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ABSTRACT

We introduce a sequence-conditioned critic for Soft Actor–Critic (SAC) that mod-
els trajectory context with a lightweight Transformer and trains on aggregated
N -step targets. Unlike prior approaches that (i) score state–action pairs in iso-
lation or (ii) rely on actor-side action chunking to handle long horizons, our
method strengthens the critic itself by conditioning on short trajectory segments
and integrating multi-step returns—without importance sampling (IS). The re-
sulting sequence-aware value estimates capture the critical temporal structure for
extended-horizon and sparse-reward problems. On local-motion benchmarks, we
further show that freezing critic parameters for several steps makes our update
compatible with CrossQ’s core idea, enabling stable training without a target net-
work. Despite its simplicity—a 2-layer Transformer with 128–256 hidden units
and a maximum update-to-data ratio (UTD) of 1—the approach consistently out-
performs standard SAC and strong off-policy baselines, with particularly large
gains on long-trajectory control. These results highlight the value of sequence
modeling and N -step bootstrapping on the critic side for long-horizon reinforce-
ment learning.

Transformer Critic
(Causality Mask)

...

...

(a) Transformer critic processes segments of actions
rather than a single action, using causal self-attention
so token i attends only to timesteps ≤ i, preventing
future-information leakage.
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(b) Aggregated success on Meta–World ML1 (50
tasks) comparing T–SAC to step-based and episodic
baselines. Curves show IQM success rate with 95%
bootstrap confidence intervals; unless noted, results
average 8 seeds and count success only at the final
timestep.

Figure 1: T–SAC overview and aggregate Meta-World ML1 results.

1 INTRODUCTION

Off–policy actor–critic methods are the workhorses of continuous control. SAC (Haarnoja et al.,
2018a) is notable for sample efficiency and stability, driven by tightly controlled bootstrap targets
and mechanisms that curb overestimation. Recent work shows that similar stability can be achieved
by slowing critic updates or regularizing its function class (Vincent et al., 2025; Piché et al., 2021;
Gallici et al., 2024). In this vein, CrossQ (Bhatt et al., 2019) removes target networks by pairing
Batch Renormalization (BRN) (Ioffe, 2017) with bounded activations, yielding strong locomotion
results.
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A complementary line of work uses temporally extended actions for temporal abstraction. Move-
ment primitives and action chunking can aid exploration and produce smoother trajectories than
purely step–based control (Otto et al., 2023a; Li et al., 2024b; Zhang et al., 2022). However, meth-
ods that jointly predict actions and repetition horizons (Sharma et al., 2017) or replace the policy
with recurrent sequence models (Zhang et al., 2022) have not consistently produced robust gains.

Accurate value estimation remains difficult in sparse-reward, long-horizon, high-dimensional set-
tings. Multi-step targets (N -step returns) (Sutton et al., 1998) can reduce bias at the cost of higher
variance and typically require off-policy IS (Precup et al., 2000), which complicates—and can desta-
bilize—training (Munos et al., 2016).

Transformers have become strong backbones for RL: self-attention supports sequence modeling,
long-range credit assignment, and flexible conditioning on history (Vaswani et al., 2017; Parisotto
et al., 2020; Agarwal et al., 2023). They parameterize policies and critics, serve as world models, and
enable offline RL via trajectory/return conditioning (Chen et al., 2022; 2021; Janner et al., 2021).

This paper: Transformer-based Soft Actor-Critic (T-SAC). Our primary contribution is
T-SAC, a step-based Soft Actor–Critic in which the standard MLP critic is replaced by a sequence-
conditioned Transformer critic trained on short trajectory segments with N -step returns. By chunk-
ing temporal structure inside the critic—attending over brief state–action windows and aggregating
multi-step TD targets—we improve long-horizon credit assignment while keeping the policy strictly
one-step (no trajectory-level outputs or replanning) and the update rule free of IS.

Around this core design, we introduce several supporting choices that improve stability and prac-
ticality but are not the main conceptual novelty: (i) causal masking and a lightweight Transformer
depth, following TOP-ERL in spirit but adapted to a step-based SAC setting; (ii) a simple gradient-
averaged N -step loss; and (iii) a lightweight critic parameter-freezing schedule on locomotion
benchmarks that enables stable training without target networks (in contrast to Polyak averaging
as in Deep Q-Learning (Van Hasselt et al., 2016)). Empirically, T-SAC preserves SAC-style stabil-
ity and is sample efficient, solving most Meta-World tasks in ∼5M interactions, achieving 96.8%
success on Box–Pushing (dense), and remaining stable at low update-to-data (UTD) ratios (Meta-
World = 1, Gymnasium MuJoCo = 0.75, Box–Pushing = 0.25), with 1M interactions at UTD= 1
completing in ∼3 hours.

2 RELATED WORK

2.1 TRANSFORMER-BASED CRITICS FOR EPISODIC RL

Episodic RL (ERL) replaces per-step actions with trajectory-level primitives (Otto et al., 2023a;
Li et al., 2024b), easing long-horizon reasoning but complicating temporal credit assignment, espe-
cially off-policy. TOP-ERL (Li et al., 2024a) partitions each episode into fixed-length segments and
trains a Transformer critic that attends across segments. With truncatedN -step targets (Sutton et al.,
1998), the critic predicts per-segment returns, enabling off-policy replay while exploiting attention
for partial observability and long-range dependencies. On manipulation benchmarks, TOP-ERL
improves over prior ERL-based, step-based, and on-policy value-based baselines (Li et al., 2024a).

Transformer critics for episodic vs. step-based control. TOP-ERL (Li et al., 2024a) is an early
Transformer-critic method for episodic control: a ProDMP policy (Li et al., 2023) outputs full tra-
jectories, and the critic evaluates segment-level returns along them. Replanning is discussed but
not implemented in the released experiments. The method additionally relies on a Trust Region
Projection Layer (TRPL) (Otto et al., 2021), typically uses ∼20M interactions, and still underper-
forms on some multi-phase Meta-World tasks (Yu et al., 2020) (e.g., Assembly, Disassemble) and
Box–Pushing at tight tolerances (Otto et al.).

By contrast, T-SAC remains in the standard step-based, closed-loop regime: the policy outputs an
action at every time step from the current state, and the Transformer critic is prefix-conditioned
on short state–action windows sampled from replay. It is trained with non-soft N -step TD targets
without importance sampling, keeping it closer to conventional off-policy actor–critic methods than
to episodic ERL: temporal abstraction lives in the critic’s conditioning and targets, not in an open-
loop policy.
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Decision Transformer and related offline sequence-modeling approaches (Chen et al., 2021; Janner
et al., 2021) instead perform policy-side sequence modeling on fixed datasets, mapping past trajec-
tories and target returns directly to actions. These methods are complementary to T-SAC: we use
a Transformer only for the critic, in an online, off-policy setting. In principle, an offline Decision
Transformer policy could be paired with a T-SAC-style critic, or our critic architecture could be
adapted to evaluate trajectories generated by such sequence policies.

2.2 TRAINING WITHOUT TARGET NETWORK

Target networks stabilize bootstrapped critics but slow value propagation and add complexity (Kim
et al., 2019; Piché et al., 2021). Recent work instead limits target drift or smooths backups. The
strongest result, CrossQ, achieves state-of-the-art (SOTA) sample efficiency in continuous control
by removing the target network and stabilizes a single bootstrapped critic with BRN (Ioffe, 2017).
Related target-free strategies include value smoothing (mellowmax) (Asadi & Littman, 2017; Kim
et al., 2019), constrained/proximal updates (Durugkar & Stone, 2018; Ohnishi et al., 2019), function-
space regularization and partial freezing (Piché et al., 2021; Asadi et al., 2024; Vincent et al., 2025)
feature decorrelation (Mavrin et al., 2019). Theory unifies these mechanisms as alternatives to target
networks via partial freezing, regularization, and separation of optimization dynamics (Fellows et al.,
2023).

2.3 ACTION CHUNKING IN REINFORCEMENT LEARNING

Action chunking replaces per-step control with short open-loop sequences of actions (“chunks”),
which can capture temporal structure, accelerate value propagation via longer effective horizons,
and promote temporally coherent exploration (Kalyanakrishnan et al., 2021; Zhang et al., 2022).
The trade-off is reduced reactivity within a chunk (Liu et al., 2024), but for long-horizon, sparse-
reward manipulation this bias often pays off (Zhang et al., 2021; Gupta et al., 2019).

Reinforcement Learning with Action Chunking (Q-chunking) (Li et al., 2025) applies TD-based
actor–critic learning directly in the chunked action space: the policy proposes an H-step action se-
quence and the critic evaluatesQ(st, at:t+H−1), enabling unbiasedH-step backups and efficient up-
dates (Li et al., 2025). In their implementation, the critic is a simple MLP that ingests the state con-
catenated with the proposed action chunk (rather than a sequence model), which keeps the method
lightweight while still reaping the benefits of temporally extended actions (Li et al., 2025).

3 PRELIMINARIES

Off-Policy Reinforcement Learning. Reinforcement learning (RL) (Sutton et al., 1998) for-
malizes sequential decision making as a Markov decision process (MDP) (S,A, P, r, γ): at time
t an agent observes st, selects at ∼ π(· | st), receives rt = r(st, at), and transitions to
st+1 ∼ P (· | st, at); the goal is to learn a policy maximizing J(π) = Eπ,P [

∑∞
t=0 γ

trt] using
value functions V π(s) and Qπ(s, a) that satisfy Bellman consistency, with Q⋆ inducing the optimal
policy. Algorithms differ in how they estimate and improve these quantities—value-based learn-
ing (Watkins & Dayan, 1992; Hessel et al., 2018; Van Hasselt et al., 2016; Rummery & Niranjan,
1994), actor–critic (Mnih et al., 2016; Schulman et al., 2017; 2015a; Fujimoto et al., 2018), or di-
rect policy optimization (Kakade, 2001; Peters & Schaal, 2008)—while managing exploration vs.
exploitation (Sutton et al., 1998). Off-policy RL learns a target policy π from data generated by a
(possibly different) behavior policy µ, reusing transitions (s, a, r, s′) via replay buffers and boot-
strapped Bellman updates; distribution mismatch when evaluating π from µ-data can be corrected
(e.g., with IS (Sutton et al., 1998)). This decoupling enables efficient experience reuse and underpins
methods like Q-learning (Watkins & Dayan, 1992) and the SAC (Haarnoja et al., 2018a) family.

Soft Actor-Critic Let πθ(a | s) be a stochastic policy with parameters θ. Let Qψ(s, a) be the
critic with parameters ψ, and let Qϕ be its target network (e.g., a Polyak-averaged copy of Qψ).
SAC (Haarnoja et al., 2018a) maximizes a maximum-entropy objective to improve robustness and
exploration:

J(πθ) = E
[ ∞∑
t=0

γt
(
rt + αH(πθ(· | st))

)]
.

3
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where γ is the discount factor.

