
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

ColaCare: Enhancing Electronic Health Record Modeling through
Large Language Model-Driven Multi-Agent Collaboration

Anonymous Author(s)
ABSTRACT
We introduce ColaCare, a framework that enhances Electronic
Health Record (EHR) modeling through multi-agent collaboration
driven by Large Language Models (LLMs). Our approach seamlessly
integrates domain-specific expert models with LLMs to bridge the
gap between structured EHR data and text-based reasoning. In-
spired by the Multidisciplinary Team (MDT) approach used in clini-
cal settings, ColaCare employs two types of agents: DoctorAgents
and a MetaAgent, which collaboratively analyze patient data. Ex-
pert models process and generate predictions from numerical EHR
data, while LLM agents produce reasoning references and decision-
making reports within the MDT-driven collaborative consultation
framework. The MetaAgent orchestrates the discussion, facilitating
consultations and evidence-based debates among DoctorAgents,
simulating diverse expertise in clinical decision-making. We addi-
tionally incorporate the Merck Manual of Diagnosis and Therapy
(MSD) medical guideline within a retrieval-augmented generation
(RAG) module for medical evidence support, addressing the chal-
lenge of knowledge currency. Extensive experiments conducted on
three EHR datasets demonstrate ColaCare’s superior performance
in clinical mortality outcome and readmission prediction tasks, un-
derscoring its potential to revolutionize clinical decision support
systems and advance personalized precision medicine. The code,
complete prompt templates, case studies are publicly available at
the anonymous link: https://colacare.netlify.app.

1 INTRODUCTION
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Figure 1: ColaCare’s multi-agent collaborative consultation.

The Web has become an indispensable platform for facilitating
the integration and analysis of Electronic Health Records (EHR)
data, playing a pivotal role in prognosis prediction and clinical
decision-making. By leveraging web-based technologies, EHR mod-
eling not only enhances data accessibility but also fosters the de-
velopment of data-driven healthcare advancements [12]. In re-
cent years, deep learning has achieved remarkable success in EHR
modeling, particularly through structured data repositories and

interoperable platforms that are part of the broader web ecosys-
tem [29, 31, 47]. However, these efforts have primarily relied on
purely data-driven, end-to-end methods that operate independently
of external, web-based semantic knowledge. Consequently, these
models often fail to fully capture the clinical significance of the
recorded features, treating them as mere variables without a com-
prehensive semantic context [49]. This limitation hinders the real-
world applicability of such “black box” methods, as they lack in-
terpretability and do not leverage the rich, interlinked knowledge
available on the Web, making it difficult for human physicians to
trust them in real-world clinical practice. (See Appendix A for more
WWW relevance details.)

Most interpretability models primarily rely on traditional feature
importance analysis techniques, such as attention mechanisms [30],
SHAP (SHapley Additive exPlanations) [38], and activation-level
visualizations [43]. While these techniques provide a basic level
of interpretability, they still fall short of aligning models with
real-world knowledge. Several existing methods attempt to in-
corporate external knowledge to improve interpretability. For in-
stance, some approaches embed knowledge from external knowl-
edge graphs [4, 28], or construct knowledge graphs from patient
sequential visit data [20]. However, deploying these methods in
practical settings remains challenging due to their dependence on
manually crafted knowledge representations and the slow pace of
knowledge updates, which often fail to keep pace with the latest
medical research or updated guidelines. Moreover, physicians in-
creasingly require deeper insights into the reasoning behind deep
learning models for interpretability purposes.

Given the impressive capabilities of Large Language Models
(LLMs) in handling general tasks [1], including medical applica-
tions [37] such as medical question-answering (Q&A) tasks that
reason over unstructured clinical notes [2, 17, 40], we are motivated
to explore their potential for enhancing structured EHR modeling,
which remains less explored. Specifically, we aim to meet the re-
quirements of knowledge fusion and interpretable reasoning that
address the limitations of conventional methods. We have further
identified and summarized the key limitations of existing LLM-
driven works in structured EHR modeling as follows:
(1) Structured EHR comprehension: Although some works have

demonstrated LLMs’ reasoning ability in structured EHR anal-
ysis under few-shot settings [15], there remains a notable per-
formance gap compared to conventional methods [48]. While
LLMs excel at mining natural language contexts, their ability
to analyze or make predictions based on structured EHR data
is still limited [48].

(2) Lack of medical reference: While recent research has expanded
beyond single-model approaches by introducing multiple LLMs
to address complex problems [2, 17, 40], most previous works
lack trustworthymedical guidelines for clinical decision-making.
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These continuously updated guidelines are crucial when the
inherent knowledge within LLMs is insufficient for diagnosis.

To address these challenges, we propose ColaCare, a Retrieval-
Augmented Generation (RAG)-enhanced framework inspired by the
Multidisciplinary Team (MDT) approach employed by physicians
in clinical settings [35]. ColaCare integrates domain-specific EHR
modeling methods (expert models) into LLM-driven agents that
fulfill two roles: doctor agents (referred to as DoctorAgent) and a
meta doctor agent (referred to as MetaAgent). The MetaAgent or-
chestrates MDT discussions, facilitating consultations and evidence-
based debates among DoctorAgents. Overall, ColaCare simulates
the collaborative decision-making process among physicians with
diverse expertise by leveraging LLMs’ reasoning and role-playing
capabilities, alongside the strengths of expert models in processing
and predicting from structured EHR data.

ColaCare has the potential to revolutionize clinical decision-
making and advance the field of personalized precision medicine.
Our primary contributions are summarized as follows:
• Insightfully, we introduce the MDT approach to EHR mod-

eling by incorporating external knowledge via RAG, enabling
a prediction process that is both driven by EHR data and en-
riched with up-to-date external knowledge, complemented by
self-examination.

• Technically, we develop ColaCare, which outputs clinical deci-
sion evidence from multiple DoctorAgents and the MetaAgent.
These agents may hold differing opinions, thereby enhancing
transparency and providing human-understandable evidence to
support physicians in their diagnostic reasoning.

• Experimentally, we conduct extensive experiments on three
EHR datasets, demonstrating the superior performance of ColaCare
in predicting clinical outcomes such asmortality and readmission,
with relative improvements on AUPRC of 0.86%, 2.50%, 2.00%
and 4.49% on four tasks. Case studies highlight the reasonable-
ness and interpretability of the reports generated by ColaCare,
offering healthcare professionals detailed and understandable
insights into each prediction.

2 RELATEDWORK
2.1 LLMs in Medical Tasks
Large Language Models (LLMs) have demonstrated significant
success in the medical domain, particularly in medical question-
answering (Q&A) tasks [3, 10, 44]. They have also excelled in medi-
cal evidence summarization [39, 41]. Notably, the advanced LLM
GPT-4 [1] has outperformed medical students on standard medi-
cal board exams [23]. While these achievements primarily involve
textual clinical notes, recent research has begun exploring LLMs’
capabilities in handling structured Electronic Health Record (EHR)
data. Approaches include prompting LLMs directly [15, 48] or en-
sembling machine learning models’ outputs [13, 19]. These studies
reveal that GPT-4 shows potential for zero-shot prediction on struc-
tured EHR data, although a significant performance gap remains
compared to conventional deep learning methods trained on full
datasets [48]. Additionally, LLM’s direct outputs face challenges
with hallucination, where generated content may not strictly adhere
to instructions, resulting in unexpected outputs beyond numerical
values [45].

2.2 LLM-Driven Multi-Agent Collaboration in
Medical Field

The development of LLM-driven agent systems, where multiple
agents with distinct roles collaborate and utilize external tools [11],
has garnered increasing attention in medical domains. Examples
include AI Hospital [9] and Agent Hospital [25], which simulate
real hospital environments through collaboration among several
agents. Recent studies have also explored adversarial collabora-
tion, incorporating debates and negotiations amongmultiple agents.
MedAgents [40] proposes a medical collaboration framework where
doctor agents vote on diagnoses, while ArgMed-Agents [17] con-
structs conflict relationship graphs and employs formal deduction
to generate coherent Q&A conclusions. Further advancements in-
clude ReConcile [2], which employs a confidence-weighted voting
mechanism for better consensus.

In summary, most prior work focuses on medical Q&A tasks,
with LLMs generating text-based diagnoses. However, real-world
scenarios often require specific numerical outputs, like disease mor-
tality risk predictions. While approaches like Multi-Agent Debate
(MAD) [7, 14, 26] exist, current implementations often use multiple
instances of the same LLM, leading to homogeneous reasoning. This
falls short of clinical requirements for diverse diagnostic reason-
ing. Therefore, there is a need for frameworks that better integrate
structured EHR and address complex, quantitative medical tasks.

