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Abstract

To improve automatic text summarization for
less-resourced languages, we explore fine-
tuning multilingual pre-trained models in each
language with additional data beyond the
human-written summaries. We explore three
data augmentation strategies to make use of
unlabeled Wikipedia articles as additional syn-
thetic training data. We find that the addition
of comparatively small amounts of extra data
leads to an improvement in ROUGE scores and
that the models trained using extractive target
summaries maintain novelty above that of mod-
els trained on non-extractive targets. We show
that the data augmentation strategies lead to
improvements in ROUGE scores for each lan-
guage, and that the best performing augmenta-
tion strategy differs across languages.

1 Introduction

Automatic text summarization in higher resource
languages, like English, has achieved high scores
in automated metrics (Al-Sabahi et al., 2018; Liu
et al., 2022; Zhang et al., 2020a). However, for
many less resourced languages the task remains
challenging. While there are datasets that have
coverage for multilingual summarization in less-
resourced languages (Giannakopoulos et al., 2015,
2017; Palen-Michel and Lignos, 2023; Hasan et al.,
2021), these datasets often still have relatively few
examples compared to their higher resourced coun-
terparts. There is often some amount of additional
text data available for less-resourced languages, but
it is often not annotated.

While prior work has focused on building mul-
tilingual summarization models which take advan-
tage of multilingual transfer (Palen-Michel and Lig-
nos, 2023; Hasan et al., 2021), this work focuses
on improving on the performance of multilingual
pre-trained models fine-tuned using data for only a
single language. Multilingual transfer has proven
to be a useful strategy for less resourced languages

(Wang et al., 2021); however, other works have
shown that multilingual models have limits and
given enough data, fully monolingual models can
perform better (Virtanen et al., 2019; Tanvir et al.,
2021). This work takes one step towards exploring
how to acquire enough monolingual summariza-
tion data for monolingual training to outperform
multilingual models. We also examine how to best
make use of the additional unlabeled data from
Wikipedia and find that for all languages, there’s
an improvement over baseline performance, but it
is not always the same augmentation strategy that
does best.

Our contributions are the following: 1) a com-
parison of different methods for making use of
unlabeled data for summarization of less-resourced
languages, 2) new state of the art ROUGE scores on
the LR-Sum dataset for Sorani Kurdish and Khmer
and higher scores for ROUGE1 and ROUGE-L for
Armenian and Georgian and closing the gap be-
tween monolingual models and multilingual mod-
els for other languages, and 3) an analysis of the
quality of the model generated summaries using
mean novelty scores.

2 Background

The two main approaches to automatic summariza-
tion have been extractive and abstractive methods.
Extractive models select important sentences in the
source article to use as summaries (Luhn, 1958;
Radev et al., 2001; Christian et al., 2016). Ab-
stractive models typically cast the problem as a
sequence to sequence problem and apply a neural
language model (Rush et al., 2015; See et al., 2017;
Hsu et al., 2018; Zhang et al., 2020a). Abstractive
neural models typically require larger amounts of
training data to train. Summarization is largely
scored using ROUGE-1, ROUGE-2, and ROUGE-
L metrics (Lin, 2004) for evaluation.

Prior work on multilingual summarization has



largely focused on newswire text from higher re-
sourced languages or covers more languages but
with very limited data (Scialom et al., 2020; Gian-
nakopoulos et al., 2015, 2017).

Some of the languages have little to no work
in summarization, like Armenian (Avetisyan and
Broneske, 2023). Others, like Georgian, have been
studied in cross-lingual summarization (Turcan
et al., 2022) but appear to be underexplored for
monolingual summarization. There is a recent
effort to create a Kurdish summarization dataset
(Badawi, 2023). The Global Voices summarization
dataset (Nguyen and Daumé III, 2019) contains
some examples of Macedonian. MassiveSumm
(Varab and Schluter, 2021) has greater coverage of
languages, but is automatically created and recall
oriented and has more complicated redistribution
requirements, so we did not make use of it in this
work.

3 Datasets

For experiments, we use LR-Sum (Palen-Michel
and Lignos, 2023). LR-Sum contains summariza-
tion data for 40 languages, many of which are also
less-resourced. LR-Sum is built using the descrip-
tion field from the Multilingual Open Text corpus
(Palen-Michel et al., 2022) and is similar in ap-
proach and content to XL-Sum (Hasan et al., 2021).
For this work we focused on a small set of lan-
guages from LR-Sum which had the very fewest
number of examples in the corpus.