The Bellman target is

yt = rt + γ Ea′∼πθ(·|st+1)

[
Qϕ(st+1, a

′)− α log πθ(a
′ | st+1)

]
,

and the critic minimizes the squared error

JQ(ψ) = E(st,at,rt,st+1)∼D

[
1
2

(
Qψ(st, at)− yt

)2]
.

The actor minimizes

Jπ(θ) = Es∼D, a∼πθ(·|s)
[
α log πθ(a | s)−Qψ(s, a)

]
.

The temperature α is tuned to match a target entropy H̄ by minimizing

J(α) = Es∼D, a∼πθ(·|s)
[
− α

(
log πθ(a | s) + H̄

)]
(Haarnoja et al., 2018b).

N-step Returns and IS Using the same notation as above, on-policy N-step targets speed up credit
assignment (Sutton et al., 1998; Schulman et al., 2015b; Mnih et al., 2016), i.e.,

y
(n)
t,soft =

n−1∑
k=0

γk Eat+k∼πθ
[
rt+k − α log πθ(at+k | st+k)

]
+ γn Ea∼πθ(·|st+n)

[
Qϕ(st+n, a)

]
.

With off-policy data drawn from a behavior policy µ ̸= πθ, per-decision importance ratios

ρt+k =
πθ(at+k | st+k)
µ(at+k | st+k)

can be used to correct the distributional mismatch (Sutton et al., 1998), i.e.,

Ĝ
(n)
t,soft =

n−1∑
k=0

γk k−1∏
j=0

ρt+j

[rt+k − α log πθ(at+k | st+k)
]
+

γn n−1∏
j=0

ρt+j

Qϕ(st+n, at+n),

with the convention that an empty product equals 1. When µ = πθ, all ρ’s are 1 and Ĝ(n)
t reduces to

the standard N-step target. Pure IS can introduce high variance, therefore the step length n cannot
be chosen to be very large (Precup et al., 2000; Sutton et al., 1998; Espeholt et al., 2018).

Averaged N-step Returns for Critic Updates Using N-step returns is a standard way to re-
duce target bias for the critic (Sutton et al., 1998). For a starting index t and horizon n ∈
[1,max length], following Zhang et al. (2022) we define the N-step target as

G
(n)
non−soft(st, at, . . . , at+n−1) =

n−1∑
j=0

γjrt+j + γn Vϕ(st+n), (1)

with discount γ ∈ (0, 1] and a target network parameterized by ϕ. Here Vϕ(s) :=
Ea∼πθ(·|s)

[
Qϕ(s, a)

]
is the (non-entropy) bootstrap value under the current policy. While larger

n reduces bootstrapping bias, the variance of G(n) typically grows with n (Precup et al., 2000). A
practical variance reduction is to average partial returns (Konidaris et al., 2011; Daley et al., 2024):

Ḡ(n) =
1

n

n∑
i=1

G(i). (2)

This averaging lowers the variance of the reward-sum component from O(n) toward roughly
O(n/4)–O(n/3) (decreasing with n, depending on reward correlations), and makes the value-
estimation term decay as 1/n; under the same assumptions as (Daley et al., 2024), the full proof
appears in App. C. This motivates using multiple horizons during critic training (see § 4.2). How-
ever, in our T-SAC implementation, we do not average N -step returns, as this strategy performs
poorly in sparse-reward settings (see App. F).

4
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4 TRANSFORMER-BASED SOFT ACTOR-CRITIC (T-SAC)

4.1 N-STEP RETURNS FOR CRITIC UPDATES

4.1.1 GRADIENT-LEVEL AVERAGING OF N-STEP RETURNS

Notation. For horizon i, define the prefix-conditioned online critic output Q
(i)
ψ :=

Qψ(st, at, . . . , at+i−1). Directly averaging targets can dilute sparse reward signals (App. F). In-
stead, we form per-horizon losses

Li(ψ) = 1
2

(
Q

(i)
ψ −G

(i)
)2
, i = 1, . . . , n, (3)

where a shared-weights online critic outputs Q(i)
ψ for each prefix (st, at, . . . , at+i−1) (st and at use

separate embedding layers). We then average gradients across horizons:

∇ψL̄ =
1

n

n∑
i=1

∇ψLi(ψ). (4)

Because adjacent horizons have overlapping targets and correspond to adjacent decoder posi-
tions in the same network, their per-parameter gradient contributions are positively—but not per-
fectly—correlated. Averaging therefore reduces update variance while preserving sparse signals
(App. D, F; Fig. 2).

4.1.2 STABLE CRITIC LEARNING WITHOUT IMPORTANCE SAMPLING

Standard off-policy N-step TD presumes that post-at actions are drawn from the current policy
πθ, which mismatches replay generated by a behavior policy µ. Per-decision IS with ρt+k =
πθ(at+k|st+k)
µ(at+k|st+k) corrects this but injects high variance (Precup et al., 2000; Sutton et al., 1998; Es-

peholt et al., 2018).

Similarly to Li et al. (2024a), we instead change the target: the critic predicts prefix-conditioned
values for realized prefixes from replay,

{Qψ(st, at:t+i−1) }ni=1,

with i-step targets

G(i)(st, at:t+i−1) =

i−1∑
j=0

γjrt+j + γiVϕ(st+i), (5)

and the loss

Lcritic = E(st,at:t+n−1)∼D

[
1
n

n∑
i=1

(
Qψ(st, at:t+i−1)−G(i)(st, at:t+i−1)

)2]
. (6)

As rewards follow the recorded prefix at:t+i−1, no assumption that actions came from πθ is needed,
and hence, no IS is required. Only the bootstrap at t+i depends on πθ via Vϕ(st+i).

Supervising short windows with multi-horizon targets and averaging their gradients yields stable up-
dates and preserves sparse signals, enabling “multi-step supervision, one-step policy update” without
IS (Fig. 2, 9b).

4.1.3 CONNECTION TO STANDARD N-STEP TD AND THEORETICAL GUARANTEES

Equations 5–6 can be viewed as a standard multi-step TD update in an MDP where each action
prefix at:t+i−1 is treated as an extended action. For a fixed horizon i, we define

x = (st, at:t+i−1),

use equation 5 as the N -step target G(i)(x), and minimize the squared TD error(
Qψ(x)−G(i)(x)

)2
,

5
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exactly as in classical N -step Q-learning.

The key difference to off-policy N -step TD with importance sampling (IS) is what the critic is
asked to predict. IS-corrected targets are (in principle) unbiased for Qπ , but have high variance and
typically require clipping when behavior and target policies differ. Our critic instead learns the value
of realized prefixes under the replay distribution.

From a theoretical perspective, conditioned on a given state st and realized prefix at:t+i−1, the dis-
tribution over future rewards is fully determined by the environment dynamics and does not depend
on how this prefix was generated (behavior versus target policy). Empirically this yields more stable
long-horizon learning. See App. E for the formal connection to existing N -step TD theory.

4.2 CRITIC NETWORK AND OBJECTIVE

Our critic is a causal Transformer that ingests (st, at, at+1, . . . , at+n−1) and outputs the n prefix-
conditioned values {Qψ(st, at, . . . , at+i−1)}ni=1 (Fig. 1). For a mini-batch of L trajectories, a ran-
dom start index t ∈ [0, N − n], and horizons i ∈ {1, . . . , n} with n sampled uniformly from
{min length, . . . ,max length}, the training objective is the mean-squared error over all hori-
zons:

L(ψ) = 1

Ln

L∑
k=1

n∑
i=1

(
Qψ(s

k
t , a

k
t , . . . , a

k
t+i−1)−G(i)(skt , a

k
t , . . . , a

k
t+i−1)

)2
. (7)

During backpropagation we apply the gradient-level averaging across {Li}ni=1 described above.
This construction leverages multi-horizon targets and inherits their variance-reduction benefits with-
out target-level signal dilution.

4.3 POLICY NETWORK AND OBJECTIVE

Following Ba et al. (2016); Parisotto et al. (2020) and Plappert et al. (2017), we apply Layer
Normalization to the policy’s hidden layers (before the nonlinearity); Plappert et al. (2017) report
this configuration to be useful for continuous-control actor–critic, especially when exploration noise
is injected. The objectives remain

Jπ(θ) = Es∼D, a∼πθ
[
α log πθ(a | s)−Qψ(s, a)

]
, (8)

J(α) = Es∼D, a∼πθ
[
− α (log πθ(a | s) + H̄)

]
, (9)

with target entropy −H̄ (typically −dim(A)) and automatic temperature tuning (Haarnoja et al.,
2018b). Unlike canonical SAC, our critic does not include entropy in the target; it estimates the
standard (non-soft) action-value. The policy is optimized with an entropy-regularized objective, so
exploration and regularization are handled entirely by the policy. This “non-soft critic + policy-
side regularization” design is also used in MPO (Abdolmaleki et al., 2018), AWR/AWAC (Peng
et al., 2019; Nair et al., 2020), and IQL/IDQL (Kostrikov et al., 2021; Hansen-Estruch et al., 2023).
Throughout this paper, all value targets are standard (non-soft) action-values; the entropy term
appears only in the policy objective and is not included in the critic targets.

4.4 CRITIC–PARAMETER FREEZING ENABLES TARGET–FREE TRAINING

CrossQ (Bhatt et al., 2019) removes target networks via batch normalization (Ioffe, 2017) and
bounded activations. In contrast, we eliminate Polyak updates with a short critic–freezing sched-
ule: at the start of each critic segment we snapshot the online critic (ϕ← ψ), precompute and cache
bootstrap targets Vϕ(s) for all windows in that segment, and then freeze this snapshot while optimiz-
ing the online critic against the cached targets for the next K updates (reusing each segment across
Nc windows; Gymnasium MuJoCo (Towers et al., 2024): K=20). This lightweight decoupling
curbs target drift without batch renormalization or constrained activations, and on local–motion
and sparse–reward tasks (e.g., Box–Pushing–Sparse (Otto et al.)) the resulting hard–copy schedule
yields stable training that matches or exceeds Polyak updates.

Our scheme introduces a single hyperparameter, the freezing interval K, i.e., the number of critic
updates for which we reuse a single value snapshot Vϕ. Because targets are computed once per seg-
ment before we enumerate windows, the minimum effective freezing interval is the segment length

6
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Figure 2: Success-rate IQM vs. environment interactions on challenging Meta-World ML1 tasks and FANCY-
GYM Box-Pushing. Panels show Assembly, Disassemble, Hammer, and Stick-Pull, plus Box-Pushing under
dense and sparse rewards. Success is counted only at the final timestep.

Lseg (for local-motion tasks, Lseg = 20). Sweeping K ∈ {20, 100, 1000, 10000} on Gymnasium
MuJoCo Walker2d (Fig. 4g), we observe largely stable performance with only mild degradation for
the largest K, suggesting that segment-level target caching already provides useful stabilization and
that K is not a brittle hyperparameter in our setting.

