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ABSTRACT

Semantic watermarking provides imperceptible identity traceability for diffusion-
generated images, enabling model copyright protection and image source verifi-
cation. However, existing semantic watermarking methods based on initial latent
noise render the protected image vulnerable to adversarial latent-space manipula-
tions, such as black-box forgery via proxy models and watermark-pattern-removal
attacks that exploit statistical regularities. In this paper, we propose a robust water-
marking framework resilient diverse adversarial manipulation attack. Specifically,
we design a fully reversible, flow-based codec with dual encoding paths, allowing
plug-and-play integration into the diffusion generation process across architec-
tures (UNet and MMDiT). The dual-output network encodes watermark informa-
tion into both the carrier image and the owner’s secret key, enabling recovery of
removal attacked watermark via key-assisted reconstruction. To guarantee verifi-
cation reliability without excessive reliance on the key while retaining the ability
to detect forged watermarked images, we propose a joint-training strategy that
leverages negative-sample pairs under both accuracy and fidelity constraints. Fur-
thermore, we introduce an Euler-based enhanced solver for the effective inversion
in rectified flow models, which improves the accuracy of watermark information
recovered. Experimental results show that our method achieves superior robust-
ness under various attacks while maintaining high visual quality across diverse
models.

1 INTRODUCTION

Digital watermarking helps improve security in content creation based on strong cross-modal vision
models(Xian et al., 2024; Song et al., 2024; Lei et al., 2024; Zhang et al., 2024b). Individuals
with different backgrounds can train personalized models based on their own needs, resulting in
various models that generate content of quality similar to human-created content(Rombach et al.,
2022; Ho et al., 2020; Xu et al., 2024),. However, this open approach to model customization brings
trust issues, such as model theft, copyright disputes, and the generation of fake contentZhang et al.
(2024c). Watermark information can not only be used to protect model copyright, which is valuable
intellectual property from large-scale training. But also to embed traceable data into the model’s
outputs(Bao et al., 2024; Pan et al., 2024b). This makes it possible to check the source of generated
content(Min et al., 2024; Feng et al., 2024; Chen et al., 2024), helping to identify fake, false, or
illegally used outputs, and ensuring that generated results are secure, reliable, and trustworthy.

For generative models of visual content, watermark information can be embedded by marking the
model’s outputs with a secret message(Chen et al., 2024; Pan et al., 2024b; Trias et al., 2024). Cur-
rently, the main watermarking methods fall into two categories: post-processing and in-processing
approaches. Post-processing is similar to traditional image watermarking. It steganographically
embeds information into the output after the model generates the data. However, this approach is
easily affected by image-level detection and attacksLiu et al. (2024). In contrast, most current water-
marking methods for diffusion models embed verifiable information during the generation process,
at specific stages of image creation. These methods include fine-tuning parts of the model(Rezaei
et al., 2024; Hu et al., 2024a) and watermarking the initial noise before the denoising process(Wen
et al., 2023; Ci et al., 2024; Yang et al., 2024b).
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Figure 1: Framework of the proposed method system. Latents-Inv uses the sampled and transformed
sub-band signals as the watermark carrier. During spreading, the watermark information may be par-
tially removed from the denoised image or forged on an attacker’s image. In the verification phase,
forgery attacks do not cause confusion, and removal attacks do not prevent ownership identification.

The first method is designed for specific model architectures, it has poor generaliza-
tion—watermarking methods for UNet-based models often do not transfer well to MMDiT-based
models. Therefore, in this paper, we propose Latents-Inv. This method still embedds watermark in-
formation into the latent representations at the beginning of generation for various models, as shown
in Figure1. This approach is theoretically convenient for achieving plug-and-play compatibility
across different models. However, in practice, extracting semantic watermarks relies on accurate
inversion and reversible distribution transformation. Due to differences in latent space dimensions
and denoising processes across models, current watermarking approaches are not fully compatible,
often leading to significant drops in robustness and generation qualityUmrajkar & Singh (2025). For
UNet-based diffusion models, watermarking typically uses mature inversion methods like DDIM or
DPM-Solver, which are based on ODE solversZhao et al. (2022). In contrast, more advanced models
with MMDiT architecture use a Rectified Flow-based denoising process. This is first-order Euler-
like method and requires iterative approach to reduce inversion errors Rout et al. (2024). To address
the precision issue, our method predicts the backward-step noise from the forward-step predictions
and then uses this estimate to refine the forward prediction, as detailed in 3.4.

