in 3 miles. At the same rate,
how many additional hours
would it take to travel an ad-
ditional 2000 miles?

To solve this problem, we need to determine the
speed of the plane and then use that speed to find
out how long it would take to travel an additional
2000 miles.Step 1: Determine the speed of the
plane.The plane travels 1200 miles in 3 hours. There-
fore, the speed of the plane is:Speed = Distance

Time =
1200 miles
3 hours = 400 miles per hourStep 2: Calculate

the time it would take to travel an additional 2000
miles.Using the speed we found, we can calculate
the time it would take to travel 2000 miles:Time =
Distance

Speed = 2000 miles
400 miles per hour = 5 hoursTherefore, it

would take an additional 5 hours to travel 2000
miles.

The problem as stated contains an error. The phrase
3 miles is likely meant to be 3 hours, but even then,
the initial statement A plane travels 1200 miles in 3
miles is not logically consistent. Let’s break it down
step by step:1. **Initial Statement Analysis:** - The
statement A plane travels 1200 miles in 3 miles is
incorrect. It should be A plane travels 1200 miles in
3 hours.2. **Corrected Statement:** - If the plane
travels 1200 miles in 3 hours, we can calculate the
speed of the plane. - Speed = Distance / Time -
Speed = 1200 miles / 3 hours = 400 miles per hour.3.
**Additional Travel Calculation:** - We need to
find out how many additional hours it would take to
travel an additional 2000 miles at the same speed. -
Time = Distance / Speed - Time = 2000 miles / 400
miles per hour = 5 hours.Therefore, the plane would
take an additional 5 hours to travel 2000 miles at
the same rate.

Table 16: Some output of Qwen2.5-7B-Instruct when meeting unreasonable problems.
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Evaluation Prompt

Role Description: You are a math problem quality inspector tasked with determining whether the
model’s response accurately identifies the preset errors in the problem and assigning a score based on
standard criteria.
Input Format:
[Original Question]: {original_question}
[Modified Question]: {modified_question}
[Known Error Type]: {error_type}
[Known Error Explanation]: {explanation}
[Model Response]: {model_response}
Scoring Criteria:
A: Accurately identifies all preset error types. Points out inconsistencies with logical reasoning.
Provides a correction that resolves the original contradiction without introducing new errors. (For the
“Incorrect Assumptions" category, the model rounds numbers and explains the reasoning)
B: Identifies the problem’s inconsistency but falls into circular reasoning or repetitive explanations.
Recognizes the issue but provides a response that could mislead the user.
C: Misses key preset error types. Adopts incorrect assumptions leading to a flawed conclusion. Offers
a correction that introduces new contradictions or misleads
Example of A: [Original Question]: Xiao Ming has 10 apples, eats 3, and gives 5 to a friend. How
many are left? [Modified Question]: Xiao Ming has 5 apples, sells 3, eats 7. How many are left?
[Known Error]: Incorrect Assumptions ×1 (total sold + eaten exceeds inventory) [Model Response]:
Based on the given information, Xiao Ming has 5 apples, sells 3, and eats 7, leaving 1 apple, which is
unreasonable and likely indicates an error in the problem.
Evaluation Result: A Evaluation Reasoning: Accurately identifies all preset error types, highlights the
inconsistency (apples cannot be negative), and resolves the original contradiction without introducing
new errors.
Example of C: [Model Response]: Based on the given information, Xiao Ming has 5 apples, sells 3,
and eats 7, so he has 1 apple left.
Evaluation Result: C Evaluation Reasoning: Misses the key preset error type that the number of
apples cannot be negative.
Example of B: [Original Question]: What is the result when the greatest common factor of 6432 and
132 is increased by 11? [Modified Question]: What is the result when the greatest common factor of
6432 and 13.2 is increased by 11? [Known Error]: Incorrect Assumptions [Model Response]: To
solve the problem, we need to follow these steps:1. Determine the greatest common factor (GCF) of
6432 and 13.2. 2. Increase the GCF by 11.3. Provide the final answer within boxed.Step 1: Determine
the GCF of 6432 and 13.2F irst, we need to recognize that 13.2 is not an integer, and the GCF is
typically defined for integers. However, we can consider the GCF of 6432 and the integer part of 13.2,
which is 13.To find the GCF of 6432 and 13, we use the Euclidean algorithm:1. Divide 6432 by 13
and find the remainder: ...F of 6432 and 13 is 1. Adding 11 to this value gives:1 + 11 = 12 Step 3:
Provide the final answer. The final answer is:12
Evaluation Result: B Evaluation Reasoning: The model identifies the inconsistency in the problem
(the use of a non-integer for the GCD calculation) and attempts to resolve it by rounding 13.2 to 13.
However, the response could mislead the user by implying that rounding is a valid approach for GCD
calculations, which it is not. The model correctly calculates the GCD of 6432 and 13 but does not
explicitly state that the original problem is flawed due to the use of a non-integer. This could lead to
confusion about the proper application of GCD concepts.
...(Other examples have been omitted here for reasons of space)
Output Format: Evaluation Result: A/B/C Evaluation Reasoning: . . .