3 PROBLEM DEFINITION
3.1 EHR Datasets Formulation
The EHR datasets are structured as multivariate time-series data
with multiple features, denoted as 𝑿 = [𝒙1, 𝒙2, · · · , 𝒙𝑻 ]⊤ ∈ R𝑇×𝐹 ,
encapsulating information across 𝑇 visits and 𝐹 features, which
includes static features (e.g., sex and age) and dynamic features
(e.g., lab tests and vital signs).

3.2 Predictive Objective Formulation
The prediction task is defined as a binary classification problem
aimed at predicting patients’ mortality outcomes or 30-day readmis-
sion. Our goal is to extract knowledge from EHR data, supplemented
by auxiliary external medical knowledge (e.g., medical guidelines),
to enhance predictive modeling of EHRs. Thus, the predictive ob-
jective is formulated as:

𝑦 = Framework(𝒙𝐸𝐻𝑅,MedicalKnowledge) (1)

where 𝑦 represents the predicted outcome.
For the mortality prediction task, the outcome 𝑦 is a binary

variable where 0 indicates the patient is alive, and 1 indicates the
patient is deceased. In the case of the readmission prediction task,
the model predicts whether the patient will be readmitted within
30 days of discharge, with 0 representing no readmission and 1
indicating readmission within the specified time frame.

4 METHODOLOGY
Fig. 1 and Fig. 2 demonstrates our proposed LLM-based multi-agent
collaboration ColaCare framework, where the key module: Multi-
Agent Collaborative Consultation Module is detailedly illustrated
in Fig. 1. It gathers a group of doctor agents and a meta doctor agent

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

ColaCare: Enhancing Electronic Health Record Modeling through Large Language Model-Driven Multi-Agent Collaboration

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

LM

Multimodal 
Fusion

Prediction
Logits

Final 
Report

Interpretable
Evidence

Information
Retriever

Relevant
Knowledge

Initial
Patient Record

Report 
Embedding

EHR 
Embedding

Medical 
Guideline

Query

Multi-Agent
Collaborative Consultation

DoctorAgent 3

Logits

RAG Module

EHR 
Models

EHR Data

EHR
Embedding

DoctorAgent 1

DoctorAgent 2

MetaAgent

Structured EHR Information Extraction

Figure 2: Overall architecture of our proposed ColaCare framework.

for medical discussion about a certain patient’s condition. Doctor
agents reach an agreement after multiple rounds of debate and the
meta doctor agent proposes a report finally.

4.1 Structured EHR Information Extraction
Given the EHR data of a patient, 𝒙𝐸𝐻𝑅 , we utilize the EHR model,
denoted as Model, to encode this temporally linked information:

𝒉𝐸𝐻𝑅 = Model(𝒙𝐸𝐻𝑅) (2)

Then we use a MLP layer to predict the output logit 𝒛 and the
SHAP strategy to obtain feature importance weights 𝜶 :

𝒛 = MLP(𝒉𝐸𝐻𝑅)
𝜶 = SHAP(Model, 𝒙𝐸𝐻𝑅)

(3)

The prediction logit 𝒛 and weights 𝜶 by deep learning models
are used to support the LLM-based collaborative consultation.

4.2 Multi-Agent Collaborative Consultation
As shown in Fig. 1, in the multi-agent collaborative consultation,
we define two distinct roles: the doctor agent (DoctorAgent) and
the meta doctor agent (MetaAgent). Each DoctorAgent is linked to
a domain-specific expert model.

The collaboration begins with each DoctorAgent providing an
initial review of a patient’s condition. Subsequently, the MetaAgent
synthesizes these reviews to generate a comprehensive report and
orchestrates the collaborative consultation process. During this
iterative process, all DoctorAgents express their opinions on the
current report. The MetaAgent then considers the feedback, ac-
cordingly revises the report, and determines whether more rounds
of consultation are necessary. Fig. 1 demonstrates the overview
pipeline of the collaborative consultation.

4.2.1 Generation of Initial Reviews. We first utilize output logits 𝒛
and feature importance weights 𝜶 of EHR models, as well as basic
information of a certain patient (e.g. Sex and Age), to build an initial
patient record 𝒙𝑟𝑒𝑐𝑜𝑟𝑑 :

𝒙𝑟𝑒𝑐𝑜𝑟𝑑 = Prompt(𝒛,𝜶 , Infopatient) (4)

Next, the retriever measures the cosine similarity between em-
beddings of documents in the corpus and the patient record, and

select the top-K relevant documents:⋃
Docs = Retriever(𝒙𝑟𝑒𝑐𝑜𝑟𝑑 ) (5)

Lastly, we instruct the DoctorAgent to generate a review:

𝒓𝑑𝑜𝑐𝑡𝑜𝑟 = DoctorAgent(Prompt(𝒙𝑟𝑒𝑐𝑜𝑟𝑑 ,
⋃

Docs)) (6)

Prompt Template of DoctorAgent’s Initial Review:
1. Here is the relevant evidence (

⋃
Docs):

Document [0] (Title: Diabetic Nephropathy - Genitourinary Dis-
orders ...
Document [1] ......
...
2. Here is the patient record, including the patient’s basic
information and analysis results of AI models (𝒙𝑟𝑒𝑐𝑜𝑟𝑑 ):
(𝐼𝑛𝑓 𝑜𝑝𝑎𝑡𝑖𝑒𝑛𝑡 ) This male patient, aged 65.73, is an End-Stage Renal
Disease (ESRD) patient with original disease Diabetic Nephropa-
thy, and basic disease Diabetes ...
(Logit 𝒛) The mortality prediction risk for the patient from
AdaCare model is 0.01 out of 1.0.
(Feature 𝜶 ) We pay great attention to these features: Carbon
dioxide binding power: with shap value of 0.165. The feature
value ...
3. You need to analyze the patient’s condition based on
the above information and generate an analytical review
(𝒓𝑚𝑒𝑡𝑎).

4.2.2 Synthesized Preliminary Report. The MetaAgent is instructed
to leverage the patient’s basic information and initial reviews from
all DoctorAgents to generate a synthesized report:

𝒓𝑚𝑒𝑡𝑎 = MetaAgent(𝑃𝑟𝑜𝑚𝑝𝑡 (
∑︁

𝒓𝑑𝑜𝑐𝑡𝑜𝑟 , 𝐼𝑛𝑓 𝑜𝑝𝑎𝑡𝑖𝑒𝑛𝑡 )) (7)

Prompt Template of MetaAgent’s Synthesized Report:
1. First, please read the patient’s basic information care-
fully (𝐼𝑛𝑓 𝑜𝑝𝑎𝑡𝑖𝑒𝑛𝑡 ):
This male patient, aged 65.73, is an End-Stage Renal Disease
(ESRD) patient with original disease Diabetic Nephropathy, and
basic disease Diabetes.
2. All doctors made a diagnosis on the patient’s condition

3
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and gave their reasons as follows (
∑
𝒓𝑑𝑜𝑐𝑡𝑜𝑟 ):

Doctor 0: The mortality risk of the patient is: 0.01. The patient’s
basic condition is: a 65-year-old male with End-Stage Renal Dis-
ease due to ... The retrieved evidence: ...
Doctor 1: ...
3. You need to consider all doctors’ opinions carefully and
write a synthesized report (𝒓𝑚𝑒𝑡𝑎).
For the report, the MetaAgent is instructed to first assess and

articulate the patient’s mortality risk, categorizing it as either high
or low and then select and incorporate pertinent comments and
supporting evidence from the DoctorAgents’ reviews.

4.2.3 Collaborative Consultation Process. The DoctorAgents are
instructed to evaluate their initial assessments and state their agree-
ment or disagreement with the current report. In cases of disagree-
ment, they are required to provide detailed rationales and support
their arguments with relevant documents retrieved from the corpus:

𝒓 𝑗
𝑑𝑜𝑐𝑡𝑜𝑟

= DoctorAgent(Prompt(𝒓 𝑗−1
𝑑𝑜𝑐𝑡𝑜𝑟

, 𝒓 𝑗−1𝑚𝑒𝑡𝑎,
⋃

𝐷𝑜𝑐𝑠)) (8)

where 𝑗 stands for the j-th round in the process.
Prompt Template of DoctorAgents’ Collaboration:
1. Here is your initial review, you may adjust it based on
the meta doctor’s report (𝒓 𝑗−1

𝑑𝑜𝑐𝑡𝑜𝑟
) :

The patient’s basic condition is: a 65-year-old male with End-
Stage Renal Disease due to ...
2. Here is the synthesized report generated by the meta
doctor (𝒓 𝑗−1𝑚𝑒𝑡𝑎):
(1) In my opinion, the patient has a high risk of mortality.
(2) The patient exhibits significant clinical markers of severe
renal dysfunction and metabolic imbalances......
3. Here is the relevant document newly retrieved by the
retriever module (

⋃
𝐷𝑜𝑐𝑠):

Document [0] (Title: Hemodialysis ...
Document [1] ...
4. You need to consider the synthesized report carefully
and provide your own opinions (𝒓 𝑗

𝑑𝑜𝑐𝑡𝑜𝑟
).

