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ABSTRACT

We introduce a sequence-conditioned critic for Soft Actor—Critic (SAC) that mod-
els trajectory context with a lightweight Transformer and trains on aggregated
N-step targets. Unlike prior approaches that (i) score state—action pairs in iso-
lation or (ii) rely on actor-side action chunking to handle long horizons, our
method strengthens the critic itself by conditioning on short trajectory segments
and integrating multi-step returns—without importance sampling (IS). The re-
sulting sequence-aware value estimates capture the critical temporal structure for
extended-horizon and sparse-reward problems. On local-motion benchmarks, we
further show that freezing critic parameters for several steps makes our update
compatible with CrossQ’s core idea, enabling stable training without a target net-
work. Despite its simplicity—a 2-layer Transformer with 128-256 hidden units
and a maximum update-to-data ratio (UTD) of 1—the approach consistently out-
performs standard SAC and strong off-policy baselines, with particularly large
gains on long-trajectory control. These results highlight the value of sequence
modeling and N-step bootstrapping on the critic side for long-horizon reinforce-
ment learning.
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(a) Transformer critic processes segments of actions (b) Aggregated success on Meta—World ML1 (50

rather than a single action, using causal self-attention tasks) comparing T-SAC to step-based and episodic

so token ¢ attends only to timesteps < ¢, preventing  baselines. Curves show IQM success rate with 95%

future-information leakage. bootstrap confidence intervals; unless noted, results
average 8 seeds and count success only at the final
timestep.

Figure 1: T-SAC overview and aggregate Meta-World ML1 results.

1 INTRODUCTION

Off—policy actor—critic methods are the workhorses of continuous control. SAC ( ,
) is notable for sample efficiency and stability, driven by tightly controlled bootstrap targets
and mechanisms that curb overestimation. Recent work shows that similar stab111ty can be achleved
by slowing critic updates or regularlzlng its function class (
, ). In this vein, CrossQ ( , ) removes target networks by palrlng
Batch Renormalization (BRN) ( , ) with bounded activations, yielding strong locomotion
results.



Under review as a conference paper at ICLR 2026

A complementary line of work uses femporally extended actions for temporal abstraction. Move-
ment primitives and action chunking can ald exploration and produce smoother trajectories than

purely step—based control ( , ; , ). However, meth-
ods that jointly predict actions and repetmon horlzons ( , ) or replace the policy
with recurrent sequence models ( , ) have not consistently produced robust gains.

Accurate value estimation remains difficult in sparse-reward, long-horizon, high-dimensional set-
tings. Multi-step targets (N-step returns) ( , ) can reduce bias at the cost of higher

variance and typically require off-policy IS ( , ), which complicates—and can desta-
bilize—training ( , .

Transformers have become strong backbones for RL: self-attention supports sequence modelmg,
long- range credit assignment, and flexible conditioning on history (

, ). They parameterize policies and critics, serve as World models and
enable ofﬂme RL via trajectory/return conditioning ( , ; ; , ).

This paper: Transformer-based Soft Actor-Critic (T-SAC). Our primary contribution is
T-SAC, a step-based Soft Actor—Critic in which the standard MLP critic is replaced by a sequence-
conditioned Transformer critic trained on short trajectory segments with N -step returns. By chunk-
ing temporal structure inside the critic—attending over brief state—action windows and aggregating
multi-step TD targets—we improve long-horizon credit assignment while keeping the policy strictly
one-step (no trajectory-level outputs or replanning) and the update rule free of IS.

Around this core design, we introduce several supporting choices that improve stability and prac-
ticality but are not the main conceptual novelty: (i) causal masking and a lightweight Transformer
depth, following TOP-ERL in spirit but adapted to a step-based SAC setting; (ii) a simple gradient-
averaged N-step loss; and (iii) a lightweight critic parameter-freezing schedule on locomotion
benchmarks that enables stable training without target networks (in contrast to Polyak averaging
as in Deep Q-Learning ( , )). Empirically, T-SAC preserves SAC-style stabil-
ity and is sample efficient, solving most Meta-World tasks in ~5M interactions, achieving 96.8%
success on Box—Pushing (dense), and remaining stable at low update-to-data (UTD) ratios (Meta-
World = 1, Gymnasium MuJoCo = 0.75, Box—Pushing = 0.25), with 1M interactions at UTD= 1
completing in ~3 hours.

2 RELATED WORK

2.1 TRANSFORMER-BASED CRITICS FOR EPISsODIC RL

Episodic RL (ERL) replaces per-step actions with trajectory-level primitives ( , ;
), easing long-horizon reasoning but complicating temporal credit assignment, espe-

cially off policy. TOP-ERL ( , ) partitions each episode into fixed-length segments and
trains a Transformer critic that attends across segments. With truncated IV -step targets ( ,
), the critic predicts per-segment returns, enabling off-policy replay while exploiting attention

for partial observability and long-range dependencies. On manipulation benchmarks, TOP-ERL

improves over prior ERL-based, step-based, and on-policy value-based baselines ( , ).
Transformer critics for episodic vs. step-based control. TOP-ERL ( , ) is an early
Transformer-critic method for episodic control: a ProDMP policy ( , ) outputs full tra-

jectories, and the critic evaluates segment-level returns along them. Replanning is discussed but
not implemented in the released experiments. The method additionally relies on a Trust Region

Projection Layer (TRPL) ( , ), typically uses ~20M interactions, and still underper-
forms on some multi-phase Meta-World tasks ( , ) (e.g., Assembly, Disassemble) and
Box—Pushing at tight tolerances ( ).

By contrast, T-SAC remains in the standard step-based, closed-loop regime: the policy outputs an
action at every time step from the current state, and the Transformer critic is prefix-conditioned
on short state—action windows sampled from replay. It is trained with non-soft N-step TD targets
without importance sampling, keeping it closer to conventional off-policy actor—critic methods than
to episodic ERL: temporal abstraction lives in the critic’s conditioning and targets, not in an open-
loop policy.
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Decision Transformer and related offline sequence-modeling approaches ( , ;

, ) instead perform policy-side sequence modeling on fixed datasets, mapping past trajec-
tories and target returns directly to actions. These methods are complementary to T-SAC: we use
a Transformer only for the critic, in an online, off-policy setting. In principle, an offline Decision
Transformer policy could be paired with a T-SAC-style critic, or our critic architecture could be
adapted to evaluate trajectories generated by such sequence policies.

2.2 TRAINING WITHOUT TARGET NETWORK

Target networks stabilize bootstrapped critics but slow value propagation and add complexity (

, ). Recent work instead limits target drift or smooths backups. The
strongest result CrossQ, achieves state-of-the-art (SOTA) sample efficiency in continuous control
by removing the target network and stabilizes a single bootstrapped critic with BRN ( , ).
Related target-free strategies include value smoothing (mellowmax) ( , ;

R ), constrained/proximal updates ( R ; R ), function-
space regularization and partial freezing ( , ; ; , )
feature decorrelation ( , ). Theory unifies these mechanlsms as alternatlves to target
networks via partial freezing, regularization, and separation of optimization dynamics ( ,

).
2.3 ACTION CHUNKING IN REINFORCEMENT LEARNING

Action chunking replaces per-step control with short open-loop sequences of actions (“chunks”),
which can capture temporal structure, accelerate value propagation via longer effective horizons,

and promote temporally coherent exploration ( , , ).
The trade-off is reduced reactivity within a chunk ( , ), but for long-horlzon, sparse-
reward manipulation this bias often pays off ( s ; , ).

Reinforcement Learning with Action Chunking (Q-chunking) ( , ) applies TD-based

actor—critic learning directly in the chunked action space: the policy proposes an H-step action se-
quence and the critic evaluates Q(s¢, at.t+m—1), enabling unbiased H-step backups and efficient up-
dates ( , ). In their implementation, the critic is a simple MLP that ingests the state con-
catenated with the proposed action chunk (rather than a sequence model), which keeps the method
lightweight while still reaping the benefits of temporally extended actions ( , ).

3 PRELIMINARIES

Off-Policy Reinforcement Learning. Reinforcement learning (RL) ( , ) for-
malizes sequential decision making as a Markov decision process (MDP) (S, A, P,r,~): at time
t an agent observes s;, selects a; ~ w(- | st), receives r; = r(st,at), and transitions to

st41 ~ P(- | s¢,a¢); the goal is to learn a policy maximizing J(m) = E, p[> o, ~'r] using
value functions V™ (s) and Q’T(s a) that satisfy Bellman consistency, with Q* inducing the optimal
policy. Algorithms differ in how they estimate and improve these quantities—value-based learn-

lng ( H ’ s ’ ) ’

), actor—critic ( R ; , 3 ; > ), or dl'
rect policy optimization ( , )—while managing exploration vs.
exploitation ( , ) Oft- pohcy RL learns a target pohcy « from data generated by a

(possibly different) behavior policy p, reusing transitions (s, a,r, s’) via replay buffers and boot-
strapped Bellman updates; distribution mismatch when evaluating m from p-data can be corrected
(e.g., with IS ( , )). This decoupling enables efficient experience reuse and underpins
methods like Q-learning ( , ) and the SAC ( , ) family.

Soft Actor-Critic Let mg(a | s) be a stochastic policy with parameters 6. Let Qy(s,a) be the
critic with parameters 1, and let (04 be its target network (e.g., a Polyak-averaged copy of Q).
SAC ( , ) maximizes a maximum-entropy objective to improve robustness and
exploration:

[i,yt (re + aH(ma(- | st)))]
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where  is the discount factor.

The Bellman target is
Yo =Tt + Y Earomy (fsrp) Qo (5141, 0") — alogmp(a’ | s141) ],
and the critic minimizes the squared error
Jo(®) = Eiaparriseenmn| 5 (Qulse.a) — ).
The actor minimizes
Jr(0) =Esup, awm(.‘s)[a logmg(a | s) — Qu(s, a)].
The temperature « is tuned to match a target entropy H by minimizing

J(a) = ESND, (J.NTK'Q("S)[ - a<10g 779((1 | S) + 7-2)] ( > ).