Moreover, although several semantic watermarking methods in the noise space have been proposed,
their robustness has been challenged by various watermark attacks. For generated images that re-
quire verification, traditional image transformations—such as cropping and noising—can uninten-
tionally or deliberately damage the watermark by altering the pixel values of the image. Modern
attacks, however, focus more on breaking the watermark pattern while preserving image quality,
aiming to either remove or forge watermark information and thus undermine its credibilityYang
et al. (2024a). Existing semantic watermarking methods show poor robustness against proxy-model-
based deep perturbation attacks on single images, where watermarks can be easily erasedMüller et al.
(2025). Furthermore, when an attacker has access to a large number of watermarked images sharing
the same pattern, there is a risk that the watermark pattern can be statistically analyzed and stolen
using a proxy model, enabling watermark removal and forgeryPan et al. (2024a).

Therefore, Latents-Inv primarily addresses the robustness issue. Its core idea is to use the owner’s
key to recover the damaged parts of a watermark when the carrier image is inevitably attacked,
enabling fine-grained verification with sufficient accuracy. We employ a flow-based model with
a bidirectional structure to reversibly embed and accurately extract watermark information. This
model uses dual-channel outputs to distribute the watermark: one channel contains the initial latents
with the embedded watermark, and the other contains the copyright owner’s key also embedded with
watermark information. To ensure that watermark verification does not overly depend on the key, we
apply a joint-training strategy during training that utilizes negative sample pairs under both accuracy
and fidelity constraints. Additionally, we train a coarse-grained decoder with the same architecture
but different parameters to enable watermark extraction from images even without the key, ensuring
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full utilization of the carrier’s frequency-domain information capacity during the watermark encod-
ing phase.

In summary, our method minimizes perturbation to the latent representations at the early generation
stage, ensuring that the embedded watermark remains highly imperceptible in the final generated im-
ages. Experimental results show that current statistical attack methods cannot detect or distinguish
the watermark pattern in Latents-Inv. Moreover, our method includes a robust watermark extrac-
tion system that maintains strong ownership identification capability even when the watermark in
the carrier image is disturbed by attackers. Furthermore, our approach achieves lossless watermark-
ing in diffusion models—tested on both advanced first-order Euler-based models and DDIM-based
diffusion models, it achieves consistent and strong watermarking performance.

2 RELATED WORK

2.1 WATERMARK METHOD

Embedding watermark information into data as traceable metadata is highly beneficial for source
verification and copyright protection. Traditional image watermarking techniques directly embed
invisible watermarks into the spatial or transform domain of the target image, serving as a post-
processing steganographic method for traceability(Liang et al., 2024; Müller et al., 2025; Liu et al.,
2024). However, with the development and maturity of AI generative models, watermarking meth-
ods are increasingly integrated into the image generation process itselfArabi et al. (2025). This not
only improves the robustness of low-perturbation watermarks but also enables attribution of gen-
erated images based on the specific watermarking method used by a model, thus protecting both
content and model ownership(Saberi et al., 2023; Liang et al., 2024). In-processing approaches vary
across different generative models, but the main strategies fall into two categories: one fine-tunes
part of the model structure to embed watermark information during image generationFeng et al.
(2024); the other embeds the watermark at the initial noise sampling stage of diffusion models,
which reduces computational overhead(Yang et al., 2024b; Ci et al., 2024; Arabi et al., 2024).