Subsequently, the MetaAgent aggregates and analyzes the feed-
back from all DoctorAgents to determine whether further discus-
sion is necessary:

Action𝑗 = MetaAgent(Prompt(
∑︁

𝒓 𝑗−1
𝑑𝑜𝑐𝑡𝑜𝑟

)) (9)

The MetaAgent evaluates the statements of the DoctorAgents,
focusing on their agreement or disagreement with the current re-
port. If unanimous agreement is reached, the MetaAgent concludes
that further discussion is unnecessary. However, in cases of disagree-
ment, the MetaAgent conducts a more detailed analysis by carefully
examining the evidence presented by the dissenting DoctorAgents
and assessing the validity and relevance of this evidence within the
context of the current report. If any opposing statements and their
supporting evidence are considered meritorious, the MetaAgent
continues the discussion.
Prompt Template of MetaAgent’s Next Action:
1. Several doctors put forward their own opinions and rea-
sons (

∑
𝒓 𝑗−1
𝑑𝑜𝑐𝑡𝑜𝑟

):
Doctor 0’s statement is: I agree with the meta doctor. The reason

is: the patient’s condition, as described in the report, aligns with
the high risk...
Doctor 1’s statement is: I disagree with the meta doctor. The
reason is ... The evidence is ...
2.Next, you need to judgewhether the next round of discus-
sion is needed based on each doctor’s statement (Action𝑗 ).
If the action infers a new round, the MetaAgent considers the

opinions and relevant documents by all DoctorAgents and refine
the report:.

𝒓 𝑗𝑚𝑒𝑡𝑎 = MetaAgent(Prompt(𝒓 𝑗−1𝑚𝑒𝑡𝑎,
∑︁

𝒓 𝑗−1
𝑑𝑜𝑐𝑡𝑜𝑟

)) (10)

Once again, DoctorAgents express their statements towards the
new report and try to convince the MetaAgent. The MetaAgent
considers their statements and further revises the report, until all
DoctorAgents reach an agreement or the MetaAgent calls it a day.
Prompt Template of MetaAgent’s Revised Report:
1. In the previous discussion, you gave the report (𝒓 𝑗−1𝑚𝑒𝑡𝑎):
The patient has a high risk of mortality. Key concerns include
significantly low systolic and diastolic blood pressures...
2. All the doctors offered new perspectives (

∑
𝒓 𝑗−1
𝑑𝑜𝑐𝑡𝑜𝑟

):
Doctor 0’s statement is: the mortality risk of the patient is 0.15.
The patient shows a low mortality risk of ... The supporting
evidence is: Document [3] (Title: Anemia of Renal Disease ...
Document ...
Doctor 1’s statement is: ......
3. You need to consider all the doctors’ new ideas and mod-
ify your original report (𝒓 𝑗𝑚𝑒𝑡𝑎).

4.3 Multimodal Fusion Network
We begin by leveraging hidden representations of EHR data from
previous 𝑁 EHR-specific expert models, denoted as 𝒉𝑖

𝐸𝐻𝑅
. Subse-

quently, we utilize a medical-domain pretrained language model,
LM, to encode the final consensus report embedding:

𝒉𝑅𝑒𝑝𝑜𝑟𝑡 = LM(𝒙𝑅𝑒𝑝𝑜𝑟𝑡 ) (11)
We then concatenate the representations from both modalities

and apply an MLP layer to obtain the final prediction, �̂�:

�̂� = MLP
(
Concat

[
𝒉1𝐸𝐻𝑅,𝒉

2
𝐸𝐻𝑅, . . . ,𝒉

𝑁
𝐸𝐻𝑅,𝒉𝑅𝑒𝑝𝑜𝑟𝑡

] )
(12)

The loss function employed is the Binary Cross-Entropy (BCE)
Loss for binary classification:

L(�̂�,𝒚) = − 1
𝑁

𝑁∑︁
𝑖=1

(𝒚𝑖 log(�̂�𝑖 ) + (1 −𝒚𝑖 ) log(1 − �̂�𝑖 )) (13)

where 𝑁 represents the number of patients in a batch, �̂� ∈ [0, 1] is
the predicted probability, and 𝒚 is the ground truth.

5 EXPERIMENTAL SETUPS
5.1 Experimented Datasets and Utilized Medical

Guideline
We adopt three real-world datasets: MIMIC-IV, CDSL, and ESRD
datasets and additionally introduce the MSD (Merck Manual of
Diagnosis and Therapy) medical guideline to enhance our experi-
mental framework.

4
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• MIMIC-IV [22]: MIMIC-IV is part of the Medical Information
Mart for Intensive Care project. It contains comprehensive EHR
data for intensive care unit patients, including demographic infor-
mation, vital signs, laboratory results, procedures, medications,
clinical notes, and mortality statistics. For our study, we focus on
the clinical notes, demographic data, and laboratory test features.

• CDSL [18]: This dataset is derived from the HM Hospitales EHR
system and consists of anonymized records of 4,479 patients
admitted with a confirmed or suspected diagnosis of COVID-
19. CDSL offers a rich variety of medical features, including
comprehensive details on diagnoses, treatments, admissions, ICU
stays, diagnostic imaging tests, laboratory results, and patient
discharge or death status.

• ESRD [30]: The end-stage renal disease (ESRD) dataset comprises
data from 656 patients, including 13,091 visit records collected
over a 12-year period, from January 1, 2006, to January 1, 2018.
This longitudinal dataset features patients’ baseline information,
visit records, and clinical outcomes.
We incorporate the Merck Manual of Diagnosis and Therapy

(MSD) medical guideline [36]1 into our framework ColaCare. The
MSD guideline is a comprehensive medical reference that provides
detailed information on various diseases, corresponding diagnoses,
and treatment protocols.

We adhere to the established EHR benchmark pipeline [12, 16, 30]
for preprocessing time-series data, ensuring consistency and com-
parability in our data preparation across all datasets. The test set
size is limited to approximately 1,000 samples due to the time cost
associated with each sample. We suggest a sample of 1,000 patients
provides sufficient representation for benchmarking and evaluation,
offering diverse, information-rich records that effectively test model
generalization in realistic healthcare scenarios [48, 50]. The statis-
tics of dataset splits and label distributions for the three datasets
are presented in Tab. 1.
Table 1: Statistics of the experimented datasets after prepro-
cessing. The # Samples column shows the number of samples
and their percentage of the entire dataset, indicating data
splits (train, val, test). The # Label𝑂𝑢𝑡 . = 1 and # Label𝑅𝑒. = 1
columns provides the count and percentage of patients with
adverse outcomes within each data split. “Out.” denotes “mor-
tality outcome”, “Re.” denotes “Readmission”.

Dataset Split # Samples # Label𝑂𝑢𝑡 . = 1 # Label𝑅𝑒. = 1

MIMIC-IV
Train 17,397 (90.00%) 2,067 (11.88%) 2,685 (15.43%)
Val 966 (5.00%) 118 (12.22%) 157 (16.25%)
Test 968 (5.01%) 115 (11.88%) 153 (15.81%)

CDSL
Train 2,127 (49.98%) 270 (12.69%) -
Val 1,064 (25.01%) 135 (12.69%) -
Test 1,064 (25.01%) 135 (12.69%) -

ESRD
Train 379 (57.77%) 157 (41.42%) -
Val 131 (19.97%) 47 (35.88%) -
Test 146 (22.26%) 57 (39.04%) -

5.2 Evaluation Metrics
We employ three widely-used evaluation metrics for binary classi-
fication tasks, all of which are interpreted as “higher is better”:
1Access link: https://www.msdmanuals.com/professional

• AUROC, AUPRC: These complementary metrics assess model
performance across various classification thresholds. AUROC
is valued in clinical settings [33], while AUPRC is particularly
useful for imbalanced datasets [24]. Together, they provide a
comprehensive view of the model’s discriminative ability.