N-step Returns and IS  Using the same notation as above, on-policy N- step targets speed up credit
assignment ( , ; , ; , ), 1.e.,

yt sof[ Z Y Eat+k~7r9[7°t+k —alog W@(at+k| 3t+k)] +7 Ea~7r9( |st4m) [Q¢(St+n7 )]
k=0

With off-policy data drawn from a behavior policy i # 7y, per-decision importance ratios

ur (at+kz | 3t+k)

Pt+k =
,U(at+k | 5t+k)
can be used to correct the distributional mismatch ( s ), i.e.,
n—1 k—1 n—1
n k
Gg soft — Z Y H Pt+j [Tt+k — alog mg(azik | 5t+k)] + 17" H Pr+j | Qo(St4n, Attn),
k=0 =0 j=0

with the convention that an empty product equals 1. When p = 7y, all p’s are 1 and G(n) reduces to
the standard N-step target. Pure IS can 1ntr0duce high variance, therefore the step length n cannot
be chosen to be very large ( , ; , ; , ).

Averaged N-step Returns for Critic Updates Using N-step returns is a standard way to re-

duce target bias for the critic ( , ). For a starting index ¢ and horizon n €
[1,max_length], following ( ) we define the N-step target as
n—1
GS::L))WL—soft (St7 ag, .- ’at+n—1) = Z ’yjrt“rj + ,yn V¢(St+n)7 (1)
§=0

with discount v € (0,1] and a targer network parameterized by ¢. Here Vy(s) =
anﬂe(.‘s)[Q(b(s? a)] is the (non-entropy) bootstrap value under the current policy. While larger

n reduces bootstrapping bias, the variance of G(™ typically grows with n ( , ). A
practical variance reduction is to average partial returns ( , ; , ):

G = Z GW. )

This averaging lowers the variance of the reward-sum component from O(n) toward roughly
O(n/4)-O(n/3) (decreasing with n, depending on reward correlations), and makes the value-
estimation term decay as 1/n; under the same assumptions as ( , ), the full proof
appears in App. C. This motivates using multiple horizons during critic training (see § 4.2). How-
ever, in our T-SAC implementation, we do not average N-step returns, as this strategy performs
poorly in sparse-reward settings (see App. F).
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4 TRANSFORMER-BASED SOFT ACTOR-CRITIC (T-SAC)

4.1 N-STEP RETURNS FOR CRITIC UPDATES
4.1.1 GRADIENT-LEVEL AVERAGING OF N-STEP RETURNS

Notation. For horizon ¢, define the prefix-conditioned online critic output Qg) =

Quy(St,at, ..., ai4—1). Directly averaging targets can dilute sparse reward signals (App. F). In-
stead, we form per-horizon losses
i i)\ 2 .
Litw) = L(QY —GD)*,  i=1,....n, 3)
where a shared-weights online critic outputs sz) for each prefix (s¢, a¢, ..., a4+i—1) (s¢ and a; use

separate embedding layers). We then average gradients across horizons:
1 n
VoL = =Y VoL (). 4
ol = 5 2 Velil¥) “)

Because adjacent horizons have overlapping targets and correspond to adjacent decoder posi-
tions in the same network, their per-parameter gradient contributions are positively—but not per-
fectly—correlated. Averaging therefore reduces update variance while preserving sparse signals
(App. D, F;Fig. 2).

4.1.2 STABLE CRITIC LEARNING WITHOUT IMPORTANCE SAMPLING

Standard off-policy N-step TD presumes that post-a; actions are drawn from the current policy
my, which mismatches replay generated by a behavior policy p. Per-decision IS with pyyp =
7o (et k]Strk)
wlaetklserr)

)

corrects this but injects high variance ( , ; ) ;

Similarly to ( ), we instead change the target: the critic predicts prefix-conditioned
values for realized prefixes from replay,

{ Qw(st; at:t+i71) };L:p

with i-step targets
i—1

G (54, appsio1) = Z'ert-&-j + 9" Vi (st40), ©)
§=0
and the loss
n
i 2
Leritic = E(s,,a004n_1)~D [% Z(Qw(St, i) — GO (s, i 1)) } (6)
1=1

As rewards follow the recorded prefix a;.44;—1, no assumption that actions came from 7y is needed,
and hence, no IS is required. Only the bootstrap at t+i depends on mg via Vi (S4).

Supervising short windows with multi-horizon targets and averaging their gradients yields stable up-
dates and preserves sparse signals, enabling “multi-step supervision, one-step policy update” without
IS (Fig. 2, 9b).

4.1.3 CONNECTION TO STANDARD N-STEP TD AND THEORETICAL GUARANTEES

Equations 5-6 can be viewed as a standard multi-step TD update in an MDP where each action
prefix ay.44;—1 is treated as an extended action. For a fixed horizon ¢, we define

T = (St, at:t+i—1)7

use equation 5 as the N-step target G(*) (z), and minimize the squared TD error

(Qu(z) — GV (2))*,
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exactly as in classical N-step Q-learning.

The key difference to off-policy N-step TD with importance sampling (IS) is what the critic is
asked to predict. IS-corrected targets are (in principle) unbiased for Q™, but have high variance and
typically require clipping when behavior and target policies differ. Our critic instead learns the value
of realized prefixes under the replay distribution.

From a theoretical perspective, conditioned on a given state s, and realized prefix a;.;y,—1, the dis-
tribution over future rewards is fully determined by the environment dynamics and does not depend
on how this prefix was generated (behavior versus target policy). Empirically this yields more stable
long-horizon learning. See App. E for the formal connection to existing IN-step TD theory.

4.2 CRITIC NETWORK AND OBJECTIVE

Our critic is a causal Transformer that ingests (s¢, at, at41, . .., Gr+n—1) and outputs the n prefix-
conditioned values {Qq(s¢, at, - .., Gi+i—1)}1—q (Fig. 1). For a mini-batch of L trajectories, a ran-
dom start index ¢t € [0, N — n], and horizons ¢ € {1,...,n} with n sampled uniformly from
{min_length,...,max_length}, the training objective is the mean-squared error over all hori-
zons:

L n
1 ; 2
L) = 3> (Qulstiaf, ek )~ GO af, el ) ()
k=1 i=1
During backpropagation we apply the gradient-level averaging across {L;}}_; described above.
This construction leverages multi-horizon targets and inherits their variance-reduction benefits with-
out target-level signal dilution.

4.3 PoLICY NETWORK AND OBJECTIVE

Following ( ); ( ) and ( ), we apply Layer
Normalization to the policy’s hidden layers (before the nonlinearity); ( ) report
this configuration to be useful for continuous-control actor—critic, especially when exploration noise
is injected. The objectives remain

Jﬂ'(e) = ESN'D, a~Te [ « IOg 7T.9(Cl | S) - Ql/)(& a) ]7 (3
J(@) = Esnp,anmy | — a(logm(a]s)+H) |, ©)

with target entropy —7 (typically —dim(.A)) and automatic temperature tuning ( ,
). Unlike canonical SAC, our critic does not include entropy in the target; it estimates the
standard (non-soft) action-value. The policy is optimized with an entropy-regularized objective, so
exploration and regularization are handled entirely by the policy. This “non-soft critic + policy-
side regularization” design is also used in MPO ( , ), AWR/AWAC (
s ; s ), and IQL/IDQL ( R ; s ).
Throughout this paper, all value targets are standard (non-soft) action-values; the entropy term
appears only in the policy objective and is not included in the critic targets.

4.4 CRITIC-PARAMETER FREEZING ENABLES TARGET—FREE TRAINING

CrossQ ( s ) removes target networks via batch normalization ( s ) and
bounded activations. In contrast, we eliminate Polyak updates with a short critic—freezing sched-
ule: at the start of each critic segment we snapshot the online critic (¢ < 1), precompute and cache
bootstrap targets Vy(s) for all windows in that segment, and then freeze this snapshot while optimiz-
ing the online critic against the cached targets for the next K updates (reusing each segment across

N, windows; Gymnasium MuJoCo ( , ): K=20). This lightweight decoupling
curbs target drift without batch renormalization or constrained activations, and on local-motion
and sparse—reward tasks (e.g., Box—Pushing—Sparse ( )) the resulting hard—copy schedule

yields stable training that matches or exceeds Polyak updates.

Our scheme introduces a single hyperparameter, the freezing interval K, i.e., the number of critic
updates for which we reuse a single value snapshot V,,. Because targets are computed once per seg-
ment before we enumerate windows, the minimum effective freezing interval is the segment length
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Figure 2: Success-rate IQM vs. environment interactions on challenging Meta-World ML1 tasks and FANCY-
GYM Box-Pushing. Panels show Assembly, Disassemble, Hammer, and Stick-Pull, plus Box-Pushing under
dense and sparse rewards. Success is counted only at the final timestep.

Ly, (for local-motion tasks, Lg, = 20). Sweeping K € {20, 100, 1000, 10000} on Gymnasium
MuJoCo Walker2d (Fig. 4g), we observe largely stable performance with only mild degradation for
the largest K, suggesting that segment-level target caching already provides useful stabilization and
that K is not a brittle hyperparameter in our setting.

5 EXPERIMENTS

Positioning T-SAC. Prior value-based RL largely splits into (i) step—based methods (e.g.,

SAC ( s ), CrossQ ( s )) that dominate local-motion tasks (e.g.,
Ant ( , )), and (ii) episodic/trajectory—level methods (e.g., BBRL ( ,
), TOP-ERL ( s )) that excel on long—horizon problems (e.g., Box—Pushing (
), Meta—World ( , )). T-SAC partially narrows the gap between these regimes:

it retains one—step policy updates while using a sequence—conditioned Transformer critic, and em-
pirically matches standard SAC on local-motion benchmarks while outperforming existing Trans-
former-based approaches (e.g., GTrXL-style policies and TOP-ERL) on our long-horizon tasks.