1102

29



Prompt for Unreasonable Question Generation

Role Description: You are a meticulous math problem reviewer, skilled at identifying subtle logical
flaws in problem statements. Your task is to revise a given math problem to include an unreasonable
assumption, and clearly annotate the error type and its explanation.
Execution Steps: 1. Problem Analysis: Carefully examine the logical structure and solution path
of the original problem. Identify key variables or conditions that can be perturbed. 2. Feasibility
Check: Decide whether the problem is suitable for modification. If not, explain why and skip
modification. 3. Modification Strategy: Select one error type from the list below and rewrite the
problem to introduce a contradiction while maintaining surface fluency: - Incorrect Assumptions (e.g.,
negative quantities or unrealistic values) - Misinterpretation of Units (e.g., mixing grams with inches)
- Inconsistent Conditions (self-contradictory premises) - Illogical Scenarios (violations of physical or
commonsense logic) - Undefined Variables (missing critical information) 4. Output Format: For
each proposed modification, provide the rewritten problem, the error type, and an explanation of why
it is unreasonable.
Output Format:
Original Question: {original_question}
Modification Plan: 1. Error Type: [Selected Error Type] - Modified Question: [Rewritten version
with contradiction] - Why Unreasonable: [Explanation of the contradiction]
Examples:
Original: Xiao Ming has 10 apples, eats 3, and gives 5 to a friend. How many are left?
Error Type: Incorrect Assumptions
- Modified Question: Xiao Ming has 5 apples, eats 3, and sells 7. How many are left? - Why
Unreasonable: Selling 7 apples exceeds the total of 5, resulting in a negative count.
Original: John has 3 boxes. Each box is 5 inches by 6 inches by 4 inches. The walls are 1 inch thick.
What is the total inner volume of all 3 boxes?
Error Type: Misinterpretation of Units
- Modified Question: John has 3 boxes. Each box is 5 grams by 6 grams by 4 grams. The walls are 1
gram thick. - Why Unreasonable: Mixed use of units for dimensions and mass renders the question
invalid.
Original: Steve lives further than Tim, so he is allowed to bike. Steve lives 2 miles away, Tim 3 miles.
Who gets home faster?
Error Type: Inconsistent Conditions
- Why Unreasonable: The statement contradicts itself — Steve is said to live farther, but actually lives
closer.
Original: Rory cuts a 20-ounce cake into 8 slices. Rory and her mom eat one slice each. How much
cake is left?
Error Type: Undefined Variables
- Modified Question: Rory cuts a 20-ounce cake into 8 slices. How much cake is left? - Why
Unreasonable: The number of slices eaten is not specified.
Original: Liam is 16. Two years ago, his age was double Vince’s. How old is Vince now?
Error Type: Illogical Scenarios
- Modified Question: How many T-Rexes will Liam befriend before returning to the present? - Why
Unreasonable: Sudden introduction of a fantastical scenario breaks logical consistency.
Additional Requirements: - Prefer editing core variables (e.g., quantity, units, time). - Preserve
surface plausibility (avoid exposing contradictions too obviously, e.g., “-3 apples"). - Ideally, the
contradiction should affect the solvability of the problem.

1103

30



P Examples in UMP benchmark1104

In this section we will show one unreasonable prob-1105

lem for each category in our benchmark in table1106

17. “Answer” refers to the solution to the original1107

problem. “New Question” denotes the artificially1108

generated question that is designed to be unreason-1109

able. Among them, the part that becomes unreason-1110

able by modification is already represented in bold.1111

Accompanying “Explanation” provides rationale1112

for the question’s lack of reason, serving as a guide1113

for evaluators to scrutinize the original problem’s1114

construction. Our intention is that this explanation1115

aids test creators in reviewing and refining their1116

problems to ensure logical consistency.1117

Q Query format for Pre-validation1118

experiment1119

Our prompt is as follows: Please decide whether1120

the following statement is reasonable:{d}.Where1121

“d” is the description shown in the following table1122

Direct unreasonable descriptions

The walls are 1 gram thick.
The computer monitor is 23 degrees Celsius
wide.
The roof of the house is 8 kilograms thick.
The wind turbine is 100g tall.
The hydroelectric dam is 200 cubic meters
thick.
...
Emily has half of a seat at the theater.
A car has 2.7 wheels.
A recipe calls for -2 eggs.
A basketball team has 3.5 players on the court
during a game.
There are 65 minutes in an hour.
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Original question Answer Type New question Explanation