2.2 ANTI-WATERMARK METHOD

Robustness against attacks remains a key challenge for modern semantic watermarking. Early water-
mark removal methods relied on simple image transformations—such as cropping, noise addition,
and rotation—which physically alter the image to disrupt invisible watermarks embedded in the
spatial or transform domain.Liang et al. (2024) However, with advances in neural networks and
deep learning, such post-processed perturbative watermarks can be easily detected and removed by
deep modelsJiang et al. (2023). Meanwhile, existing in-processing watermarking methods embed
information during generation, but they often rely on fixed mathematical patterns in the initial noisy
latent, leading to consistent image distributions. This makes the watermark vulnerable to statistical
analysis(Zhang et al., 2024a; Yang et al., 2024a) or proxy models(Hu et al., 2024b; Müller et al.,
2025) that can learn the embedding pattern, enabling watermark removal or forgery. In addition, wa-
termarking methods based on fine-tuning parts of the generator are limited by fixed model modules
and can be erased using regeneration attacks on diffusion models(Zhao et al., 2024; Liu et al., 2024).
These vulnerabilities show that current watermarking approaches still lack sufficient robustness.

2.3 DIFFUSION MODELS

Besides security concerns, the lack of cross-architecture generalizability is another key limitation
of existing watermarking methods. Most watermarking proposals are designed for older generation
models—particularly diffusion models based on the UNet architecture and the DDIM sampling pro-
cessMokady et al. (2023). DDIM approximates the original SDE process of DDPM—which is based
on a Markov chain—as an ODE-solving processZhao et al. (2022). Although this simplification in-
troduces some approximation error, it makes the parameters at any noising or denoising timestep
explicitly known, enabling efficient inversion from the generated image back to its corresponding
initial noise. And the forward Euler method for denoising follows an ODE-solving procedure, but
the backward Euler method is implicit. In the inversion process, this manifests as a mismatch be-
tween the prompt embedding vectors in the forward and backward passes, necessitating an iterative
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Figure 2: The core watermark encoding and decoding structure of Latents-Inv, encompassing pre-
processing, encode-decode, and post-processing stages. Pre-processing primarily employs mathe-
matical techniques for channel expansion, thereby increasing the embeddable regions for watermark
information. The flow-based encoder manages the forward process, sharing model weights with
the corresponding flow-based decoder during the reverse process, while maintaining an identical
architecture to that of the independent decoder. Post-processing focuses on feature fusion, ensuring
dimensional consistency between inputs and outputs, as well as preserving the distribution charac-
teristics of the latents.

solver to achieve consistency.As a result, watermarking methods that rely on fine-tuning model com-
ponents fail to achieve consistent embedding and protection performance when applied to newer
models based on the MMDiT architecture and rectifield-flow methodLiu et al. (2022). Similarly,
approaches that embed watermarks in the initial noise suffer significant performance degradation
due to architectural and procedural differences in the generation pipelineUmrajkar & Singh (2025).
Specifically, models using the rectifield-flow method no longer employ only ODE-based sampling
like DDIM for noising or denoising. This necessitates a new inversion method to reliably map gen-
erated images back to their corresponding initial noise(Wang et al., 2024; Deng et al., 2024; Rout
et al., 2024; Jiao et al., 2025), ensuring stable watermark embedding and extraction within the initial
noise space.

3 METHOD

3.1 OVERVIEW

As shown in Figure2, during encoding, the core of our method is using a flow-based model to embed
watermark information into two outputs: the carrier latents and a owner’s key. After generation and
inversion, Latents-Inv should verify the query latents. In the extraction phase, fine-grained and high-
precision watermark recovery is achieved with the aid of the key, while a key-free coarse-grained
decoder assesses the level of watermark corruption in the carrier, helping to verify the legitimacy of
the fine-grained extraction result and preventing false acceptance of forged or unauthorized content.
Next, we present a detailed description of the codec operational mechanism and training strategy,
along with the Uni-inv inversion method tailored for MMDiT-based diffusion models.