5.1 ENVIRONMENTS AND SEEDS

We evaluate T-SAC on 57 tasks spanning Meta—World ML1 (50) ( , ), Gymnasium
MuJoCo locomotion (5) ( , ), and Box—Pushing (dense/sparse; 2) ( ).
Meta—World probes task generalization; Gymnasium MuJoCo covers standard locomotion; and
Box—Pushing stresses precise, contact—rich manipulation. Unless noted otherwise, we report means
over 8 seeds (ablations use 4) with 95% bootstrap confidence intervals ( , ). Train-
ing time per 1M environment steps, compared to off—policy baselines, is shown in App. I. Baseline
implementations and hyperparameters are detailed in App. K and App. L, with environment details
in App. J.

5.2 META-WORLD RESULTS

We run Meta—World ML1 with UTD= 1, policy delay= 5, batch size 512; training time is ~3 h per
1M env steps. Across 50 tasks, T-SAC solves most within ~5M steps and yields stronger aggregated
IQM than strong baselines (per—task curves in App. A). On the hardest multi—phase tasks (Assembly,
Disassemble, Hammer, Stick—Pull) T-SAC is particularly strong (Fig. 2). In contrast, TOP—ERL (

, ) typically requires 20M steps to reach similar aggregates. All comparisons use SM env
steps for T-SAC, while many baselines use larger budgets (Fig. 7, 8). Success is evaluated only
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Figure 3: Episode return (IQM) vs. environment interactions for Ant, HalfCheetah, HumanoidStandup, Hop-
per, and Walker2d. Evaluation follows Gymnasium v4 native shaping/termination (no reward normalization);
we report undiscounted return and use deterministic-policy evaluation.

at the final step (App. J), and our aggregates compute IQM per task and then average across tasks
(unlike pooled—task IQM in TOP-ERL).

5.3 BOX PUSHING (DENSE AND SPARSE)

We evaluate dense and sparse variants of FANCYGYM ( ) Box—Pushing with tight success
tolerances (position £5 cm, orientation +0.5rad). Under dense shaping, T-SAC attains 96.8 %
success (Fig. 2), exceeding prior step-based baselines (< 85%) under the same protocol. Under
sparse rewards—where these terms apply only at the terminal step—T-SAC with the hard—copy
critic reaches 60% success, compared to TOP-ERL’s 70%. Thus T-SAC is state-of-the-art on
Meta-World ML1 and dense Box-Pushing, and competitive under sparse rewards.

5.4 GYMNASIUM MuJoCo

A lightweight critic-parameter freezing schedule (§ 4.4, App. B) enables target—free training: we re-
move the target network while retaining SAC-style stability at low update rates (UTD ~ 0.75) and
consistently match or surpass Polyak updates. Across the five Gymnasium MuJoCo tasks, T-SAC
is competitive with or better than SAC on Ant, Hopper, and Walker2d, with the largest gains on
HumanoidStandup and HalfCheetah (Fig. 3), and we do not observe slower early convergence de-
spite conditioning the critic on multi—step sequences from an early exploratory policy. Because
episodes have variable length, we apply a simple action mask when constructing /V-step targets
from fixed—length windows to avoid bootstrapping across episode boundaries (App. H); this mask is
an implementation detail rather than a core component of T-SAC and does not degrade performance.

5.5 ABLATION STUDY

We conduct targeted ablations on FANCYGYM Box—Pushing (dense) and MUJOCO WALKER2D.
These ablations are structured to disentangle the effect of the sequence-conditioned Transformer
critic—our main algorithmic contribution—from supporting design choices. Within each ablation
group, all settings are identical except for the component under test; across groups, minor differences
(e.g., training budget or step_length) arise from compute limits and are stated explicitly.

5.5.1 TRANSFORMER COMPONENTS

We ablate three parts of the Transformer critic—ResNet blocks, the causal mask, and self-
attention—holding all other settings fixed (Fig. 4a). Removing only self-attention invalidates the
segment-conditioned objective and typically diverges. Removing self-attention fogether with the
ResNet and causal mask reduces the critic to a plain MLP; we compare this baseline in § 5.5.3 and
Fig. 4c.
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Figure 4: Ablations: transformer-critic design and training settings. Within each panel, methods share the
same interaction budget and differ only in the ablated component.

5.5.2 STEP LENGTH AND MIN LENGTH (REUSE FACTOR)

We sweep step-length and min_length, which bound the multi-horizon (/N-step) supervi-
sion window. At each update we sample n € {min_length,...,step_length}; by default
n ~ Unif{l,...,16}. Using a fixed horizon L smooths optimization but slightly reduces final
performance (Fig. 4b), partly because the last L—1 states of each segment never serve as starting
1nd1ces—an effect amphﬁed for large L (e.g., 16). Despite standard guidance to keep n <5 (

s ), our Transformer critic with gradient-level
averagmg is stable up to n=16 and benefits from longer windows (Fig. 4b). An analogous sweep
under the hard-copy scheme on Gymnasium Walker2d shows consistent trends (Fig. 4h).

5.5.3 COMPARISON TO MULTI-STEP MLP (REINFORCEMENT LEARNING WITH ACTION
CHUNKING)

With 16M environment steps (default budget: 20M), a multi-step MLP critic underperforms the
Transformer critic; policy-side chunking with an MLP yields only modest gains (Figs. 5, 4c). These
policy-side baselines follow the Q-Chunking (QC) architecture of ( ): we use the same
action-chunking policy but drop the offline behavior-cloning constraint to match our online off-
policy setting. In contrast, chunking the Transformer critic helps: the best setting uses chunk length
4, converges by &~ 10M steps, reaches 99.5% final success, and shows no late-stage divergence
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across seeds (Fig. 4d). Comparing the QC-style MLP critic (Fig. 4c) to the QC-style Transformer
critic (Fig. 4d) thus isolates the benefit of the sequence-conditioned critic under the same chun-
ked policy. This gain is not just from richer input features: in Fig. 5(b), with min_length =
max_length = 1 the Transformer critic still outperforms the chunking_length =1 baseline in
Fig. 5(c), even though both operate at single-step temporal resolution, indicating that the advantage
comes from how it integrates N-step returns and averages gradients over short trajectories. The
MLP critic also suffers causal leakage: because it consumes fixed-length segments, Q(s¢, a;) is ef-
fectively conditioned on (¢, Gt.++r ), thereby “peeking” at future actions as1:t4r ( , ).
Our Transformer critic applies a causal mask so each token attends only to positions ¢’ < ¢ and out-
performs an ablation without masking (Fig. 4a). Finally, the MLP critic imposes fixed-length inputs
and ties the policy chunk length to the critic, whereas the Transformer critic avoids these constraints.

5.5.4 NUMBER OF SAMPLES GENERATED PER STEP

We vary the number of supervision windows sampled per environment step (“per-
step target samples”). For this study we use step-length = [1, 8] (standard:
[1,16]). Unlike conventional SAC (one target per step), T-SAC benefits from gen-
erating multiple windows (Fig. 4e); our default is 4. In practice, use four vectorized
envs or collect a single trajectory of length 4 xmax_length and slice it (App. H).

i . . . . ; Figure 5: Pol-
Intuitively, multiple windows raise the share of fresh samples in each batch: with jcy  chunking

one window, once selected there are none left; with four, three remain. (adapted  from
(2025)).

5.5.5 GRU/LSTM AS THE CRITIC

We replace the Transformer critic with GRU and LSTM variants under identical

training (10M env steps; standard: 20M). Although recurrent critics can model action sequences,
our gradient-level averaging analysis (§ 4.1.1; App. D) does not directly apply, and parallelism
is reduced (Fig. 12. Empirically, both GRU and LSTM underperform the Transformer critic on
Box-Pushing in our setting (Fig. 4f).

5.5.6 ROBUSTNESS UNDER NOISE AND PARTIAL OBSERVABILITY

We evaluate robustness to injected noise on actions and states, stochas-
tic early termination, and partial observability via short observation win-
dows. T-SAC degrades gracefully under action and state noise, retain-
ing a clear performance margin over SAC and CrossQ. Stochastic termi-
nation and partial observability lead to larger drops and higher variance,
but T-SAC remains at least as stable as these baselines, suggesting that se-
quence—conditioned critics help mitigate such effects.

6 CONCLUSION AND FUTURE WORK Figure 6: Structure of
the recursive network

used in our experiments.
On Meta-World ML1 multiphase and FANCYGYM box-pushing tasks, T-
SAC with a Transformer critic attains state-of-the-art success rates under
fixed training budgets (5M and 20M environment steps, respectively) and a common evaluation
protocol (success over 8 seeds; see §5). The sequence-conditioned critic provides smoother value
estimates and more coherent long-horizon credit assignment than both largely open-loop multiphase
pipelines and standard step-based value methods, yielding higher-quality continuous control.

Our study is restricted to online continuous control with low-dimensional observations. Extending
T-SAC to discrete-action domains and to pixel-based or strongly partially observable settings (e.g.,
with visual or belief-state encoders) is nontrivial—preliminary experiments revealed instabilities and
high sensitivity to architectural and optimization choices. Applying T-SAC to real-robot tasks and
developing theory for when critic-side chunking provably helps, including representation analyses
and shared Transformer backbones for actor—critic, are important directions for future work.