As seen in Table 1, many of the languages we
work with have fewer than 1,000 examples, which
presents a challenge for neural abstractive sum-
marization systems, which typically require large
amounts of training data. Despite XL-Sum pro-
viding coverage for many other less resourced lan-
guages, the languages we examine here are not
covered by XL-Sum. While there is little summa-
rization training data for these languages, there is
unlabeled text data available in Wikipedia. How-
ever, as seen in Table 1, many Wikipedia articles for
less resourced languages are quite short in length.
After filtering wikipedia articles less than five sen-
tences long, for many of the languages there is
substantially less data available than may appear
in raw counts of Wikipedia articles. Specifically,
Khmer surprisingly has nearly four times as many
training examples available in LR-Sum than there
are suitable Wikipedia articles.
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Figure 1: Methodology for generating additional train-
ing examples from Wikipedia articles

4 Methodology

We use three approaches for making use of
Wikipedia articles as extra synthetic training data
for summarization. The approach to creating these
extra synthetic training documents is described by
Figure 1. We train a baseline sequence to sequence
abstractive model using mT5 (Xue et al., 2021).
We use the same set of hyperparameters across all
experiments. Hyperparameter descriptions can be
found in Appendix A.

Extractive-Training: For augmented data first,
we use the LexRank LexRank (Erkan and Radev,
2004) extractive summarization algorithm as im-
plemented in sumy!. We then directly use these
extracted summaries as target summaries alongside
the original Wikipedia text.

Self-Training: Second, after fine-tuning an ab-
stractive sequence to sequence model using mT5
as the underlying model, we use it to generate
summaries on Wikipedia articles. Self-training ap-
proaches of varying levels of complexity have been
shown to be useful with other tasks and datasets
(Du et al., 2021; Karamanolakis et al., 2021; Meng
et al., 2021). These generated summaries and the

"https://miso-belica.github.io/sumy/
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Language ISO Lang. Family Train Approximate Wikipedia
639-3  Family LR-Sum Wikipedia  Length Filtered
Sorani Kurdish ckb Indo-European (Indo-Iranian) 1,230 52,000 18,139
Haitian Creole hat French Creole 452 70,200 15,758
Armenian hye Indo-European (Isolate) 920 303,000 33,602
Georgian kat Kartvelian 511 170,000 105,446
Khmer khm Mon-Khmer 3,888 12,000 1,094
Kurmanji Kurdish ~ kmr Indo-European (Indo-Iranian) 791 63,100 13,290
Macedonian mkd Indo-European (Slavic) 1,223 140,000 103,676

Table 1: Language families and size of training data and available additional data from Wikipedia articles

original Wikipedia text are used for the self training
experiment.

Back-summarization: Third, we train a model
that when given a summary generates the article
associated with the summary. This is motivated
by the experiments in Parida and Motlicek (2019),
which used a similar approach for German sum-
marization. The approach is also similar to the
concept of back-translation (Sennrich et al., 2016)
for machine translation where inference is done in
the opposite direction to create additional synthetic
labeled data.

For each of the three experiments we train on a
concatenation of the original training dataset with
up to 6k of the synthetic training examples. We
choose to use only a subset of available Wikipedia
articles in part to have a better balance of synthetic
data and real data and also partly for faster experi-
ments.

5 Results

As shown in Table 2, all languages have higher
ROUGE scores with the inclusion of additional
synthetic training data. Sorani Kurdish, Kurmanji
Kurdish, and Armenian in particular have the most
substantial increases in ROUGE scores. Armenian
using the back sum approach is the only language
has a worse score when using augmented data. Of
the different strategies for making use of the addi-
tional Wikipedia articles, none stands out as being
particularly stronger than the others across all lan-
guages. Self-training seems to have better scores
for ROUGE2 and ROUGE-L when it outperforms
the other methods, but the difference tends to be
small with the exception of Kurmanji. Khmer had
the smallest amount of augmented data since the
Khmer Wikipedia articles were quite small and had
a relatively small increase in scores.

Hasan et al. (2021) and Palen-Michel and Lignos
(2023) found multilingual models to generally per-
form better than individually trained models. We

compare the performance of the best augmented
training approach with the reported multilingual
model scores from LR-Sum. The best performing
augmented training models outperform the multi-
lingual model for Sorani, Khmer, Armenian, and
Georgian. It is notable that Armenian and Georgian
still have lower R2 scores despite ROUGEI1 and
ROUGE-L being higher for augmented training
individual models.