3.2 LATENTS PROCESSING AND FLOW-BASED CODEC

The flow-based model is inherently reversible: for every forward encoding function fθ, there exists
a corresponding backward function f−1

θ . This one-to-one invertibility naturally aligns with the
watermarking pipeline, where embedding and extraction are symmetric processes. However, before
any forward or backward pass through the flow model, as illustrated in Figure 2, the input must go
through pre-processing and post-processing.

4
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During pre-processing, Latents-Inv will transform the latent noise into four frequency domains
through two-dimensional HARR transformation. Embedding the watermark information multiple
times into the HARR-transformed information can better utilize the channel capacity than embed-
ding it once in the spatial domain. And watermark can be more robust without affecting the qual-
ity(Wen et al., 2023; Kassis & Hengartner, 2025).

In the embedding stage, Latents-Inv accepts the watermark information m0 and the carrier infor-
mation x0 . And in each invertible block, the model performs additive affine transformations to
gradually blend the watermark with the carrier image. Finally, it outputs the watermarked carrier xn

and the owner’s key mn.Here is the invertible block:

xi+1 = xi + Ui(mi) (1)

mi+1 = mi ⊗ exp
(
D1

i (xi+1)
)
+D2

i (xi+1) (2)

where Ui denotes the update network, D1
i , D

2
i are diffusion sub-networks, and ⊗ indicates element-

wise multiplication. In the extraction stage, we input the key rn and the watermark carrier yn

through backward input, and extract the watermark information by performing the same parameter
convolution and reverse coupling of the carrier and key feature information precisely. The corre-
sponding backward propagation of the extraction process is formulated as:

m′
i =

(
mi+1 −D2

i

(
x′
i+1

))
⊗ exp

(
−D1

i

(
x′
i+1

))
(3)

x′
i = x′

i+1 − Ui(m
′
i) (4)

At the same time, we also use a trained coarse-grained watermark decoder with the same structure,
inputting an empty matrix zn and the watermark carrier yn, and directly extracting the watermark
information from the carrier. Coarse-grained occurs before fine-grained extraction, it can ensure the
validity of the carrier information and ensure that fine-grained extraction does not overly rely on the
redundant residual watermark information in the key.

Post-processing ensures consistent data dimensions and helps preserve output image quality. In the
whole process, the key is processed by a fully connected (fc) layer to match the same dimension
as the original watermark. For carrier latents, Latents-Inv concatenates the clean and watermarked
frequency-domain signals across the four bands along the channel dimension, followed by a 1×1
convolution.This ensures that the initial noise fed into the diffusion model contains the watermark
and better matches the desired noise distribution.

3.3 WATERMARK ROBUSTNESS PROTECTION

To address the issue of robustness, our method hides the watermark information through an invertible
latent watermark encoder-decoder in two parts: the released carrier image and the private key owned
by the image owner. Since the watermark information associated with the private key remains intact,
our method is inherently robust against attacks that attempt to corrupt the watermark in the carrier.
To ensure reliable verification, however, it is essential to have sufficient discriminative capability
over the distribution of latents paired with the key.

First, we evaluate watermark embedding and extraction under noise-free conditions, which serves
as the fundamental criterion for assessing embedding and decoding accuracy. Unlike prior semantic
watermarking methods, Latents-Inv preserves the distribution of the discretized latent noise as much
as possible during modification, thereby maintaining content consistency of the generated images
before and after watermark embedding. Our joint training strategy for image generation quality and
accuracy is as follows:

Lθ = Em0,x0

[
∥x0 − πx ◦ fθ(m0,x0)∥2 + ∥m0 − πm ◦ f−1

θ ◦ fθ(m0,x0)∥2
]

(5)

where πx(x,m) = x and πm(x,m) = m are the natural projections. We avoid using KL divergence
as the distribution loss because it may not sufficiently constrain the L2 distance between the initial
latents before and after watermark embedding, potentially leading to perceptible distortions in the
generated image.