10



Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We made substantial efforts to ensure reproducibility. The paper and appendix specify environments,
evaluation protocols, and all hyperparameters used. Upon acceptance, we will release a public
GitHub repository containing the implementation of the proposed algorithms, experiment scripts,
and trained models. Detailed descriptions of the experimental setup, including configuration files,
are provided in the appendix to enable independent reimplementation during review.
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A APPENDIX: INDIVIDUAL META-WORLD TESTS RESULTS

—— T-SAC (ours) —— PPO —— GTrXL(PPO) —— gSDE
—— CrossQ
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B APPENDIX: DETAILED ALGORITHM FLOWCHART

Algorithm 1: T-SAC

Initialize: Critic params ¢; target critic @reet <— @; policy params 6; temperature c; replay
buffer 13; environment reset — sg.
Input: Segment length cap M; window length bounds (£pin, £max); updates per iteration U;
critic steps N.; policy steps INV,,; soft update 7; warmups: policy / temperature.
repeat

Collect one segment (length < M);

store sg; t<+0;

while ¢t < M do
sample a; ~ (- | s¢); step env — (7, S¢a1, dt);
append (s¢, at, r¢, dt, St+1) to a temporary buffer;
if d; then break;
t—t+1; St <= St+15

end

push the whole segment (so.17, @o:p7—1, To:1—1, do:nr—1) to B;

if d; then reset env — sq;

else sg < sy,

Parameter updates;

for uw < 1to U do

sample a batch of segments {(so.a1, @0:n1—1, T0:01—1, do:v—1) } 2, from B;

precompute segment-wise bootstrapped targets using Q.5

> reuse across N, windows

for k < 1to N, do

for each sequence in the batch, draw start ¢ uniformly over valid indices and draw
£~ U{lmin, - - -y bmax } S-t. i+€ <segment end;

form windows (8;.4¢+1, @i-itre, Vi-itt, di-i+e) and the corresponding N-step
returns;

update critic parameters ¢ with the Transformer critic on these windows;

> critic update

(rbtargel T ¢ + (1 - T) ¢target;

> soft (or hard) target update

end
if step > policy warmup then sample a (fresh) batch of states from B;
for k < 1 to N, do
update policy 6 by maximizing the SAC objective using Q) ;
if step > temperature warmup then update temperature «;
end

)

end
until convergence;
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C APPENDIX: PROOF OF THE VARIANCE REDUCTION PROPERTY OF
AVERAGING OF N-STEP RETURNS

A convenient variance identity. Under the equicorrelation model,
E[Xy] =m, Var(Xp)=v, Cov(Xg,X¢)=pv (k#1), p >0,

any weighted sum S = ij:—ol a X}, satisfies

N-1 N-1 _, N-1
Var(S)zv(Z ai + p (Z ak) — Zai]) . (10)
k=0 k=0 k=0

This follows by expanding Var and collecting diagonal/off-diagonal terms.

Reward part with discount v < 1. Define the single N-step discounted reward sum and its
triangular average by

N-1 N
) é ];)’Ykrkv RN Z

i—1

WM
MZ
3
Hl>
=
=20

™
\2??‘

Let
— A - o _ 1=V _ A - r_ 1=7Y
So=SN,y) 2> 4 -1 Ty=To(N.y) 2 3 A -
k=0 k=0
Also define the (discounted, triangular) weight aggregates
N-1 1 N-1 N-1 5
23w = 5 L N=RE By 2 (Y w) -4, (1
k=0 k=0 k=0

Lemma 1 (Variance formulas for the discounted reward part). Under the reward assumptions stated
in the setup,

Var[Ry (v)] = 0 [So + p (T5 — S0)], Var[ Ry (v)] = 0?[A, + p B,].

Proof. Apply equation 10 with weights a;, = 7* for Ry (v) and ax = wy, for Ry (7), and use the
definitions of Sy, Ty, A, B,. O

Proposition 1 (Reward-side variance ratio and bounds). Define

» Var[Ry(y)]  So+p(T§ — So)
R,(N) = Var[RN(’Y)] N A, + OpB7

Thenforall N > 1, p > 0, and v € (0, 1],

1 < R,N) < 4.

Moreover, for y =1, R,(N) /4 as N — oo; for any fixed vy € (0,1), Ry(N) — 1. When p > 0,
R (N) is strictly increasing in N for v = 1; for v < 1 it need not be monotone.

Proof (sketch). The v = 1 proof carries through verbatim after replacing the unweighted triangular
weights j by the discounted weights wy, = ((N —k)/N)~*; the same algebraic positivity arguments
yield the bounds. For the limits, when v < 1 we have w, — ~* pointwise as N — oo and
dominated convergence gives A, — Sy and >, wy, — Tp, hence R, (N) — 1. For v = 1, the
standard triangular-sum identities imply Ry (V) 7 4. O

Bootstrap value part. Let Z; =V, (s;1;) denote the (target) values used for bootstrapping, and
assume

E[Zi]=v, Var(Z)=71% Cov(Zi,Z;)=r7* (i # ), K >0,
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and that {r;} and {Z;} are independent unless stated otherwise. The single N-step bootstrap term
and its triangular average are

N
_ 1 .
A N A L7,
By(v) =" Zn, By(v) = N;ilez-
Let

N 2 2N N N
: 1—~*%) _ (1=
= N 2 2i 7(7 = N A i_ N7 )
S1=S1(N,v) ;:17 e C=C(N,7) ;:17 T
Lemma 2 (Variance of the averaged bootstrap part). With Cov(Z;, Z;) = k72 fori # j,
2

Var( By (7)] = 15 |

Si+ K (C2 — 51)]
Proof. Apply equation 10 with a; = +*/N. O
Proposition 2 (Bootstrap-side variance ratio, bounds, and condition). Define
Var|B N2 2N
Ro(Nym) & vl N
Var[By (7)] S1+ k(C? = 51)

Then for any & € [0,1],
NQ,YQN 8RB

NQ’)/QN
— , < 0.
C2 Sl 8/{
In particular, averaging reduces bootstrap variance (Rp > 1) whenever
N2’}/2N _ Sl
k < ke(N,y) & ——————
— *( 7) C2 _ 51

For the uncorrelated case (k = 0), Rg(N,~,0) = N2~42V /5.

S RB(N771H) S

Proof. Monotonicity in x is immediate from the denominator. The bounds follow from S; <
S1 + k(C? — S;) < C2. Solve R > 1 for k to get k. O

Putting the parts together. With Gy () = Ry(7y) + Bn(7) and Gy () = Ry (y) + By (7).

and assuming independence between rewards and bootstrap values,
Var[Gn (v)] _ Var[Ry(7)] + Var[By (v)]
Var[Gn(v)]  Var[Ry(y)] + Var[By (v)]

Since all terms are nonnegative,

12)

. ar|G
mln{Rv(N), RB(N,’Y,K)} < W < max{Rv(N), RB(N,’}/,/-@)}.

Consequently:
* Because R, (N) > 1 (Prop. 1), if Rg(N,v,k) > 1 (e.g., & < K,), then averaging N-step
targets strictly reduces total variance.

* Even if Rg(N,~,k) < 1, the overall ratio in equation 12 remains > 1 whenever the
reward-side gain dominates:

Var[By(v)]  S1+k(C? — S)
BN 2 B~ N

Dependence between rewards and bootstrap values. If Cov(Rn(y),Bn(y)) and

Cov(Ry(7), By(7)) are nonzero, the numerator/denominator of equation 12 each acquire
an additional covariance term. The sandwich bound above still applies after inserting these, and a

crude control is |[Cov(X,Y)| < 4/Var(X)Var(Y) (Cauchy-Schwarz), which cannot overturn the
above conclusions unless the cross-covariances are pathologically large.
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Useful closed forms. Besides Sy, S1, T, C above, one has

N-1
SN - Ry = 1-— (N+1)7N+N7N+1.

= (1—=79)?

A closed form for Zszfol (N — k)?4%* (hence A., via equation 11) follows from the standard iden-

tities for > kx* and > k22" after the change k +— N — 1 — k; we omit it as not needed for the
bounds above.

Remarks. (i) Setting v — 1 recovers the undiscounted results: Sy, Ty, S1,C — N and A, B, —
A/N? B/N?, where A, B are the non-discounted triangle sums.

(ii) As N — oo with fixed v < 1, S; — 72/(1 —~2%) and C — ~/(1 — 7) while N2+2N — 0; thus
Rp(N,v, k) — 0. For typical RL regimes (v = 0.95, moderate V), (N, ) is positive and large,
so averaging still reduces bootstrap variance over a wide range of k.

(iii) R (V) is horizon- and discount-agnostic in the sense of the bound 1 < R, (N) < 4; fory < 1,
its large-V limit is 1. It is the principal driver of the overall variance reduction.

On the equicorrelation assumption. We assumed an equicorrelation (exchangeable) model for
the reward noise and for the bootstrapped values: identical variances and a common pairwise corre-
lation (p and k, respectively). This is a standard device that yields closed forms while capturing the
empirically relevant regime of positively correlated temporal signals in RL trajectories.

The key conclusions above are robust to relaxing equicorrelation. Let X be any covariance matrix for
(ro,...,7N—1) With nonnegative entries (i.e., nonnegative autocovariances). For any nonnegative
weight vector w, the variance is w’ Yw and increases monotonically with each off-diagonal entry.
Since the triangular weights have strictly smaller /2 norm and smaller sum than the flat weights of
the single N-step sum, the reward-side variance reduction persists under a wide range of stationary,
positively correlated processes (including Toeplitz/lag-dependent models such as Cov(ry,r;) =
o2 Plk—e With pg > 0). The specific constant 4 in the upper bound is tight for the exchangeable
model; with general lag structure the same [1,4) bracket continues to hold under mild bounded-
correlation conditions (e.g. supy,_., Corr(ry, r¢) < 1), while the uncorrelated case (pg = 0) recovers
the [1, 3) limit.

For the bootstrap part, assuming a common correlation « across {Z; } is likewise a tractable approx-
imation: the explicit ratio Rg(N,~, k) is decreasing in x, so weaker dependence only strengthens
the variance reduction. More general lag-dependent models Cov(Z;, Z;) = 7'2/<;|i_ 4 with kg >0
lead to the same qualitative behavior (smaller weights and partial averaging reduce variance), with
our equicorrelation formulas serving as convenient upper/lower benchmarks.