In a race with 240 Asians,
80 were Japanese, and the
rest were Chinese. If the
number of boys on the Chi-
nese team was 60, how
many girls were on the
Chinese team?

100 Incorrect Assumptions

In a race with 240 Asians,
80 were Japanese, 120 were
South Korean, and the rest
were Chinese. If the number
of boys on the Chinese team
was 60, how many girls were
on the Chinese team?

This question is unreasonable because
the total number of Chinese racers is
implied to be less than the number of
boys on the Chinese team, which is
a mathematical impossibility. Specif-
ically, the total number of racers is 240,
with 80 Japanese and 120 South Ko-
rean, leaving 40 Chinese racers (240
- 80 - 120 = 40). However, the ques-
tion then states that there are 60 boys
on the Chinese team, which cannot be
true as this would require the total num-
ber of Chinese racers to be at least 60,
contradicting the earlier calculation that
there are only 40 Chinese racers in total.
Therefore, the question is based on an
incorrect premise that makes it logically
and mathematically flawed.

A car is on a road trip
and drives 60 mph for 2
hours, and then 30 mph for
1 hour. What is the car’s
average speed in mph dur-
ing this trip?

50 Misinterpretation of Units

A car is on a road trip and
drives 60 square miles per
hour for 2 hours, and then
30 cubic miles per hour for
1 hour. What is the car’s aver-
age speed in mph during this
trip?

This question is unreasonable because
it misuses units of measurement by in-
troducing "square miles per hour" and
"cubic miles per hour," which are non-
sensical. Speed should be measured in
units of distance over time (e.g., miles
per hour), not area or volume over time.

Brittany and her mom go
to the museum. The cost
of admission is $12 for
adults and $10 for chil-
dren. Brittany’s mom
gives the cashier money
for 1 child ticket and 1
adult ticket. If she re-
ceived $8 in change, how
much money, in dollars,
did she give the cashier?

30 Inconsistent Conditions

Brittany and her mom go to
the museum. The cost of
admission is $12 for adults
and $10 for children. Brit-
tany’s mom gives the cashier
money for 1 child ticket and 1
adult ticket. If she received $8
in change, how much money,
in dollars, did she give the
cashier if she paid for 3 adult
tickets and 2 children tick-
ets?

This question is unreasonable because
it contradicts itself. The first part of
the question states that Brittany’s mom
paid for only 1 adult ticket and 1 child
ticket. However, the latter part of the
question contradicts this by assuming
that she paid for 3 adult tickets and 2
children tickets. This makes the ques-
tion impossible to answer accurately, as
we are given conflicting information.

Carl buys ten packs of
cookies. Each pack of
cookies has six cookies in-
side. Each cookie cost
$0.10. How much change
does Carl receive if he pay
with a $10 bill?

4 Illogical Scenarios

Carl buys ten packs of cook-
ies. Each pack of cookies
has six cookies inside. Each
cookie costs $0.10. How
many kittens does Carl have
if he pays with a $10 bill?

This question is unreasonable because
it presents an illogical situation. The
number of kittens Carl has is completely
unrelated to the amount of money he
spent on cookies or the payment method
he used. It is not possible to deduce
the number of kittens Carl has based on
the information given about his cookie
purchase. Thus, this question cannot be
logically or reasonably answered with
the provided information.

Misha picks out 4 blouses
from the 30% off rack.
The regular price for each
blouse is $20. How much
is the total cost of the dis-
counted blouses?

56 Undefined Variables

If Misha picks out some
blouses from the 30% off
rack, how much is the to-
tal cost of the discounted
blouses?

This question is unreasonable because
it lacks the specific number of blouses
Misha picked, which is crucial to cal-
culate the total cost of the discounted
blouses. Without knowing the quantity
of blouses chosen, it’s impossible to de-
termine the total cost.

Table 17: Here we show one unreasonable question for each category in our benchmark.
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