5 EXPERIMENTS

Positioning T–SAC. Prior value–based RL largely splits into (i) step–based methods (e.g.,
SAC (Haarnoja et al., 2018a), CrossQ (Bhatt et al., 2019)) that dominate local–motion tasks (e.g.,
Ant (Towers et al., 2024)), and (ii) episodic/trajectory–level methods (e.g., BBRL (Otto et al.,
2023a), TOP-ERL (Li et al., 2024a)) that excel on long–horizon problems (e.g., Box–Pushing (Otto
et al.), Meta–World (Yu et al., 2020)). T-SAC partially narrows the gap between these regimes:
it retains one–step policy updates while using a sequence–conditioned Transformer critic, and em-
pirically matches standard SAC on local–motion benchmarks while outperforming existing Trans-
former–based approaches (e.g., GTrXL–style policies and TOP-ERL) on our long–horizon tasks.

5.1 ENVIRONMENTS AND SEEDS

We evaluate T–SAC on 57 tasks spanning Meta–World ML1 (50) (Yu et al., 2020), Gymnasium
MuJoCo locomotion (5) (Towers et al., 2024), and Box–Pushing (dense/sparse; 2) (Otto et al.).
Meta–World probes task generalization; Gymnasium MuJoCo covers standard locomotion; and
Box–Pushing stresses precise, contact–rich manipulation. Unless noted otherwise, we report means
over 8 seeds (ablations use 4) with 95% bootstrap confidence intervals (Agarwal et al., 2021). Train-
ing time per 1M environment steps, compared to off–policy baselines, is shown in App. I. Baseline
implementations and hyperparameters are detailed in App. K and App. L, with environment details
in App. J.

5.2 META–WORLD RESULTS

We run Meta–World ML1 with UTD= 1, policy delay= 5, batch size 512; training time is ∼3 h per
1M env steps. Across 50 tasks, T–SAC solves most within∼5M steps and yields stronger aggregated
IQM than strong baselines (per–task curves in App. A). On the hardest multi–phase tasks (Assembly,
Disassemble, Hammer, Stick–Pull) T–SAC is particularly strong (Fig. 2). In contrast, TOP–ERL (Li
et al., 2024a) typically requires 20M steps to reach similar aggregates. All comparisons use 5M env
steps for T–SAC, while many baselines use larger budgets (Fig. 7, 8). Success is evaluated only
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Figure 3: Episode return (IQM) vs. environment interactions for Ant, HalfCheetah, HumanoidStandup, Hop-
per, and Walker2d. Evaluation follows Gymnasium v4 native shaping/termination (no reward normalization);
we report undiscounted return and use deterministic-policy evaluation.

at the final step (App. J), and our aggregates compute IQM per task and then average across tasks
(unlike pooled–task IQM in TOP–ERL).

5.3 BOX PUSHING (DENSE AND SPARSE)

We evaluate dense and sparse variants of FANCYGYM (Otto et al.) Box–Pushing with tight success
tolerances (position ±5 cm, orientation ±0.5 rad). Under dense shaping, T–SAC attains 96.8%
success (Fig. 2), exceeding prior step–based baselines (≤ 85%) under the same protocol. Under
sparse rewards—where these terms apply only at the terminal step—T–SAC with the hard–copy
critic reaches 60% success, compared to TOP–ERL’s 70%. Thus T–SAC is state-of-the-art on
Meta-World ML1 and dense Box-Pushing, and competitive under sparse rewards.

5.4 GYMNASIUM MUJOCO

A lightweight critic–parameter freezing schedule (§ 4.4, App. B) enables target–free training: we re-
move the target network while retaining SAC–style stability at low update rates (UTD ≈ 0.75) and
consistently match or surpass Polyak updates. Across the five Gymnasium MuJoCo tasks, T–SAC
is competitive with or better than SAC on Ant, Hopper, and Walker2d, with the largest gains on
HumanoidStandup and HalfCheetah (Fig. 3), and we do not observe slower early convergence de-
spite conditioning the critic on multi–step sequences from an early exploratory policy. Because
episodes have variable length, we apply a simple action mask when constructing N -step targets
from fixed–length windows to avoid bootstrapping across episode boundaries (App. H); this mask is
an implementation detail rather than a core component of T–SAC and does not degrade performance.

5.5 ABLATION STUDY

We conduct targeted ablations on FANCYGYM Box–Pushing (dense) and MUJOCO WALKER2D.
These ablations are structured to disentangle the effect of the sequence-conditioned Transformer
critic—our main algorithmic contribution—from supporting design choices. Within each ablation
group, all settings are identical except for the component under test; across groups, minor differences
(e.g., training budget or step length) arise from compute limits and are stated explicitly.

5.5.1 TRANSFORMER COMPONENTS

We ablate three parts of the Transformer critic—ResNet blocks, the causal mask, and self-
attention—holding all other settings fixed (Fig. 4a). Removing only self-attention invalidates the
segment-conditioned objective and typically diverges. Removing self-attention together with the
ResNet and causal mask reduces the critic to a plain MLP; we compare this baseline in § 5.5.3 and
Fig. 4c.
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(c) Policy-side action chunking
(MLP critic): chunk length ∈
{1, 2, 3, 5, 8, 16}.
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(d) Policy-side action chunking
(Transformer critic): chunk length
∈ {1, 2, 3, 4, 5, 8, 16}.
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(e) Per-step target sampling: super-
vision windows per environment
step ∈ {1, 2, 3, 4}; training budget
held constant.
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(f) Critic backbone: Transformer
vs. GRU and LSTM.
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Figure 4: Ablations: transformer-critic design and training settings. Within each panel, methods share the
same interaction budget and differ only in the ablated component.

5.5.2 STEP LENGTH AND MIN LENGTH (REUSE FACTOR)

We sweep step length and min length, which bound the multi-horizon (N -step) supervi-
sion window. At each update we sample n ∈ {min length, . . . ,step length}; by default
n ∼ Unif{1, . . . , 16}. Using a fixed horizon L smooths optimization but slightly reduces final
performance (Fig. 4b), partly because the last L−1 states of each segment never serve as starting
indices—an effect amplified for large L (e.g., 16). Despite standard guidance to keep n≤5 (Precup
et al., 2000; Sutton et al., 1998; Espeholt et al., 2018), our Transformer critic with gradient-level
averaging is stable up to n=16 and benefits from longer windows (Fig. 4b). An analogous sweep
under the hard-copy scheme on Gymnasium Walker2d shows consistent trends (Fig. 4h).

5.5.3 COMPARISON TO MULTI-STEP MLP (REINFORCEMENT LEARNING WITH ACTION
CHUNKING)

With 16M environment steps (default budget: 20M), a multi-step MLP critic underperforms the
Transformer critic; policy-side chunking with an MLP yields only modest gains (Figs. 5, 4c). These
policy-side baselines follow the Q-Chunking (QC) architecture of Li et al. (2025): we use the same
action-chunking policy but drop the offline behavior-cloning constraint to match our online off-
policy setting. In contrast, chunking the Transformer critic helps: the best setting uses chunk length
4, converges by ≈ 10M steps, reaches 99.5% final success, and shows no late-stage divergence
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across seeds (Fig. 4d). Comparing the QC-style MLP critic (Fig. 4c) to the QC-style Transformer
critic (Fig. 4d) thus isolates the benefit of the sequence-conditioned critic under the same chun-
ked policy. This gain is not just from richer input features: in Fig. 5(b), with min length =
max length = 1 the Transformer critic still outperforms the chunking length = 1 baseline in
Fig. 5(c), even though both operate at single-step temporal resolution, indicating that the advantage
comes from how it integrates N -step returns and averages gradients over short trajectories. The
MLP critic also suffers causal leakage: because it consumes fixed-length segments, Q(st, at) is ef-
fectively conditioned on (st, at:t+n), thereby “peeking” at future actions at+1:t+n (Li et al., 2025).
Our Transformer critic applies a causal mask so each token attends only to positions t′ ≤ t and out-
performs an ablation without masking (Fig. 4a). Finally, the MLP critic imposes fixed-length inputs
and ties the policy chunk length to the critic, whereas the Transformer critic avoids these constraints.

Linear

Figure 5: Pol-
icy chunking
(adapted from
Li et al. (2025)).

5.5.4 NUMBER OF SAMPLES GENERATED PER STEP

We vary the number of supervision windows sampled per environment step (“per-
step target samples”). For this study we use step length = [1, 8] (standard:
[1, 16]). Unlike conventional SAC (one target per step), T-SAC benefits from gen-
erating multiple windows (Fig. 4e); our default is 4. In practice, use four vectorized
envs or collect a single trajectory of length 4×max length and slice it (App. H).
Intuitively, multiple windows raise the share of fresh samples in each batch: with
one window, once selected there are none left; with four, three remain.

5.5.5 GRU/LSTM AS THE CRITIC

We replace the Transformer critic with GRU and LSTM variants under identical
training (10M env steps; standard: 20M). Although recurrent critics can model action sequences,
our gradient–level averaging analysis (§ 4.1.1; App. D) does not directly apply, and parallelism
is reduced (Fig. 12. Empirically, both GRU and LSTM underperform the Transformer critic on
Box–Pushing in our setting (Fig. 4f).

5.5.6 ROBUSTNESS UNDER NOISE AND PARTIAL OBSERVABILITY

FC ...

...

...

...

FC FC

Figure 6: Structure of
the recursive network
used in our experiments.

We evaluate robustness to injected noise on actions and states, stochas-
tic early termination, and partial observability via short observation win-
dows. T-SAC degrades gracefully under action and state noise, retain-
ing a clear performance margin over SAC and CrossQ. Stochastic termi-
nation and partial observability lead to larger drops and higher variance,
but T-SAC remains at least as stable as these baselines, suggesting that se-
quence–conditioned critics help mitigate such effects.

6 CONCLUSION AND FUTURE WORK

On Meta-World ML1 multiphase and FANCYGYM box-pushing tasks, T-
SAC with a Transformer critic attains state-of-the-art success rates under
fixed training budgets (5M and 20M environment steps, respectively) and a common evaluation
protocol (success over 8 seeds; see §5). The sequence-conditioned critic provides smoother value
estimates and more coherent long-horizon credit assignment than both largely open-loop multiphase
pipelines and standard step-based value methods, yielding higher-quality continuous control.