When to be cautious. If the process exhibits strong negative or oscillatory correlations (e.g. al-
ternation effects), equicorrelation overstates the benefit of averaging; in such cases, replacing the
common p (or <) by a small set of lag-specific parameters (p1, p2, . . .) is safer. Empirically, one can

estimate the sample autocovariance and plug it into w’ Xw to verify the inequalities numerically.
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D APPENDIX: VARIANCE REDUCTION FROM GRADIENT-LEVEL AVERAGING
WITH A SHARED-WEIGHTS TRANSFORMER CRITIC

Setup. Fix a trajectory position ¢. A Transformer critic with shared parameters v outputs
1 ~H@ (n)
Qz/) 9 1/; AR Qw )

where Qf/f) predicts the i-step return for the same prefix (s;, a¢,...,a41;-1). Let G denote the
i-step target and define the per-horizon MSE

L) = @Y - GO Lw) & 3 Liw)

In implementation we average their gradients during backprop:

T 1 . 1 - % 4 i
Vy L(Y) = - vaLi(¢) = Z (Qi,) - GW) Vwap)~
i=1

i=1

Local gradient factorization under weight sharing. Let w be any scalar entry of ¢/. By the chain
rule,

(i)
oL; ; Ay 0Q
gi(w) £ =0 =(Q) —6) —r.
N————’
e® $ () (w)

. . . . Glol

For linear modules (affine maps in attention/FFN), the Jacobian has the standard local form §$ =
a™ §() (input activation x upstream error). Because the same w is shared across decoder positions,
the sequence {g;(w)}?_, are n gradient contributions for the same parameter, drawn from adjacent

positions of one forward pass, and are therefore generally positively correlated.

A convenient covariance model (exchangeable/equicorrelated). For fixed w, we use the stan-

dard homoscedastic equicorrelation approximation (also common in mini-batch analyses):
Varlgi(w)] = 0, Cov(gi(w),g;(w)) = pwoy, (i#]),  pw€l0,1).

This captures the empirically relevant regime where adjacent horizons produce positively correlated

gradients and yields tight, closed-form variance expressions.

Lemma 3 (Variance of the averaged per-parameter update). With the model above, the averaged

_ A1 n X
update g(w) = = 3. gi(w) satisfies

1+ (n_ 1)pw

Var[g(w)] = % ZVar[gi] —|—ZCov(gi,gj) =02 -

i#]
In particular, Var[g(w)] < o2, for any p, < 1.
Corollary 3 (Effective batch size and asymptotics). Define the effective sample size neg(w) =

— Then Var[g(w)] = 02 /neg(w) with 1 < neg(w) < n, strictly increasing in n, and
1+(n_1)pw [g( )] w/ ﬁ( ) > ﬁ( )_ y g

lim,, 00 Var[g(w)] = pu, 02 (the correlation-imposed variance floor).

Proposition 4 (Uniform horizon averaging is optimal under exchangeability). Among all unbiased
linear combinations Y-, o;g;(w) with >, a; = 1, the variance is minimized by the uniform
weights o; = % whenever Cov(g;, g;) is exchangeable (same diagonal/off-diagonal).

Proof. For an exchangeable covariance ¥, = 02 [(1 — py)I + py117], Var(3", aig;) = o7 S
is minimized under 17av = 1 by o* = 11. O

Why p,, = 0 is natural. Both multiplicative factors of g;(w) vary smoothly with 4: (i) the tar-
gets G share overlapping reward sums and a common bootstrapped tail; and (ii) the Jacobians

8@5;) /Ow come from adjacent decoder positions of the same Transformer. This induces positive
correlation among {g;(w)}, putting us squarely in the regime of Lemma 3.
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Connection to target-side variance (discounted rewards and bootstrap). Let~ € (0, 1] be the
discount. Write the single N-step reward sum and its triangular average as

N-1 B 1 N -1 N-1 N — k
Ry() =Y e, By =52 v'm=) 7* re
k=0 i=1 k=0 k=0 ‘e —
W

Under the equicorrelated reward model (mean i, variance o2, pairwise corr. p > 0),
Var[ Ry (v)] = 0 [So + p (T — So)] » Var[ Ry (7)] = 0*[A, + p B,],

with
N-1 N-1 N-1 Nl
1— ,.YQN 1— ,YN 2
So=3 =T To=Y ot =g A=Y wh Bi= (L w) A
k=0 7 k=0 v k=0 k=0

The reward-side ratio
R(N) £ Var[Ry(7)] _ So +p (78 — So)

’ VarlEn ()] | A, + pB,
satisfies the uniform bound 1 < R,(N) <4 forall N > 1,p >0, € (0,1],and R, (N) 4 as
N — .
For the bootstrapped values Z; = Vj,. (s¢+;) with Var(Z;) = 7% and Cov(Z;, Z;) = k72 (i #
j, k €10,1]), define

N
_ 1 4
By(y) =N Zy, Bn(v) = N E V' Z;,
i1

andlet §; = SN 4%, C = "N 47, Then
s Var[By(y)] NN
 Var[By(y)] - Si+k(C? =S

Var[By(7)] = % [S1+K(C? =S|, Rp(N,7,k)

Rp is decreasing in  and obeys
N242N N242N
C? Sy
In particular, averaging the bootstrap part reduces variance whenever K < £K4(N,7)
N2’y2N _ Sl
c? -5
Theorem 5 (Main: gradient averaging reduces update variance; compounded by target-side smooth-

ing). Let w be any scalar parameter of the shared-weights Transformer critic and suppose
{gi(w)}_, are homoscedastic and equicorrelated with p,, < 1. Then

Var[gL} :oim <o? :Var[aLj], Vie{l,...,n}.
w

< RB(Na’Ya/{) <

lI>

n ow

Moreover, writing g;(w) = e W (w) and (mildly) assuming {D} and {4V (w)} are indepen-
dent across © with bounded second moments, there exist constants a,,,b,, > 0 (depending only on
1) such that
Var[gi(w)] < ay, Var[GP] + b,

Consequently, replacing a single horizon by the triangularly averaged target across horizons 1: N
reduces the reward-side variance by at least a factor R, (N)~' € (1/4,1], and (when r < k) also
reduces the bootstrap-side variance by a factor Rg(N,~,k)~1. Thus, in addition to the across-
horizon gradient averaging gain W, the per-horizon variance term o2, itself decreases with
N via target-side smoothing, yielding a compounded reduction.

Practical notes. (i) The gradient-level algebra is agnostic to discount y; only the target-side con-

stants (So, Tp, A, By) and (S1, C) change with . (ii) Under exchangeability, uniform averaging

across horizons is variance-optimal (Prop. 4); no learned horizon-weights are needed for variance

reasons. (iii) As n grows, the residual variance floor is p,, o2 (Cor. 3); lower temporal correlation

between horizon-gradients directly improves this floor. (iv) If horizon-gradients are not perfectly
=2

exchangeable, the bound Var[g(w)] < Tw (14 (n — 1)py) still holds whenever Var[g;] < 52 and
n
Corr(g;, g;) < py forall i # j.
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E APPENDIX: CONNECTION TO MULTI-STEP TD THEORY

Equations 5-6 can be viewed as a standard multi-step TD update in an MDP where each action prefix
ag.1+i—1 1s treated as an extended action. For a fixed horizon i, we define the extended state—action
pair

Tr = (3t7 at:t-‘,—i—l)v

use equation 5 as the N-step target G(*) (), and minimize the squared TD error

(Qu(z) — GV (@))*,

exactly as in classical N-step Q-learning / multi-step TD on this augmented MDP, with a shared-
parameters Transformer implementing @), for all such prefixes and horizons.

When the behavior policy matches the target policy (1 = mp), the replay distribution coincides with
the on-policy evaluation distribution, the 1mp1101t IS ratios are all 1, and G(¥) reduces to the standard
on-policy ¢-step return ( , ). In the tabular setting, this yields
exactly classical on-policy multi- step TD/ TD()\) for which convergence to Q™ is well understood;
with linear function approximation and suitable step sizes, one recovers convergence to the unique
projected fixed point of the TD operator under the on-policy distribution.

In the off-policy case (4 # mg) and without importance weights, our critic update falls into the “un-
corrected off-policy TD” regime analyzed by ( ). In this regime, multi-step TD con-
verges (under suitable assumptions) to the fixed point of a projected Bellman operator defined with
respect to the behavior distribution, yielding a bias relative to Q™ but admitting error-propagation
bounds that relate this bias to distribution mismatch and approximation error. Our choice to learn
values of realized prefixes

Qw(sm at:t+i71)
under p is precisely an instance of this uncorrected regime, with the benefit that we avoid the high
variance associated with long-horizon IS products ( , ).

The key difference to standard off-policy N-step TD with IS is therefore what the critic is asked
to predict. IS-corrected targets are (in principle) unbiased for )™, but their variance scales poorly
with the length of the IS product and typically requires aggressive clipping when behavior and target
policies differ. Our critic instead learns the value of realized prefixes under the replay distribution,
trading some asymptotic bias for substantially reduced variance and improved numerical stability.

From a theoretical perspective, conditioned on a given state s; and realized prefix a;.¢4+;—1, the
distribution over future rewards is fully determined by the environment dynamics and the contin-
uation policy, and does not depend on whether this prefix was generated by the behavior or target
policy. This viewpoint underpins our sequence-conditioned critic and helps explain the empirically
observed stability of long-horizon learning.
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Box Pushing Sparse Reward
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(a) Effect of target-value construction under sparse
rewards. Randomly selecting one of two double-Q)
targets leads to high-variance updates and occasional
collapse, whereas the conservative minimum-based
target yields stable learning curve with the hard—copy
critic.

Box Pushing Sparse Reward

1.0- — TsAC Standard Setting
2 Using Averaging N-Step Returns

£0.8-
£0.6-
o

wn
@ 0.4-
3
=50.2-
n

0.0 | i i i ‘
00 02 04 06 08 1.0
Number of Env Interaction '

(b) Naively averaging N-step targets across horizons
destabilizes learning and can erase progress, confirm-
ing the need for gradient-level averaging.

Figure 9: Meta-World Box Pushing (Sparse Reward). Ablations on (a) target-value construction and (b)

return-propagation schemes for T-SAC.