• min(+P, Se): This metric takes the minimum value between
precision (+P) and sensitivity (Se), offering a balanced assessment
of model performance by correctly identifying positive cases and
minimizing false positives [32].

5.3 Baseline Models
5.3.1 EHR-specific Baselines. We include the following established
EHR-specific deep learning-basedmodels as baselines: AdaCare [29],
ConCare [31], and RETAIN [5]. These models employ various ar-
chitecture, such as attention mechanisms, feature extraction, and
recalibration, to address different aspects of EHR data analysis and
patient health representation.

Additionally, we implement two ensemble-based approaches: a
simple mean, which averages the predictions from AdaCare, Con-
Care, and RETAIN, and a weighted mean, which assigns weights to
each model’s prediction based on AUPRC score.

5.3.2 LLM-based Baselines. We incorporate baselines utilizing sin-
gle or multiple LLMs. For those using a single LLM, we employ
three different prompt strategies: zero-shot, few-shot, and self-
consistency [42]. Additionally, we include three multi-agent collab-
oration approaches: multi-agent debate [26], MedAgents [40], and
ReConcile [2]. All of these LLM-based baselines directly process
EHR data as input, relying on large language models to interpret
the data and generate final prediction results.

5.4 Implementation Details
5.4.1 Hardware and Software Configuration. All experiments are
conducted on a single Nvidia RTX 3090 GPU with CUDA 12.5. The
server’s RAM size is 128GB. We implement the model in Python
3.9.19, PyTorch 2.3.1 [34], PyTorch Lightning 2.3.3 [8].

5.4.2 Model Training and Hyperparameters. AdamW [27] opti-
mizer is employed with a batch size of 128 patients. All models
are trained for 50 epochs with an early stopping strategy based on
AUPRC after 10 epochs without improvement.

For EHR-specific baselinemodels, the learning rate {0.01, 0.001, 0.0001}
and hidden dimensions {64, 128} are tuned using a grid search strat-
egy on the validation set. For LLM-based baselines, the few-shot
approach simulates two sample examples, one positive and one
negative, following the approach in previous work [48]. The self-
consistency method selects three possible reasoning paths, followed
by a consistency evaluation.

For ColaCare, the maximum number of rounds for the collabo-
rative consultation process is set to 3. The fusion network’s hidden
dimension is 128 with a learning rate of 0.001. The 𝐾 for the re-
trieval process is set to 3. Performance is reported as mean±std,
calculated by bootstrapping all test set samples 100 times for all
three datasets. Experiments are conducted from June 30th, 2024, to
October 15th, 2024.

5.4.3 Utilized (Large) Language Models. ColaCare incorporates
both Language Models (LMs) and Large Language Models (LLMs)
within its framework. For languagemodels, we employMedCPT [21]
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Table 2: Overall performance of in-hospital mortality and 30-day readmission prediction results on MIMIC-IV, CDSL, and ESRD
datasets. Bold indicates the best performance. Performance is reported in the form of mean±std. All metric scores are multiplied
by 100 for readability purposes.

Methods MIMIC-IV Outcome MIMIC-IV Readmission CDSL Outcome ESRD Outcome
AUPRC (↑) AUROC (↑) min(+P, Se) (↑) AUPRC (↑) AUROC (↑) min(+P, Se) (↑) AUPRC (↑) AUROC (↑) min(+P, Se) (↑) AUPRC (↑) AUROC (↑) min(+P, Se) (↑)

AdaCare 52.67±4.50 87.56±1.37 53.62±3.91 50.51±4.24 78.82±1.94 50.01±3.37 82.76±3.74 95.54±1.02 77.20±3.23 60.44±6.94 69.11±5.53 59.23±6.46
ConCare 49.71±4.83 87.21±1.41 52.96±3.74 46.66±4.05 79.06±1.82 47.00±3.20 80.77±3.59 94.47±1.24 74.17±2.80 56.65±6.91 68.84±4.85 58.47±5.78
RETAIN 51.89±4.22 87.87±1.27 49.71±3.83 50.89±3.90 80.73±1.82 50.42±3.33 74.46±4.13 93.32±1.30 70.09±3.30 60.02±6.32 70.82±4.32 59.26±5.41

EnsembleMean 53.59±4.52 88.60±1.26 54.08±3.66 50.48±4.68 86.97±1.45 50.36±3.58 83.54±3.36 95.63±1.04 76.24±3.48 60.90±7.08 73.41±4.80 59.98±6.02
EnsembleWeightedMean 53.44±4.51 88.58±1.26 53.98±3.72 50.64±4.69 87.05±1.45 50.68±3.63 84.08±3.34 95.88±0.98 76.48±3.42 61.07±7.11 73.49±4.81 60.09±5.99

LLMZeroShot 31.01±3.68 75.20±2.67 34.39±3.71 21.63±1.89 63.98±2.08 26.47±2.71 29.71±2.82 78.80±2.12 33.39±2.63 6.71±2.88 49.93±12.30 7.72±3.28
LLMFewShot 26.28±2.91 70.94±2.30 40.39±3.74 29.09±3.25 65.72±1.83 34.43±3.62 41.58±4.13 78.61±1.83 42.88±4.53 2.78±2.54 54.54±38.33 2.78±2.54
LLMSelfConsistency 27.39±3.38 72.36±2.56 30.77±3.55 24.73±2.33 62.84±2.46 27.95±2.79 36.24±4.09 75.37±2.07 32.44±3.96 9.09±4.44 58.57±10.70 11.60±6.06

MAD 30.95±5.59 78.43±3.09 29.62±4.48 24.33±2.66 65.09±2.47 24.14±2.38 42.53±5.38 78.55±2.94 40.02±5.05 5.14±2.63 52.47±18.77 6.59±3.47
MedAgents 27.73±3.38 74.38±2.19 27.80±3.31 20.15±2.46 58.25±2.66 19.39±2.29 33.02±3.34 81.21±1.75 33.48±3.12 4.47±2.21 53.64±18.31 5.26±2.80
ReConcile 27.91±3.50 74.51±2.43 29.91±3.99 24.00±2.86 65.39±2.35 25.45±3.11 35.04±3.17 80.39±1.87 34.31±2.86 17.37±13.54 62.20±20.94 24.62±16.54

ColaCare 54.05±4.88 88.80±1.31 54.44±3.80 51.91±4.99 87.72±1.37 50.16±4.17 85.76±2.99 96.23±0.91 78.93±3.21 63.81±6.43 71.61±4.77 63.33±5.54

in the RAG system’s biomedical information retrieval process. Med-
CPT is contrastively pre-trained on 255 million PubMed literature
entries. Additionally, we utilize the GatorTron [46] model, which
is pretrained on 82 billion de-identified clinical texts for final clini-
cal note embedding computation. For large language models, we
employ the DeepSeek-V2.5 [6] to act as the reasoning engine.

6 EXPERIMENTAL RESULTS AND ANALYSIS
This section evaluates the ColaCare framework by addressing the
following research questions (RQs):
(1) RQ1: Overall Performance How does ColaCare compare

to other EHR-specific deep learning models and LLM-based
frameworks in clinical downstream tasks?

(2) RQ2: Ablation Study What is the contribution of each pro-
posed module to the performance?

(3) RQ3: Sensitivity to Number of AgentsHow does the number
of agents affect ColaCare’s performance?

(4) RQ4: Sensitivity to Different LLMs How does ColaCare’s
performance vary with different LLMs?

(5) RQ5: Case Study Does ColaCare generate reliable clinical
reports and summaries for interpretability?

(6) RQ6: Cost Analysis What are the implementation costs of
ColaCare in clinical practice, considering token usage, etc.,
across datasets and tasks?

6.1 RQ1: Overall Performance
To address RQ1, we conduct mortality and readmission prediction
tasks on the MIMIC-IV dataset and mortality prediction tasks on
the CDSL and ESRD datasets. The overall performance of ColaCare
is shown in Tab. 2. The results demonstrate that ColaCare consis-
tently outperforms all baseline models in most cases, with notable
improvements in the AUPRC metric. Specifically, ColaCare sur-
passes each expert model, the ensemble results of expert models (as
ColaCare can be viewed as an LLM-based ensemble method), and
LLM-driven approaches that are instructed to directly output pre-
diction results. This superior performance highlights ColaCare’s
potential for practical application in clinical decision-making.