Our study is restricted to online continuous control with low-dimensional observations. Extending
T-SAC to discrete-action domains and to pixel-based or strongly partially observable settings (e.g.,
with visual or belief-state encoders) is nontrivial—preliminary experiments revealed instabilities and
high sensitivity to architectural and optimization choices. Applying T-SAC to real-robot tasks and
developing theory for when critic-side chunking provably helps, including representation analyses
and shared Transformer backbones for actor–critic, are important directions for future work.
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REPRODUCIBILITY STATEMENT

We made substantial efforts to ensure reproducibility. The paper and appendix specify environments,
evaluation protocols, and all hyperparameters used. Upon acceptance, we will release a public
GitHub repository containing the implementation of the proposed algorithms, experiment scripts,
and trained models. Detailed descriptions of the experimental setup, including configuration files,
are provided in the appendix to enable independent reimplementation during review.
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A APPENDIX: INDIVIDUAL META-WORLD TESTS RESULTS
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Figure 7: Success Rate IQM of each individual Meta-World tasks. (Part 1)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

FaucetOpen

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

Hammer

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

HandInsert

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

HandlePress

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

HandlePressSide

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

HandlePull

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

HandlePullSide

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

LeverPull

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

PegInsertSide

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

PegUnplugSide

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

PickOutOfHole

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

PickPlace

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

PickPlaceWall

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

PlateSlide

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

PlateSlideBack

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

PlateSlideBackSide

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

PlateSlideSide

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

Push

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

PushBack

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s 
ra

te
 IQ

M
PushWall

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

Reach

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

ReachWall

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

ShelfPlace

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

Soccer

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

StickPull

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

StickPush

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

Sweep

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

SweepInto

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

WindowClose

0.0 0.5 1.0 1.5 2.0
Number of Env Interaction 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

 IQ
M

WindowOpen

Figure 8: Success Rate IQM of each individual Meta-World tasks. (Part 2)
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B APPENDIX: DETAILED ALGORITHM FLOWCHART

Algorithm 1: T-SAC
Initialize: Critic params ϕ; target critic ϕtarget←ϕ; policy params θ; temperature α; replay

buffer B; environment reset→ s0.
Input: Segment length cap M ; window length bounds (ℓmin, ℓmax); updates per iteration U ;

critic steps Nc; policy steps Np; soft update τ ; warmups: policy / temperature.
repeat

Collect one segment (length ≤M );
store s0; t←0;
while t < M do

sample at ∼ πθ(· | st); step env→ (rt, st+1, dt);
append (st, at, rt, dt, st+1) to a temporary buffer;
if dt then break;
t← t+1; st←st+1;

end
push the whole segment (s0:M , a0:M−1, r0:M−1, d0:M−1) to B;
if dt then reset env→ s0;
else s0←sM ;

Parameter updates;
for u← 1 to U do

sample a batch of segments {(s0:M , a0:M−1, r0:M−1, d0:M−1)}Bb=1 from B;
precompute segment-wise bootstrapped targets using Qϕtarget ;
▷ reuse across Nc windows
for k ← 1 to Nc do

for each sequence in the batch, draw start i uniformly over valid indices and draw
ℓ ∼ U{ℓmin, . . . , ℓmax} s.t. i+ℓ≤segment end;

form windows (si:i+ℓ+1, ai:i+ℓ, ri:i+ℓ, di:i+ℓ) and the corresponding N -step
returns;

update critic parameters ϕ with the Transformer critic on these windows;
▷ critic update
ϕtarget ← τ ϕ+ (1− τ)ϕtarget;
▷ soft (or hard) target update

end
if step > policy warmup then sample a (fresh) batch of states from B;
for k ← 1 to Np do

update policy θ by maximizing the SAC objective using Qϕ;
if step > temperature warmup then update temperature α;

end
;

end
until convergence;
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C APPENDIX: PROOF OF THE VARIANCE REDUCTION PROPERTY OF
AVERAGING OF N-STEP RETURNS

A convenient variance identity. Under the equicorrelation model,

E[Xk] = m, Var(Xk) = v, Cov(Xk, Xℓ) = ρ v (k ̸= ℓ), ρ ≥ 0,

any weighted sum S =
∑N−1
k=0 akXk satisfies

Var(S) = v

(
N−1∑
k=0

a2k + ρ

[(N−1∑
k=0

ak

)2
−
N−1∑
k=0

a2k

])
. (10)

This follows by expanding Var and collecting diagonal/off-diagonal terms.

Reward part with discount γ < 1. Define the single N -step discounted reward sum and its
triangular average by

RN (γ) ≜
N−1∑
k=0

γkrk, R̄N (γ) ≜
1

N

N∑
i=1

i−1∑
k=0

γkrk =

N−1∑
k=0

wkrk, wk ≜
N − k
N

γk.

Let

S0 ≡ S0(N, γ) ≜
N−1∑
k=0

γ2k =
1− γ2N

1− γ2
, T0 ≡ T0(N, γ) ≜

N−1∑
k=0

γk =
1− γN

1− γ
.

Also define the (discounted, triangular) weight aggregates

Aγ ≜
N−1∑
k=0

w2
k =

1

N2

N−1∑
k=0

(N − k)2γ2k, Bγ ≜
(N−1∑
k=0

wk

)2
−Aγ . (11)

Lemma 1 (Variance formulas for the discounted reward part). Under the reward assumptions stated
in the setup,

Var
[
RN (γ)

]
= σ2

[
S0 + ρ (T 2

0 − S0)
]
, Var

[
R̄N (γ)

]
= σ2

[
Aγ + ρBγ

]
.

Proof. Apply equation 10 with weights ak = γk for RN (γ) and ak = wk for R̄N (γ), and use the
definitions of S0, T0, Aγ , Bγ .

Proposition 1 (Reward-side variance ratio and bounds). Define

Rγ(N) ≜
Var[RN (γ)]

Var[R̄N (γ)]
=
S0 + ρ (T 2

0 − S0)

Aγ + ρBγ
.

Then for all N ≥ 1, ρ ≥ 0, and γ ∈ (0, 1],

1 ≤ Rγ(N) < 4.

Moreover, for γ = 1, Rγ(N)↗ 4 as N →∞; for any fixed γ ∈ (0, 1), Rγ(N)→ 1. When ρ > 0,
Rγ(N) is strictly increasing in N for γ = 1; for γ < 1 it need not be monotone.

Proof (sketch). The γ = 1 proof carries through verbatim after replacing the unweighted triangular
weights j by the discounted weights wk = ((N−k)/N)γk; the same algebraic positivity arguments
yield the bounds. For the limits, when γ < 1 we have wk → γk pointwise as N → ∞ and
dominated convergence gives Aγ → S0 and

∑
k wk → T0, hence Rγ(N) → 1. For γ = 1, the

standard triangular-sum identities imply R1(N)↗ 4.

Bootstrap value part. Let Zi ≜ Vϕtar
(st+i) denote the (target) values used for bootstrapping, and

assume
E[Zi] = ν, Var(Zi) = τ2, Cov(Zi, Zj) = κ τ2 (i ̸= j), κ ≥ 0,
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and that {rk} and {Zi} are independent unless stated otherwise. The single N -step bootstrap term
and its triangular average are

BN (γ) ≜ γNZN , B̄N (γ) ≜
1

N

N∑
i=1

γiZi.

Let

S1 ≡ S1(N, γ) ≜
N∑
i=1

γ2i =
γ2(1− γ2N )

1− γ2
, C ≡ C(N, γ) ≜

N∑
i=1

γi =
γ(1− γN )

1− γ
.

Lemma 2 (Variance of the averaged bootstrap part). With Cov(Zi, Zj) = κ τ2 for i ̸= j,

Var[B̄N (γ)] =
τ2

N2

[
S1 + κ (C2 − S1)

]
.

Proof. Apply equation 10 with ai = γi/N .
Proposition 2 (Bootstrap-side variance ratio, bounds, and condition). Define

RB(N, γ, κ) ≜
Var[BN (γ)]

Var[B̄N (γ)]
=

N2 γ2N

S1 + κ(C2 − S1)
.

Then for any κ ∈ [0, 1],

N2γ2N

C2
≤ RB(N, γ, κ) ≤

N2γ2N

S1
,

∂RB
∂κ

< 0.

In particular, averaging reduces bootstrap variance (RB ≥ 1) whenever

κ ≤ κ⋆(N, γ) ≜
N2γ2N − S1

C2 − S1
.

For the uncorrelated case (κ = 0), RB(N, γ, 0) = N2γ2N/S1.

Proof. Monotonicity in κ is immediate from the denominator. The bounds follow from S1 ≤
S1 + κ(C2 − S1) ≤ C2. Solve RB ≥ 1 for κ to get κ⋆.

Putting the parts together. With GN (γ) = RN (γ) + BN (γ) and ḠN (γ) = R̄N (γ) + B̄N (γ),
and assuming independence between rewards and bootstrap values,

Var[GN (γ)]

Var[ḠN (γ)]
=

Var[RN (γ)] + Var[BN (γ)]

Var[R̄N (γ)] + Var[B̄N (γ)]
. (12)

Since all terms are nonnegative,

min
{
Rγ(N), RB(N, γ, κ)

}
≤ Var[GN (γ)]

Var[ḠN (γ)]
≤ max

{
Rγ(N), RB(N, γ, κ)

}
.

Consequently:

• Because Rγ(N) ≥ 1 (Prop. 1), if RB(N, γ, κ) ≥ 1 (e.g., κ ≤ κ⋆), then averaging N-step
targets strictly reduces total variance.

• Even if RB(N, γ, κ) < 1, the overall ratio in equation 12 remains ≥ 1 whenever the
reward-side gain dominates:

Rγ(N) ≥ Var[B̄N (γ)]

Var[BN (γ)]
=
S1 + κ(C2 − S1)

N2γ2N
.

Dependence between rewards and bootstrap values. If Cov
(
RN (γ), BN (γ)

)
and

Cov
(
R̄N (γ), B̄N (γ)

)
are nonzero, the numerator/denominator of equation 12 each acquire

an additional covariance term. The sandwich bound above still applies after inserting these, and a
crude control is |Cov(X,Y )| ≤

√
Var(X)Var(Y ) (Cauchy–Schwarz), which cannot overturn the

above conclusions unless the cross-covariances are pathologically large.
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Useful closed forms. Besides S0, S1, T0, C above, one has

N−1∑
k=0

(N − k)γk =
1− (N + 1)γN +NγN+1

(1− γ)2
.

A closed form for
∑N−1
k=0 (N − k)2γ2k (hence Aγ via equation 11) follows from the standard iden-

tities for
∑
kxk and

∑
k2xk after the change k 7→ N − 1 − k; we omit it as not needed for the

bounds above.

Remarks. (i) Setting γ → 1 recovers the undiscounted results: S0, T0, S1, C → N andAγ , Bγ →
A/N2, B/N2, where A,B are the non-discounted triangle sums.
(ii) As N →∞ with fixed γ < 1, S1 → γ2/(1− γ2) and C → γ/(1− γ) while N2γ2N → 0; thus
RB(N, γ, κ)→ 0. For typical RL regimes (γ ≳ 0.95, moderate N ), κ⋆(N, γ) is positive and large,
so averaging still reduces bootstrap variance over a wide range of κ.
(iii) Rγ(N) is horizon- and discount-agnostic in the sense of the bound 1 ≤ Rγ(N) < 4; for γ < 1,
its large-N limit is 1. It is the principal driver of the overall variance reduction.

On the equicorrelation assumption. We assumed an equicorrelation (exchangeable) model for
the reward noise and for the bootstrapped values: identical variances and a common pairwise corre-
lation (ρ and κ, respectively). This is a standard device that yields closed forms while capturing the
empirically relevant regime of positively correlated temporal signals in RL trajectories.