To enhance robustness against watermark destruction attacks, we leverage the multi-band capacity
of the initial latent noise and employ a fully reversible, dual-end flow-based architecture. To prevent
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the model from over-relying on the key for watermark encoding—thus underutilizing the latent
space—we introduce a coarse-grained structural decoder. It takes a zero matrix and the carrier
noise as input and reconstructs the initial watermark, promoting watermark embedding in the latent
channel while preserving the integrity of the carrier image. The corresponding loss is:

Lθ′ = Em0,x0,z0

∥∥m0 − πm ◦ f−1
θ′ ◦

(
fθ(m0,x0), z0

)∥∥2 (6)

For watermark forgery through the published carrier image, we introduce negative samples pairs
through regularization penalties, so that the trained flow-based model pays more attention to the
noisy latents with key-paired watermark information during decoding. We employ the BCE loss as
a metric to measure the wrong classification rate on negative sample pairs, and introduce a penalty
term to prevent overfitting:

Lbce = BCE(m0, πm ◦ fθ(m0,x0)) (7)

Pneg = max
(
0, 0.6930− (Lbce − Lθ′)

)
(8)

The penalty threshold is set to 0.6930, which corresponds to the BCE loss of a random guess on a
balanced binary watermark sequence. At the same time, negative sample pairs prevent the decoder
from relying too much on the key, ensuring the latent noise is also used for watermark extraction.
This avoids false detection when arbitrary noise is paired with a key.

In brief, to balance watermark embedding between the carrier and the key, we combine coarse- and
fine-grained decoding with negative-sample training. The overall training loss with the correspond-
ing weight coefficients λ1, λ2 and λ3 is:

Ltotal = λ1Lθ + λ2Lθ′ + λ3Pneg. (9)

3.4 INVERSION METHOD IN RECTIFIELD-FLOW DIFFUSION MODEL

Diffusion-based generative models aim to map initial noise samples drawn from a Gaussian distri-
bution to realistic data distributions. The inversion process seeks to reconstruct the reverse diffusion
trajectory in order to recover the initial latent noise corresponding to a given generated image—a
critical step for accurately extracting watermarks embedded via latent noise modulation. However,
recent models such as SD3 and FLUX adopt Rectified Flow formulations rather than DDIM-style
ODE solvers:

Zti−1
= Zti + (ti−1 − ti)vθ(Zti , ti) (10)

where Zti−1 denotes the latents at timestep ti, and Zti is the latents from the previous step. The term
ti−1 − ti represents the time step size, and vθ(Zti , ti) is the velocity network that predicts the flow
direction at ti. This explicit forward Euler update simulates the continuous transformation from data
to Gaussian noise in Rectified Flow diffusion models. So, the inversion process may clear:

Zti = Zti−1
− (ti−1 − ti)vθ(Zti , ti). (11)

The variable vθ(Zti , ti) is unknown in the backward Euler method. Consequently, the inversion
method cannot be straightforwardly derived from the forward process, due to the non-ODE formu-
lation and implicit backward dynamics of modern flow-based models. Therefore, in the experiment,
we adopted the precise inversion method of Uni-InvJiao et al. (2025), which reverses the previous
value of hidden Euler approach back to the next value.Given the velocity function v0, initial image
Z0 ∼ π0, and time steps t = {t0, . . . , tN} where t0 = 0 and tN = 1, the Uni-Inv (Euler) algorithm
updates are defined as follows:

Initial conditions:
v̂0 = v0(Z0, t0) (12)

Ẑt0 = Z0 (13)

For i = 1 to N :
Zti = Ẑti−1

− (ti−1 − ti)v̂i−1 (14)

v̂i = vθ(Ẑti , ti) (15)