6.2 RQ2: Ablation Study
For RQ2, we assess each module’s impact on performance (see
Tab. 3) by testing three variants: (1) without the RAG module,

where relevant documents are not provided to agents; (2) with-
out the fusion network, which relies on the LLM by prompting it to
produce prediction results based on the final report; and (3) without
integrating expert models, where information from EHR-specific
domain models is omitted and the LLM is prompted to generate
prediction results based on raw EHR data, replicating the MedA-
gents approach. The results indicate that excluding expert models
significantly reduces performance. Additionally, the direct output
approach of LLMs proves ineffective, as evidenced by the perfor-
mance drop when the fusion network is removed and in comparison
to other LLM-based baseline methods. Furthermore, incorporating
the RAG system enhances overall performance.

Table 3: Ablation study results for each module. Bold indi-
cates the best performance. Performance is reported in the
form of mean±std. All metric scores are multiplied by 100
for readability purposes.

Methods MIMIC-IV Outcome MIMIC-IV Readmission
AUPRC (↑) AUROC (↑) min(+P, Se) (↑) AUPRC (↑) AUROC (↑) min(+P, Se) (↑)

w/o RAG 51.57±4.76 88.09±1.30 49.25±3.91 48.00±4.58 86.74±1.63 51.43±3.85
w/o Fusion Network 42.61±4.02 87.53±1.27 49.72±3.69 49.03±4.38 79.85±1.90 51.26±3.30
w/o Expert Models 27.73±3.38 74.38±2.19 27.80±3.31 20.15±2.46 58.25±2.66 19.39±2.29

ColaCare 54.05±4.88 88.80±1.31 54.44±3.80 51.91±4.99 87.72±1.37 50.16±4.17

6.3 RQ3: Sensitivity to Number of Agents
For RQ3, we explore the impact of the number of agents partici-
pating in the collaborative consultation, as shown in Tab. 4. Our
findings indicate that having one or two DoctorAgents has little to
no impact or slightly decreases performance. This is because a small
number of DoctorAgents can easily reach a consensus, even if their
final opinion lacks robustness. As the number of DoctorAgents in-
creases, performance improves due to the incorporation of a wider
range of perspectives and medical evidence, resulting in more com-
prehensive and reliable reports.

6.4 RQ4: Sensitivity to Different LLMs
To address RQ4, we evaluate the performance of ColaCare when
utilizing different LLMs as the reasoning engine. Specifically, we
compare ColaCare instantiated with DeepSeek-V2.5, GPT-4o-Mini,
GPT-4o, Qwen-Turbo, and Doubao-Pro. The performance presented
in Tab. 5 shows that all these LLMs can reason with EHR data, with
DeepSeek-V2.5 and GPT-4o-Mini performing slightly better.
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Table 4: Performance of different numbers of agents in the in-
hospital mortality prediction task onMIMIC-IV datasets. Bold
indicates the best performance. Performance is reported in
the form of mean±std. All metric scores are multiplied by
100 for readability purposes.

#Agents Models Metric
AdaCare ConCare RETAIN AUPRC (↑) AUROC (↑) min(+P, Se)

0
✓ - - 52.67±4.50 87.56±1.37 53.62±3.91
- ✓ - 49.71±4.83 87.21±1.41 52.96±3.74
- - ✓ 51.89±4.22 87.87±1.27 49.71±3.83

1
✓ - - 52.96±4.54 87.59±1.34 53.79±3.86
- ✓ - 50.55±4.67 87.24±1.42 52.78±3.56
- - ✓ 50.44±4.61 87.31±1.34 49.39±4.02

2
✓ ✓ - 52.61±4.85 87.96±1.33 53.96±3.8
✓ - ✓ 51.24±4.60 86.58±1.53 50.99±3.50
- ✓ ✓ 52.14±4.74 87.91±1.34 51.98±3.94

3 ✓ ✓ ✓ 54.05±4.88 88.80±1.31 54.44±3.80

Table 5: Performance of different LLMs of in-hospital mortal-
ity and 30-day readmission prediction results on MIMIC-IV
datasets. Bold indicates the best performance. Performance
is reported in the form of mean±std. All metric scores are
multiplied by 100 for readability purposes.

Methods MIMIC-IV Outcome MIMIC-IV Readmission
AUPRC (↑) AUROC (↑) min(+P, Se) (↑) AUPRC (↑) AUROC (↑) min(+P, Se) (↑)

GPT-4o-Mini 55.27±4.92 88.66±1.38 55.74±3.75 51.01±5.05 85.00±1.88 51.09±4.09
GPT-4o 54.13±4.84 88.59±1.36 54.38±3.96 50.93±4.81 86.89±1.48 49.44±3.63

Qwen-Turbo 52.88±4.76 88.57±1.28 54.68±3.70 49.95±4.13 80.10±1.81 50.38±3.29
Doubao-Pro 52.14±4.65 88.04±1.34 53.37±3.69 49.70±4.04 79.92±1.80 50.00±3.33

ColaCare (DeepSeek-V2.5) 54.05±4.88 88.80±1.31 54.44±3.80 51.91±4.99 87.72±1.37 50.16±4.17

6.5 RQ5: Case Study
To evaluate whether ColaCare provides reliable clinical reports
and summaries for interpretable analysis, we present a case study
based on a patient from the ESRD dataset’s mortality prediction
task. Fig. 3 illustrates each step in the ColaCare pipeline during
the collaborative consultation process.

In Step 1, each DoctorAgent is providedwith the patient’s records,
including basic information and multivariate time-series EHR data,
results from expert models such as mortality risk prediction logits,
feature importance, and population-level statistics, as well as rele-
vant retrieved documents. The DoctorAgents are then prompted to
generate an initial review for the patient. DoctorAgent 1 assesses
a moderate risk by focusing on the patient’s carbon dioxide bind-
ing power and albumin levels. DoctorAgent 2 determines a low
risk by concentrating on diastolic blood pressure and blood chlo-
rine levels, both within normal ranges for patients with end-stage
renal disease (ESRD). In contrast, DoctorAgent 3 identifies signifi-
cantly low blood potassium levels, indicating a precarious condition.
All DoctorAgents cite evidence from authoritative documents. In
Step 2, the MetaAgent synthesizes a report based on the reviews
from the three DoctorAgents, primarily integrating the analyses
of DoctorAgent 1 and DoctorAgent 3 to conclude a high mortality
risk and provide a comprehensive analysis. The MetaAgent high-
lights key factors such as carbon dioxide binding power, blood
potassium, and albumin levels, all of which are abnormal and pose
serious risks. Subsequently, in Step 3, each DoctorAgent reviews,
votes on, and comments on the MetaAgent’s synthesized report.
DoctorAgent 1 and DoctorAgent 2 concur with the MetaAgent’s

perspective, revising their initial assessments and addressing previ-
ously overlooked critical factors. Upon reaching consensus among
all DoctorAgents, the MetaAgent performs a final summary and
delivers the ultimate report.

6.6 RQ6: Cost Analysis
To evaluate the practical viability of the ColaCare framework in
real-world clinical settings, we conduct an analysis of its computa-
tional costs, as illustrated in Tab. 6. The cost analysis demonstrates
that ColaCare is effective, particularly when leveraging domain-
specific LLMs like DeepSeek-V2.5, making ColaCare a practical
tool for integration into clinical workflows.

Table 6:Average time and token cost of ColaCare in in-hospital
mortality and 30-day readmission prediction tasks on MIMIC-
IV, CDSL, and ESRD datasets.

Cost MIMIC-IV Outcome MIMIC-IV Readmission CDSL Outcome ESRD Outcome

Prompt Tokens 59,113.06 62,759.91 124,074.52 72,151.11
Output Tokens 4,435.91 4,570.47 5,456.79 6,156.30
# API Requests 8.56 8.37 10.39 11.86

7 LIMITATIONS AND FUTUREWORK
ColaCare shows promise in EHR modeling but has several limita-
tions and areas for future exploration:
• Generalizability:We focus on mortality and readmission pre-

dictions using three datasets and models like DeepSeek-V2.5
and GPT-4o. Evaluating ColaCare on diverse clinical tasks and
EHR datasets, and incorporating additional LLMs such as Claude,
Gemini, LLaMA, and Qwen, will validate its generalizability.

• HumanEvaluation:Although ColaCare generates interpretable
reports reviewed by expert doctors, broader evaluation with a
larger cohort of clinicians is necessary.

• Continuous Learning: Current EHR model parameters remain
fixed after training. Developing mechanisms to continuously
learn from LLM feedback and real-world clinical data can en-
hance its adaptability in dynamic healthcare environments.