The key conclusions above are robust to relaxing equicorrelation. Let Σ be any covariance matrix for
(r0, . . . , rN−1) with nonnegative entries (i.e., nonnegative autocovariances). For any nonnegative
weight vector w, the variance is wTΣw and increases monotonically with each off-diagonal entry.
Since the triangular weights have strictly smaller ℓ2 norm and smaller sum than the flat weights of
the single N -step sum, the reward-side variance reduction persists under a wide range of stationary,
positively correlated processes (including Toeplitz/lag-dependent models such as Cov(rk, rℓ) =
σ2ρ|k−ℓ| with ρd ≥ 0). The specific constant 4 in the upper bound is tight for the exchangeable
model; with general lag structure the same [1, 4) bracket continues to hold under mild bounded-
correlation conditions (e.g. supk ̸=ℓCorr(rk, rℓ) ≤ 1), while the uncorrelated case (ρd ≡ 0) recovers
the [1, 3) limit.

For the bootstrap part, assuming a common correlation κ across {Zi} is likewise a tractable approx-
imation: the explicit ratio RB(N, γ, κ) is decreasing in κ, so weaker dependence only strengthens
the variance reduction. More general lag-dependent models Cov(Zi, Zj) = τ2κ|i−j| with κd ≥ 0
lead to the same qualitative behavior (smaller weights and partial averaging reduce variance), with
our equicorrelation formulas serving as convenient upper/lower benchmarks.

When to be cautious. If the process exhibits strong negative or oscillatory correlations (e.g. al-
ternation effects), equicorrelation overstates the benefit of averaging; in such cases, replacing the
common ρ (or κ) by a small set of lag-specific parameters (ρ1, ρ2, . . .) is safer. Empirically, one can
estimate the sample autocovariance and plug it into wT Σ̂w to verify the inequalities numerically.
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D APPENDIX: VARIANCE REDUCTION FROM GRADIENT-LEVEL AVERAGING
WITH A SHARED-WEIGHTS TRANSFORMER CRITIC

Setup. Fix a trajectory position t. A Transformer critic with shared parameters ψ outputs

Q
(1)
ψ , Q

(2)
ψ , . . . , Q

(n)
ψ ,

where Q(i)
ψ predicts the i-step return for the same prefix (st, at, . . . , at+i−1). Let G(i) denote the

i-step target and define the per-horizon MSE

Li(ψ) =
1
2

(
Q

(i)
ψ −G

(i)
)2
, L̄(ψ) ≜

1

n

n∑
i=1

Li(ψ).

In implementation we average their gradients during backprop:

∇ψ L̄(ψ) =
1

n

n∑
i=1

∇ψLi(ψ) =
1

n

n∑
i=1

(
Q

(i)
ψ −G

(i)
)
∇ψQ(i)

ψ .

Local gradient factorization under weight sharing. Letw be any scalar entry of ψ. By the chain
rule,

gi(w) ≜
∂Li
∂w

=
(
Q

(i)
ψ −G

(i)
)︸ ︷︷ ︸

ε(i)

∂Q
(i)
ψ

∂w︸ ︷︷ ︸
ψ(i)(w)

.

For linear modules (affine maps in attention/FFN), the Jacobian has the standard local form
∂Q

(i)
ψ

∂w =

a(i) δ(i) (input activation× upstream error). Because the same w is shared across decoder positions,
the sequence {gi(w)}ni=1 are n gradient contributions for the same parameter, drawn from adjacent
positions of one forward pass, and are therefore generally positively correlated.

A convenient covariance model (exchangeable/equicorrelated). For fixed w, we use the stan-
dard homoscedastic equicorrelation approximation (also common in mini-batch analyses):

Var[gi(w)] = σ2
w, Cov(gi(w), gj(w)) = ρw σ

2
w (i ̸= j), ρw ∈ [0, 1).

This captures the empirically relevant regime where adjacent horizons produce positively correlated
gradients and yields tight, closed-form variance expressions.
Lemma 3 (Variance of the averaged per-parameter update). With the model above, the averaged
update ḡ(w) ≜ 1

n

∑n
i=1 gi(w) satisfies

Var
[
ḡ(w)

]
=

1

n2

 n∑
i=1

Var[gi] +
∑
i ̸=j

Cov(gi, gj)

 = σ2
w

1 + (n− 1)ρw
n

.

In particular, Var[ḡ(w)] < σ2
w for any ρw < 1.

Corollary 3 (Effective batch size and asymptotics). Define the effective sample size neff(w) ≜
n

1 + (n− 1)ρw
. Then Var[ḡ(w)] = σ2

w/neff(w) with 1 ≤ neff(w) ≤ n, strictly increasing in n, and

limn→∞ Var[ḡ(w)] = ρw σ
2
w (the correlation-imposed variance floor).

Proposition 4 (Uniform horizon averaging is optimal under exchangeability). Among all unbiased
linear combinations

∑n
i=1 αigi(w) with

∑
i αi = 1, the variance is minimized by the uniform

weights αi = 1
n whenever Cov(gi, gj) is exchangeable (same diagonal/off-diagonal).

Proof. For an exchangeable covariance Σw = σ2
w[(1 − ρw)I + ρw11

T ], Var(
∑
i αigi) = αTΣwα

is minimized under 1Tα = 1 by α⋆ = 1
n1.

Why ρw ≳ 0 is natural. Both multiplicative factors of gi(w) vary smoothly with i: (i) the tar-
gets G(i) share overlapping reward sums and a common bootstrapped tail; and (ii) the Jacobians
∂Q

(i)
ψ /∂w come from adjacent decoder positions of the same Transformer. This induces positive

correlation among {gi(w)}, putting us squarely in the regime of Lemma 3.
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Connection to target-side variance (discounted rewards and bootstrap). Let γ ∈ (0, 1] be the
discount. Write the single N -step reward sum and its triangular average as

RN (γ) =

N−1∑
k=0

γkrk, R̄N (γ) =
1

N

N∑
i=1

i−1∑
k=0

γkrk =

N−1∑
k=0

N − k
N

γk︸ ︷︷ ︸
wk

rk.

Under the equicorrelated reward model (mean µ, variance σ2, pairwise corr. ρ ≥ 0),
Var
[
RN (γ)

]
= σ2

[
S0 + ρ (T 2

0 − S0)
]
, Var

[
R̄N (γ)

]
= σ2[Aγ + ρBγ ] ,

with

S0 =

N−1∑
k=0

γ2k =
1− γ2N

1− γ2
, T0 =

N−1∑
k=0

γk =
1− γN

1− γ
, Aγ =

N−1∑
k=0

w2
k, Bγ =

(N−1∑
k=0

wk

)2
−Aγ .

The reward-side ratio

Rγ(N) ≜
Var[RN (γ)]

Var[R̄N (γ)]
=
S0 + ρ (T 2

0 − S0)

Aγ + ρBγ
satisfies the uniform bound 1 ≤ Rγ(N) < 4 for all N ≥ 1, ρ ≥ 0, γ ∈ (0, 1], and Rγ(N)↗ 4 as
N →∞.

For the bootstrapped values Zi = Vϕtar(st+i) with Var(Zi) = τ2 and Cov(Zi, Zj) = κ τ2 (i ̸=
j, κ ∈ [0, 1]), define

BN (γ) = γNZN , B̄N (γ) =
1

N

N∑
i=1

γiZi,

and let S1 =
∑N
i=1 γ

2i, C =
∑N
i=1 γ

i. Then

Var[B̄N (γ)] =
τ2

N2

[
S1 + κ(C2 − S1)

]
, RB(N, γ, κ) ≜

Var[BN (γ)]

Var[B̄N (γ)]
=

N2γ2N

S1 + κ(C2 − S1)
.

RB is decreasing in κ and obeys
N2γ2N

C2
≤ RB(N, γ, κ) ≤

N2γ2N

S1
.

In particular, averaging the bootstrap part reduces variance whenever κ ≤ κ⋆(N, γ) ≜
N2γ2N − S1

C2 − S1
.

Theorem 5 (Main: gradient averaging reduces update variance; compounded by target-side smooth-
ing). Let w be any scalar parameter of the shared-weights Transformer critic and suppose
{gi(w)}ni=1 are homoscedastic and equicorrelated with ρw < 1. Then

Var

[
∂L̄

∂w

]
= σ2

w

1 + (n− 1)ρw
n

< σ2
w = Var

[
∂Lj
∂w

]
, ∀j ∈ {1, . . . , n}.

Moreover, writing gi(w) = ε(i)ψ(i)(w) and (mildly) assuming {ε(i)} and {ψ(i)(w)} are indepen-
dent across i with bounded second moments, there exist constants aw, bw ≥ 0 (depending only on
ψ) such that

Var[gi(w)] ≤ aw Var[G(i)] + bw.
Consequently, replacing a single horizon by the triangularly averaged target across horizons 1:N
reduces the reward-side variance by at least a factor Rγ(N)−1∈ (1/4, 1], and (when κ ≤ κ⋆) also
reduces the bootstrap-side variance by a factor RB(N, γ, κ)−1. Thus, in addition to the across-
horizon gradient averaging gain 1+(n−1)ρw

n , the per-horizon variance term σ2
w itself decreases with

N via target-side smoothing, yielding a compounded reduction.

Practical notes. (i) The gradient-level algebra is agnostic to discount γ; only the target-side con-
stants (S0, T0, Aγ , Bγ) and (S1, C) change with γ. (ii) Under exchangeability, uniform averaging
across horizons is variance-optimal (Prop. 4); no learned horizon-weights are needed for variance
reasons. (iii) As n grows, the residual variance floor is ρw σ2

w (Cor. 3); lower temporal correlation
between horizon-gradients directly improves this floor. (iv) If horizon-gradients are not perfectly

exchangeable, the bound Var[ḡ(w)] ≤ σ̄2
w

n

(
1 + (n− 1)ρ̄w

)
still holds whenever Var[gi] ≤ σ̄2

w and

Corr(gi, gj) ≤ ρ̄w for all i ̸= j.
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E APPENDIX: CONNECTION TO MULTI-STEP TD THEORY

Equations 5–6 can be viewed as a standard multi-step TD update in an MDP where each action prefix
at:t+i−1 is treated as an extended action. For a fixed horizon i, we define the extended state–action
pair

x = (st, at:t+i−1),

use equation 5 as the N -step target G(i)(x), and minimize the squared TD error(
Qψ(x)−G(i)(x)

)2
,

exactly as in classical N -step Q-learning / multi-step TD on this augmented MDP, with a shared-
parameters Transformer implementing Qψ for all such prefixes and horizons.

When the behavior policy matches the target policy (µ = πθ), the replay distribution coincides with
the on-policy evaluation distribution, the implicit IS ratios are all 1, and G(i) reduces to the standard
on-policy i-step return (Sutton et al., 1998; Precup et al., 2000). In the tabular setting, this yields
exactly classical on-policy multi-step TD / TD(λ), for which convergence to Qπ is well understood;
with linear function approximation and suitable step sizes, one recovers convergence to the unique
projected fixed point of the TD operator under the on-policy distribution.