It is notable that the reported scores for Khmer
from Palen-Michel and Lignos (2023) are much
lower than the baseline scores we saw for the lan-
guage. We suspect the reported score from LR-
Sum for Khmer may be in error or a difference in
tokenization as our baseline method approach was
similar and much higher.

6 Discussion

How extractive or abstractive are the sum-
maries? While models trained on synthetic data
have an advantage in ROUGE score over the base-
lines trained on only the human written summaries,
it is possible that summaries produced by these
models are still lacking in certain ways despite hav-
ing higher scores. In particular, models trained on
Extract-Train or Back-Sum data are being trained
on summaries generated from extractive models.
One concern could be that these models only learn
to copy material from the text rather than synthesiz-
ing a novel summary. We further probe this issue
by computing mean novelty scores for each sum-
mary. This score is the percentage of tokens that
do not appear in the article text.

As seen in Table 4, the test set reference sum-
maries have somewhat high novelty. Each model
generally has lower mean novelty than the test set.
We may have expected model trained on extractive
summaries to be generally less novel than those
trained on self-training; however this does not ap-
pear to be the case. This also shows a hint at why
Armenian has low ROUGE scores for the back-sum



Baseline Extract-Train

Self-Train Back-Sum

Lang. R1 R2 RL R1 R2

RL R1 R2 RL R1 R2 RL

ckb 13.73  3.69 1232 | 20.39 7.27 1854 | 1821 6.15 16.59 | 17.71 5.63 16.04
hat 1996 621 16.26 | 2293 6.70 1795 | 2226 7.23 1796 | 2285 699 1791
hye 17.02 437 14.66 | 2251 756 19.63 | 22.10 17.71 19.52 721  0.16 6.09
kat 11.80 3.18 10.88 | 13.22 5.02 12.18 | 15.02 698 1426 | 1522 7.14 1441
khm 2270  4.82 1951 | 2254 471 1925 | 23.11 475 20.08 | 23.21 5.06 20.07
kmr 1599 394 14.14 | 22.19 799 19.08 | 22.55 935 19.88 | 2091 736 17.95
mkd 19.10 6.16 1574 | 1922 577 15773 | 19.27 6.11 16.00 | 19.62 6.29 16.31

Table 2: Results of data augmentation experiments for each language

Best Multilingual
Augmented Reported

Lang. Rl R2 RL R1 R2 RL

ckb 204 73 185 | 16.6 54 151
hat 223 72 179 | 241 85 19.0
hye 225 7.6 19.6 | 205 85 175
kat 1522 7.1 144 | 132 72 126
khm 232 51 2041 3.7 1.2 3.6
kmr 226 94 199 | 254 124 221
mkd 196 63 163 | 21.3 7.6 18.0

Table 3: Comparison between best performing model
trained on augmented data and the reported scores from
LR-Sum’s multilingual model

LR Base- Extract- Self-  Back-

Sum line Train Train  Sum
ckb 38.9 3.0 4.6 1.7 2.0
hat 18.1 6.7 2.6 1.4 2.0
hye 354 5.7 6.8 4.5 66.0
kat 22.3 19.1 4.2 1.4 1.9
khm 7.8 6.6 7.6 6.9 6.2
kmr 16.3 15.8 3.9 4.1 1.2
mkd 314 4.7 6.4 3.7 3.9

Table 4: Mean Novelty for summaries generated by
each model and the summaries of the test set (LR-Sum)

approach. With such a high mean novelty score,
there is evidence the model is generating a large
amount of irrelevant words.

Does augmentation strategy affect length? We
examined mean length of generated summaries
across all approaches. The mean lengths are shown
in Table 6 in Appendix C. Summaries generated
from the model trained on synthetic data using
an extracted summary tended to have a higher
mean length. This is not surprising since extrac-
tive summaries being composed of sentences from
the original document may have a tendency to be
longer and a model trained on this may mimic
longer summaries. Between the baseline and self-
training, mean lengths varied between being longer
or shorter for different languages.

Does bigram mean novelty show different
patterns? We also examined mean novelty us-
ing bigrams shown in 5 in Appendix C. Bigram
mean novelty tends to still be lower than the refer-
ence summaries for summaries generated for each
model. Again with bigram novelty, the model
trained on extractive output surprisingly does not
have lower novelty than the baseline in many cases.

What augmentation approach works best?
Overall, we found that each data augmentation ap-
proach showed an increase in ROUGE scores over
the baseline, but there was not one that proved to be
definitely better than any other across languages.