8 CONCLUSION
This paper presents ColaCare, a framework that enhances EHR
modeling through LLM-drivenmulti-agent collaboration. ColaCare
delivers human-interpretable, personalized predictionswith patient-
specific evidence and can identify and rectify potential errors in pre-
dictions and evidence gathering. It integrates a knowledge-infused
Multidisciplinary Team (MDT) ensemble within an LLM-driven
multi-agent system, mirroring the collaborative and iterative na-
ture of real-world clinical decision-making processes. Experiments
on three real-world EHR datasets demonstrate ColaCare’s superior
performance in mortality and readmission predictions. ColaCare
advances personalized precision medicine and has the potential to
transform clinical decision support systems and healthcare delivery.

ETHICAL USE OF DATA
All EHR data used in this study are de-identified EHR datasets. We
adhere to the data usage policy. The MIMIC-IV dataset is processed
using secure Azure OpenAI API and human review of the data has
been waived.
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DoctorAgent 3DoctorAgent 1 DoctorAgent 2

MetaAgent

DoctorAgent 3DoctorAgent 1 DoctorAgent 2

Mortality risk from the expert model (AdaCare)
The mortality prediction risk for the patient from AdaCare model is 0.55 out of 1.0. The 

risk is at the middle 30% levels among all ESRD patients. The expert model especially 

pays great attention to the following features:

Feature importance and population-level stats
Carbon dioxide binding power: with importance weight of 0.788 out of 1.0. The feature 

value is 18.7 mmol/L, which is 32.0% lower than the median value of survival patients 

(27.4 mmol/L), 32.0% lower than the median value of deceased patients (27.5 mmol/L). 

The reference range for healthy people is 20 mmol/L to 29 mmol/L. The reference range 

for ESRD patients is higher than 25 mmol/L.

… …

Retrieved relevant documents
Document [1] (Title: Hemodialysis - Genitourinary Disorders - MSD Manual 

Professional Edition) A patient’s blood is pumped into a dialyzer containing 2 fluid 

compartments configured as bundles of hollow fiber capillary tubes or as parallel, 

sandwiched sheets of semipermeable membranes. In either configuration, blood in the first 

compartment is pumped along one side of a semipermeable membrane while a crystalloid 

solution (dialysate) is pumped along the other side, in a separate compartment, in the 

opposite direction. …

Document [2] …

… …

Mortality risk from the expert model (ConCare)
The mortality prediction risk for the patient from ConCare model is 0.17 out of 1.0. The 

risk is at the bottom 40% levels among all ESRD patients. The expert model especially 

pays great attention to the following features:

Feature importance and population-level stats
Diastolic blood pressure: with importance weight of 1.0 out of 1.0. The feature value is 

85.0 mmHg, which is 6.0% higher than the median value of survival patients (80.0 mmHg), 

21.0% higher than the median value of deceased patients (70.0 mmHg). The reference 

range for healthy people is 60 mmHg to 80 mmHg. The reference range for ESRD 

patients is higher than 70 mmHg.

… …

Retrieved relevant documents
Document [1] (Title: Renal Insufficiency in Pregnancy - Gynecology and Obstetrics -

MSD Manual Professional Edition) Renal disorders often do not worsen during 

pregnancy; noninfectious renal disorders are usually exacerbated only when uncontrolled 

hypertension coexists. However, significant renal insufficiency (serum creatinine > 3 mg/dL 

[>> 30 mg/dL [>Maternal renal insufficiency may cause Fetal growth restriction. …

Document [2] …

… …

Mortality risk from the expert model (RETAIN)
The mortality prediction risk for the patient from RETAIN model is 0.69 out of 1.0. The risk 

is at the top 30% levels among all ESRD patients. The expert model especially pays great 

attention to the following features:

Feature importance and population-level stats
Blood potassium: with importance weight of 0.749 out of 1.0. The feature value is 3.11 

mmol/L, which is 27.0% lower than the median value of survival patients (4.25 mmol/L), 

24.0% lower than the median value of deceased patients (4.07 mmol/L). The reference 

range for healthy people is 3.5 mmol/L to 5.5 mmol/L. The reference range for ESRD 

patients is higher than 4 mmol/L.

… …

Retrieved relevant documents
Document [1] (Title: Chronic Kidney Disease - Genitourinary Disorders - MSD 

Manual Professional Edition) Chronic kidney disease (CKD) is long-standing, 

progressive deterioration of renal function. Symptoms develop slowly and in advanced 

stages include anorexia, nausea, vomiting, stomatitis, dysgeusia, nocturia, lassitude, 

fatigue, pruritus, decreased mental acuity, muscle twitches and cramps, water retention, 

undernutrition, peripheral neuropathies, and seizures. ...

Document [2] …

…

Review
The patient, a 46-year-old female with End-Stage Renal Disease (ESRD) due to chronic 

glomerulonephritis, exhibits a moderate mortality risk of 0.55. At the final time-point, 

key indicators reveal concerning trends: 

Carbon dioxide binding power is 18.7 mmol/L, significantly below the ESRD reference 

range of >25 mmol/L, indicating metabolic acidosis, a condition associated with muscle 

wasting and accelerated kidney disease progression. 

Albumin levels are 30.2 g/L, also below the ESRD reference range of >32 g/L, 

suggesting malnutrition and increased susceptibility to infections. 

Despite these low values, food intake is 3495.67 g, higher than both survival and 

deceased patient medians, which may indicate an attempt to compensate for poor 

nutrient absorption or increased metabolic demands. 

These findings align with the AI model's high importance weights for these features, 

underscoring their critical role in the patient's prognosis.

Review
The patient, a 46-year-old female with End-Stage Renal Disease (ESRD) due to chronic 

glomerulonephritis, exhibits a mortality risk of 0.17, which is relatively low among 

ESRD patients. 

At the final time-point, her diastolic blood pressure of 85.0 mmHg is within the ESRD 

reference range (>70 mmHg) and is notably higher than the median value of 

deceased patients (70.0 mmHg), suggesting a potential protective effect against 

mortality. 

The patient's blood chlorine level of 98.0 mmol/L is within the normal range for ESRD 

patients and is slightly higher than the median value of deceased patients, further 

supporting a lower mortality risk.

Her creatinine level is 768.0 μmol/L, which, although elevated, is lower than the typical 

ESRD reference range (>900 μmol/L), indicating some degree of renal function risk. 

Overall, the patient's condition appears relatively stable, with key biomarkers indicating a 

lower likelihood of adverse outcomes.

Review
The patient, a 46-year-old female with End-Stage Renal Disease (ESRD) due to chronic 

glomerulonephritis, exhibits several concerning trends at the final time-point. 

Notably, her blood potassium level is 3.11 mmol/L, significantly below the reference 

range for ESRD patients (>4 mmol/L), indicating a potential risk for cardiac 

arrhythmias and muscle weakness.

Additionally, her albumin level is 30.2 g/L, which is lower than the reference range for 

ESRD patients (>32 g/L), suggesting malnutrition or inadequate protein intake. 

Despite these concerning biochemical markers, her food intake (3495.67 g) is higher 

than the median values for both survival and deceased patients, which may indicate an 

attempt to compensate for nutritional deficits but could also contribute to fluid 

overload. 

Overall, the patient's condition is precarious, with significant risks related to 

electrolyte imbalances, nutritional status, and cardiovascular health, all of which are 

critical in ESRD management.

Reference

Document [1]: Renal Insufficiency in Pregnancy - Gynecology and Obstetrics - MSD 

Manual Professional Edition - 'Maternal renal insufficiency may cause Fetal growth 

restriction Stillbirth After kidney transplantation, full-term, uncomplicated pregnancy is often 

possible if women have all of the following: A transplanted kidney that has been in place 

for > 2 years Normal renal function No episodes of rejection Normal blood pressure (BP) 

Delivery is usually required before term because preeclampsia, fetal growth restriction, or 

uteroplacental insufficiency develop.’,

Document [2]: Hemodialysis - Genitourinary Disorders - MSD Manual Professional Edition -

'Overall adjusted annual mortality in hemodialysis-dependent patients is about 16%. The 5-

year survival rate is lower for patients with diabetes than for patients with 

glomerulonephritis.',

Document [3]: Chronic Kidney Disease - Genitourinary Disorders - MSD Manual 

Professional Edition - 'Chronic kidney disease (CKD) is long-standing, progressive 

deterioration of renal function. Symptoms develop slowly and in advanced stages include 

anorexia, nausea, vomiting, stomatitis, dysgeusia, nocturia, lassitude, fatigue, pruritus, 

decreased mental acuity, muscle twitches and cramps, water retention, undernutrition, 

peripheral neuropathies, and seizures.'