In the off-policy case (µ ̸= πθ) and without importance weights, our critic update falls into the “un-
corrected off-policy TD” regime analyzed by Munos et al. (2016). In this regime, multi-step TD con-
verges (under suitable assumptions) to the fixed point of a projected Bellman operator defined with
respect to the behavior distribution, yielding a bias relative to Qπ but admitting error-propagation
bounds that relate this bias to distribution mismatch and approximation error. Our choice to learn
values of realized prefixes

Qψ(st, at:t+i−1)

under µ is precisely an instance of this uncorrected regime, with the benefit that we avoid the high
variance associated with long-horizon IS products (Precup et al., 2000).

The key difference to standard off-policy N -step TD with IS is therefore what the critic is asked
to predict. IS-corrected targets are (in principle) unbiased for Qπ , but their variance scales poorly
with the length of the IS product and typically requires aggressive clipping when behavior and target
policies differ. Our critic instead learns the value of realized prefixes under the replay distribution,
trading some asymptotic bias for substantially reduced variance and improved numerical stability.

From a theoretical perspective, conditioned on a given state st and realized prefix at:t+i−1, the
distribution over future rewards is fully determined by the environment dynamics and the contin-
uation policy, and does not depend on whether this prefix was generated by the behavior or target
policy. This viewpoint underpins our sequence-conditioned critic and helps explain the empirically
observed stability of long-horizon learning.
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(a) Effect of target-value construction under sparse
rewards. Randomly selecting one of two double-Q
targets leads to high-variance updates and occasional
collapse, whereas the conservative minimum-based
target yields stable learning curve with the hard–copy
critic.
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Using Averaging N-Step Returns

(b) Naively averaging N -step targets across horizons
destabilizes learning and can erase progress, confirm-
ing the need for gradient–level averaging.

Figure 9: Meta-World Box Pushing (Sparse Reward). Ablations on (a) target-value construction and (b)
return-propagation schemes for T–SAC.

F APPENDIX: ADDITIONAL EXPERIMENTAL RESULTS

Post-figure summary. Figure 9a shows that the instability originally observed on
Box–Pushing–Sparse is explained by the high–variance target estimator: with the conservative min-
imum–based target, hard–copy T–SAC is stable and reaches the best success rates. Figure 9b fur-
ther illustrates that naive N -step target averaging can derail optimization, motivating our choice of
gradient–averaged multi–horizon losses. Seeds: 4. Results under IQM with 95% confidence
intervals.
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Linear
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Figure 10: T-SAC Critic Detailed Structure: a causal Transformer over short state–action segments. Given
(st, at, . . . , at+n), the network produces n scalar outputs {Qψ(st, at, . . . , at+i)}ni=1. Colors and block styling
follow the Transformer diagram conventions of Vaswani et al. (2017).

G APPENDIX: TRANSFORMER CRITIC DETAILED STRUCTURE

Implementation details. We follow the TOP–ERL–style Transformer critic design adopted in this
work (see Li et al. (2024a) for the schematic), i.e., a masked multi–head self–attention stack with
positional encodings and residual Add&Norm blocks; the critic ingests (st, at, . . . , at+n) and jointly
predicts all 1 . . . n step returns. State and action tokens use separate one–layer linear embeddings
(no bias), consistent with our training objective that conditions on realized action prefixes; the output
head is a linear map without bias that emits one scalar per decoder position. No dropout is used
anywhere in the critic. The causal mask ensures each position i only attends to ≤ i tokens, aligning
the network outputs with the i-step targets used for learning.
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(a) Fixed-length segments stored in the
replay buffer. Each sample is a window
(st:t+L, at:t+L−1, rt:t+L−1, dt:t+L−1). If a
terminal dτ = 1 appears before the window is full,
we immediately continue saving from the start of the
next trajectory until the segment length L is reached.

Action Mask

(b) Action mask for a sampled segment. The binary
mask m marks valid action positions: mτ = 1 for
steps before or at the first terminal in the window and
mτ = 0 after any dτ = 1. Entries that occur after a
terminal (including those filled from a new trajectory)
are masked out so losses/targets and attention never
cross episode boundaries.

Figure 11: T-SAC segment construction and masking.

H APPENDIX: TRAJECTORIES SAVED IN REPLAY BUFFER AND ACTION
MASK DESIGN

THE BENEFIT OF CHUNKING ON THE CRITIC SIDE

We analyze chunking under sparse rewards and target–value reuse.

Setup. Consider a fixed segment of N transitions (st, at, rt, . . . , st+N ). A chunked sample is
obtained by: (i) drawing a start index p uniformly from {t+1, . . . , t+N}; (ii) drawing a window
length L uniformly from the integers {ℓmin, . . . , ℓmax} (with ℓmin ≥ 1); and defining the window
end

q = min{ p+ L− 1, t+N }.
For every i ∈ {p, . . . , q−1} we form the truncated multi-step target that bootstraps at q:

Gi =

q−1∑
j=i

γ j−i rj + γ q−iVϕ(sq). (13)

Hence the same value Vϕ(sq) is reused across the (q−p) TD updates inside the window.

How often is a particular value reused? Write ∆ = ℓmax − ℓmin + 1, and (for clarity) index the
segment states by 1, . . . , N . Let reusej denote the number of updates in a sampled window whose
target bootstraps at Vϕ(sj) (i.e., with q = j). Then, for all interior states j < N ,

E[reusej ] =
1

N ∆

min(ℓmax−1, j−1)∑
k=ℓmin−1

k =



0, j < ℓmin,

(j − ℓmin + 1)(j + ℓmin − 2)

2N ∆
, ℓmin ≤ j < ℓmax,

ℓmin + ℓmax − 2

2N
, ℓmax ≤ j ≤ N−1.

(14)
Thus, away from the left boundary, the expected reuse E[reusej ] plateaus at ℓmin+ℓmax−2

2N for all
j ∈ [ℓmax, N−1].
The right boundary j = N is special because of truncation (q = min{p+L−1, N}). In this case,

E[reuseN ] =
1

N

ℓmin∑
h=1

(h−1) +
1

N ∆

ℓmax∑
h=ℓmin+1

(h−1)(ℓmax − h+ 1), (15)

which exceeds the interior plateau and concentrates more bootstrap reuse at the end of the segment.
A transparent special case is ℓmin = 1:

E[reuseN ] =
ℓ2max − 1

6N
. (16)
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Averaging equation 14 across all j yields the compact relation

1

N

N∑
j=1

E[reusej ] =
E[L]− 1

N
, (17)

i.e., per sampled window the expected reuse scales linearly with the average window length.

Connection to state coverage (selection) probability. The probability that a given state j is cov-
ered by the sampled window (i.e., j ∈ [p, q]) is

Pr(j covered) =
1

N ∆

j∑
p=1

[
ℓmax −max{ℓmin, j − p+ 1}+ 1

]
+
, (18)

where [·]+ = max{ ·, 0 }. For the common case ℓmin = 1 and writing m = ℓmax, this simplifies to

Pr(j covered) =


1

N

(
j − j(j − 1)

2m

)
, 1 ≤ j ≤ m,

m+ 1

2N
, m < j ≤ N,

(19)

i.e., a ramp near the start followed by a flat plateau. This higher coverage (vs. 1-step sampling)
underlies the critic-side gains below.

Sparse rewards: how far does a single reward propagate? Assume only the terminal transition
carries non-zero reward (the sparse-reward setting). An update’s target contains that reward iff the
sampled window reaches the segment end (q = N ), in which case all (N−p) updates inside the
window include it. Therefore, the expected number of reward-bearing updates per sampled window
equals

E
[
#updates including terminal reward

]
=

1

N

ℓmin∑
h=1

(h−1) +
1

N ∆

ℓmax∑
h=ℓmin+1

(h−1)(ℓmax − h+ 1),

(20)
which coincides with equation 15. In particular, for ℓmin = 1,

E
[
#updates including terminal reward

]
=

ℓ2max − 1

6N
, (21)

representing a ≈ ℓ2max/6-fold amplification over uniform 1-step TD (which touches the terminal
reward only in the single (N−1)→ N update, i.e., 1/N of samples).

Takeaways. Chunking yields two critic-side benefits: (i) Target–value reuse: each sampled win-
dow reuses a single bootstrap Vϕ(sq) across E[reusej ] updates, reaching a plateau of ℓmin+ℓmax−2

2N
for interior states and an even larger value at the terminal state due to truncation equation 15. This
may help explain why, in our setting, training remains stable even without a target network in local-
motion tasks.
(ii) Sparse-reward propagation: when only the last transition is rewarded, chunking in-
creases—often quadratically in ℓmax when ℓmin = 1—the share of updates that incorporate the
true reward, substantially shortening effective credit-assignment horizons. This mechanism helps
explain why T-SAC performs well under sparse-reward settings.
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I APPENDIX: COMPUTATIONAL COSTS AND SAMPLE EFFICIENCY

Training time is reported for 1M environment steps (UTD= 1), unless otherwise stated. All bench-
marks were run on an NVIDIA A100 (40 GB) GPU and an Intel Xeon Platinum 8368 CPU.

T -SAC: MLP policy with two 256-unit hidden layers; Transformer critic with 2 layers× 256 units.
GRU/LSTM: same policy; 2-layer RNN critic (256 units).
SAC and CROSSQ: default configurations.

Table 1: Sample efficiency on long-horizon benchmarks, measured as the number of environment steps (in
millions) required to reach a fixed performance threshold on each task. Thresholds are defined as 90% of
SAC’s final return on Box-Pushing (dense) and ML1, and 90% of T-SAC’s final return on Box-Pushing (sparse).
Lower is better. Values are means over seeds.

Task SAC CrossQ GTrXL policy TOP-ERL T-SAC (ours)

Box-Pushing (dense) 15M 10M 20M 2M 4M
Box-Pushing (sparse) N.A. N.A. N.A. 4M 17M
ML1 4M N.A. N.A. 4M 1M

Table 2: Effect of minimum and maximum sequence length on T-SAC performance and wall-clock training
time on Box-Pushing (dense). All runs use the same number of environment steps 1 M for standard setting.

min length max length Return (mean ± s.e.) Wall-clock time Peak GPU memory (GB)

1 1 −78.45± 6.89 2h35m03s 2.37
4 4 −66.63± 3.09 2h39m23s 2.37
1 4 −74.80± 7.69 2h38m56s 2.37
1 16 −65.05± 0.20 3h06m58s 2.37

Table 3: Computational cost comparison for different methods on Box-Pushing (dense) for a fixed number of
environment steps and matched (or explicitly stated) update-to-data (UTD) ratios.

Method Params (M) UTD Wall-clock time (hours)

SAC 0.2 1 1.47
CrossQ 10 1 2.44
T-SAC (ours) 3.3 1/4 0.77
TOP-ERL 3.3 1/10 0.35

Table 4: Performance at fixed data budgets on long-horizon tasks. Entries are success rate ± standard error over
seeds after a given number of environment steps. All methods are trained with the same number of transitions.