F APPENDIX: ADDITIONAL EXPERIMENTAL RESULTS

Post-figure summary. Figure 9a shows that the instability originally observed on
Box—Pushing—Sparse is explained by the high—variance target estimator: with the conservative min-
imum-based target, hard—copy T-SAC is stable and reaches the best success rates. Figure 9b fur-
ther illustrates that naive /N-step target averaging can derail optimization, motivating our choice of
gradient—averaged multi—horizon losses. Seeds: 4. Results under IQM with 95% confidence

intervals.
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Figure 10: T-SAC Critic Detailed Structure: a causal Transformer over short state—action segments. Given
(St,ax, ..., ain), the network produces n scalar outputs {Qy (S¢, at, . - . , at+4) }i—1 . Colors and block styling
follow the Transformer diagram conventions of .

G APPENDIX: TRANSFORMER CRITIC DETAILED STRUCTURE

Implementation details. We follow the TOP-ERL—-style Transformer critic design adopted in this
work (see ( ) for the schematic), i.e., a masked multi-head self-attention stack with
positional encodings and residual Add&Norm blocks; the critic ingests (s¢, at, . . . , G4, ) and jointly
predicts all 1...n step returns. State and action tokens use separate one—layer linear embeddings
(no bias), consistent with our training objective that conditions on realized action prefixes; the output
head is a linear map without bias that emits one scalar per decoder position. No dropout is used
anywhere in the critic. The causal mask ensures each position ¢ only attends to < ¢ tokens, aligning
the network outputs with the i-step targets used for learning.
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=
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(a) Fixed-length segments stored in the (b) Action mask for a sampled segment. The binary
replay buffer. Each sample is a window  mask m marks valid action positions: m, = 1 for
(StittLy Attt L—1, Ttst+L—1, d:t+L—1)- If a  steps before or at the first terminal in the window and

terminal d, = 1 appears before the window is full,
we immediately continue saving from the start of the
next trajectory until the segment length L is reached.

m, = 0 after any d, = 1. Entries that occur after a
terminal (including those filled from a new trajectory)
are masked out so losses/targets and attention never
cross episode boundaries.

Figure 11: T-SAC segment construction and masking.

H APPENDIX:
MASK DESIGN

TRAJECTORIES SAVED IN REPLAY BUFFER AND ACTION

THE BENEFIT OF CHUNKING ON THE CRITIC SIDE

We analyze chunking under sparse rewards and target—value reuse.

Setup. Consider a fixed segment of N transitions (s, as, 74, ...
obtained by: (i) drawing a start index p uniformly from {t+1,...,
length L uniformly from the integers {{min, . - -,

end

,St+N)- A chunked sample is
t+N}; (ii) drawing a window

lmax p (With £py;, > 1); and defining the window

g = min{p+L—1, t+N }.

Forevery i € {p,...

,q—1} we form the truncated multi-step target that bootstraps at ¢:

qg—1
j=1

'yq_dig(sq). (13)

Hence the same value Vy(s,) is reused across the (¢—p) TD updates inside the window.

How often is a particular value reused?
segment states by 1,. ..,

Write A = £ax
N. Let reuse; denote the number of updates in a sampled window whose

— lpin + 1, and (for clarity) index the

target bootstraps at Vy(s;) (i.e., with ¢ = j). Then, for all interior states j < N,

(.7 _gmln"_ 1)( +€m1n - )

j < Emin7

Emin S .7 < gma}u

0,
1 min(max—1,7—1)
Elreuse;] = NA Z k=
k=Lmin—1

Emin + gmax -2
2N

2N A ’

) gmax SJ < N-1.
(14

Thus, away from the left boundary, the expected reuse E[reuse;| plateaus at &“‘””2[%_2 for all

J € [lmax, N—1].

The right boundary j = N is special because of truncation (¢ = min{p+L—1, N}). In this case,

Lrnin

E[reuse |

NZhI+NA

Linax

(h_l)(émax - (15)

h=fmin+1

h+1),

which exceeds the interior plateau and concentrates more bootstrap reuse at the end of the segment.

A transparent special case is i, = 1:

E[reuse ]

2o —1
max . 1
6N (16)



Under review as a conference paper at ICLR 2026

Averaging equation 14 across all j yields the compact relation

1 & E[L] - 1
— » Elreusej] = ——, a7
St - 2

i.e., per sampled window the expected reuse scales linearly with the average window length.

Connection to state coverage (selection) probability. The probability that a given state j is cov-
ered by the sampled window (i.e., j € [p, ¢]) is

. 1 .
PI‘(] Covered) = ﬂ pZ::l [Emax - max{émim J—pr+ 1} + 1]+7 (13)
where [-]+ = max{ -, 0 }. For the common case {,,;, = 1 and writing m = £y,.y, this simplifies to
1 (7 — 1
Pr(j covered) = m (19)
m-+1 <i<N
—_— m
2N b .] —_ )

i.e., a ramp near the start followed by a flat plateau. This higher coverage (vs. 1-step sampling)
underlies the critic-side gains below.

Sparse rewards: how far does a single reward propagate? Assume only the terminal transition
carries non-zero reward (the sparse-reward setting). An update’s target contains that reward iff the
sampled window reaches the segment end (¢ = N), in which case all (N—p) updates inside the
window include it. Therefore, the expected number of reward-bearing updates per sampled window
equals

Loni L
1 max
E dates including terminal d| = — h—1 —_— h—1)(lppax — h + 1),
[#updates including terminal reward] N Z( ) + A Z (h—1)(£ima +1)
h=1 h=Cmin+1
(20)
which coincides with equation 15. In particular, for £,,;, = 1,
. . : g?nax -1
]E[#updates including terminal reward] = TN 21

representing a &~ (2 _/6-fold amplification over uniform 1-step TD (which touches the terminal
reward only in the single (N—1) — N update, i.e., 1 /N of samples).

Takeaways. Chunking yields two critic-side benefits: (i) Target—value reuse: each sampled win-
dow reuses a single bootstrap Vy(s,) across E[reuse;] updates, reaching a plateau of W%
for interior states and an even larger value at the terminal state due to truncation equation 15. This
may help explain why, in our setting, training remains stable even without a target network in local-
motion tasks.

(ii) Sparse-reward propagation: when only the last transition is rewarded, chunking in-
creases—often quadratically in £, when ¢,;, = 1—the share of updates that incorporate the
true reward, substantially shortening effective credit-assignment horizons. This mechanism helps
explain why T-SAC performs well under sparse-reward settings.
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I APPENDIX: COMPUTATIONAL COSTS AND SAMPLE EFFICIENCY

Training time is reported for 1M environment steps (UTD= 1), unless otherwise stated. All bench-
marks were run on an NVIDIA A100 (40 GB) GPU and an Intel Xeon Platinum 8368 CPU.

T -SAC: MLP policy with two 256-unit hidden layers; Transformer critic with 2 layers x 256 units.
GRU/LSTM: same policy; 2-layer RNN critic (256 units).
SAC and CROSSQ: default configurations.

Table 1: Sample efficiency on long-horizon benchmarks, measured as the number of environment steps (in
millions) required to reach a fixed performance threshold on each task. Thresholds are defined as 90% of
SAC’s final return on Box-Pushing (dense) and ML1, and 90% of T-SAC’s final return on Box-Pushing (sparse).
Lower is better. Values are means over seeds.

Task SAC CrossQ GTrXL policy TOP-ERL T-SAC (ours)
Box-Pushing (dense)  15M 10M 20M 2M M
Box-Pushing (sparse) N.A. N.A. N.A. 4M 1M
MLI1 4M N.A. N.A. 4M M

Table 2: Effect of minimum and maximum sequence length on T-SAC performance and wall-clock training
time on Box-Pushing (dense). All runs use the same number of environment steps 1 M for standard setting.

min_length max_length Return (mean £ s.e.) Wall-clock time Peak GPU memory (GB)

1 1 —78.45 £ 6.89 2h35m03s 2.37
4 4 —66.63 = 3.09 2h39m23s 2.37
1 4 —74.80 £ 7.69 2h38m56s 2.37
1 16 —65.05 £0.20 3h06m58s 2.37

Table 3: Computational cost comparison for different methods on Box-Pushing (dense) for a fixed number of
environment steps and matched (or explicitly stated) update-to-data (UTD) ratios.

Method Params (M) UTD Wall-clock time (hours)
SAC 0.2 1 1.47
CrossQ 10 1 2.44
T-SAC (ours) 33 1/4 0.77
TOP-ERL 3.3 1/10 0.35

Table 4: Performance at fixed data budgets on long-horizon tasks. Entries are success rate & standard error over
seeds after a given number of environment steps. All methods are trained with the same number of transitions.

Task Method 100k steps 300k steps 500k steps 1M steps
Box-Pushing (dense) SAC 0.0£0.1 0.054+0.12 0.05£0.15 0.01+0.2
CrossQ 0.0+£0.0 0.0£00 0.01+£0.01 0.07x0.02

GTrXL policy  0.0+0.0 0.0£0.0 0.0£0.0 0.3+0.01
T-SAC (ours) 0.0+£00 0.06+0.02 0.24£001 0.8=+£0.08

Box-Pushing (sparse) SAC 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0
CrossQ 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0
GTrXL policy 0.0+£0.0 0.0£0.0 0.0£0.0 0.0£0.0
T-SAC (ours) 0.0£0.0 0.0+£0.0 0.01+£0.01 0.14+0.05

ML1 SAC 0.1+0.01 0.35£0.02 042+£0.02 0.5+£0.05
CrossQ 0.12£+0.01 037+£0.02 0.5+£0.05 0.5+0.08
GTrXL policy 0.05+0.01 0.07£0.02 0.1+0.02 0.28+0.02
T-SAC (ours) 0.1+0.01 0.35£0.05 0.41+£0.08 0.58=+0.12
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Figure 12: Training time is reported for 1M environment steps (UTD= 1), unless otherwise stated. All
benchmarks were run on an NVIDIA A100 (40 GB) GPU and an Intel Xeon Platinum 8368 CPU.
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Figure 13: Meta-World tasks (Yu et al., 2020).

J  EXPERIMENT DESCRIPTION

J.1 META-WORLD ML1

Meta-World (Yu et al., 2020) is an open-source simulated benchmark for meta-reinforcement learn-
ing and multi-task learning in robotic manipulation. It comprises 50 distinct tasks spanning skills
such as grasping, pushing, and object placement, each posing different perception—control chal-
lenges. By covering a broader skill spectrum than narrowly scoped benchmarks, Meta-World is
well-suited for evaluating algorithms that aim to generalize across diverse behaviors. Figure 13
enumerates all 50 tasks and illustrates their variety and difficulty.