Round 1 - Review
I agree with the meta doctor, and I change my original perspective.

The meta doctor's opinion aligns with the critical findings of metabolic acidosis, 

hypoalbuminemia, and hypokalemia, which are significant indicators of poor prognosis in 

ESRD.  My previous analysis did not fully emphasize the severity of these electrolyte 

imbalances and their combined impact on cardiovascular health.  The high food intake, 

while noted, does not mitigate the severe nutritional deficits indicated by hypoalbuminemia.  

The inclusion of hypokalemia in the meta doctor's assessment is crucial, as it directly 

relates to cardiovascular risks and overall metabolic stability, which are paramount in 

ESRD management.

Round 1 - Review
I agree with the meta doctor, and I change my original perspective.

The meta doctor's opinion highlights critical factors that were overlooked in my 

initial analysis.

Specifically, the presence of metabolic acidosis, hypoalbuminemia, and hypokalemia are 

significant indicators of a high mortality risk. 

Metabolic acidosis (carbon dioxide binding power of 18.7 mmol/L) can lead to muscle 

wasting, bone loss, and accelerated kidney disease progression (Document [1]). 

Hypoalbuminemia (albumin level of 30.2 g/L) suggests poor nutritional status and 

increased susceptibility to infections and fluid retention, which are common complications in 

ESRD patients (Document [1]). 

Hypokalemia (blood potassium level of 3.11 mmol/L) can cause cardiac arrhythmias and 

muscle weakness, further complicating the patient's condition (Document [1]). 

Therefore, these key features collectively suggest a high mortality risk, aligning with 

the meta doctor's opinion.

Round 1 - Review
I agree with the meta doctor.

The synthesized report accurately captures the critical issues affecting the patient's 

prognosis. The patient's hypokalemia, hypoalbuminemia, and metabolic acidosis are 

significant indicators of poor prognosis in ESRD patients, as highlighted in Document [1]. 

Hypokalemia can lead to severe cardiac arrhythmias and muscle weakness, while 

hypoalbuminemia suggests inadequate protein intake or malnutrition, both of which are 

associated with increased mortality risk. The patient's higher food intake, while attempting 

to compensate for nutritional deficits, may also contribute to fluid overload, a common 

complication in ESRD. The ongoing cardiovascular stress indicated by the patient's blood 

pressure further exacerbates her condition. These factors collectively contribute to a 

high mortality risk, aligning with the meta doctor's opinion.

Round 1 - Reference
Document [1]: 'Moderate metabolic acidosis (plasma bicarbonate content 15 to 20 mmol/L) 

is characteristic. Acidosis causes muscle wasting due to protein catabolism, bone loss due 

to bone buffering of acid, and accelerated progression of kidney disease.',

Document [1]: 'Anemia is characteristic of moderate to advanced CKD (\u2265 stage 3). 

The anemia of CKD is normochromic-normocytic, with a hematocrit of 20 to 30% (35 to 

40% in patients with polycystic kidney disease).',

Document [1]: 'Potassium-sparing diuretics, angiotensin-converting enzyme inhibitors, beta-

blockers, nonsteroidal anti-inflammatory drugs may raise plasma potassium levels in 

patients with less advanced renal failure.'

Round 1 - Reference
Document [1]: Decreased renal function interferes with the kidneys\u2019 ability to maintain 

fluid and electrolyte homeostasis. Moderate metabolic acidosis (plasma bicarbonate 

content 15 to 20 mmol/L) is characteristic. Acidosis causes muscle wasting due to protein 

catabolism, bone loss due to bone buffering of acid, and accelerated progression of kidney 

disease.,

Document [1]: Anemia is characteristic of moderate to advanced CKD (\u2265 stage 3). 

The anemia of CKD is normochromic-normocytic, with a hematocrit of 20 to 30% (35 to 

40% in patients with polycystic kidney disease).,

Document [1]: Potassium-sparing diuretics, angiotensin-converting enzyme inhibitors, beta-

blockers, nonsteroidal anti-inflammatory drugs may raise plasma potassium levels in 

patients with less advanced renal failure.

Round 1 - Reference
Document [1]: 'Decreased renal function interferes with the kidneys\u2019 ability to 

maintain fluid and electrolyte homeostasis. The ability to concentrate urine declines early 

and is followed by decreases in ability to excrete excess phosphate, acid, and potassium.',

Document [1]: 'Hypertension is present in > 80% of patients with advanced CKD and is 

usually related to hypervolemia.',

Document [3]: 'Volume overload generally refers to expansion of the extracellular fluid (ECF) 

volume. ECF volume expansion typically occurs in heart failure, acute or chronic kidney 

failure, nephrotic syndrome, and cirrhosis.'

MetaAgent - Final Report
The patient, a 46-year-old female with End-Stage Renal Disease (ESRD) due to chronic 

glomerulonephritis, exhibits significant biochemical abnormalities including metabolic 

acidosis, hypoalbuminemia, and hypokalemia. These conditions indicate severe 

nutritional deficits, electrolyte imbalances, and potential cardiovascular risks. 

Despite increased food intake, the patient's nutritional status remains compromised, 

suggesting poor nutrient absorption or increased metabolic demands. 

These factors collectively contribute to a precarious condition with significant risks 

related to electrolyte imbalances, nutritional status, and cardiovascular health, all of 

which are critical in ESRD management.

Step 1. Generation of Initial Reviews

Step 2. Synthesized Preliminary Report

Step 3. Collaborative Consultation Process

Concatenate

Generate initial review

Report

The patient, a 46-year-old female with End-Stage Renal Disease (ESRD) due to chronic 

glomerulonephritis, exhibits several concerning trends that collectively indicate a high 

mortality risk. 

Key features include metabolic acidosis (carbon dioxide binding power of 18.7 mmol/L), 

hypoalbuminemia (albumin level of 30.2 g/L), and hypokalemia (blood potassium level 

of 3.11 mmol/L). These biochemical abnormalities suggest significant nutritional deficits, 

electrolyte imbalances, and potential cardiovascular risks. 

Despite a higher food intake, the patient's nutritional status remains compromised, 

indicating poor nutrient absorption or increased metabolic demands. 

These factors collectively contribute to a precarious condition with significant risks 

related to electrolyte imbalances, nutritional status, and cardiovascular health, all of which 

are critical in ESRD management.

Reference

Chronic Kidney Disease - Genitourinary Disorders - MSD Manual Professional Edition: 

'Moderate metabolic acidosis (plasma bicarbonate content 15 to 20 mmol/L) is 

characteristic. Acidosis causes muscle wasting due to protein catabolism, bone loss due 

to bone buffering of acid, and accelerated progression of kidney disease.’,

Chronic Kidney Disease - Genitourinary Disorders - MSD Manual Professional Edition: 

'Undernutrition leading to generalized tissue wasting is a prominent feature of chronic 

uremia.’,

Hemodialysis - Genitourinary Disorders - MSD Manual Professional Edition -

'Hypotension has multiple causes, including too-rapid water removal, osmotic fluid shifts 

across cell membranes, acetate in the dialysate, heat-related vasodilation, allergic 

reactions, sepsis, and underlying conditions (eg, autonomic neuropathy, cardiomyopathy 

with poor ejection fraction, myocardial ischemia, arrhythmias).’,

Chronic Kidney Disease - Genitourinary Disorders - MSD Manual Professional Edition -

'Anemia is a common complication of moderate to advanced CKD (\u2265 stage 3) and, 

when severe, can cause symptoms such as fatigue, pallor, and dyspnea. The anemia of 

CKD is normochromic-normocytic, with a hematocrit of 20 to 30% (35 to 40% in patients 

with polycystic kidney disease). It is usually caused by deficient erythropoietin production 

due to a reduction of functional renal mass.'

Generate synthesized report

MetaAgent

Express opinions

Generate final report

Agreement reached

Patient Record
Here is the patient's basic information:

This female patient, aged 46.33, is an End-Stage Renal Disease(ESRD) patient with original disease Chronic glomerulonephritis.

Here is multivariate time-series electronic health record (EHR) data of the patient, a structured collection of patient information comprising multiple clinical variables measured at various time points across multiple patient visits, represented as sequences of numerical values for each feature:

- Blood chlorine: "99.0, 99.0, 100.0, 102.0, 102.0, 102.0, 98.0, 101.0, 99.9, 100.0, 102.0, 102.0, 100.0, 98.0, 92.0, 96.0, 101.0, 101.0, 93.0, 96.0, 101.0, 97.0, 101.0, 97.0, 102.0, 100.0, 99.0, 100.0, 99.0, 96.0, 98.0". Unit: mmol/L. Reference range for healthy people: 96 mmol/L to 106 mmol/L. Reference range for ESRD 

patients: higher than 96 mmol/L.