Task Method 100k steps 300k steps 500k steps 1M steps

Box-Pushing (dense) SAC 0.0± 0.1 0.05± 0.12 0.05± 0.15 0.01± 0.2
CrossQ 0.0± 0.0 0.0± 0.0 0.01± 0.01 0.07± 0.02
GTrXL policy 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.3± 0.01
T-SAC (ours) 0.0± 0.0 0.05± 0.02 0.2± 0.01 0.8± 0.08

Box-Pushing (sparse) SAC 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
CrossQ 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
GTrXL policy 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
T-SAC (ours) 0.0± 0.0 0.0± 0.0 0.01± 0.01 0.1± 0.05

ML1 SAC 0.1± 0.01 0.35± 0.02 0.42± 0.02 0.5± 0.05
CrossQ 0.12± 0.01 0.37± 0.02 0.5± 0.05 0.5± 0.08
GTrXL policy 0.05± 0.01 0.07± 0.02 0.1± 0.02 0.28± 0.02
T-SAC (ours) 0.1± 0.01 0.35± 0.05 0.41± 0.08 0.58± 0.12
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3.09

2.44

1.47

6.26

6.85

Figure 12: Training time is reported for 1M environment steps (UTD= 1), unless otherwise stated. All
benchmarks were run on an NVIDIA A100 (40 GB) GPU and an Intel Xeon Platinum 8368 CPU.

Figure 13: Meta-World tasks (Yu et al., 2020).

J EXPERIMENT DESCRIPTION

J.1 META-WORLD ML1

Meta-World (Yu et al., 2020) is an open-source simulated benchmark for meta-reinforcement learn-
ing and multi-task learning in robotic manipulation. It comprises 50 distinct tasks spanning skills
such as grasping, pushing, and object placement, each posing different perception–control chal-
lenges. By covering a broader skill spectrum than narrowly scoped benchmarks, Meta-World is
well-suited for evaluating algorithms that aim to generalize across diverse behaviors. Figure 13
enumerates all 50 tasks and illustrates their variety and difficulty.

Success criterion. To better approximate real-world deployment, we adopt a stringent evaluation
rule: an episode is counted as successful only if the environment’s success condition is satisfied at
the final timestep; intermediate achievements do not count toward success.

J.2 BOX PUSHING

Figure 14: Box Pushing
task (Otto et al.).

Setup. A 7-DoF Franka Emika Panda arm with a rod pushes a
box on a table to a target pose. At episode start, initial and target
box poses are sampled with a minimum 0.2m separation:

xi∈ [0.3, 0.6], yi∈ [−0.4, 0.4], θ∈ [0, 2π].

Success (for evaluation) is position error ≤ 0.05m and orientation
error ≤ 0.5 rad.

Observations & Actions. Observations: robot joint posi-
tions/velocities (q, q̇), box position/orientation (p, r), and target
(ptarget, rtarget). Actions: joint torques at ∈ R7.
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(a) Ant (b) HalfCheetah (c) Hopper

(d) Walker2d (e) HumanoidStandup

Figure 15: MuJoCo (Towers et al., 2024) tasks used in our experiments.

Termination. Fixed horizon T = 100 steps; no early termination.

Dense reward. At each step,

Rtotal = −Rrod − 0.02 τt − err(q, q̇)− 350Rposition − 200Rrotation.

Subterms are

Rrod = clip(∥p− hpos∥, 0.05, 10) + clip
(
2
π arccos|hrot ·h0| , 0.25, 2

)
, (22)

τt =

7∑
i=1

(ait)
2, (23)

err(q, q̇) =
∑

i: |qi|>|qbi |

(
|qi| − |qbi |

)
+

∑
j: |q̇j |>|q̇bj |

(
|q̇j | − |q̇bj |

)
, (24)

Rposition = ∥p− ptarget∥, (25)

Rrotation = 1
π arccos|r ·rtarget| . (26)

Here, hpos is the rod tip position, and hrot,h0 are rod orientations (quaternions).

Sparse reward. Only the task terms are applied at the final step:

Rtotal =

{
−Rrod − 0.02 τt − err(q, q̇), t < T,

−Rrod − 0.02 τt − err(q, q̇)− 350Rposition − 200Rrotation, t = T.
(27)

J.3 GYMNASIUM MUJOCO

We evaluate on the Gymnasium MuJoCo v4 suite—Ant-v4, HalfCheetah-v4, Hopper-v4,
Walker2d-v4, and HumanoidStandup-v4 (Fig. 15). We use the default observation and ac-
tion spaces and the native v4 reward shaping and termination rules (no reward normalization). Per-
formance is reported as undiscounted episode return. Unless noted otherwise, evaluation uses the
deterministic policy over 152 episodes and aggregates results across multiple random seeds using
the IQM with 95% bootstrap confidence intervals; full hyperparameters and seeds are provided in
App. L.
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K APPENDIX: ALGORITHM IMPLEMENTATIONS

PPO Proximal Policy Optimization (PPO) (Schulman et al., 2017) is an on–policy, step–based
method that constrains policy updates to remain close to the behavior policy. Two variants are com-
mon: PPO–Penalty (KL regularization) and PPO–Clip (clipped surrogate). We evaluate PPO–Clip
given its prevalence and robustness, following the reference implementation in Raffin et al. (2021).
Seeds: 20.

SAC Soft Actor–Critic (SAC) (Haarnoja et al., 2018a;b) is an off–policy actor–critic with twin
Q–networks to mitigate overestimation and an entropy term to encourage exploration. We use the
Bhatt et al. (2019) implementation, which includes SAC. Seeds: 20 (Meta–World ML1), 5 (Gym
MuJoCo).

TD3 Twin Delayed DDPG (TD3) (Fujimoto et al., 2018) addresses overestimation and instability
via (i) clipped double Q–learning, (ii) delayed policy updates, and (iii) target policy smoothing. Our
TD3 follows standard practice adapted from Raffin et al. (2021), including Polyak averaging and
action noise for exploration. Seeds: 5.

GTrXL Gated Transformer–XL (GTrXL) (Parisotto et al., 2020) stabilizes Transformer training
for partially observable control. We build on the PPO + GTrXL implementation from Liang et al.
(2018) and add minibatch advantage normalization plus a state–independent log–standard–deviation
head following Huang et al. (2022). Seeds: 4.

gSDE Generalized State–Dependent Exploration (gSDE) (Raffin et al., 2022; Rückstieß et al.,
2008; Rückstiess et al., 2010) replaces i.i.d. Gaussian action noise with state–dependent, temporally
smooth exploration. Concretely, disturbances are generated as ϵt = Θs, where s is the last hidden
layer’s activation and Θ is resampled from a Gaussian every n steps according to the SDE sampling
frequency. We evaluate gSDE with PPO using the reference implementation of Raffin et al. (2022);
for stability on some tasks we employ a linear schedule for the PPO clipping range. Seeds: 20.

BBRL Black–Box Reinforcement Learning (BBRL) (Otto et al., 2023a;b) performs episodic, tra-
jectory–level search by parameterizing policies with ProMPs (Paraschos et al., 2013). This han-
dles sparse and non–Markovian rewards but can reduce sample efficiency. We consider both di-
agonal–covariance (BBRL–Std) and full–covariance (BBRL–Cov) Gaussian policies, paired with
ProDMP (Li et al., 2023). Seeds: 20.

TCP Temporally–Correlated Episodic RL (TCP) (Li et al., 2024b) augments episodic policy up-
dates with step–level signals, narrowing the gap between episodic and step–based RL while retaining
smooth, parameter–space exploration. Seeds: 20.

TOP–ERL Trajectory–Optimized Policy for Episodic RL (TOP–ERL) optimizes a distribution
over motion–primitive parameters with (i) a KL–constrained trust region and (ii) a temporally struc-
tured covariance that induces smooth, correlated exploration across the episode. Our instantiation
uses ProDMP (Li et al., 2023) as the trajectory generator; unless stated, we adopt an adaptive scale
(entropy) schedule and per–dimension normalization of primitive parameters. Seeds: 8.

CrossQ CrossQ (Bhatt et al., 2019) is an off–policy SAC variant that removes target networks and
applies BRN in the critic, enabling strong sample efficiency at an update–to–data ratio of UTD =
1. We follow the authors’ reference implementation: a single batch–normalized critic (no target
networks), default temperature tuning, and recommended hyperparameters unless stated otherwise.
Seeds: 4 (Meta–World ML1), 5 (Gym MuJoCo and Box–Pushing). Training on Box–Pushing
was capped at 10 M steps due to the experiment budget; by that point, wall–clock time exceeded
24 h.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

L APPENDIX: HYPERPARAMETERS OF THE ALGORITHMS

Baseline provenance. For BBRL, TCP, PPO, gSDE, GTrXL, TOP–ERL, and SAC
on Meta–World ML1, we report numbers from prior publications and/or official released
runs/configurations under settings comparable to ours; we did not perform additional large–scale
sweeps for these baselines in this paper (see citations in the main text and Appendix K).

Methods tuned in this work. We tuned SAC on Gym/FANCYGYM, the full CrossQ implemen-
tation, and TD3, including optimizer selection and hyperparameters (e.g., learning rates).

Our tuning for T–SAC. For T–SAC, we conducted a targeted grid search over Trans-
former–critic depth (number of attention layers), number of heads, dimensions per head, learn-
ing rates (policy/critic/α), supervision–window settings (fixed vs. variable horizons; min length,
step length), number of per–step target windows, and policy–side chunk length (for the com-
patibility study). Where appropriate, we initialized choices from publicly reported configurations:
Transformer hyperparameter ranges from TOP–ERL (Li et al., 2024a), the entropy–temperature
term from Celik et al. (2025), and the optimizer family from CrossQ (Bhatt et al., 2019). Final
settings and search grids are listed in the appendix tables.
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Table 5: Hyperparameters for the Meta-World experiments. Episode Length T = 500

PPO gSDE GTrXL SAC CrossQ TCP BBRL TOP-ERL T-SAC

number samples 16000 16000 19000 1000 1 16 16 2 4 * 125

GAE λ 0.95 0.95 0.95 n.a. n.a. 0.95 n.a. n.a. n.a.

discount factor 0.99 0.99 0.99 0.99 0.99 1 1 1.0 0.99

ϵµ n.a. n.a. n.a. n.a. n.a. 0.005 0.005 0.005 n.a.