Success criterion. To better approximate real-world deployment, we adopt a stringent evaluation
rule: an episode is counted as successful only if the environment’s success condition is satisfied at
the final timestep; intermediate achievements do not count toward success.

J.2 BOX PUSHING

Setup. A 7-DoF Franka Emika Panda arm with a rod pushes a
box on a table to a target pose. At episode start, initial and target
box poses are sampled with a minimum 0.2 m separation:

€[0.3,0.6], y:€[—0.4,0.4], 6€[0,2x].

Success (for evaluation) is position error < 0.05 m and orientation
error < (0.5rad.

Observations & Actions. Observations: robot joint posi-

tions/velocities (g, ¢), box position/orientation (p,r), and target D
(Prargets Trarger)- Actions: joint torques a; € R7.

Figure 14: Box Pushing
30 task (Otto et al.).
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(a) Ant (b) HalfCheetah (¢) Hopper

(d) Walker2d (e) HumanoidStandup

Figure 15: MuJoCo (Towers et al., 2024) tasks used in our experiments.

Termination. Fixed horizon 7" = 100 steps; no early termination.

Dense reward. At each step,
Rtotal - _Rrod —0.02 Ty — err(q, q) — 350 Rposition — 200 Rrotation~

Subterms are

Rroa = clip([|[p — hpos ||, 0.05, 10) + clip(2 arccos| A -hol, 0.25, 2), (22)
7
= (a})?, (23)
i=1

e(g, @)= > (gl —la?)+ > (sl —1ddl) (24)

it |gs|>|q?| 3ilgi1>1d8
Rposition = ||p - ptargelHa (25)
Rirotation = % aICCOSM’'T'target| . (26)

Here, b is the rod tip position, and A, ho are rod orientations (quaternions).

Sparse reward. Only the task terms are applied at the final step:

{—Rmd —0.027; — err(q, §), t<T,
Rtotal -

. (27)
—Ryoa —0.027 — err(fL Q) — 350 Rposition — 200 Rroation, t=T1T.

J.3 GYMNASIUM MuJoCo

We evaluate on the Gymnasium MuJoCo v4 suite—Ant-v4, HalfCheetah-v4, Hopper-v4,
Walker2d-v4, and HumanoidStandup-v4 (Fig. 15). We use the default observation and ac-
tion spaces and the native v4 reward shaping and termination rules (no reward normalization). Per-
formance is reported as undiscounted episode return. Unless noted otherwise, evaluation uses the
deterministic policy over 152 episodes and aggregates results across multiple random seeds using
the IQM with 95% bootstrap confidence intervals; full hyperparameters and seeds are provided in
App. L.
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K APPENDIX: ALGORITHM IMPLEMENTATIONS

PPO Proximal Policy Optimization (PPO) ( , ) is an on—policy, step—based
method that constrains policy updates to remain close to the behavior policy. Two variants are com-
mon: PPO—Penalty (KL regularization) and PPO-Clip (clipped surrogate). We evaluate PPO—Clip
given its prevalence and robustness, following the reference implementation in ( ).
Seeds: 20.

SAC Soft Actor—Critic (SAC) ( , ;b) is an off—policy actor—critic with twin
Q-networks to mitigate overestimation and an entropy term to encourage exploration. We use the
( ) implementation, which includes SAC. Seeds: 20 (Meta—World ML1), 5 (Gym

MuJoCo).

TD3 Twin Delayed DDPG (TD3) ( , ) addresses overestimation and instability
via (i) clipped double Q-learning, (ii) delayed policy updates, and (iii) target policy smoothing. Our
TD3 follows standard practice adapted from ( ), including Polyak averaging and

action noise for exploration. Seeds: 5

GTrXL Gated Transformer—XL (GTrXL) ( , ) stabilizes Transformer training
for partially observable control. We build on the PPO + GTrXL implementation from

( ) and add minibatch advantage normalization plus a state—independent log—standard—deviation
head following ( ). Seeds: 4.

gSDE Generalized State—Dependent Exploratlon (gSDE) (

, ) replaces i.i.d. Gaussian action noise with state—dependent temporally
smooth exploration. Concretely, disturbances are generated as €, = Os, where s is the last hidden
layer’s activation and © is resampled from a Gaussian every n steps according to the SDE sampling
frequency. We evaluate gSDE with PPO using the reference implementation of ( );
for stability on some tasks we employ a linear schedule for the PPO clipping range. Seeds: 20.

BBRL Black—-Box Reinforcement Learning (BBRL) ( , ;b) performs episodic, tra-
jectory—level search by parameterizing policies with ProMPs ( , ). This han-
dles sparse and non—Markovian rewards but can reduce sample efficiency. We consider both di-
agonal—covariance (BBRL-Std) and full-covariance (BBRL-Cov) Gaussian policies, paired with
ProDMP ( , ). Seeds: 20.

TCP Temporally—Correlated Episodic RL (TCP) ( , ) augments episodic policy up-
dates with step—level signals, narrowing the gap between episodic and step—based RL while retaining
smooth, parameter—space exploration. Seeds: 20.

TOP-ERL Trajectory—Optimized Policy for Episodic RL (TOP-ERL) optimizes a distribution
over motion—primitive parameters with (i) a KL—constrained trust region and (ii) a temporally struc-
tured covariance that induces smooth, correlated exploration across the episode. Our instantiation
uses ProDMP ( , ) as the trajectory generator; unless stated, we adopt an adaptive scale
(entropy) schedule and per—dimension normalization of primitive parameters. Seeds: 8.

CrossQ CrossQ ( , ) is an off—policy SAC variant that removes target networks and
applies BRN in the critic, enabling strong sample efficiency at an update—to—data ratio of UTD =
1. We follow the authors’ reference implementation: a single batch-normalized critic (no target
networks), default temperature tuning, and recommended hyperparameters unless stated otherwise.
Seeds: 4 (Meta—World ML1), 5 (Gym MuJoCo and Box—Pushing). Training on Box—Pushing
was capped at 10M steps due to the experiment budget; by that point, wall-clock time exceeded
24 h.
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L APPENDIX: HYPERPARAMETERS OF THE ALGORITHMS

Baseline provenance. For BBRL, TCP, PPO, gSDE, GTrXL, TOP-ERL, and SAC
on Meta—World ML1, we report numbers from prior publications and/or official released
runs/configurations under settings comparable to ours; we did not perform additional large—scale
sweeps for these baselines in this paper (see citations in the main text and Appendix K).

Methods tuned in this work. We tuned SAC on Gym/FANCYGYM, the full CrossQ implemen-
tation, and TD3, including optimizer selection and hyperparameters (e.g., learning rates).

Our tuning for T-SAC. For T-SAC, we conducted a targeted grid search over Trans-
former—critic depth (number of attention layers), number of heads, dimensions per head, learn-
ing rates (policy/critic/cv), supervision—window settings (fixed vs. variable horizons; min_length,
step_length), number of per—step target windows, and policy—side chunk length (for the com-
patibility study). Where appropriate, we initialized choices from publicly reported configurations:
Transformer hyperparameter ranges from TOP-ERL ( , ), the entropy—temperature
term from ( ), and the optimizer family from CrossQ ( R ). Final
settings and search grids are listed in the appendix tables.
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Table 5: Hyperparameters for the Meta-World experiments. Episode Length 7" = 500

PPO gSDE GTrXL SAC CrossQ TCP BBRL TOP-ERL T-SAC
number samples 16000 16000 19000 1000 1 16 16 2 4 %125
GAE X 0.95 0.95 0.95 n.a. n.a. 0.95 n.a. n.a. n.a.
discount factor 0.99 0.99 0.99 0.99 0.99 1 1 1.0 0.99
€ n.a. n.a. n.a. n.a. n.a. 0.005 0.005 0.005 n.a.
[35) n.a. n.a. n.a. n.a. n.a. 0.0005 0.0005 0.0005 n.a.
trust region loss coef. n.a. n.a. n.a. n.a. n.a. 1 10 1.0 n.a.
optimizer adam adam adam adam adam adam adam adam adamw
epochs 10 10 5 1000 1 50 100 15 20
learning rate 3e-4 le-3 2e-4 3e-4 3e-4 3e-4 3e-4 le-3 2.5e-4
use critic True True True True True True True True True
epochs critic 10 10 5 1000 1 50 100 50 100
learning rate critic 3e-4 le-3 2e-4 3e-4 3e-4 3e-4 3e-4 Se-5 2.5¢e-5
number minibatches 32 n.a n.a n.a. n.a. n.a. n.a. n.a. n.a.
batch size n.a 500 1024 256 256 n.a n.a. 256 512
buffer size n.a n.a n.a le6 le6 n.a n.a 3000 5000 * 125
learning starts 0 0 n.a 10000 5000 0 0 2 200
temperature warmup 0 0 0 0 0 0 0 0 10000
polyak_weight n.a. n.a n.a 5e-3 1.0 n.a n.a Se-3 Se-3
SDE sampling frequency n.a. 4 n.a. n.a. n.a. n.a. n.a. n.a. n.a.
entropy coefficient 0 0 0 auto auto 0 0 n.a. auto
normalized observations True True False False False True False False False
normalized rewards True True 0.05 False False False False False False
observation clip 10.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
reward clip 10.0 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.
critic clip 0.2 1in 0.3 10.0 n.a. n.a. n.a. n.a. n.a. n.a.
importance ratio clip 0.2 1in 0.3 0.1 n.a. n.a. n.a. n.a. n.a. n.a.
hidden layers [128,128]  [128, 128] n.a. [256, 256] [256, 256] [128,128]  [32,32] [ 128, 128] [ 128, 128]
hidden layers critic [128,128]  [128,128] n.a. [256, 256] [2048,2048]  [128,128]  [32,32] n.a. n.a.
hidden activation tanh tanh relu relu relu relu relu leaky _relu leaky_relu
orthogonal initialization Yes No xavier fanin fanin Yes Yes Yes fanin
initial std 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0
number of heads - - 4 - - - - 8 4
dims per head - - 16 - - - - 16 32
number of attention layers - - 4 - - - - 2 2

Task-specific settings (Meta-World).

tions).