7 Conclusion

We have demonstrated three options for generat-
ing additional synthetic summaries from Wikipedia
articles for summarization in less resourced lan-
guages. By filtering Wikipedia for less resourced
languages to articles with a suitable length, we
noted how large numbers of Wikipedia articles
are too short to be used as articles for the task
of summarization. We demonstrated that the mod-
els trained using extractive target summaries main-
tain novelty above that of models trained on non-
extractive synthetic summaries. In experiments on
different varieties synthetic data, we found that the
addition of comparatively small amounts of extra
data leads to an improvement in ROUGE scores
leading to new high scores for some languages in
LR-Sum. We did not observe a clear advantage
of one method of generating synthetic data over
another.

For future work, it would be useful to conduct
further experiments strategies for combining syn-
thetic data across augmentation strategies and by
combining languages. Other promising directions
include determining at what point additional syn-
thetic data leads to diminishing gains in scores and
further analysis of the quality of summaries.



8 Limitations and Ethical Considerations

An important limitation to this work is that the eval-
uation is done entirely with ROUGE score. Limita-
tions to ROUGE score are known and human eval-
uation is preferred. However, human evaluation
can be expensive and especially difficult for less-
resourced langauges. Other alternatives to ROUGE
have been proposed such as BERTScore (Zhang
et al., 2020b), but BERTScore also faces its own
challenges (Hanna and Bojar, 2021).

Like any text generation model, automatic sum-
marization is based on statistical properties of lan-
guage and is likely to sometimes generate state-
ments that may be false. The models and ap-
proaches described in this work are primarily for re-
search purposes and summaries generated by these
models are only intended to be used to aid human
creation of summaries and should be viewed with
skepticism regarding their factual content.
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Lang. LR Base-  Extract- Self-  Back-
Sum line Train Train  Sum

ckb 63.94 9.16 11.15 5.17 5.72
hat 50.46 12.74 9.64 5.58 6.53
hye 69.08 17.78 21.68 16.95 97.33
kat 44.02 32.14 11.04 4.22 6.56
khm 2581 67.44 68.92 68.48 66.78
kmr 4126 43.38 10.77 8.90 4.06
mkd 66.74 12.99 18,70 11.87 12.22

Table 5: Mean novelty scores using bigrams.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020a. PEGASUS: Pre-training with ex-
tracted gap-sentences for abstractive summarization.
In Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 11328-11339.
PMLR.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020b. Bertscore: Eval-
uating text generation with bert.

A Hyperparameters

All models used mT5-base as the underlying pre-
trained model. All models were trained for 3
epochs with 100 warmup_steps. We used a la-
bel smoothing factor of 0.1, a beam size of 4,
weight_decay of 0.01, a max_target_length 512,
max_source_length of 1024, an effective batch size
of 32 and a learning rate of 5e-4. Hyperparameters
were chosen largely following those suggested in
XL-Sum (Hasan et al., 2021) and LR-Sum (Palen-
Michel and Lignos, 2023).

B Tokenizers

For Haitian Creole, Georgian, Macedonian, and
both varieties of Kurdish, we used utoken?. For
Armenian, we used Stanza (Qi et al., 2020). and
we used khmernltk (Hoang, 2020) for Khmer. The
tokenizers used in this work matters both for calu-
culating ROUGE scores and for determining the
mean novelty score. For non-latin scripts, using
the rouge package in huggingface’s evaluate® can
result in zero or near zero scores for non-latin script
languages without explicitly supplying a tokenizer.

C Analysis

We conducted further analysis of generated sum-
maries using bigrams to compute mean novelty and

2https ://github.com/uhermjakob/utoken
Shttps://github.com/huggingface/evaluate

Lang. LR Base- Extract- Self- Back-
Sum line Train Train  Sum

ckb 23.3 25.1 27.9 25.0 26.8
hat 26.7 20.9 31.4 26.9 29.4
hye 24.6 22.2 19.9 16.9 16.8
kat 14.7 17.9 16.7 14.7 154
khm 31.6 71.2 74.9 69.0 71.1
kmr 20.2 159 27.4 21.2 22.6
mkd 20.0 21.6 21.2 19.9 21.5

Table 6: The mean lengths for all summaries in terms
of tokens.

also include the mean length of summaries. We in-
clude them here due to space constraints in the
paper. Table 5 shows the mean novelty scores for
summaries computed using bigrams. Table 6 shows
the mean lengths for summaries in the dataset and
for summaries generated by each model.
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