Ẑti = Ẑti−1
− (ti−1 − ti)v̂i (16)
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The final output we want is Ẑ1. Uni-Inv is fundamentally an iterative generation method designed
for the backward Euler ODE solver, also known as the predictor-corrector method—a classical and
effective approach in numerical analysis for solving differential equations. The theoretical error
is O(∆t3i ), where ∆ti = ti − ti−1, and the proof is shown in the appendix. It transitions to the
high-noise step first, estimates the velocity by simulating a denoising process. Then it returns to the
original low-noise step and performs inversion using the latest ”denoising-like” velocity. Intuitively,
because the initial and end noise distributions are similar, the parallel noise distribution errors on the
same time step with the same length will be smaller.
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Figure 3: Robustness of semantic watermarking methods under surrogate-model-based removal at-
tacks across different diffusion architectures.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. In our experiments, we use a combination of real and synthetic images. We randomly
select 5,000 real images from COCO2017 as clean, unwatermarked samples to serve as the reference
pattern in detection. We generate 19,000 clean images and 1,000 watermarked images with SD3,
where 10% of the watermarked set is used as training data. All images are generated from prompts
in the Stable-Diffusion-Prompt dataset and are also used to evaluate detection performance.

Diffusion Models. We evaluate across four diffusion models: SD1.5 as a representative UNet-
based architecture, and SD3.medium and FLUX1.dev for testing under MMDiT and rectified flow
(RF) generation frameworks. For black-box forgery and removal attacksMüller et al. (2025), we
adopt SD2.1-baseRombach et al. (2022) as the surrogate model.
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Figure 4: Robustness of semantic watermarking methods under
surrogate-model-based forgery attacks across different diffusion
architectures.
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detection.

Watermarking and Adversarial Methods. We compare with semantic watermarking methods that
embed information in the initial latent noise, focusing on those transferable from UNet to MMDiT
architectures. We select Tring-Ring (TR)Wen et al. (2023) and Gaussian Shaping (GS)Yang et al.
(2024b) as baselines. To assess robustness, we consider two attack paradigms: (i) single-image
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latent inversion attacks that perturb initial latentsMüller et al. (2025), and (ii) statistical detection
methods that analyze patterns across large collections of watermarked imagesYang et al. (2024a);
Pan et al. (2024a).The former can perform threatening watermark removal and forgery attacks and
the latter can effectively distinguish the distribution of watermarked images from clean images.

Evaluation Metrics. We use bit accuracy as the primary metric for GS and Latents-Inv watermark
extraction robustness. We measure TR watermark extraction robustness with the p-value, which
gives the probability that the observed watermark would appear by random chance—smaller values
indicate stronger evidence of the true watermark. And for monotonicity consistency, we use 1-p-
value for comparison.

Table 1: Comparison of Different Methods
Method Model Clean Crop Noise Bright Removal Forgery Avg ↑

SD1.5 0.963 0.067 0.522 0.631 0.546 0.000 0.455
Tree-Ring SD2.1 0.978 0.079 0.544 0.664 0.461 0.000 0.454

SD3.0 0.694 0.032 0.312 0.353 0.295 0.005 0.282
FLUX.1 0.722 0.041 0.383 0.419 0.223 0.017 0.301

SD1.5 1.000 0.847 0.693 0.864 0.003 0.000 0.568
Gaussian-Shading SD2.1 1.000 0.848 0.715 0.825 0.027 0.000 0.569

SD3.0 0.787 0.648 0.576 0.626 0.402 0.489 0.588
FLUX.1 0.804 0.683 0.608 0.705 0.322 0.386 0.585

SD1.5 1.000 0.821 0.724 0.869 0.906 0.359 0.777
Latents-Inv SD2.1 1.000 0.831 0.745 0.872 0.856 0.375 0.780
(Ours) SD3.0 1.000 0.812 0.728 0.822 0.656 0.593 0.769