- Carbon dioxide binding power: "22.9, 22.9, 25.6, 24.5, 24.5, 26.3, 22.5, 22.2, 24.0, 22.6, 24.3, 24.3, 21.7, 26.4, 26.6, 29.0, 26.7, 26.7, 27.7, 26.2, 25.9, 26.8, 22.6, 23.2, 24.3, 23.1, 25.1, 26.3, 25.0, 20.4, 18.7". Unit: mmol/L. Reference range for healthy people: 20 mmol/L to 29 mmol/L. Reference range for ESRD patients: 

higher than 25 mmol/L.

- … …

The patient's EHR data is recorded at the following time points:

2007-07-17, 2007-10-16, 2007-12-18, 2008-04-22, 2008-07-01, 2008-10-01, 2009-04-14, 2009-07-01, 2009-11-25, 2010-01-01, 2010-04-01, 2010-07-01, 2010-10-01, 2011-01-05, 2011-08-04, 2011-12-06, 2012-03-06, 2012-04-24, 2012-06-05, 2012-08-06, 2012-10-09, 2012-12-04, 2013-02-05, 2013-03-05, 2013-08-06, 2013-

10-22, 2014-03-04, 2014-06-26, 2014-10-17, 2015-01-26, 2015-03-19.
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Reference

Document [1]: Chronic Kidney Disease - Genitourinary Disorders - MSD Manual 

Professional Edition - 'Anemia is a common complication of moderate to advanced CKD 

(\u2265 stage 3) and, when severe, can cause symptoms such as fatigue, pallor, and 

dyspnea. The anemia of CKD is normochromic-normocytic, with a hematocrit of 20 to 30% 

(35 to 40% in patients with polycystic kidney disease). It is usually caused by deficient 

erythropoietin production due to a reduction of functional renal mass.’,

Document [1]: Chronic Kidney Disease - Genitourinary Disorders - MSD Manual 

Professional Edition - 'Patients with CKD have small shrunken kidneys (usually \u2264 10 

cm in length) with thinned, hyperechoic cortex. Obtaining a precise diagnosis becomes 

increasingly difficult as renal function reaches values close to those of end-stage kidney 

disease.’,

Document [3]: Hemodialysis - Genitourinary Disorders - MSD Manual Professional Edition -

'Hypotension has multiple causes, including too-rapid water removal, osmotic fluid shifts 

across cell membranes, acetate in the dialysate, heat-related vasodilation, allergic 

reactions, sepsis, and underlying conditions (eg, autonomic neuropathy, cardiomyopathy 

with poor ejection fraction, myocardial ischemia, arrhythmias).'

Reference

Chronic Kidney Disease - Genitourinary Disorders - MSD Manual Professional Edition: 

'Moderate metabolic acidosis (plasma bicarbonate content 15 to 20 mmol/L) is 

characteristic. Acidosis causes muscle wasting due to protein catabolism, bone loss due to 

bone buffering of acid, and accelerated progression of kidney disease.',

Chronic Kidney Disease - Genitourinary Disorders - MSD Manual Professional Edition: 

'Anemia is characteristic of moderate to advanced CKD (\u2265 stage 3). The anemia of 

CKD is normochromic-normocytic, with a hematocrit of 20 to 30% (35 to 40% in patients 

with polycystic kidney disease). It is usually caused by deficient erythropoietin production 

due to a reduction of functional renal mass.',

Chronic Kidney Disease - Genitourinary Disorders - MSD Manual Professional Edition: 

'Undernutrition leading to generalized tissue wasting is a prominent feature of chronic 

uremia.'

Figure 3: The case of a patient from ESRD dataset, who deceased within one year after the last follow-up visit. Important indicators
are shown in dark red color. Diseases are shown in red color. Healthy indicators are shown in green color.
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A DETAILED DISCUSSION ON THEWORK’S
RELEVANCE TO THEWEB AND THE
TRACK

The Web Conference (WWW) is recognized for its pioneering role
in exploring the Web’s critical enablement of new research and
applications, particularly within the realm of machine learning. As
a distinct scholarly discipline, it boasts its own research method-
ologies, tools, and challenges, with a specific focus on enhancing
the Web’s technical infrastructure, including core platforms, and
democratizing access to Web content and technologies to ensure
they are more accessible, equitable, and inclusive.

Our submission aligns with the WWW’s research scope in sev-
eral fundamental respects:

A.1 Improving Accessibility of Web-Based
Healthcare Services

For the majority of patients lacking expertise in the medical field,
accessing web-based healthcare services to support the assessment
and analysis of their health conditions presents significant acces-
sibility challenges. Patients often rely on broad disease keywords
to search for general medical knowledge on the web, which, while
available, lacks the specificity and depth needed for accurate health
assessments:
(1) Vague Keyword Usage: The keywords used by patients are

often vague, leading to the retrieval of general medical infor-
mation that is too broad and not tailored to their specific health
conditions. This makes it difficult for patients to understand
and apply the information to their situation.

(2) Limitations of Traditional Search Engines: Patients’ elec-
tronic medical records contain more targeted information in
the form of structured test and examination values. Identifying
which values are indicative of their health prognosis is challeng-
ing and beyond the capabilities of traditional search engines or
general large language models (LLMs), which lack data-driven
analysis and modeling capabilities.

(3) Generic Advice from LLMs: Even when using general LLMs
to analyze health conditions, the advice given is often too broad
and generic, lacking specific direction. Moreover, the black-
box nature of these models makes the results unreliable and
inexplicable.
Our proposed framework addresses these issues by modeling

electronic medical records data in a medical domain-specific, data-
driven manner. It utilizes multi-agent, multi-view selection to iden-
tify the most critical features indicative of a patient’s health con-
dition, along with their abnormal descriptions. By leveraging the
capabilities of large language models to retrieve highly targeted
information on the web, our framework provides analysis results
supported by high-credibility evidence. This enhances the acces-
sibility of web-based healthcare services, serving a broader range
of patients and empowering them to conduct health assessments

based on their specific test data, thereby significantly improving
the accessibility of medically relevant knowledge.

A.2 Facilitating Collaborative Prognosis for
Physicians

Our method facilitates collaborative prognosis tasks for physicians
worldwide who are web users. Designed as a web-based health
monitoring framework and trained on web-accessed electronic
medical records and medical corpora, our method advances person-
alized medicine, especially in underdeveloped countries. We have
developed an online AI-Doctor interactive system that is fully inter-
nationalized and accessible, further indicating that our work falls
within the scope of WWW. Related research has been previously
published in WWW, as evidenced by the following citations:
(1) (WWW’21) Distilling knowledge from publicly available online

EMR data to emerging epidemics for prognosis, https://dl.acm.
org/doi/abs/10.1145/3442381.3449855

(2) (WWW’20) StageNet: Stage-Aware Neural Networks for Health
Risk Prediction, https://dl.acm.org/doi/10.1145/3366423.3380136

(3) (WWW’19) LAVA: Longitudinal Adversarial Attack on Elec-
tronic Health Records Data, https://dl.acm.org/doi/abs/10.1145/
3308558.3313528

(4) (WWW’19) Improving Medical Code Prediction from Clinical
Text via Incorporating Online Knowledge Sources, https://dl.
acm.org/doi/10.1145/3308558.3313485

(5) (WWW’17) Blood Pressure Prediction via Recurrent Models
with Contextual Layer, https://dl.acm.org/doi/10.1145/3038912.
3052604

A.3 Integrating Structured Data Analysis with
Large Language Models

Large language models have become a fundamental engine for
web-based services, revolutionizing the processing, analysis, and
retrieval of purely natural language-based information. However,
there exists a gap in the industry for supporting users in analyzing
and utilizing structured data on the web. Our work bridges this gap
by combining state-of-the-art domain-specific deep learningmodels
for data-driven analysis and modeling of structured data with large
language models through multi-agent collaboration. This offers a
new perspective for the integration of structured data analysis into
web-based services. By publicly releasing the code, our framework
ModelName contributes to the conference’s mission of promoting
transparency in web applications for healthcare. This openness
supports educational initiatives and the development of trustworthy
web tools.

In summary, this work not only advances the field of inter-
pretable clinical decision-making but also fits seamlessly within
the research scope of the WWW conference. It embodies the con-
ference’s vision of creating AI tools that are both data-centric and
web-centric, offering a significant contribution towards building
trustworthy and transparent web applications in healthcare.
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