For T-SAC, we initialize the policy’s log standard devia-
tion as logo = —5. The replay buffer stores 5,000 segments of length 125 (i.e., 5,000 x 125 =
625,000 transitions). The sampler retrieves 4 segments of length 125 (i.e., 4 x 125 = 500 transi-
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Table 6: Hyperparameters for the Box Pushing Dense, Episode Length 7" = 100

PPO

gSDE GTrXL SAC CrossQ TCP BBRL TOP-ERL T-SAC
number samples 48000 80000 8000 8 1 152 152 4 4 *100
GAE A 0.95 0.95 0.95 n.a. n.a. 0.95 n.a. n.a. n.a.
discount factor 1.0 1.0 0.99 0.99 0.99 1.0 1.0 1.0 0.99
€ n.a. n.a. n.a. n.a. n.a. 0.05 0.1 0.005 n.a.
€y n.a. n.a. n.a. n.a. n.a. 0.0005 0.00025 0.0005 n.a.
trust region loss coef. n.a. n.a. n.a. n.a. n.a. 1 10 1.0 n.a.
optimizer adam adam adam adam adam adam adam adam adamw
epochs 10 10 5 1 1 50 20 15 20
learning rate Se-5 le-4 2e-4 3e-4 3e-4 3e-4 3e-4 3e-4 2.5e-4
use critic True True True True True True True True True
epochs critic 10 10 5 1 1 50 10 30 100
learning rate critic le-4 le-4 2e-4 3e-4 3e-4 le-3 3e-4 Se-5 2.5e-5
number minibatches 40 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
batch size n.a. 2000 1000 512 256 n.a n.a. 512 256
buffer size n.a. n.a. n.a. 2e6 le6 n.a. n.a. 7000 20000 * 100
learning starts 0 0 0 le5 5000 0 0 8000 5000
temperature warmup 0 0 0 0 0 0 0 0 0
polyak_weight n.a. n.a. n.a. Se-3 1.0 n.a. n.a. Se-3 Se-3
SDE sampling frequency n.a. 4 n.a. n.a. n.a. n.a. n.a. n.a. n.a.
entropy coefficient 0 0.01 0 auto auto 0 0 0 0
normalized observations True True False False False True False False False
normalized rewards True True 0.1 False False False False False False
observation clip 10.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
reward clip 10.0 10.0 10. n.a. n.a. n.a. n.a. n.a. n.a.
critic clip 0.2 0.2 10. n.a. n.a. n.a. n.a. n.a. n.a.
importance ratio clip 0.2 0.2 0.1 n.a. n.a. n.a. n.a. n.a. n.a.
hidden layers [512,512] [256,256] n.a. [256,256] [256,256] [128,128] [128, 128] [256,256] [4 layers x 512]
hidden layers critic [512,512] [256, 256] n.a. [256,256] [256,256] [256,256] [256, 256] n.a. n.a.
hidden activation tanh tanh relu tanh tanh leaky_relu leaky_relu leaky_relu relu
orthogonal initialization Yes No xavier fanin fanin Yes Yes Yes fanin
initial std 1.0 0.05 1.0 1.0 1.0 1.0 1.0 1.0 1.0
number of heads - - 4 - - - - 8 4
dims per head - - 16 - - - - 16 64
number of attention layers - - 4 - - - - 2 2
MP type n.a. n.a. value n.a. n.a. ProDMP ProDMP ProDMP n.a.
number basis functions n.a. n.a. value n.a. n.a. 8 8 8 n.a.
weight scale n.a. n.a. value n.a. n.a. 0.3 0.3 0.3 n.a.
goal scale n.a. n.a. value n.a. n.a. 0.3 0.3 0.3 n.a.
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Table 7: Hyperparameters for the Box Pushing Sparse, Episode Length 7' = 100

PPO gSDE GTrXL SAC CrossQ TCP BBRL TOP-ERL T-SAC
number samples 48000 80000 8000 8 1 76 76 4 4100
GAE X\ 0.95 0.95 0.95 n.a. n.a. 0.95 n.a. n.a. n.a.
discount factor 1.0 1.0 1.0 0.99 0.99 1.0 1.0 1.0 1.0
€ n.a. n.a. n.a. n.a. n.a. 0.05 0.1 0.005 n.a.
[35) n.a. n.a. n.a. n.a. n.a. 0.0005 0.00025 0.0005 n.a.
trust region loss coef. n.a. n.a. n.a. n.a. n.a. 1 10 1.0 n.a.
optimizer adam adam adam adam adam adam adam adam adamw
epochs 10 10 5 1 1 50 20 15 20
learning rate Se-4 le-4 2e-4 3e-4 3e-4 3e-4 3e-4 3e-4 2.5e-4
use critic True True True True True True True True True
epochs critic 10 10 5 1 1 50 10 30 100
learning rate critic le-4 le-4 2e-4 3e-4 3e-4 3e-4 3e-4 5e-5 3.0e-4
number minibatches 40 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
batch size n.a. 2000 1000 512 512 n.a. n.a. 512 256
buffer size n.a. n.a. n.a. 2e6 2e6 n.a. n.a. 7000 20000 * 100
learning starts 0 0 0 le5 1le5 0 0 400 2000
temperature warmup 0 0 0 0 0 0 0 0 0
polyak_weight n.a. n.a. 0 Se-3 1.0 n.a. n.a. Se-3 Se-3
SDE sampling frequency n.a. 4 n.a. n.a. n.a. n.a. n.a. n.a. n.a.
entropy coefficient 0 0.01 0 auto auto 0 0 0 0
normalized observations True True False False False True False False False
normalized rewards True True 0.1 False False False False False False
observation clip 10.0 n.a. False n.a. n.a. n.a. n.a. n.a. n.a.
reward clip 10.0 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.
critic clip 0.2 0.2 10.0 n.a. n.a. n.a. n.a. n.a. n.a.
importance ratio clip 0.2 0.2 0.1 n.a. n.a. n.a. n.a. n.a. n.a.
hidden layers [512,512] [256, 256] n.a. [256,256]  [256,256]  [128,128] [128,128] [256,256] [4 layers x 512]
hidden layers critic [512,512] [256, 256] n.a. [256,256] [2048,2048] [256,256] [256,256] n.a. n.a.
hidden activation tanh tanh relu tanh relu leaky_relu leaky_relu leaky_relu leaky _relu
orthogonal initialization Yes No xavier fanin fanin Yes Yes Yes fanin
initial std 1.0 0.05 1.0 1.0 1.0 1.0 1.0 1.0 1.0
number of heads - - 4 - - - - 8 4
dims per head - - 16 - - - - 16 64
number of attention layers - - 4 - - - - 2 2
MP type n.a. n.a. value n.a. n.a. ProDMP ProDMP ProDMP n.a.
number basis functions n.a. n.a. value n.a. n.a. 8 8 8 n.a.
weight scale n.a. n.a. value n.a. n.a. 0.3 0.3 0.3 n.a.
goal scale n.a. n.a. value n.a. n.a. 0.3 0.3 0.3 n.a.
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Table 8: Hyperparameters for the Gymnasium MuJoCo, Episode Length 7" = 1000

TD3 CrossQ SAC T-SAC (Soft Copy) T-SAC (Hard Copy)
number samples 1 1 1 4%*20 4 %20
GAE )\ n.a. n.a. n.a. n.a. n.a.
discount factor 0.99 0.99 0.99 0.99 0.99
optimizer adam adam adam adamw adamw
epochs 1 1 1 12 12
learning rate 3e-4 le-3 3e-4 3e-4 3e-4
use critic True True True True True
epochs critic 1 3 1 60 60
learning rate critic 3e-4 le-3 3e-4 3e-4 3e-4
batch size 256 256 256 256 256
buffer size le6 le6 le6 leS * 20 le5 * 20
learning starts 5000 5000 5000 10000 10000
temperature warmup 0 0 0 10000 10000
polyak_weight Se-3 1.0 S5e-3 5e-3 1.0
entropy coefficient auto auto auto auto auto
hidden layers [256, 256] [256, 256] [256, 256] [256, 256] [256, 256]
hidden layers critic [256,256] [2048,2048] [256, 256] n.a. n.a.
hidden activation relu relu relu relu relu
orthogonal initialization fanin fanin fanin fanin fanin
initial std 1.0 1.0 1.0 1.0 1.0
number of heads - - - 4 4
dims per head - - - 64 64
number of attention layers - - - 2 2

Task-specific settings (Gymnasium MuJoCo). For T-SAC, the initial policy log-standard devi-
ation is set to —5 for ANT, HUMANOIDSTANDUP, and HALFCHEETAH, and to —10 for HOPPER
and WALKER2D. For HOPPER and WALKER2D only, the target entropy is Hyger = —4 - dim(A);
unless otherwise noted, other tasks use the SAC default Hyypgey = — dim(A).
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APPENDIX: USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) as a general-purpose assistant during writing and develop-
ment. Its roles included:

» grammar and spell-checking, language polishing, and minor stylistic edits;

* drafting and rewriting multi-paragraph text (e.g., introductions, preliminaries, and parts of
experimental write-ups) based on author-provided outlines and results;

* high-level suggestions for debugging strategies and hyperparameter choices;

* assistance with literature search (proposing search queries and surfacing candidate papers).

All BibTgX entries were copied from Google Scholar; the LLMs did not generate or edit biblio-
graphic entries. The LLMs did not originate the paper’s main idea, problem formulation, algorith-
mic design, or experimental plan, and it was not used to generate or alter data, results, or figures. All
citations were selected and verified by the authors against the original sources. All LLMs outputs
were reviewed and, when necessary, edited or discarded. No confidential or proprietary data were
shared with the LLMs.
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