ϵΣ n.a. n.a. n.a. n.a. n.a. 0.0005 0.0005 0.0005 n.a.

trust region loss coef. n.a. n.a. n.a. n.a. n.a. 1 10 1.0 n.a.

optimizer adam adam adam adam adam adam adam adam adamw

epochs 10 10 5 1000 1 50 100 15 20

learning rate 3e-4 1e-3 2e-4 3e-4 3e-4 3e-4 3e-4 1e-3 2.5e-4

use critic True True True True True True True True True

epochs critic 10 10 5 1000 1 50 100 50 100

learning rate critic 3e-4 1e-3 2e-4 3e-4 3e-4 3e-4 3e-4 5e-5 2.5e-5

number minibatches 32 n.a. n.a n.a. n.a. n.a. n.a. n.a. n.a.

batch size n.a. 500 1024 256 256 n.a. n.a. 256 512

buffer size n.a. n.a. n.a. 1e6 1e6 n.a. n.a. 3000 5000 * 125

learning starts 0 0 n.a. 10000 5000 0 0 2 200

temperature warmup 0 0 0 0 0 0 0 0 10000

polyak weight n.a. n.a. n.a. 5e-3 1.0 n.a. n.a. 5e-3 5e-3

SDE sampling frequency n.a. 4 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

entropy coefficient 0 0 0 auto auto 0 0 n.a. auto

normalized observations True True False False False True False False False

normalized rewards True True 0.05 False False False False False False

observation clip 10.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

reward clip 10.0 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.

critic clip 0.2 lin 0.3 10.0 n.a. n.a. n.a. n.a. n.a. n.a.

importance ratio clip 0.2 lin 0.3 0.1 n.a. n.a. n.a. n.a. n.a. n.a.

hidden layers [128, 128] [128, 128] n.a. [256, 256] [256, 256] [128, 128] [32, 32] [ 128, 128] [ 128, 128]

hidden layers critic [128, 128] [128, 128] n.a. [256, 256] [2048, 2048] [128, 128] [32, 32] n.a. n.a.

hidden activation tanh tanh relu relu relu relu relu leaky relu leaky relu

orthogonal initialization Yes No xavier fanin fanin Yes Yes Yes fanin

initial std 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0

number of heads - - 4 - - - - 8 4

dims per head - - 16 - - - - 16 32

number of attention layers - - 4 - - - - 2 2

Task-specific settings (Meta-World). For T–SAC, we initialize the policy’s log standard devia-
tion as log σ = −5. The replay buffer stores 5,000 segments of length 125 (i.e., 5,000 × 125 =
625,000 transitions). The sampler retrieves 4 segments of length 125 (i.e., 4 × 125 = 500 transi-
tions).
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Table 6: Hyperparameters for the Box Pushing Dense, Episode Length T = 100

PPO gSDE GTrXL SAC CrossQ TCP BBRL TOP-ERL T-SAC

number samples 48000 80000 8000 8 1 152 152 4 4 * 100

GAE λ 0.95 0.95 0.95 n.a. n.a. 0.95 n.a. n.a. n.a.

discount factor 1.0 1.0 0.99 0.99 0.99 1.0 1.0 1.0 0.99

ϵµ n.a. n.a. n.a. n.a. n.a. 0.05 0.1 0.005 n.a.

ϵΣ n.a. n.a. n.a. n.a. n.a. 0.0005 0.00025 0.0005 n.a.

trust region loss coef. n.a. n.a. n.a. n.a. n.a. 1 10 1.0 n.a.

optimizer adam adam adam adam adam adam adam adam adamw

epochs 10 10 5 1 1 50 20 15 20

learning rate 5e-5 1e-4 2e-4 3e-4 3e-4 3e-4 3e-4 3e-4 2.5e-4

use critic True True True True True True True True True

epochs critic 10 10 5 1 1 50 10 30 100

learning rate critic 1e-4 1e-4 2e-4 3e-4 3e-4 1e-3 3e-4 5e-5 2.5e-5

number minibatches 40 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

batch size n.a. 2000 1000 512 256 n.a. n.a. 512 256

buffer size n.a. n.a. n.a. 2e6 1e6 n.a. n.a. 7000 20000 * 100

learning starts 0 0 0 1e5 5000 0 0 8000 5000

temperature warmup 0 0 0 0 0 0 0 0 0

polyak weight n.a. n.a. n.a. 5e-3 1.0 n.a. n.a. 5e-3 5e-3

SDE sampling frequency n.a. 4 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

entropy coefficient 0 0.01 0 auto auto 0 0 0 0

normalized observations True True False False False True False False False

normalized rewards True True 0.1 False False False False False False

observation clip 10.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

reward clip 10.0 10.0 10. n.a. n.a. n.a. n.a. n.a. n.a.

critic clip 0.2 0.2 10. n.a. n.a. n.a. n.a. n.a. n.a.

importance ratio clip 0.2 0.2 0.1 n.a. n.a. n.a. n.a. n.a. n.a.

hidden layers [512, 512] [256, 256] n.a. [256, 256] [256, 256] [128, 128] [128, 128] [256, 256] [4 layers × 512]

hidden layers critic [512, 512] [256, 256] n.a. [256, 256] [256, 256] [256, 256] [256, 256] n.a. n.a.

hidden activation tanh tanh relu tanh tanh leaky relu leaky relu leaky relu relu

orthogonal initialization Yes No xavier fanin fanin Yes Yes Yes fanin

initial std 1.0 0.05 1.0 1.0 1.0 1.0 1.0 1.0 1.0

number of heads - - 4 - - - - 8 4

dims per head - - 16 - - - - 16 64

number of attention layers - - 4 - - - - 2 2

MP type n.a. n.a. value n.a. n.a. ProDMP ProDMP ProDMP n.a.

number basis functions n.a. n.a. value n.a. n.a. 8 8 8 n.a.

weight scale n.a. n.a. value n.a. n.a. 0.3 0.3 0.3 n.a.

goal scale n.a. n.a. value n.a. n.a. 0.3 0.3 0.3 n.a.
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Table 7: Hyperparameters for the Box Pushing Sparse, Episode Length T = 100

PPO gSDE GTrXL SAC CrossQ TCP BBRL TOP-ERL T-SAC

number samples 48000 80000 8000 8 1 76 76 4 4 * 100

GAE λ 0.95 0.95 0.95 n.a. n.a. 0.95 n.a. n.a. n.a.

discount factor 1.0 1.0 1.0 0.99 0.99 1.0 1.0 1.0 1.0

ϵµ n.a. n.a. n.a. n.a. n.a. 0.05 0.1 0.005 n.a.

ϵΣ n.a. n.a. n.a. n.a. n.a. 0.0005 0.00025 0.0005 n.a.

trust region loss coef. n.a. n.a. n.a. n.a. n.a. 1 10 1.0 n.a.

optimizer adam adam adam adam adam adam adam adam adamw

epochs 10 10 5 1 1 50 20 15 20

learning rate 5e-4 1e-4 2e-4 3e-4 3e-4 3e-4 3e-4 3e-4 2.5e-4

use critic True True True True True True True True True

epochs critic 10 10 5 1 1 50 10 30 100

learning rate critic 1e-4 1e-4 2e-4 3e-4 3e-4 3e-4 3e-4 5e-5 3.0e-4

number minibatches 40 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

batch size n.a. 2000 1000 512 512 n.a. n.a. 512 256

buffer size n.a. n.a. n.a. 2e6 2e6 n.a. n.a. 7000 20000 * 100

learning starts 0 0 0 1e5 1e5 0 0 400 2000

temperature warmup 0 0 0 0 0 0 0 0 0

polyak weight n.a. n.a. 0 5e-3 1.0 n.a. n.a. 5e-3 5e-3

SDE sampling frequency n.a. 4 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

entropy coefficient 0 0.01 0 auto auto 0 0 0 0

normalized observations True True False False False True False False False

normalized rewards True True 0.1 False False False False False False

observation clip 10.0 n.a. False n.a. n.a. n.a. n.a. n.a. n.a.

reward clip 10.0 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.

critic clip 0.2 0.2 10.0 n.a. n.a. n.a. n.a. n.a. n.a.

importance ratio clip 0.2 0.2 0.1 n.a. n.a. n.a. n.a. n.a. n.a.

hidden layers [512, 512] [256, 256] n.a. [256, 256] [256, 256] [128, 128] [128, 128] [256, 256] [4 layers × 512]

hidden layers critic [512, 512] [256, 256] n.a. [256, 256] [2048, 2048] [256, 256] [256, 256] n.a. n.a.

hidden activation tanh tanh relu tanh relu leaky relu leaky relu leaky relu leaky relu

orthogonal initialization Yes No xavier fanin fanin Yes Yes Yes fanin

initial std 1.0 0.05 1.0 1.0 1.0 1.0 1.0 1.0 1.0

number of heads - - 4 - - - - 8 4

dims per head - - 16 - - - - 16 64

number of attention layers - - 4 - - - - 2 2

MP type n.a. n.a. value n.a. n.a. ProDMP ProDMP ProDMP n.a.

number basis functions n.a. n.a. value n.a. n.a. 8 8 8 n.a.

weight scale n.a. n.a. value n.a. n.a. 0.3 0.3 0.3 n.a.

goal scale n.a. n.a. value n.a. n.a. 0.3 0.3 0.3 n.a.
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Table 8: Hyperparameters for the Gymnasium MuJoCo, Episode Length T = 1000

TD3 CrossQ SAC T-SAC (Soft Copy) T-SAC (Hard Copy)

number samples 1 1 1 4 * 20 4 * 20

GAE λ n.a. n.a. n.a. n.a. n.a.

discount factor 0.99 0.99 0.99 0.99 0.99

optimizer adam adam adam adamw adamw

epochs 1 1 1 12 12

learning rate 3e-4 1e-3 3e-4 3e-4 3e-4

use critic True True True True True

epochs critic 1 3 1 60 60

learning rate critic 3e-4 1e-3 3e-4 3e-4 3e-4

batch size 256 256 256 256 256

buffer size 1e6 1e6 1e6 1e5 * 20 1e5 * 20

learning starts 5000 5000 5000 10000 10000

temperature warmup 0 0 0 10000 10000

polyak weight 5e-3 1.0 5e-3 5e-3 1.0

entropy coefficient auto auto auto auto auto

hidden layers [256, 256] [256, 256] [256, 256] [256, 256] [256, 256]

hidden layers critic [256, 256] [2048, 2048] [256, 256] n.a. n.a.

hidden activation relu relu relu relu relu

orthogonal initialization fanin fanin fanin fanin fanin

initial std 1.0 1.0 1.0 1.0 1.0

number of heads - - - 4 4

dims per head - - - 64 64

number of attention layers - - - 2 2

Task-specific settings (Gymnasium MuJoCo). For T–SAC, the initial policy log-standard devi-
ation is set to −5 for ANT, HUMANOIDSTANDUP, and HALFCHEETAH, and to −10 for HOPPER
and WALKER2D. For HOPPER and WALKER2D only, the target entropy is Htarget = −4 · dim(A);
unless otherwise noted, other tasks use the SAC default Htarget = −dim(A).
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APPENDIX: USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) as a general-purpose assistant during writing and develop-
ment. Its roles included:

• grammar and spell-checking, language polishing, and minor stylistic edits;
• drafting and rewriting multi-paragraph text (e.g., introductions, preliminaries, and parts of

experimental write-ups) based on author-provided outlines and results;
• high-level suggestions for debugging strategies and hyperparameter choices;
• assistance with literature search (proposing search queries and surfacing candidate papers).

All BibTEX entries were copied from Google Scholar; the LLMs did not generate or edit biblio-
graphic entries. The LLMs did not originate the paper’s main idea, problem formulation, algorith-
mic design, or experimental plan, and it was not used to generate or alter data, results, or figures. All
citations were selected and verified by the authors against the original sources. All LLMs outputs
were reviewed and, when necessary, edited or discarded. No confidential or proprietary data were
shared with the LLMs.
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