FLUX.1 0.984 0.804 0.687 0.794 0.781 0.532 0.764

4.2 EXPERIMENTAL RESULTS

Watermark Robustness Performance of Latents-Inv:Table 1 summarizes robustness evaluation
results under both traditional image distortions and black-box watermark removal attacks using the
SD2.1-based surrogate model. Under conventional attacks, semantic watermarking methods based
on initial latent noise generally show reliable performance. Our method achieves competitive or
superior bit accuracy across most cases. Notably, while Latents-Inv performs slightly worse than GS
under cropping on UNet-based models, our approach maintains consistent robustness. Even when
the latent channel dimension increases from 4 to 16, our method preserves the highest detection rate,
demonstrating minimal interference during model transfer and achieving over 98% accuracy on both
SD3 and FLUX1.dev.

Under black-box attacks via latent space manipulation, our method shows strong resilience. As
shown in Figure 3, with increasing optimization steps in the surrogate model, all semantic water-
marks suffer some degradation. GS degrades rapidly on U-Net-based models, whereas our method
maintains over 85% accuracy, showing stable robustness. On MMDiT models, our watermark re-
mains robust in early stages and degrades gracefully, still outperforming baselines. Interestingly, TR,
which embeds watermark in a ring-like structure similar to physical patterns, exhibits oscillating be-
havior under iterative perturbation—consistent with the nature of the optimization-based attack. A
detailed analysis is provided in the Appendix.Figure 4 shows results under black-box forgery attacks
using a surrogate model, where the ring-based non-bit-embedding watermark (TR) is excluded for
clarity. On UNet-based models, our method significantly outperforms GS. On MMDiT models, our
approach also achieves better robustness, though the performance gap is smaller. Notably, due to
architectural differences and limitations of the surrogate model, such forgery attacks struggle to ef-
fectively manipulate semantic watermarks across different model architectures—indicating limited
cross-structure transferability of current latent space manipulation techniques.

Watermark Visual Performance of Latents-Inv:Figure 6 shows images generated by different
diffusion models using various initial latent codes under the same prompt. SD3 and FLUX generate
images at resolutions of 512× 512 and 1024× 1024, respectively, requiring latents of different di-
mensions—enabling us to evaluate watermarking under varying latent spaces. Visually, our method
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produces results most consistent with the clean (unwatermarked) images, thanks to a distribution-
preserving loss used during embedding. Figure 5 also presents results from a black-box statistical
detection test on Latents-Inv. Negative indicates watermarked images, while Positive represents
clean images. The detector fails to reliably distinguish between watermarked and unwatermarked
images, indicating that our embedded latents closely match the distribution of clean ones. This
explains the high visual fidelity of the generated outputs.In the last row of Figure 6, we show the
pixel-wise difference between images generated from watermarked and clean latents. The residual
signal is widespread across the entire image space, demonstrating that Latents-Inv embeds rich, spa-
tially distributed watermark information. This full-spatial presence of watermark traces contributes
significantly to its robustness—ensuring detectable signals remain even after partial corruption or
attacks.

SD2.1 SD3(512) SD3(1024) FLUX(512) FLUX(1024)
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Figure 6: Comparison of semantic watermark images generated by different models at various res-
olutions. The first three rows represent watermarked images, the fourth row shows clean (unwa-
termarked) images for reference, and the last row highlights watermark artifacts produced by the
Latents-Inv method.

5 CONCLUSION

In this work, we propose Latents-Inv, a semantic watermarking method for diffusion models that
embeds invertible watermarks into the initial latent space. By employing a joint-training strategy
that leverages negative-sample pairs under both accuracy and fidelity constraint for a flow-based
codec. Our method achieves high visual fidelity and strong robustness across diverse architectures,
including UNet and MMDiT. Extensive experiments show that Latents-Inv outperforms existing
methods under both traditional distortions and black-box removal/forgery attacks, demonstrating
superior transferability and resilience.
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